Article Text

Original research
What are the cost-savings and health benefits of improving detection and management for six high cardiovascular risk conditions in England? An economic evaluation
  1. Chloe Thomas1,
  2. Alan Brennan1,
  3. Edward Goka1,
  4. Hazel Y Squires1,
  5. Gilly Brenner2,
  6. David Bagguley1,
  7. Helen Buckley Woods1,
  8. Michael Gillett1,
  9. Joanna Leaviss1,
  10. Mark Clowes1,
  11. Laura Heathcote1,
  12. Katy Cooper1,
  13. Penny Breeze1
  1. 1 School of Health & Related Research, University of Sheffield, Sheffield, UK
  2. 2 Rotherham Metropolitan Borough Council, Rotherham, Rotherham, UK
  1. Correspondence to Dr Chloe Thomas; c.thomas{at}sheffield.ac.uk

Abstract

Objectives To estimate the cost savings and health benefits of improving detection of individuals at high risk of cardiovascular disease (CVD) in England, to determine to which patient subgroups these benefits arise, and to compare different strategies for subsequent management.

Design An economic analysis using the School for Public Health Research CVD Prevention Model.

Setting England 2018.

Participants Adults aged 16 and older with one or more high cardiovascular risk conditions, including hypertension, diabetes, non-diabetic hyperglycaemia, atrial fibrillation, chronic kidney disease and high cholesterol.

Interventions Detection of 100% of individuals with CVD high risk conditions compared with current levels of detection in England. Detected individuals are assumed to be managed either according to current levels of care or National Institute of Health and Care Excellence (NICE) guidelines.

Main outcome measures Incremental and cumulative costs, savings, quality adjusted life years (QALYs), CVD cases, and net monetary benefit, from a UK NHS and Personal Social Services perspective.

Results £68 billion could be saved, 4.9 million QALYs gained and 3.4 million cases of CVD prevented over 25 years if all individuals in England with the six CVD high risk conditions were diagnosed and subsequently managed at current levels. Additionally, if all detected individuals were managed according to NICE guidelines, total savings would be £61 billion, 8.1 million QALYs would be gained and 5.2 million CVD cases prevented. Most benefits come from detection of high cholesterol in the short term and diabetes in the long term.

Conclusions Substantial cost savings and health benefits would accrue if all individuals with conditions that increase CVD risk could be diagnosed, with detection of undiagnosed diabetes producing greatest benefits. Ensuring all conditions are managed according to NICE guidelines would further increase health benefits. Projected cost-savings could be invested in developing acceptable and cost-effective solutions for improving detection and management.

  • health economics
  • preventive medicine
  • public health
  • cardiology
  • stroke medicine
http://creativecommons.org/licenses/by-nc/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Statistics from Altmetric.com

Supplementary materials

Footnotes

  • Contributors CT was principle investigator for the project, and carried out most of the project planning, model reviews, model development, analysis of model results and writing of the manuscript. She is guarantor. AB assisted in project planning, advised on model development and analyses, and revised the draft manuscript. EG carried out most of the systematic reviewing for model parameters and revised the draft manuscript. HYS contributed to conceptual modelling, advised on analyses and revised the draft manuscript. GB carried out the cost-effectiveness review, contributed to conceptual modelling and revised the draft manuscript. DB gathered and analysed data for the model, and revised the draft manuscript. HBW devised and carried out most of the searches and revised the draft manuscript. MG carried out data analysis for the model, assisted with model coding and revised the draft manuscript. JL carried out some systematic reviewing for model parameters and revised the draft manuscript. MC devised and carried out some of the searches and revised the draft manuscript. LH assisted with analysis of model results and revised the draft manuscript. KC helped devise the search strategy and revised the draft manuscript. PB contributed to conceptual modelling, and revised the draft manuscript. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

  • Funding Model development was funded originally by the National Institute for Health Research (NIHR)’s School for Public Health Research (SPHR). Model adaptation and a set of preliminary analyses were carried out as part of a project commissioned and funded by Public Health England (PHE) to develop a return on investment tool for cardiovascular disease prevention. The views expressed are those of the authors and not necessarily those of PHE or the NIHR. The model used for this analysis was developed for a Public Health England (PHE) commissioned return on investment tool. However, PHE did not have any influence over the choice of analysis for publication or the findings of the analysis. The decision to submit the article for publication was made entirely independently of the funders

  • Competing interests All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare that the only support for the submitted work was from the funders mentioned. The authors have no financial relationships with any organisations that might have an interest in the submitted work in the previous three years other than Public Health England and no other relationships or activities that could appear to have influenced the submitted work.

  • Patient consent for publication Not required.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data availability statement No data additional to that provided in the manuscript and supplementary files are available.

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.