

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Seven-year active surveillance for carbapenemaseproducing Klebsiella pneumoniae and correlation with infection in subjects attending an Italian tertiary-care hospital.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042290
Article Type:	Original research
Date Submitted by the Author:	01-Jul-2020
Complete List of Authors:	Calderaro, Adriana; University of Parma, Department of Medicine and Surgery Buttrini, Mirko; University of Parma, Department of Medicine and Surgery Martinelli, Monica; University Hospital of Parma, Unit of Clinical Microbiology Montecchini, Sara; University Hospital of Parma, Unit of Clinical Virology Covan, Silvia; University Hospital of Parma, Unit of Clinical Microbiology Ruggeri, Alberto; University Hospital of Parma, Unit of Clinical Microbiology Rodighiero, Isabella; University Hospital of Parma, Unit of Clinical Microbiology Di Maio, Alan; University Hospital of Parma, Unit of Clinical Microbiology Larini, Sandra; University Hospital of Parma, Unit of Clinical Microbiology Larini, Sandra; University Hospital of Parma, Unit of Clinical Microbiology Arcangeletti, Maria Cristina; University of Parma, Department of Medicine and Surgery Chezzi, Carlo; University of Parma, Department of Medicine and Surgery De Conto, Flora; University of Parma, Department of Medicine and Surgery
Keywords:	Diagnostic microbiology < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES, Molecular diagnostics < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

2		
3 4	1	Original article
5	2	
6 7	3	Seven-year active surveillance for carbapenemase-producing Klebsiella pneumoniae and
8 9	4	correlation with infection in subjects attending an Italian tertiary-care hospital.
10	5	
11 12 13	6	Adriana Calderaro ^{1*} , Mirko Buttrini ¹ , Monica Martinelli ² , Sara Montecchini ³ , Silvia Covan ² ,
14 15 16	7	Alberto Ruggeri ² , Isabella Rodighiero ² , Alan Di Maio ² , Mariapia Galullo ² , Sandra Larini ² , Maria
17 17 18	8	Cristina Arcangeletti ¹ , Carlo Chezzi ¹ , Flora De Conto ¹ .
19 20	9	
21 22	10	¹ Department of Medicine and Surgery, University of Parma – Parma, Italy
23 24 25	11	² Unit of Clinical Microbiology, University Hospital of Parma
26 27	12	³ Unit of Clinical Virology, University Hospital of Parma
28 29	13	
30 31 32	14	
33	15	
34 35	16	
36 37	17	
38	18	
39 40 41	19 20	
42 43	20	
44 45	22	
46	23	* Correspondence to:
47 48	24	Prof. Adriana Calderaro MD, PhD,
49 50	25	Associate Professor of Microbiology and Clinical Microbiology,
51 52	26	Department of Medicine and Surgery, University of Parma
53 54	27	Viale A. Gramsci, 14 43126 Parma, Italy
55	28	Tel. +39/0521/033499
56 57	29	Fax. +39/0521/993620
58 59 60	30	E-mail: <u>adriana.calderaro@unipr.it</u>

BMJ Open

31	Abstract
32	Objectives. The distribution of carbapenemase-producing <i>K. pneumoniae</i> (CPKP) phenotypes and
33	genotypes in samples collected during 2011-2018 was evaluated.
34	Setting. The study was performed in a tertiary-care hospital located in northern Italy.
35	Participants. Two groups were considered: 22,939 "at-risk" patients submitted to active
36	surveillance for CPKP detection in rectal swabs/stools and 1094 CPKP infected patients in which
37	CPKP was detected in samples other than rectal swabs; the association between the 2 groups was
38	investigated.
39	Results. CPKP-positive rectal swabs were detected in 5% (1150/22,939). A CPKP infection was
40	revealed in 3.1% (719/22,939): 582 with CPKP-positive rectal swabs (50.6% of the 1150 CPKP-
41	positive rectal swabs) and 137 with CPKP-negative rectal swab. The 49.4% (568/1150) of the
42	patients with CPKP-positive rectal swab were carriers. The overall frequency of CPKP-positive
43	patients (carriers and infected) was almost constant from 2012 to 2016 (excluding the 2015 peak)
44	and then increased in 2017-2018. <i>bla</i> KPC was predominant followed by <i>bla</i> VIM. No difference
45	was observed in the frequency of CPKP-positive rectal swab patients among the different material
46	groups; on the contrary, the CPKP invasive infections more frequently involved different body

7 sites.

Conclusions. The high prevalence of carriers without evidence of infection, representing a potential reservoir of CPKP, suggests to maintain the guard about this problem, emphasizing the importance of active surveillance for timely detection and separation of carriers, activation of contact precautions and antibiotic treatment guidance upon suspicion of infection.

Article summary

4 <u>Strengths and limitations of this study</u>

• This study involved a relevant number of patients whose samples, arriving from different hospital units, were analysed in a long period (7 years).

1 2 3	57		
4 5	57 58	•	The study demonstrated that 49.4% of patients submitted to active surveillance with CPKP-
6 7 8	59		positive rectal swabs were carriers, representing a potential reservoir for spread of CPKP
9 10	60		strains detectable only by surveillance.
11 12	61	•	In this study, CPKP-positive blood and respiratory samples were more frequently associated
13 14 15	62		with infections in different body sites.
16 17	63	•	Only the results obtained for microbiological examination were considered.
18 19 21 22 23 33 33 33 33 33 34 34 34 44 <td< td=""><td>64</td><td></td><td></td></td<>	64		

BMJ Open

5	Introduction
6	Multidrug-resistant (MDR) bacteria represent an increasing public health threat in health-care
7	settings. Among MDR bacteria, carbapenemase-producing Enterobacteriaceae (CPE), especially
8	Klebsiella pneumoniae, are a cause for concern being able to spread rapidly [1] and responsible of
9	invasive infections associated with high mortality [2], recently inducing the Centers for Disease
0	Control and Prevention to raise them to highest threat level [3]. The application of CPE control
1	programs has been successful in some areas; however, the problem continues to worsen worldwide,
2	requiring more effective prevention strategies [1,4].

Carbapenemases are enzymes included in the Amber classification in the A, B, or D classes. The class A and D enzymes are serine hydrolases, and the class B enzymes are catalases requiring 1 or 2 zinc ions on the active site [5]. Although certain carbapenemases are typically associated with specific regions or countries, nowadays, due to globalization especially in terms of widespread international travel and broad access to medical care, such an association may change, emphasizing the need for routine local and national surveillance [4]. In particular, in Italy, besides the detection of Verona integron-encoded metallo-beta-lactamase (VIM)-producing *Enterobacteriaceae*, firstly detected in the early 2000s, K. pneumoniae carbapenamase (KPC) producers are widely spread whereas New Delhi metallo-beta-lactamase (NDM) and carbapenem-hydrolyzing oxacillinase-48 (OXA-48) producers are only occasionally revealed [3].

The aim of this study was the evaluation of the distribution of the phenotypes and genotypes of the carbapenemase-producing *K. pneumoniae* (CPKP) strains circulating in two selected groups of patients (those examined for CPKP detection on rectal swabs as part of the National/Regional active CRE surveillance, and those with a CPKP infection) in a tertiary-care hospital during a seven-year period (2011-2018). The association between patients with CPKP-positive rectal swab and those with CPKP infection, as well as the overall analysis of CPKP infected patients were performed.

1 2		
3 4	91	Methods
5 6	92	Study design.
7 8 9	93	The study was designed as a retrospective data collection. The total observation time was 7 years.
9 10 11	94	
12 13	95	Patient and Public Involvement
14 15	96	Data were sought retrospectively from the records produced by the diagnostic flow of the
16 17 18	97	laboratory, as answer to a clinical suspicion or to active CRE surveillance.
19 20	98	
21 22	99	Definitions.
23 24 25	100	A patient was defined as carrier when only a CPKP-positive rectal swab was detected and as
	101	infected when a CPKP-positive sample other than rectal swab was found, in presence of signs and
28 29	102	symptoms of infection, according to CDC criteria for specific types of infections [6].
30 31 32	103	CPKP-positive samples other than rectal swab were grouped in blood (including blood, vascular
	104	catheter, and cerebrospinal fluid), respiratory (including bronchial aspirate, bronchoalveolar lavage,
	105	sputum, pleural fluid, pharyngeal swab, nasopharyngeal aspirate and nasal swab), urine (including
	106	urine and urinary catheter), and other (including bile, peritoneal, ascitic and abdominal drainage
39 40 41	107	fluids, pus, bioptic and prothesic materials, sperm, tongue, wound, cutaneous, vaginal and urethral
	108	swabs). Multiple CPKP-positive samples categorized in the same group and belonging to the same
	109	patient were considered only once, as a unique sample.
	110	
48 49 50	111	Study setting and population.
51 52	112	Two well-defined groups of patients attending a tertiary-care hospital (University-Hospital of
	113	Parma, Italy) from November 2011 to October 2018 were selected. The first group included 22,939
55 56 57	114	"at-risk" patients (e.g. contacts of CPKP-positive patients; patients admitted to transplant surgery,
	115	to intensive care units or to any other "at-risk" unit such as long-term care units, oncology and
60	116	haematology; patients known to be infected/colonized, with the last CPKP positivity dating back to 5

more than 90 days from the new admission; patients coming from endemic countries such as Israel,
Greece, Pakistan and India; patients transferred from acute care and neurological rehabilitation
facilities; patients coming from nursing homes for the elderly; patients hospitalized in an acute care
facility in the last 6 months), median age 70 years, range from 1 day to 108 years, examined on
admission as part of the National/Regional active CRE surveillance for the detection of CPKP
strains in rectal swabs/stools (hereafter referred as rectal swab), for a total of 32,477 rectal swabs
due to multiple sampling when required by CRE surveillance [7]. In case of multiple CPKP-positive
samples, only the first one of each patient was considered. The second group included 1094 CPKP
infected patients (median age 78 years, range from 20 days to 102 years), either involved or not
involved in active CRE surveillance.

28 <u>Microbiological methods.</u>

The rectal swabs were inoculated onto chromogenic agar (Brilliance CRE medium, Oxoid, Milan, Italy) and the blue colonies referring to presumptive CRE were subcultured on MacConkey agar with a carbapenem disk, as previously described [3]. CPKP strains from clinical samples other than rectal swabs were isolated as previously described [3]. All *K. pneumoniae* strains were identified by MALDI-TOF MS and submitted to antimicrobial susceptibility testing (Gram-negative NMIC/ID88 or NMIC/ID94 Combo Panels, Becton Dickinson, Sparks, MD, USA). When a carbapenem nonsusceptible *K. pneumoniae* strain was revealed, the carbapenemase production confirmation was performed by phenotypical analysis and genotypical characterization. The phenotypical analysis, according to Regional guidelines [7], included the modified Hodge test in combination with the disk diffusion inhibition test (KPC+MBL Confirm ID Kit/ KPC, MBL and OXA-48 Confirm Kit, Rosco Diagnostica, Taastrup, Denmark), performed according to the manufacturer's instructions. For genotypical characterization, 2 molecular methodssucceeded during the study period: the first detecting *bla*KPC, *bla*NDM, and *bla*VIM was used until 2015, and the second one also detecting *bla*OXA-48 was used since 2015, as previously described [3].

1 2	
³ 143	
4 5 6 144	Statistical analysis.
7 8 145 9	Chi-square test was used for comparison of the frequency of CPKP-positive rectal swabs among
¹⁰ 146 11	CPKP infected patients by material grouping, the frequency of involvement of multiple materials
¹² 147 13	among CPKP infected patients, and the distribution of carbapenemase genes in the different
¹⁴ 15 148 16	material groups. Statistical significance was set at $p < 0.01$.
17 149 18 ¹⁹ 150 20 ²¹ 22 151	
23 24 152	Results
25 ²⁶ 153 27	Among the 22,939 "at-risk" patients (32,477 rectal swabs), carbapenem-resistant K. pneumoniae
²⁸ 29 154	strains were detected in 1178 cases (5.1%) and the production of carbapenemase was revealed in
30 31 155 32	1150 cases (5%). Intensive care and long-term care units accounted for the highest number of
³³ 156 ³⁴	patients with CPKP-positive rectal swabs (188 cases each), with a prevalence of 1.9% and 15.8%,
³⁵ 157 36	respectively (Fig.1a). The frequency of patients with CPKP-positive rectal swabs ranged from
³⁷ 38 158 39	4.4% to 4.7% in the 2012-2014 period, reached the highest peak (6.3%) in 2015, and showed a
40 159 41	fluctuating trend from 2016 to 2018 (Fig.1b). With regard to the results of the molecular genotyping
⁴² 160 43	assays, all targeted types of carbapenemase genes were detected among the analysed rectal swabs.
44 45 46	The <i>bla</i> KPC was predominant (79%, 909/1150) followed by <i>bla</i> VIM (16.7%, 192/1150), while
40 47 162 48	<i>bla</i> OXA-48 and <i>bla</i> NDM were more rarely observed, accounting for 0.3% (3/1150) and 0.2%
⁴⁹ 163 ⁵⁰	(2/1150), respectively (Fig. 2). In 0.8% (9/1150, 8 class B blaNDM- and blaVIM-negative and 1
⁵¹ 52 53	class A blaKPC-negative) of the CPKP strains, none of the targeted genes was revealed, if
53 54 165 55	excluding those class B cases (35) for which only <i>bla</i> NDM was tested. With reference to temporal
56 166 57	distribution, from 2012 to 2014 a decrease of <i>bla</i> KPC was observed in contrast to a correspondent
⁵⁸ 167 59 60	increase of <i>bla</i> VIM, which started gradually decreasing from 2015. When the peak of positive rectal

1 2		
3 4	168	
5 6	169	
7 8	170	
9 10 11	171	
11 12 13	172	
14 15	173	
16 17	174	
18 19	175	
20 21 22	176	
23 24	177	
25 26	178	
27 28	179	
29 30 31	180	
32 33	181	
34 35	182	
36 37	183	
38 39		
40 41 42	184	
43 44	185	
45 46	186	
47 48	187	
49 50 51	188	
52 53	189	
54 55	190	
56 57	191	
58 59 60	192	
00	193	

swabs (204) was observed in 2015, *bla*KPC reached the maximum peak frequency (173), doubling that of 2014 and subsequently slightly decreased with a fluctuating trend (Fig. 2). When the 22,939 patients submitted to CRE surveillance (group 1) were combined with the 1094 CPKP infected patients (group 2), a total of 1662 CPKP-positive patients was found: 568 CPKP carriers (accounting for 49.4% of the 1150 patients with CPKP-positive rectal swab), 582 CPKP infected patients with a CPKP-positive rectal swab (accounting for 50.6% of the 1150 patients with CPKP positive rectal swab), 137 CPKP infected patients with a CPKP-negative rectal swab, and 375 CPKP infected patients not included in the active CRE surveillance. Among the 1094 CPKP infected patients (719 included in the active CRE surveillance and 375 not included in the active CRE surveillance), accounting for 1283 CPKP-positive samples, urine (675) was the mostly involved sample all over the period, although a significant decrease from 2015 to 2016 was observed. Blood (175) accounted for about 25 cases per year, with a peak in 2017 (34) (Fig. 3). With regard to the CPKP infected patients included in the active CRE surveillance, no significant difference was observed in the frequency of CPKP-positive rectal swabs in the different material groups. On the contrary, CPKP-positive blood (49%) and respiratory (31%) samples were more frequently associated than urine (17.7%) with CPKP-positive samples from 2- or more-site of infection (p<0.0001), as well as CPKP-positive blood samples were more frequently associated with other CPKP-positive samples from 2- or more-site infection (p < 0.001) than the respiratory ones (Fig. 4). With reference to the 1094 CPKP infected patients, 1034 (94.5%) were positive for one of the

targeted carbapenemase genes (841 *bla*KPC, 188 *bla*VIM, 3 *bla*OXA-48, and 2 *bla*NDM) and 5 (0.5%) contained two of the targeted carbapenemase genes (4 *bla*KPC+*bla*VIM and 1 *bla*NDM+*bla*OXA48), for a total of 1044 carbapenemase genes detected (Fig. 5a). If excluding the 50 class B strains for which only *bla*NDM was tested, the remaining 5 cases were negative for the 51 targeted carbapenemase genes (2 class A *bla*KPC-negative and 3 class B *bla*VIM- and *bla*NDM-

194 negative). When the carbapenemase gene analysis was performed by material grouping, *bla*KPC 195 was the most frequently detected carbapenemase gene in all material groups, followed by *blaVIM*; 196 however, the ratio of *bla*KPC and *bla*VIM was found to range from 6:1 to 10:1 for all material 10 197 groups, except for urine for which *blaVIM* was more significantly detected (ratio 3:1) (p<0.01) ¹² 198 (Fig. 5b).

17 200 Discussion

1 2 3

4 5

6 7

8 9

11

18 19

21

23

26

28

Since 2013, the Centers for Disease Control and Prevention assigned the highest threat level to CRE 20 201 ²² 202 and declared that CRE require urgent public health attention [8,9]. Unlike previous Italian studies ²⁴ 25 203 reporting the colonization rate for selected patient categories [10–13], our data show the picture of 27 204 the spread of CPKP isolates in a tertiary-care hospital.

²⁹ 205 In our experience, the results of the application of active CRE surveillance with the adoption of a 30 ³¹ 32</sub>206 combination of phenotypic assays followed by genotypic characterization on "at-risk" patient 33 ₃₄ 207 categories highlight the need not to lower the guard about this problem. In fact during the study 35 36 208 period, after an initial constant trend of the frequency of CPKP-positive rectal swab cases from 37 ³⁸ 209 2012 to 2014 (ranging from 4.4% to 4.7%), in 2015 the highest peak (6.3%) was observed, in 40 41 210 agreement with the same pattern described for invasive infection at regional level [7], followed by a 42 43 211 decrease in 2016 (4.9%) and a subsequent increasing trend in the last 2 years. The highest 44 ⁴⁵ 212 prevalence of CPKP-positive rectal swabs was observed in the long-term care units, if excluding 46 ⁴⁷ 48</sub>213 those units in which rectal swab screening was performed only on targeted patient, such as contacts 49 50 214 of carrier patients and/or transfer from "at-risk" care units, and obtained on a limited number of 51 ⁵²215 rectal swabs. 53

⁵⁴ 55</sub>216 When the association between patients with CPKP-positive rectal swabs and those with CPKP 56 57 217 infection (CPKP-positive samples other than rectal swab) was considered, it was observed that the 58 59218 49.4% of patients submitted to active surveillance with CPKP-positive rectal swabs were carriers, 60

Page 11 of 19

BMJ Open

2		
	219	repre
F	220	Taki
•	221	surve
9 10	222	swab
11 12 13	223	samp
14		it is o
16		sugg
18 19	226	previ
20		With
23	228	swab
25		blaK
27 28		
29 30		In co
32		of th
34		reach
35 36 37	233	48 w
38 39	234	distri
	235	the s
43		carba
	237	recer
46 47 48	238	for w
49 50	239	most
51 52	240	The
	241	in ou
55 56 57	242	patie
	243	study
60		wher

representing a potential reservoir for spread of CPKP strains detectable only by surveillance.
Taking into account the overall infected patients and excluding those not submitted to active CRE surveillance, no difference was observed in the frequency of patients with CPKP-positive rectal swabs among the different material groups. On the contrary, CPKP-positive blood and respiratory samples were more frequently associated with infections in different body sites, demonstrating that it is difficult to contain invasive infections (blood and respiratory samples) in a unique site and suggesting that carriage represents one of the most important risk factor for CPKP infection, as previously described for bloodstream infection [14,15].

regard to the temporal distribution of the carbapenemase genes among CPKP-positive rectal os, from 2012 to 2014 the *bla*KPC and *bla*VIM showed an inverse trend: in fact, when the PC decreased from 74.9% to 55.8%, the *blaVIM* increased consequently from 17% to 39.7%. prrespondence of the highest CPKP-positive rectal swab rate in 2015, the trend of the frequency e *bla*KPC and *bla*VIM genes has reversed: that of *bla*KPC has continuously raised again, ning 92.8%, whereas that of *blaVIM* progressively decreased to 3.2%. *blaNDM* and *blaOXA*rere only occasionally detected starting from 2016 and 2018, respectively. A similar temporal ibution was also observed among infected patients, in which *bla*KPC was prevalent during all tudy period with a peak in 2015 and *blaVIM* was the second most frequently detected apenemase gene independently of the material grouping. These data are in contrast with those ty reported to the Italian national surveillance from 2014 to 2017 in bloodstream infections, which the emergence of *bla*OXA-48, especially in CPKP isolates, and its assessment as the first common gene after *bla*KPC, overcoming *bla*VIM, were described [16]. overall high prevalence of *blaVIM*, mainly due to the relative peaks observed in 2013 and 2014 ir study, could be explained by a possible outbreak of the same clone of *blaVIM* among ents attending long-term care wards. As also already described [17,18] and supported by our

study, in Italy *bla*KPC remains endemic and *bla*VIM is the predominant metallo-beta-lactamase

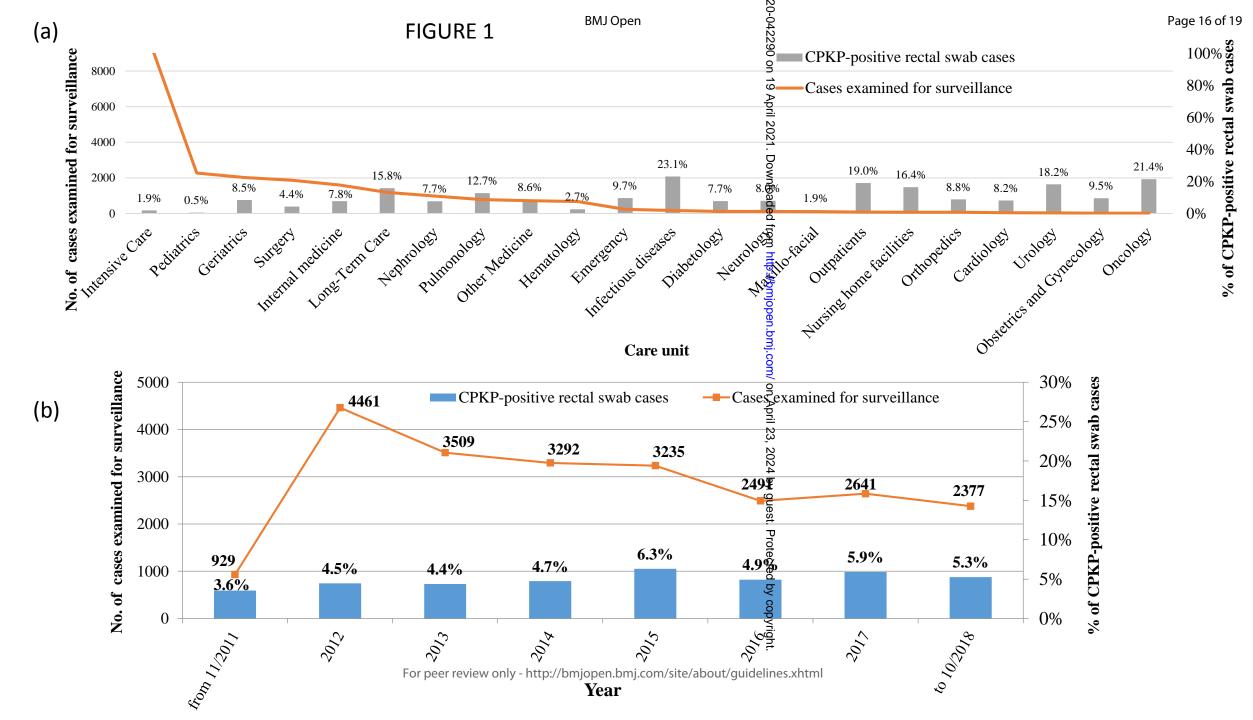
244 whereas the *bla*NDM is only sporadically detected.

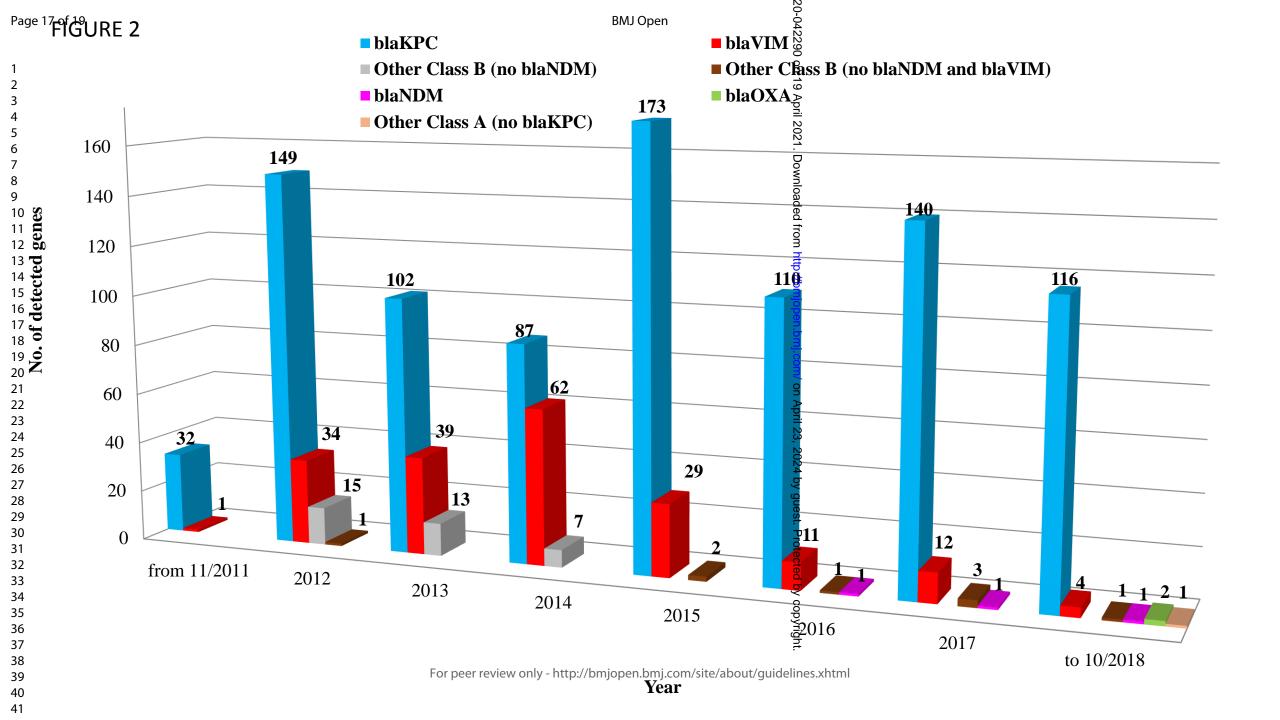
1

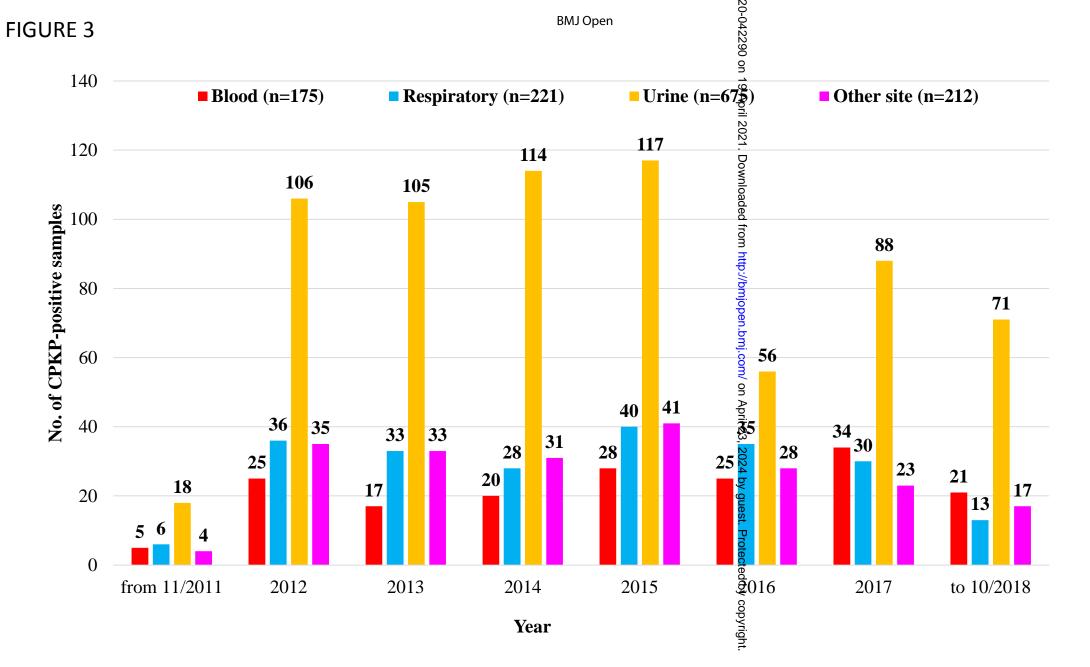
Carbapenemases have a global distribution, but substantial over time variability can be observed not 245 246 only at continental and national level, but also among different settings in the same region. 247 Awareness on the distribution of the specific mechanisms of carbapenem resistance within Enterobacteriaceae, in particular K. pneumoniae, and their temporal trend is crucial in the prevention of their spread and selection of appropriate patient management. These data emphasize the importance of active surveillance for timely detection and separation of carriers, activation of contact precautions and, after risk evaluation, antibiotic treatment guidance upon suspicion of infection, besides the evaluation of the risk factors for invasive infections, avoiding unnecessary potential toxic antimicrobial therapy in low-risk patients and for starting adequate treatment promptly in those at high risk. References 257 Seekatz AM, Bassis CM, Fogg L, et al. Gut Microbiota and Clinical Features Distinguish 1 Colonization With Klebsiella pneumoniae Carbapenemase- Producing Klebsiella pneumoniae at the Time of Admission to a Long-term Acute Care Hospital. Open Forum Infect Dis Published Online First: 2018. doi:10.1093/ofid/ofy190 Falagas ME, Tansarli GS, Karageorgopoulos DE, et al. Deaths Attributable to 2 Enterobacteriaceae Infections. Emerg Infect Dis 2014;20:1170-5. doi:http://dx.doi.org/10.3201/eid2007.121004 Calderaro A, Buttrini M, Piergianni M, et al. Evaluation of a modified meropenem 3 hydrolysis assay on a large cohort of KPC and VIM carbapenemase-producing Enterobacteriaceae. PLoS One 2017;:1–12. doi:10.1371/journal.pone.0174908 Bonomo RA, Burd EM, Conly J, et al. Carbapenemase-Producing Organisms : A Global 4 Scourge. Clin Infect Dis 2018;66:1290-7. doi:10.1093/cid/cix893

Page 13 of 19

1

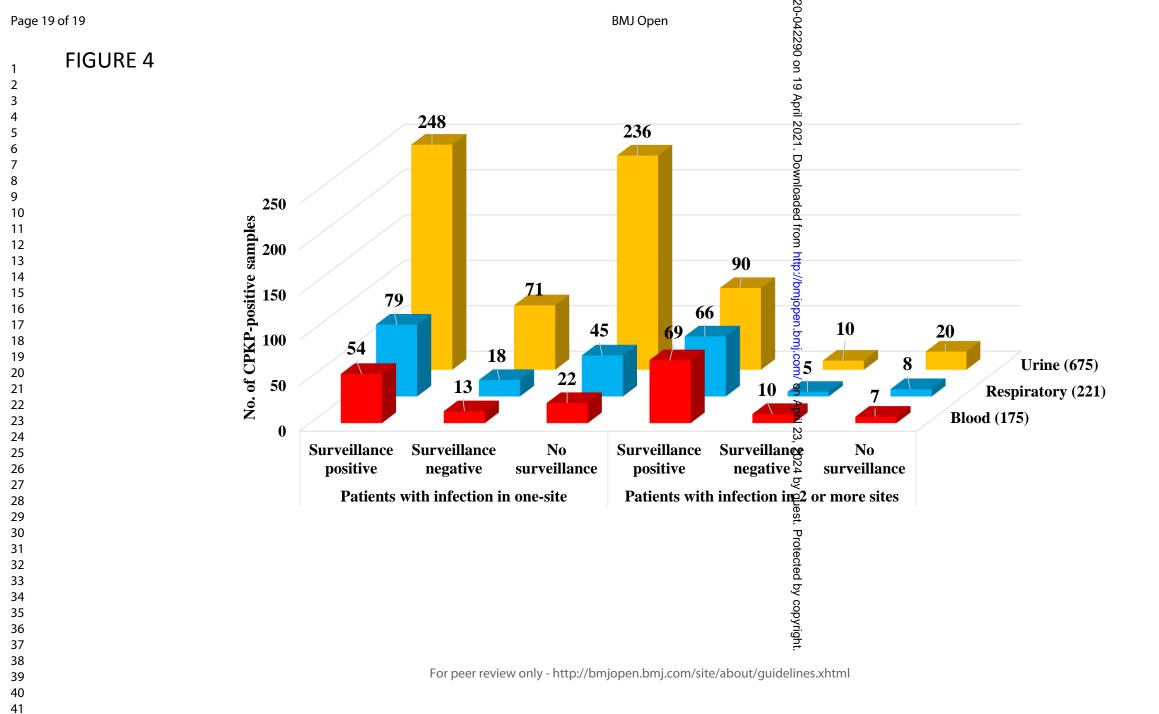

BMJ Open

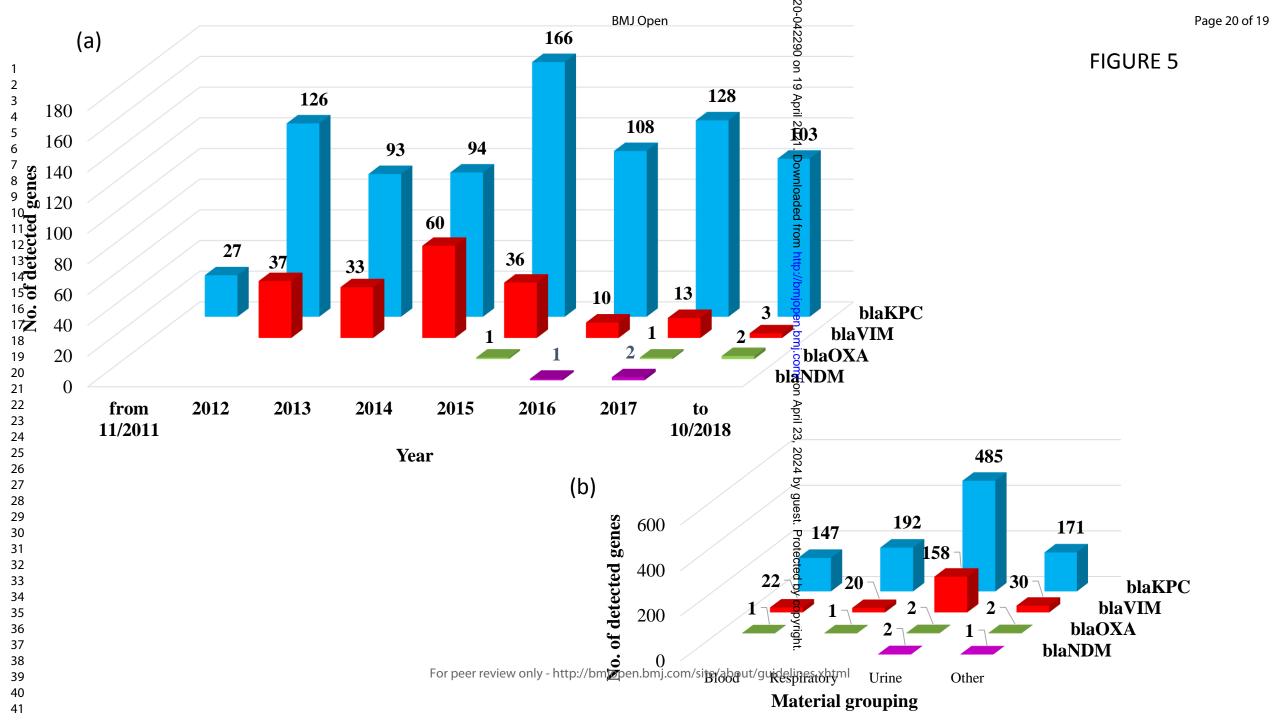

2		
3 269 4	5	Queenan AM, Bush K. Carbapenemases : the Versatile β -Lactamases. <i>Clin Microbiol Rev</i>
5 6 7		2007; 20 :440–58. doi:10.1128/CMR.00001-07
⁸ ₉ 271	6	Horan TC, Andrus M, Dudeck MA. CDC / NHSN surveillance definition of health care –
10 11 272		associated infection and criteria for specific types of infections in the acute care setting. $Am J$
12 13 273 14 15		Infect Control 2008;36:309-32. doi:10.1016/j.ajic.2008.03.002
16 274 17	7	Agenzia Sanitaria Regione Emilia-Romagna. Indicazioni pratiche e protocolli operativi per la
¹⁸ 275 19		diagnosi, la sorveglianza e il controllo degli enterobatteri produttori di carbapenemasi nelle
²⁰ 21 276		strutture sanitarie e socio-sanitarie. 2017.http://assr.regione.emilia-
22 23 277 24		romagna.it/it/servizi/pubblicazioni/rapporti-documenti/indicazioni-pratiche-diagnosi-cpe-
²⁴ ²⁵ 278 ²⁶ 27		2017
²⁸ 279 29	8	Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States,
³⁰ 31 32		2013. 2013.http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
³³ 34281	9	World Health Organization. Guidelines for the prevention and control of carbapenem-
³⁵ 36 282 37		resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in
38 283 39		health care facilities. Published Online First: 2017.www.who.int/infection-prevention/en
40 41 284 42	10	Nucleo E, Caltagirone M, Marchetti VM, et al. Colonization of long-term care facility
⁴³ 44 285		residents in three Italian Provinces by multidrug-resistant bacteria. Antimicrob Resist Infect
45 46 286 47		Control 2018;7:33.
⁴⁸ 49287	11	Giannella M, Bartoletti M, Morelli MC, et al. Risk Factors for Infection With Carbapenem-
50 51 288 52		Resistant Klebsiella pneumoniae After Liver Transplantation : The Importance of Pre- and
⁵³ 289 54		Posttransplant Colonization. Am J Transplant 2015;15:1708-15. doi:10.1111/ajt.13136
55 56 290 57	12	Tedeschi S, Trapani F, Liverani A, et al. The burden of colonization and infection by
⁵⁸ 59291		carbapenemase- producing Enterobacteriaceae in the neuro-rehabilitation setting : a
⁶⁰ 292		prospective six-year experience. <i>Infect Control Hosp Epidemiol</i> 2019;40:368–71.


1 2		
³ 293 4 5		doi:10.1017/ice.2018.344
6 294 7	13	Castagnola E, Tatarelli P, Mesini A, et al. Journal of Infection and Public Health
8 ₉ 295		Epidemiology of carbapenemase-producing Enterobacteriaceae in a pediatric hospital in a
10 11 296 12		country with high endemicity. J Infect Public Health 2019;12:270-4.
13 297 14 15		doi:10.1016/j.jiph.2018.11.003
16 298 17	14	Giannella M, Trecarichi EM, Rosa FG De, et al. Risk factors for carbapenem-resistant
¹⁸ 299 19		Klebsiella pneumoniae bloodstream infection among rectal carriers : a prospective
²⁰ 21 300		observational multicentre study. Clin Microbiol Infect 2014;20:1357-62. doi:10.1111/1469-
22 23 301 24		0691.12747
25 26 302 27	15	Bassetti M, Giacobbe DR, Giamarellou H, et al. Management of KPC-producing Klebsiella
²⁸ 303 29		pneumoniae infections. Clin Microbiol Infect 2018;24:133-44.
³⁰ 31 32		doi:10.1016/j.cmi.2017.08.030
³³ 34 305	16	Iacchini S, Sabbatucci M, Gagliotti C, et al. Bloodstream infections due to carbapenemase-
³⁵ 36 306		producing Enterobacteriaceae in Italy : results from nationwide surveillance, 2014 to 2017.
37 38 307 39		eurosurveillance 2019;24. doi:10.2807/1560-7917.ES.2019.24.5.1800159
40 41 308	17	Albiger B, Glasner C, Struelens MJ, et al. Carbapenemase-producing Enterobacteriaceae in
42 ⁴³ 309		Europe : assessment by national experts from 38 countries , May 2015. <i>eurosurveillance</i>
44 45 46310		2015; 20 . doi:10.2807/1560-7917.ES.2015.20.45.30062
47 48		2010,20. 401.10.2007/1000 7317.20.2010.2010.2010.0002
40 49 50	18	Duin D Van, Doi Y. The global epidemiology of carbapenemase-producing
51 312 52		Enterobacteriaceae. Virulence 2017;8:460-9. doi:10.1080/21505594.2016.1222343
⁵³ 54 313		
55 56		
57 58		
59 60		

BMJ Open

2	
³ 314	Figure legend
4	
5 6 315 7	Figure 1. Distribution of CPKP-positive rectal swab cases by care unit (a) and by year (b).
8 ₉ 316	Figure 2. Year distribution of CPKP genes in 1150 patients with CPKP-positive rectal swab.
10 11 317 12	Figure 3. Year distribution of CPKP infected patients by material grouping (blood, respiratory,
13 318 14	urine and other sites).
¹⁵ 319 16	Figure 4. Comparison of the results of active CPE surveillance among CPKP infected patients with
¹⁷ 18 320 19	one-site infection and in those with multiple-site infection by material grouping (blood, respiratory,
20 321 21	urine).
²² 322 23	Figure 5. Distribution of CPKP genes in infected patients by year (a) and by material grouping
²⁴ 25 323 26	(blood, respiratory, urine and other sites) (b).
27 324 28	
²⁹ 325 30	Contributorship: AC, MM, CC conceived and designed the study; AC, MB, MM, SM, SC, AR,
³¹ 32 33	IR, ADM, MG, SL acquired the data; AC, MB, MM, SM, MCA, FDC analysed and interpreted the
34 327 35	data; AC, MB, MM, SM, CC drafted he article or revised it critically; AC, MB, MM, SM, SC, AR,
36 328 37	IR, ADM, MG, SL, MCA, CC, FDC finally approved the version to be submitted.
³⁸ 329	
40 41 330 42	Competing interests: the authors declare no competing interests.
43 331 44	
⁴⁵ 332 46	Data sharing statement: No additional data available.
47 48 333 49	
50 334 51	Acnowledgements: This study was supported by the Ministry of University and Scientific
52 335 53	Research Grant FIL, Parma, Italy.
⁵⁴ 336 55	
50 57 58	
59 60	





Page 18 of 19

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Active surveillance for carbapenemase-producing Klebsiella pneumoniae and correlation with infection in subjects attending an Italian tertiary-care hospital: a seven-year retrospective study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-042290.R1
Article Type:	Original research
Date Submitted by the Author:	23-Nov-2020
Complete List of Authors:	Calderaro, Adriana; University of Parma, Department of Medicine and Surgery Buttrini, Mirko; University of Parma, Department of Medicine and Surgery Martinelli, Monica; University Hospital of Parma, Unit of Clinical Microbiology Montecchini, Sara; University Hospital of Parma, Unit of Clinical Virology Covan, Silvia; University Hospital of Parma, Unit of Clinical Microbiology Ruggeri, Alberto; University Hospital of Parma, Unit of Clinical Microbiology Rodighiero, Isabella; University Hospital of Parma, Unit of Clinical Microbiology Di Maio, Alan; University Hospital of Parma, Unit of Clinical Microbiology Larini, Sandra; University Hospital of Parma, Unit of Clinical Microbiology Larini, Sandra; University Hospital of Parma, Unit of Clinical Microbiology Arcangeletti, Maria Cristina; University of Parma, Department of Medicine and Surgery Chezzi, Carlo; University of Parma, Department of Medicine and Surgery De Conto, Flora; University of Parma, Department of Medicine and Surgery
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Diagnostics
Keywords:	Diagnostic microbiology < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES, Molecular diagnostics < INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

2		
3 4	1	Original article
5	2	
6 7	3	Active surveillance for carbapenemase-producing Klebsiella pneumoniae and correlation with
8 9	4	infection in subjects attending an Italian tertiary-care hospital: a seven-year retrospective
10	5	study.
11 12	6	
13 14 15	7	Adriana Calderaro ^{1*} , Mirko Buttrini ¹ , Monica Martinelli ² , Sara Montecchini ³ , Silvia Covan ² ,
16 17	8	Alberto Ruggeri ² , Isabella Rodighiero ² , Alan Di Maio ² , Mariapia Galullo ² , Sandra Larini ² , Maria
18 19	9	Cristina Arcangeletti ¹ , Carlo Chezzi ¹ , Flora De Conto ¹ .
20 21	10	
22		
23 24	11	¹ Department of Medicine and Surgery, University of Parma – Parma, Italy
25 26	12	² Unit of Clinical Microbiology, University Hospital of Parma
27 28	13	³ Unit of Clinical Virology, University Hospital of Parma
29	10	
30 31	14	
32 33	15	Word count: 2487
34	16	
35 36	17	Word count: 2487
37 38	18	
39	19	
40 41	20	
42 43	21	
44 45	22	
46	23	* Correspondence to:
47 48	24	Prof. Adriana Calderaro MD, PhD,
49 50	25	Associate Professor of Microbiology and Clinical Microbiology,
51 52	26	Department of Medicine and Surgery, University of Parma
53	27	Viale A. Gramsci, 14 43126 Parma, Italy
54 55	28	Tel. +39/0521/033499
56 57	29	Fax. +39/0521/993620
58	30	E-mail: adriana.calderaro@unipr.it
59 60	-	

Page 3 of 25

BMJ Open

	31	Abstract
	32	Objectives. The distribution of carbapenemase-producing K. pneumoniae (CPKP) phenotypes and
	33	genotypes in samples collected during 2011-2018 was evaluated. The association between patients
0	34	with CPKP-positive rectal swab and those with CPKP infection, as well as the overall analysis of
2 3	35	CPKP infected patients, was performed.
4 5	36	Setting. The study was performed in a tertiary-care hospital located in Northern Italy.
	37	Participants. Two groups were considered: 22,939 "at-risk" patients submitted to active
8 9 0	38	surveillance for CPKP detection in rectal swabs/stools and 1094 CPKP infected patients in which
1	39	CPKP was detected in samples other than rectal swabs.
3 4	40	Results. CPKP-positive rectal swabs were detected in 5% (1150/22,939). A CPKP infection was
5 6 7	41	revealed in 3.1% (719/22,939) of patients: 582 with CPKP-positive rectal swab (50.6% of the 1150
8 9	42	CPKP-positive rectal swabs) and 137 with CPKP-negative rectal swab. The 49.4% (568/1150) of
0 1	43	the patients with CPKP-positive rectal swab were carriers. The overall frequency of CPKP-positive
	44	patients (carriers and infected) was almost constant from 2012 to 2016 (excluding the 2015 peak)
4 5 6	45	and then increased in 2017-2018. <i>bla</i> KPC was predominant followed by <i>bla</i> VIM. No difference
7	46	was observed in the frequency of CPKP-positive rectal swab patients among the different material
9	47	groups. Among the targeted carbapenemase genes, <i>blaVIM</i> was more significantly detected from
1 2 3	48	urine than from other samples.
-3 -4 -5	49	Conclusions. The high prevalence of carriers without evidence of infection, representing a potential
6 7	50	reservoir of CPKP, suggests to maintain the guard about this problem, emphasizing the importance
8 9	51	of active surveillance for timely detection and separation of carriers, activation of contact
0 1 2	52	precautions and antibiotic treatment guidance upon suspicion of infection.
3		

Article summary

Strengths and limitations of this study

 $\begin{array}{c} 3 \\ 4 \\ 5 \end{array}$ This study describes the distribution of the CPKP phenotypes and genotypes detected in a large number of samples over a long period (7 years), with particular reference to their

temporal trend.

23 68

- The results reported in this study from an unselected patient population attending a single tertiary-care hospital may contribute to the global data production.
- The association between patients with CPKP-positive rectal swab and those with CPKP
 infection was performed taking into account also the different material groups.
- ¹⁶ 64
 ¹⁷ 65
 ¹⁸ The molecular genotypic characterization based only on the four major carbapenemase genes could have missed the more rarely circulating genotypes.
- The lack of further genetic typing hampered to add consideration about any molecular epidemiological link among the isolates.

BMJ Open

69	Introduction
70	Multidrug-resistant (MDR) bacteria represent an increasing public health threat in health-care
71	settings. Among MDR bacteria, carbapenemase-producing Enterobacteriaceae (CPE), especially
72	Klebsiella pneumoniae, are a cause for concern being able to spread rapidly [1] and responsible for
73	invasive infections associated with high mortality [2], recently inducing the Centers for Disease
74	Control and Prevention (CDC) to raise them to the highest threat level [3]. The application of CPE
75	control programs has been successful in some areas; however, the problem continues to worsen
76	worldwide, requiring more effective prevention strategies [1,4].
77	Carbapenemases are enzymes included in the Amber classification in the A, B, or D classes. The
78	class A and D enzymes are serine hydrolases, and the class B or metallo-beta-lactamase (MBL)
79	enzymes are catalases requiring 1 or 2 zinc ions on the active site [5]. Although certain
80	carbapenemases are typically associated with specific regions or countries, nowadays, due to
81	globalization especially in terms of widespread international travel and broad access to medical

care, such an association may change, emphasizing the need for routine local and national
surveillance [4]. In particular, in Italy, besides the detection of Verona integron-encoded metallobeta-lactamase (VIM)-producing *Enterobacteriaceae*, firstly detected in the early 2000s, *K*. *pneumoniae* carbapenamase (KPC) producers are widely spread whereas New Delhi metallo-betalactamase (NDM) and carbapenem-hydrolyzing oxacillinase-48 (OXA-48) producers are only
occasionally revealed [3].

The aim of this study was the evaluation of the distribution of the phenotypes and genotypes of the carbapenemase-producing *K. pneumoniae* (CPKP) strains circulating in two selected groups of patients (those examined for CPKP detection on rectal swab as part of the National/Regional active CRE surveillance, and those with a CPKP infection) in a tertiary-care hospital during a seven-year period (2011-2018). The association between patients with CPKP-positive rectal swab and those with CPKP infection, as well as the overall analysis of CPKP infected patients, was performed.

1 2		
3 4	95	Methods
5 6 7	96	Study design.
7 8 9	97	The study was designed as a retrospective data collection. The total observation time was 7 years.
10 11	98	Data were sought retrospectively from the records produced by the diagnostic flow of the
12 13	99	laboratory, as answer to a clinical suspicion or to active CRE surveillance [6].
14 15 16	100	
	101	Patient and Public Involvement.
	102	Patients were not involved in the study.
	103	
23 24 25	104	Definitions.
	105	A patient was defined as carrier when only a CPKP-positive rectal swab was detected and as
	106	infected when a CPKP-positive sample other than rectal swab was found, in presence of signs and
30 31 32	107	symptoms of infection, according to CDC criteria for specific types of infections [7].
	108	CPKP-positive samples other than rectal swab were grouped in blood (including blood, vascular
	109	catheter, and cerebrospinal fluid), respiratory (including bronchial aspirate, bronchoalveolar lavage,
37 38 39	110	sputum, pleural fluid, pharyngeal swab, nasopharyngeal aspirate and nasal swab), urine (including
40 ⁻ 41		urine and urinary catheter), and other (including bile, peritoneal, ascitic and abdominal drainage
43	112	fluids, pus, bioptic and prothesic materials, sperm, tongue, wound, cutaneous, vaginal and urethral
44 45 46	113	swabs).
	114	
49 - 50	115	Study setting and population.
	116	Two well-defined groups of patients attending a tertiary-care hospital (University-Hospital of
53 54 55	117	Parma, Italy) from November 2011 to October 2018 were selected. The first group included 22,939
56 [.] 57	118	"at-risk" patients (median age 70 years, range from 1 day to 108 years), for a total of 32,477 rectal
	119	swabs due to multiple sampling when required by CRE surveillance [6]. The second group included
60	120	1094 CPKP infected patients (median age 78 years, range from 20 days to 102 years), either 5

Page 7 of 25

1

BMJ Open

2	
3 121 4	involved or not involved in active CRE surveillance. In case of multiple CPKP-positive samples,
5 6 122	only the first one of each patient was considered. Multiple CPKP-positive samples categorized in
7 8 123 9	the same material group (blood, respiratory, urine, and other) and belonging to the same infected
9 10 124 11	patient were considered only once, as a unique sample.
¹² 125 13	
14 15 126	Inclusion and exclusion criteria
16 17 127 18	Inclusion criteria: The first group included "at-risk" patients examined on admission as part of the
¹⁹ 128 20	National/Regional active CRE surveillance for the detection of CPKP strains in rectal swabs/stools
²¹ 22 129	(hereafter referred as rectal swab) [6], according to the following indications: 1) contacts of CPKP-
23 24 130 25	positive patients; 2) patients admitted to transplant surgery, intensive care units or any other "at-
²⁶ 131 27	risk" unit such as long-term care units, oncology and haematology; 3) patients known to be
²⁸ 29132	infected/colonized, with the last CPKP positivity dating back to more than 90 days from the new
30 31 133 32	admission; 4) patients coming from endemic countries, such as Israel, Greece, Pakistan and India;
33 33 34	5) patients transferred from acute care and neurological rehabilitation facilities; 6) patients coming
³⁵ 135 36	
³⁷ 38 136	months.
39 40 137 41	The second group included patients with a CPKP infection in at least a sample other than rectal
⁴² 138 43	swab, either involved or not involved in active CRE surveillance.
44 45 139	Exclusion criteria: no exclusion criteria were adopted.
46 47 140 48	
⁴⁹ 141 50	Microbiological methods.
⁵¹ 52 142	The rectal swabs were inoculated onto chromogenic agar (Brilliance CRE medium, Oxoid, Milan,
53 54 143	Italy) and the blue colonies referring to presumptive CRE were subcultured on MacConkey agar
55 56 144 57	with a carbapenem disk, as previously described [3]. CPKP strains from clinical samples other than
⁵⁸ 59145	rectal swabs were isolated, as previously described [3]. All K. pneumoniae strains were identified
⁶⁰ 146	by MALDI-TOF MS and submitted to antimicrobial susceptibility testing (Gram-negative

NMIC/ID88 or NMIC/ID94 Combo Panels, Becton Dickinson, Sparks, MD, USA). When a
carbapenem nonsusceptible *K. pneumoniae* strain was revealed, the carbapenemase production
confirmation was performed by phenotypical analysis and genotypical characterization. The
phenotypical analysis, according to Regional guidelines [6], included the modified Hodge test in
combination with the disk diffusion inhibition test (KPC+MBL Confirm ID Kit/ KPC, MBL and
OXA-48 Confirm Kit, Rosco Diagnostica, Taastrup, Denmark), able to differentiate KPC, MBL and
OXA-48 like carbapenemases, performed according to the manufacturer's instructions. For the
genotypical characterization, 2 molecular methods were used during the study period: the first,
detecting *bla*KPC, *bla*NDM, and retrospectively, on the available *bla*NDM-negative MBLproducing isolates, *bla*VIM, was used until 2015, and the second one also detecting *bla*OXA-48
was used since 2015, as previously described [3].

59 <u>Statistical analysis.</u>

Chi-square test was used for comparison of the frequency of CPKP-positive rectal swabs among CPKP infected patients by material grouping, the frequency of involvement of multiple materials among CPKP infected patients, and the distribution of carbapenemase genes in the different material groups. Statistical significance was set at p < 0.01.

7 Results

Among the 22,939 "at-risk" patients (32,477 rectal swabs), carbapenem-resistant *K. pneumoniae* strains were detected in 1178 cases (5.1%) and the production of carbapenemase was revealed in 1150 cases (5%). Intensive care and long-term care units accounted for the highest number of patients with CPKP-positive rectal swabs (188 cases each), with a prevalence of 1.9% and 15.8%, respectively (Fig.1a). The frequency of patients with CPKP-positive rectal swab ranged from 4.4%

to 4.7% in the 2012-2014 period, reached the highest peak (6.3%) in 2015, and showed a fluctuating
trend from 2016 to 2018 (Fig.1b). With regard to the results of the molecular genotyping assays, all
targeted types of carbapenemase genes were detected among the analysed rectal swabs. The *bla*KPC was predominant (79%, 909/1150) followed by *bla*VIM (16.7%, 192/1150), while *bla*CXA-48 and *bla*NDM were more rarely observed, accounting for 0.3% (3/1150) and 0.2%
(2/1150), respectively (Fig. 2). In 0.8% (9/1150, 8 class B other than *bla*NDM and *bla*VIM and 1
class A other than *bla*KPC) of the CPKP strains, none of the targeted genes was revealed, if
excluding the class B (35) *bla*NDM-negative strains for which *bla*VIM was not tested. With
reference to temporal distribution, from 2012 to 2014 a decrease of *bla*KPC was observed in
contrast to a correspondent increase of *bla*VIM, which started gradually decreasing from 2015.
When the peak of positive rectal swabs (204) was observed in 2015, *bla*KPC reached the maximum
peak frequency (173), doubling that of 2014 and subsequently slightly decreased with a fluctuating
trend (Fig. 2).

When the 22,939 patients submitted to CRE surveillance (group 1) were combined with the 1094 CPKP infected patients (group 2), a total of 1662 CPKP-positive patients was found: 568 CPKP carriers (accounting for 49.4% of the 1150 patients with CPKP-positive rectal swab), 582 CPKP infected patients with a CPKP-positive rectal swab (accounting for 50.6% of the 1150 patients with CPKP positive rectal swab), 137 CPKP infected patients with a CPKP-negative rectal swab, and 375 CPKP infected patients not included in the active CRE surveillance (Fig. 3).

Among the 1094 CPKP infected patients (719 included in the active CRE surveillance and 375 not included in the active CRE surveillance), accounting for 1283 CPKP-positive samples, urine (675) was the mostly involved sample all over the period, although a significant decrease from 2015 to 2016 was observed. Blood (175) accounted for about 25 cases per year, with a peak in 2017 (34) (Fig. 4).

With regard to the CPKP infected patients included in the active CRE surveillance, no significant
 difference was observed in the frequency of CPKP-positive rectal swabs in the different material

199groups. On the contrary, CPKP-positive blood (49%) and respiratory (31%) samples were more200frequently associated than urine (17.7%) with CPKP-positive samples from 2- or more-site of201infection (p < 0.0001), as well as CPKP-positive blood samples were more frequently associated202with other CPKP-positive samples from 2- or more-site infection (p < 0.001) than the respiratory203ones (Fig. 5).

With reference to the 1094 CPKP infected patients, 1034 (94.5%) were positive for one of the targeted carbapenemase genes (841 blaKPC, 188 blaVIM, 3 blaOXA-48, and 2 blaNDM) and 5 ¹⁹206 (0.5%) contained two of the targeted carbapenemase genes (4 blaKPC+blaVIM and 1 blaNDM+blaOXA48), for a total of 1044 carbapenemase genes detected (Fig. 6a). If excluding the 24 208 50 class B blaNDM-negative strains for which blaVIM was not tested, the remaining 5 cases were 26 209 negative for the targeted carbapenemase genes (2 class A blaKPC-negative and 3 class B blaVIM-²⁸ 29</sub>210 and *blaNDM*-negative). When the carbapenemase gene analysis was performed by material grouping, *bla*KPC was the most frequently detected carbapenemase gene in all material groups, 33 212 followed by *blaVIM*; however, the ratio of *blaKPC* and *blaVIM* was found to range from 6:1 to ³⁵₃₆213 10:1 for all material groups, except for urine for which *blaVIM* was more significantly detected ³⁷ 38 214 (ratio 3:1) (p<0.01) (Fig. 6b).

215 Discussion

Since 2013, the CDC assigned the highest threat level to CRE and declared that CRE require urgent public health attention [8,9]. Unlike previous Italian studies reporting the colonization rate for selected patient categories [10–13], our data show the picture of the circulation of CPKP isolates in a single tertiary-care hospital on a big sample size over a long period.

In our experience, the results of the application of active CRE surveillance with the adoption of a combination of phenotypic assays followed by genotypic characterization on "at-risk" patient categories highlight the need not to lower the guard about this problem. In fact during the study period, after an initial constant trend of the frequency of CPKP-positive rectal swab cases from Page 11 of 25

BMJ Open

2012 to 2014 (ranging from 4.4% to 4.7%), in 2015 the highest peak (6.3%) was observed, in
agreement with the same pattern described for invasive infection at regional level [6], followed by a
decrease in 2016 (4.9%) and a subsequent increasing trend in the last 2 years. The highest
prevalence of CPKP-positive rectal swabs was observed in the long-term care units, if excluding
those units in which rectal swab screening was performed only on targeted patients, such as contacts
of carrier patients and/or transfer from "at-risk" care units, and obtained on a limited number of
rectal swabs.

When the association between patients with CPKP-positive rectal swab and those with CPKP infection (CPKP-positive samples other than rectal swab) was considered, it was observed that the 49.4% of patients submitted to active surveillance with CPKP-positive rectal swab were carriers, representing a potential reservoir for spread of CPKP strains detectable only by surveillance. Taking into account the overall infected patients and excluding those not submitted to active CRE surveillance, no difference was observed in the frequency of patients with CPKP-positive rectal swab among the different material groups. On the contrary, CPKP-positive blood and respiratory samples were more frequently associated with infections in multiple body sites, as expected due to the difficulty in containing invasive infections (blood and respiratory samples) in a unique site and suggesting that carriage represents one of the most important risk factors for CPKP infection, as previously described for bloodstream infection [14,15].

With regard to the temporal distribution of the carbapenemase genes among CPKP-positive rectal swabs, from 2012 to 2014 the *bla*KPC and *bla*VIM showed an inverse trend: in fact, when the *bla*KPC decreased from 74.9% to 55.8%, the *bla*VIM increased consequently from 17% to 39.7%. In correspondence of the highest CPKP-positive rectal swab rate in 2015, the trend of the frequency of the *bla*KPC and *bla*VIM genes has reversed: that of *bla*KPC has continuously raised again, reaching 92.8%, whereas that of *bla*VIM progressively decreased to 3.2%. *bla*NDM and *bla*OXA-48 were only occasionally detected starting from 2016 and 2018, respectively. A similar temporal distribution was also observed among infected patients, in which *bla*KPC was prevalent during all

the study period with a peak in 2015 and *bla*VIM was the second most frequently detected carbapenemase gene independently of the material grouping. However, *bla*VIM was more significantly detected from urine than from other samples. As already described [16,17], in Italy *bla*KPC remains endemic and *bla*VIM is the predominant MBL whereas the *bla*NDM is only sporadically detected, in agreement with the findings in our single-centre study. However, our data are in contrast with those recently reported to the Italian national surveillance from 2014 to 2017 in bloodstream infections, for which the emergence of *bla*OXA-48, especially in CPKP isolates, and its assessment as the first most common gene after *bla*KPC, overcoming *bla*VIM, were described [18]. The overall high prevalence of *bla*VIM, mainly due to the relative peaks observed in 2013 and 2014 in our study, could be explained by a possible outbreak of the same clone of *bla*VIM among patients attending long-term care wards.

There are a few limitations in this study. First, this is a single-centre study and the findings may not generalize well to other settings due to multiple local factors. However, the carbapenemases have a global distribution, but substantial over time variability can be observed not only at continental and national level, but also among different settings in the same region: global data derive from singlecentre studies. Awareness on the distribution of the specific mechanisms of carbapenem resistance within *Enterobacteriaceae*, in particular *K. pneumoniae*, and their temporal trend is crucial in the prevention of their spread and selection of appropriate patient management. Second, the genotypic characterization was limited to the detection of the four major carbapenemase genes that could have missed the more rarely circulating genotypes. Third, the lack of further genetic typing hampered to add consideration about any molecular epidemiological link among the isolates. Nonetheless, these data emphasize the importance of active surveillance for timely detection and separation of carriers, activation of contact precautions and, after risk evaluation, antibiotic treatment guidance upon suspicion of infection, besides the evaluation of the risk factors for invasive infections, avoiding unnecessary potential toxic antimicrobial therapy in low-risk patients and for starting adequate treatment promptly in those at high risk. Page 13 of 25

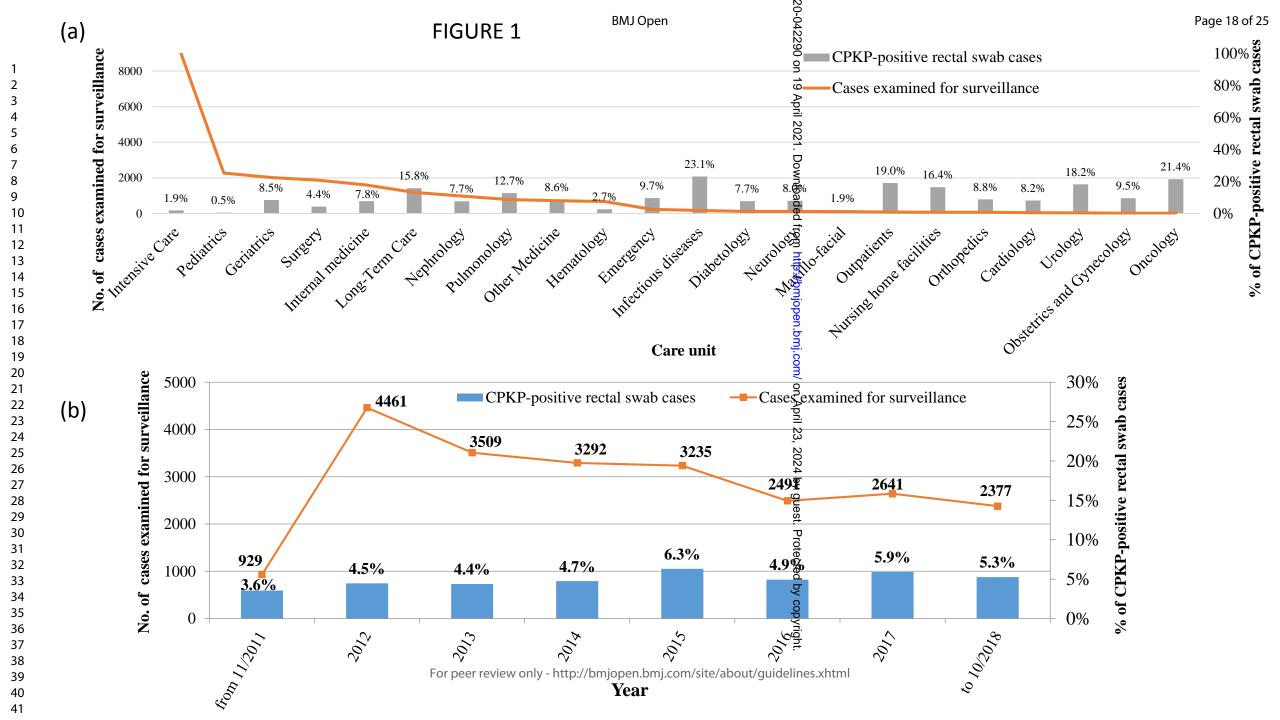
BMJ Open

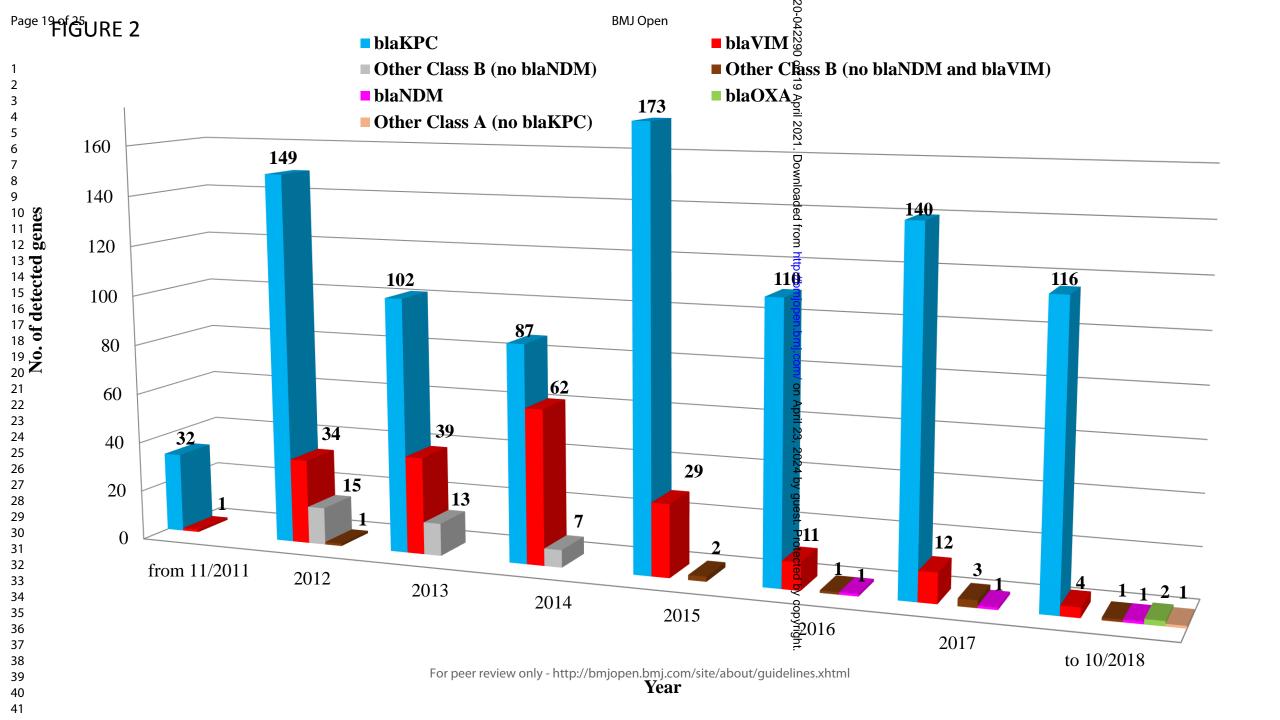
Contributorship statement: AC, MM, CC conceived and designed the study; AC, MB, MM, SM,
SC, AR, IR, ADM, MG, SL acquired the data; AC, MB, MM, SM, MCA, FDC analysed and
interpreted the data; AC, MB, MM, SM, CC drafted he article or revised it critically; AC, MB, MM,
SM, SC, AR, IR, ADM, MG, SL, MCA, CC, FDC finally approved the version to be submitted.
Competing interests: the authors declare no competing interests.
Funding: This study was supported by the Ministry of University and Scientific Research Grant
FIL, University of Parma, Italy. Grant number: N/A.
Data sharing statement: All data relevant to the study are included in the article or uploaded as
supplementary information

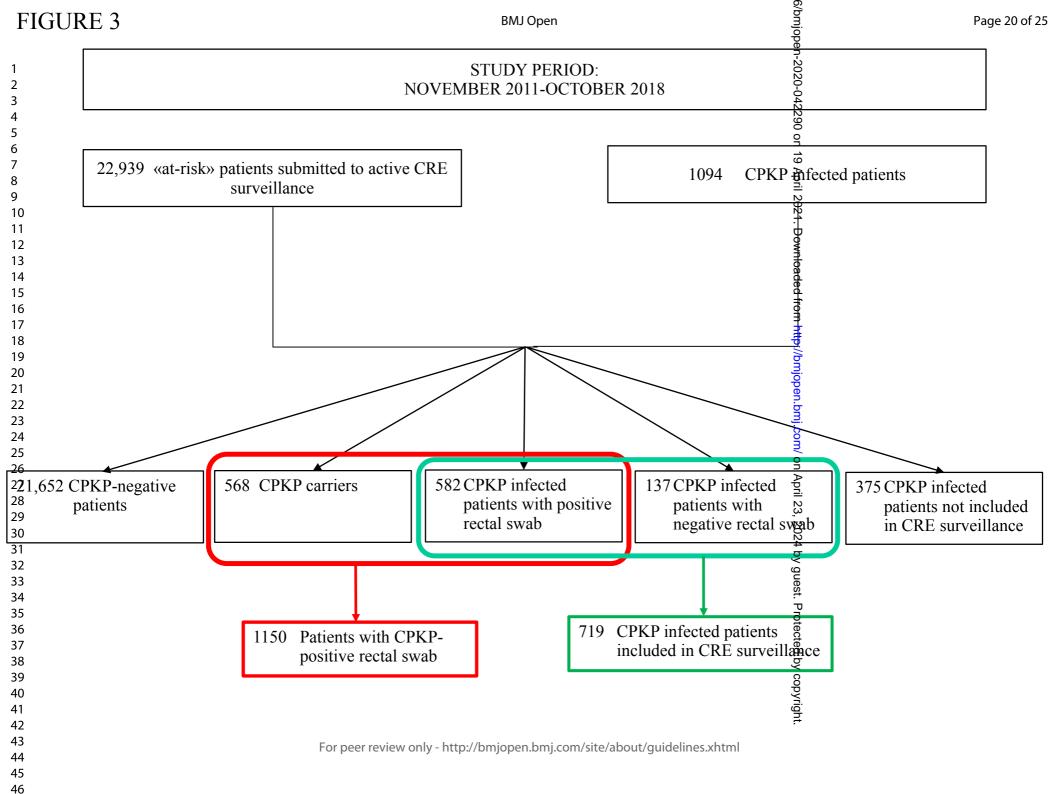
1 2		
3 292 4	Refe	rences
5 6 293 7	1	Seekatz AM, Bassis CM, Fogg L, et al. Gut Microbiota and Clinical Features Distinguish
8 ₉ 294		Colonization With Klebsiella pneumoniae Carbapenemase- Producing Klebsiella
10 11 295 12		pneumoniae at the Time of Admission to a Long-term Acute Care Hospital. Open Forum
13 296 14		Infect Dis Published Online First: 2018. doi:10.1093/ofid/ofy190
15 16 297 17	2	Falagas ME, Tansarli GS, Karageorgopoulos DE, et al. Deaths Attributable to
¹⁸ 298		Enterobacteriaceae Infections. Emerg Infect Dis 2014;20:1170-5.
²⁰ 21 299 22		doi:http://dx.doi.org/10.3201/eid2007.121004
²³ 24 300	3	Calderaro A, Buttrini M, Piergianni M, et al. Evaluation of a modified meropenem
25 26 301 27		hydrolysis assay on a large cohort of KPC and VIM carbapenemase-producing
²⁸ 302 29		Enterobacteriaceae. PLoS One 2017;:1-12. doi:10.1371/journal.pone.0174908
30 31 303 32	4	Bonomo RA, Burd EM, Conly J, et al. Carbapenemase-Producing Organisms : A Global
³³ 34 304		Scourge. Clin Infect Dis 2018;66:1290-7. doi:10.1093/cid/cix893
³⁵ ³⁶ 37 305	5	Queenan AM, Bush K. Carbapenemases : the Versatile β-Lactamases. <i>Clin Microbiol Rev</i>
38 39 306 40		2007; 20 :440–58. doi:10.1128/CMR.00001-07
41 42 307	6	Agenzia Sanitaria Regione Emilia-Romagna. Indicazioni pratiche e protocolli operativi per la
43 44 308 45		diagnosi, la sorveglianza e il controllo degli enterobatteri produttori di carbapenemasi nelle
⁴⁶ 309 47		strutture sanitarie e socio-sanitarie. 2017.http://assr.regione.emilia-
⁴⁸ 49310 50		romagna.it/it/servizi/pubblicazioni/rapporti-documenti/indicazioni-pratiche-diagnosi-cpe-
51 311 52		2017
53 54 312	7	Horan TC, Andrus M, Dudeck MA. CDC / NHSN surveillance definition of health care -
55 56 313 57		associated infection and criteria for specific types of infections in the acute care setting. $Am J$
⁵⁸ 59314 60		Infect Control 2008;36:309-32. doi:10.1016/j.ajic.2008.03.002

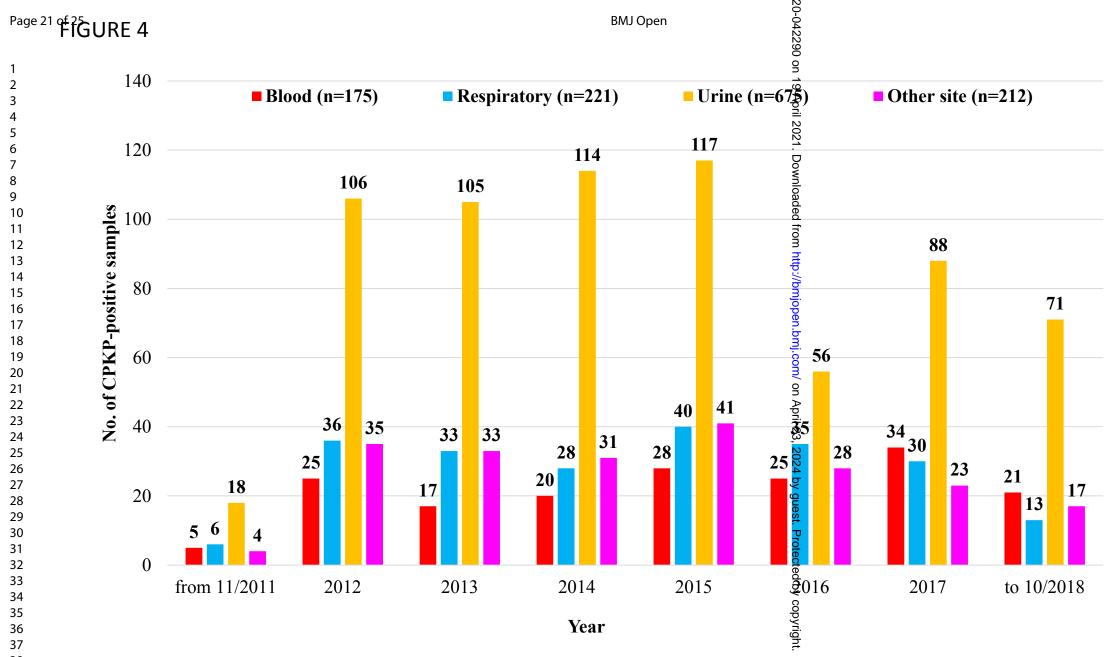
BMJ Open

1 2		
³ 315 4	8	Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States,
5 6 7		2013. 2013.http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
⁸ ₉ 317	9	World Health Organization. Guidelines for the prevention and control of carbapenem-
10 11 318 12		resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in
13 319 14 15		health care facilities. Published Online First: 2017.www.who.int/infection-prevention/en
16 320 17	10	Nucleo E, Caltagirone M, Marchetti VM, et al. Colonization of long-term care facility
¹⁸ 321 19		residents in three Italian Provinces by multidrug-resistant bacteria. Antimicrob Resist Infect
²⁰ 21 322		<i>Control</i> 2018;7:33.
²³ 24 323 25	11	Giannella M, Bartoletti M, Morelli MC, et al. Risk Factors for Infection With Carbapenem-
26 324 27		Resistant Klebsiella pneumoniae After Liver Transplantation : The Importance of Pre- and
²⁸ 325 29 30		Posttransplant Colonization. Am J Transplant 2015;15:1708–15. doi:10.1111/ajt.13136
³¹ 326 32	12	Tedeschi S, Trapani F, Liverani A, et al. The burden of colonization and infection by
³³ ₃₄ 327		carbapenemase- producing Enterobacteriaceae in the neuro-rehabilitation setting : a
35 36 328 37		prospective six-year experience. Infect Control Hosp Epidemiol 2019;40:368–71.
38 329 39		doi:10.1017/ice.2018.344
40 41 330 42	13	Castagnola E, Tatarelli P, Mesini A, et al. Journal of Infection and Public Health
⁴³ 331		Epidemiology of carbapenemase-producing Enterobacteriaceae in a pediatric hospital in a
45 46332 47		country with high endemicity. J Infect Public Health 2019;12:270-4.
48 333 49		doi:10.1016/j.jiph.2018.11.003
50 51 334 52	14	Giannella M, Trecarichi EM, Rosa FG De, et al. Risk factors for carbapenem-resistant
⁵³ 335 54		Klebsiella pneumoniae bloodstream infection among rectal carriers : a prospective
⁵⁵ 336		observational multicentre study. Clin Microbiol Infect 2014;20:1357-62. doi:10.1111/1469-
57 58 337 59		0691.12747
⁶⁰ 338	15	Bassetti M, Giacobbe DR, Giamarellou H, et al. Management of KPC-producing Klebsiella

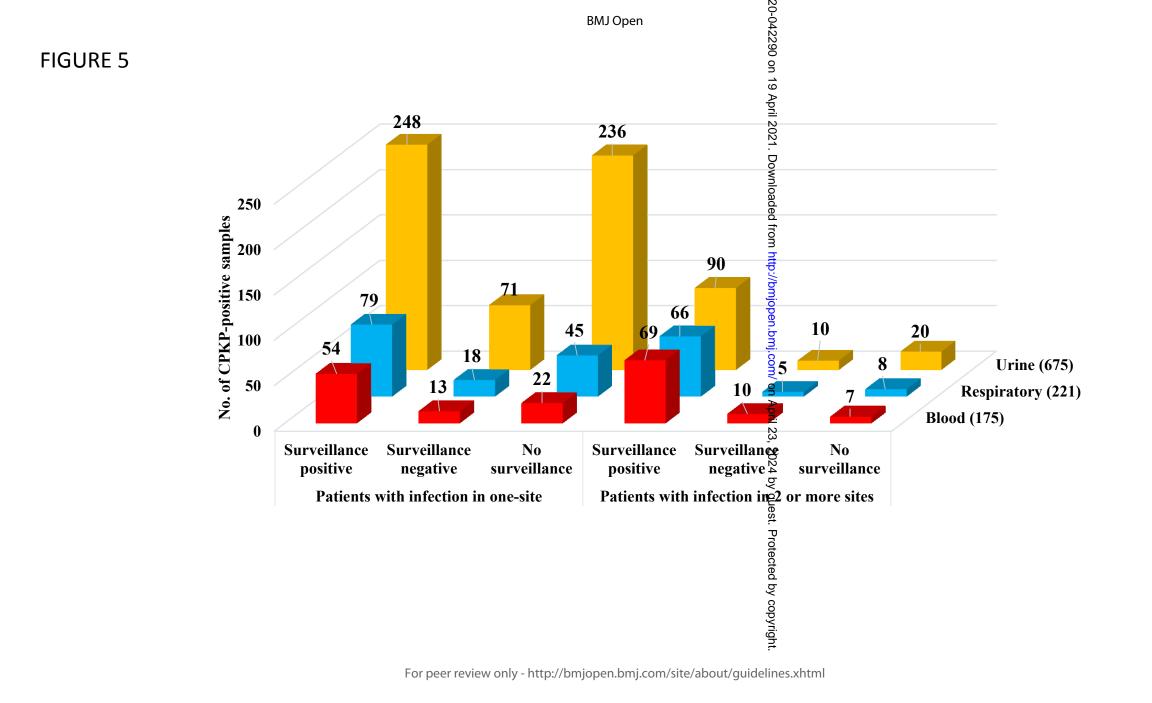

14

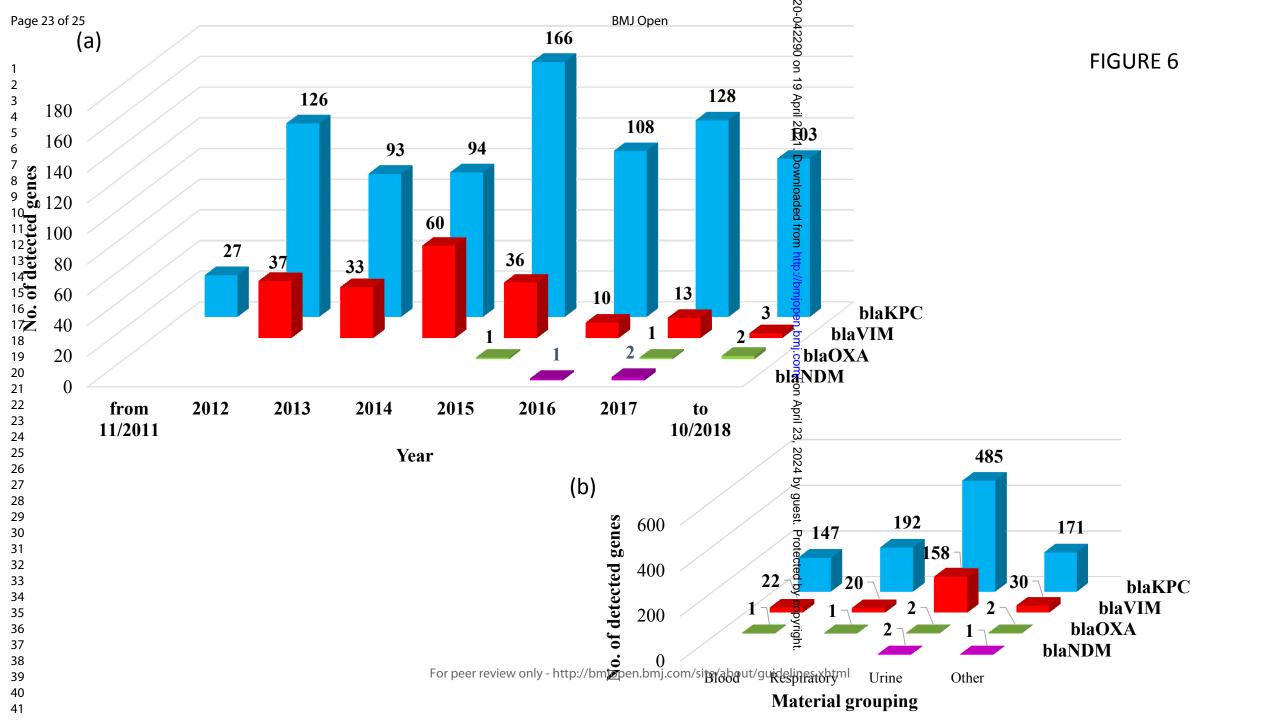

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


2 ³ 339		maning infactions Clin Microbiol Infact 2018:24:122 14
4		pneumoniae infections. Clin Microbiol Infect 2018;24:133-44.
5 6 340		doi:10.1016/j.cmi.2017.08.030
7		
8 ₉ 341	16	Albiger B, Glasner C, Struelens MJ, et al. Carbapenemase-producing Enterobacteriaceae in
10		
₁₁ 342		Europe : assessment by national experts from 38 countries , May 2015. eurosurveillance
12 13 343		2015; 20 . doi:10.2807/1560-7917.ES.2015.20.45.30062
14		2013,20. doi:10.2007/13007/17.15.2013.20.45.30002
15 16 344	17	Duin D Van, Doi Y. The global epidemiology of carbapenemase-producing
17	1/	Duni D Van, Doi 1. The global epidemiology of carbapeneniase-producing
¹⁸ 345 19		Enterobacteriaceae. Virulence 2017;8:460-9. doi:10.1080/21505594.2016.1222343
20		
²¹ 346 22	18	Iacchini S, Sabbatucci M, Gagliotti C, et al. Bloodstream infections due to carbapenemase-
²³ 24 347		producing Enterobacteriaceae in Italy : results from nationwide surveillance, 2014 to 2017.
25 26 348		eurosurveillance 2019;24. doi:10.2807/1560-7917.ES.2019.24.5.1800159
27		<i>Curosurvenunce</i> 2019,21. doi:10.2007/10.007917.20079121.0.1000109
28 29 349		
29 3 - 9 30		
31		
32 33		
34		
35 36		
37		
38		
39 40		
41		
42 43		
44		
45 46		
40 47		
48		
49 50		
51		
52		
53 54		
55		
56 57		
58		
59		
60		


BMJ Open

1 2	
3 350 4 5	Figure legend
6 351 7	Figure 1. Distribution of CPKP-positive rectal swab cases by care unit (a) and by year (b).
8 ₉ 352	Figure 2. Year distribution of CPKP genes in 1150 patients with CPKP-positive rectal swab.
10 11 353	Figure 3. Study result flow diagram.
12 13 354 14	Figure 4. Year distribution of CPKP infected patients by material grouping (blood, respiratory,
¹⁵ 355 16	urine and other sites).
17 18 356 19	Figure 5. Comparison of the results of active CPE surveillance among CPKP infected patients with
20 357 21	one-site infection and in those with multiple-site infection by material grouping (blood, respiratory,
²² 358 23	urine).
²⁴ 25 359	Figure 6. Distribution of CPKP genes in infected patients by year (a) and by material grouping
26 27 360 28	(blood, respiratory, urine and other sites) (b).
²⁸ ²⁹ 361 30	
$\frac{31}{32}$ 362	
33 34 363 35	Ethical approval: data used for this study were reported in the medical records of the patients as
36 364 37	answer to a clinical suspicion or to active CRE surveillance. Ethical approval at the University
³⁸ 365 39	Hospital of Parma is required only in cases in which the clinical samples are to be used for
40 41 366	applications other than diagnosis.
42 43 367 44	applications other than diagnosis.
⁴⁵ 368 46	
47 48369	
49 50	
51 52	
53 54	
55 56	
57 58	
59 60	
	16





For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 22 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
22
22
23 24
24 25
25 26
20 27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

	Item No	Recommendation	Reported on page n., line n.
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	Page 1, lines 3-5
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 2, lines 32-52
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Page 4, lines 67-84
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 4, lines 85-90
Methods	U		
Study design	4	Present key elements of study design early in the paper	Page 5, line 92-95
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and	Page 5, lines 111-116 Page 6, lines 117-120
Participants	6	data collection (<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	Page 6, lines 122-135
		(<i>b</i>) For matched studies, give matching criteria and number of exposed and unexposed	Not applicable
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Not applicable.
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Page 5, lines 94-95
Bias	9	Describe any efforts to address potential sources of bias	Not applicable
Study size	10	Explain how the study size was arrived at	Page 5, lines 113-116 Page 6, lines 117-120
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Not applicable.

Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	Page 7, lines 156-159
		(b) Describe any methods used to	As mentioned above
		examine subgroups and interactions (c) Explain how missing data were	Not applicable
		addressed	
		(<i>d</i>) If applicable, explain how loss to	Not applicable.
		follow-up was addressed	
		(<i>e</i>) Describe any sensitivity analyses	Not applicable
Results			
Participants	13*	(a) Report numbers of individuals at	Only partially applicable
		each stage of study—eg numbers	Page 8, lines 161-163, 178-18
		potentially eligible, examined for	Page 9, lines 186-188
		eligibility, confirmed eligible,	
		included in the study, completing	
		follow-up, and analysed	
		(b) Give reasons for non-participation	Not applicable
		at each stage	
		(c) Consider use of a flow diagram	Figure 3
Descriptive data	14*	(a) Give characteristics of study	Only partially applicable
		participants (eg demographic, clinical,	Page 8, lines 163-165
		social) and information on exposures	
		and potential confounders	
		(b) Indicate number of participants	Page 8, lines 172-173
		with missing data for each variable of	Page 9, lines 199-202
		interest	
		(c) Summarise follow-up time (eg,	Not applicable
Outcomo doto	15*	average and total amount)	Not opplicable
Outcome data	15*	Report numbers of outcome events or summary measures over time	Not applicable
Main results	16	(<i>a</i>) Give unadjusted estimates and, if	Not applicable
Ivialii results	10	applicable, confounder-adjusted	Not applicable
		estimates and their precision (eg, 95%	
		confidence interval). Make clear	
		which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when	Not applicable
		continuous variables were categorized	FF
		(c) If relevant, consider translating	Not applicable
		estimates of relative risk into absolute	11
		risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg	Page 9, lines 189-195, 202-206
-		analyses of subgroups and	
		interactions, and sensitivity analyses	
Discussion		· · · ·	
Key results	18	Summarise key results with reference	Page 10, lines 215-219, 224-22
2	-	to study objectives	Page 11, lines 235-245

Limitations	19	Discuss limitations of the study,	Page 11, lines 254-255,
		taking into account sources of	Page 12, lines 260-263
		potential bias or imprecision. Discuss	
		both direction and magnitude of any	
		potential bias	
Interpretation	20	Give a cautious overall interpretation	Page 11, lines 245-253, 255-257
		of results considering objectives,	Page 12, lines 258-260, 263-268
		limitations, multiplicity of analyses,	
		results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external	Page 11, lines 254-255
		validity) of the study results	
Other information			
Funding	22	Give the source of funding and the	Page 17, lines 352-353
		role of the funders for the present	
		study and, if applicable, for the	
		original study on which the present	
		article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml