

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Vascular simulation training promotes clinical skill and reduces radiation in residents

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037338
Article Type:	Original research
Date Submitted by the Author:	30-Jan-2020
Complete List of Authors:	Yang, Lin; First hoapital of Xi'an Jiaotong University, vascular surgery Li, Yanzi; First hoapital of Xi'an Jiaotong University, Department of Medical Administration Liu, Jianlin; First hoapital of Xi'an Jiaotong University, vascular surgery Liu, Yamin; First hoapital of Xi'an Jiaotong University, international radiology
Keywords:	Vascular surgery < SURGERY, MEDICAL EDUCATION & TRAINING, Interventional radiology < RADIOLOGY & IMAGING, VASCULAR MEDICINE, VASCULAR SURGERY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

3 4 5	1	Vascular simulation training promotes clinical skill and
6 7	2	reduces radiation in residents
8 9 10	3	Lin Yang ^{1**} , MD., Ph.D. Yanzi Li ^{2*} , MD. Jianlin Liu ¹ , MD. Yamin Liu ³ , MD
11 12 13	4	1. Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong
14 15	5	University, Xi'an, China
16 17 18	6	2. Department of Medical Administration, First Affiliated Hospital of Xi'an Jiaotong
19 20 21	7	University, Xi'an, China
22 23	8	3. Department of Interventional Radiology, First Affiliated Hospital of Xi'an Jiaotong
24 25 26	9	University, Xi'an, China
27 28	10	* Yanzi Li is the co-first author.
29 30 31	11	**Corresponding author: LIN Yang. Department of Vascular Surgery, First Affiliated
32 33 34	12	Hospital of Xi'an Jiaotong University, Xi'an, China. Tel.: +86 29 85324050. Fax: +86
35 36	13	29 85324050. <i>Email:</i> jdvascs@163.com
37 38 39	14	Running head: ST promote skill performance
40 41 42	15	
43 44	16	
45 46 47	17	
48 49	18	
50 51 52	19	
53 54 55	20	
56 57	21	
58 59 60	22	
		1

Page 3 of 22

BMJ Open

Objective This study aims to investigate the teaching effect of vascular simulation training in rotating vascular residents. Methods A total of 95 vascular surgery residents were divided into a simulation training (ST) group and a conventional training (CT) group. The ST group received simulation training and conventional training, and the CT group only received conventional training. All data were collected, theoretical scores were assessed, and the technique parameters, complications and radiation damage of the procedures were analyzed. **Results** The mean scores $(8.74\pm1.09 \text{ vs } 8.13\pm1.31)$ and the rate of willingness for retraining (93.62% vs 79.17%) in residents were higher in the ST group than in the CT group (P < 0.05). The success rate of arterial puncture was significantly higher in the ST group (78.72% vs 58.33%, P=0.03); however, the incidence of complications was similar between the two groups (P>0.05). The time of the puncture procedure was significantly lower $(9.56 \pm 5.24 \text{ min vs } 12.15 \pm 6.87 \text{ min})$, and the comfort score of the patient $(5.49\pm1.72 \text{ vs } 4.71\pm1.57)$ was higher in the ST group than in the CT group (P < 0.05). At the end of the assessment, the learning time for angiography $(3.65\pm0.64 \text{ mon vs } 4.07\pm0.77 \text{ mon})$ and the complete procedure time (33.81±10.11 min vs 41.32±12.56 min) were lower in the ST group than in the CT group (P < 0.01). The fluo time for angiography (489.33 ± 237.13 vs 631.47 ± 243.65 s) and the cumulative air kerma (401.30±149.06 mGy vs 461.16±134.14 mGy) were significantly decreased in ST group (P<0.05). Conclusion The application of a vascular simulation system can significantly improve the clinical skills of residents and reduce the radiation damage from a single intervention procedure in patients.

44 Keywords: Vascular surgery; Teaching modes; Simulation training; Traditional

2		
3		
4	45	teaching
5		
6	46	Article summary
7	40	Ai ticle summary
8		
9	47	Strengths and limitations of this study
10		
11	40	• The simulation training could promote the mean general of regidents
12	48	 The simulation training could promote the mean scores of residents
13		
14	49	• The simulation training could significantly improve the clinical skill of residents
15		
16 17	-	
17 18	50	 The simulation training could reduce the radiation damage
18		
20	51	• This study was not a prospective randomized study, and simulation training was not
20		
22	50	used for anomy residents thus the conclusions of this study, should be confirmed in
23	52	used for every resident; thus, the conclusions of this study should be confirmed in the future.
24		
25	53	the future.
26		
27	<i>с</i> 4	
28	54	
29		
30	55	
31		
32		
33	56	
34		
35	57	
36		
37	50	
38	58	
39		
40	59	
41 42		
42 43	(0)	
43 44	60	
45		
46	61	
40		
48	62	
49	62	
50		
51	63	
52		
53	64	
54	υт	
55		
56	65	
57		
58	66	
59 60	00	
60		

INTRODUCTION

In recent years, with changes in the disease spectrum of Chinese patients, the incidence of peripheral arterial disease has increased significantly, which has also caused a severe economic and social burden [1]. Therefore, it is becoming increasingly important to strengthen general and specialized vascular disease skills education in the training of medical students and residents [2]. Vascular diseases involve multiple disciplines, such as general surgery, cardiology, endocrinology and interventional radiation, which also results in clinical training in vascular surgery being highly complex, with integration and multidisciplinary characteristics [3]. In the past decade, the practical skills training of resident has been mainly carried out through conventional teaching (CT) modes. From theoretical knowledge to practical procedures, residents lack sufficient practical procedures with simulation training; therefore, the true teaching effect has not been ideal. Three-dimensional vascular simulator systems (Angiomentor system, Simbionix, Ltd., Cleveland, OH) use digital simulation to quantify the vascular interventional procedures of the cardiovascular, peripheral and cerebrovascular systems. Students and residents can use the system to select cases for simulation training; ultimately, the simulation training results are scored according to the operating steps of the system. This simulation training can promote the mastery of vascular procedure skills in residents and students^[4-6].

87 The simulation system may be used as an educational tool for novice students and 88 residents, as it provides an opportunity to perform endovascular procedures in a safe environment. However, due to the late entry of simulation systems in China, there have been no reports of the use of 3-dimensional vascular simulation systems in clinical practice teaching in the area of vascular surgery. The aim of this study was to assess the effect of simulation-based training on improving the technical performance and subsequent clinical procedures of residents in vascular surgery.

94 METHODS

 95 Study procedures

A total of 95 vascular resident trainees at the First Affiliated Hospital of Xi'an Jiaotong University were recruited in this study from Jan 2015 to Dec 2018, and all residents needed to complete 6 months of endovascular training in vascular surgery. Thereafter, 47 vascular residents received simulation-based vascular training (ST group) for two weeks, and then they completed the last clinical training. The other 48 residents only completed conventional clinical training (CT group) without the simulation course. A survey was administered to determine the demographics, academic degree, specialty level, and previous work experiences that may have been relevant in terms of the residents' ability to learn vascular interventional skills. This study was approved by the institutional review board of the First Affiliated Hospital of Xi'an Jiaotong University (XJTU1AF2014LSK-112), all of the patients provided written informed consent.

Before the course was performed, the residents in the ST group received a standardized introduction to the endovascular simulator and performed a cerebrovascular angiography procedure. The 2-week curriculum consisted of theory teaching and 30-60 min lectures per day covering basic catheter-based interventions,

cerebrovascular disease, superficial femoral artery disease and renal artery disease. The residents received 1-hour mentored simulator sessions per day and practiced carotid, renal and superficial femoral artery interventions. This course was performed by a tutor. Then, residents needed to complete the primary endovascular procedure with direct instruction. During the entire training process, each resident was required to complete the simulation training for no less than 1 hour per day. The course concluded with a final cerebrovascular angiography procedure performed on the simulator. The residents in the CT group underwent the basic 2-week curriculum consisting of theory teaching and 30-60 min lectures per day covering basic endovascular intervention procedures but without the simulation training course.

121 Simulation system

The vascular simulator system (Angiomentor system, Simbionix, Ltd., Cleveland, OH, Fig 1) was composed of a standard desktop computer with software that simulated the human arterial system in 3 dimensions, and any user could perform the endovascular interventional procedures under the instruction of the system. This simulation system was connected to a haptic pressure feedback module, which used a force feedback system to detect external devices. When the users inserted the angiography catheters and wires, injected contrast and performed the endovascular procedures with digital subtraction angiography, all procedures could then be displayed on the screen in real time. The user was able to select the device to be simulated through one monitor, and the second monitor was used to display the simulated fluoroscopic image.

Procedure evaluation

2	
3	
4	
5	
6 7 8	
8	
9	
10	
11	
12	
13	
14 15	
15	
16 17	
17	
18	
19	
20	
21	
22	
23 24	
24 25	
26 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43 44	
44 45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

When the residents completed the training course, all residents received assessments of 133 theoretical knowledge at 1 month and practical assessments at 6 months. The teaching 134 expert group made the theoretical test questions based on the key points of vascular 135 disease as well as the endovascular interventional procedures and technical points 136 involved in vascular surgery clinical training, and then the residents completed the 137 assessment independently. Finally, the expert group determined the student's score 138 based on the results of the test. The score range was 0-10, and a passing score was 139 defined as a score higher than 7. All residents completed the arterial puncture procedure 140 141 with the Seldinger technique and performed the cerebrovascular angiography procedure. The success criterion of arterial puncture was defined as follows: all puncture 142 procedures were successfully completed, and the sheath was successfully inserted into 143 144 the femoral artery. If the residents failed to complete the processes of puncture and sheath placement, which was defined as a puncture failure, then the puncture was 145 performed by the teacher. The puncture success rate, puncture time and complications 146 were recorded, and the comfort scores of the patients during the puncture procedure 147 were assessed with a numerical rating scale (NRS). The NRS score ranged from 0 to 10, 148 where 0 indicates worst uncomfortable pain and 10 indicates comfortable pain [7]. 149 Subsequently, the residents needed to complete the cerebrovascular angiography 150 procedure. The evaluation indicators of angiography were as following: learn time to 151 complete procedure (LTP), time of complete procedure at the final test (TCP), fluo time 152 of procedure (FTP), cumulative air kerma (CAK) and dose area product (DAP). LTP 153 was defined as the time required from the beginning of training to the completion of the 154

Page 9 of 22

BMJ Open

2		
4 5	155	first angiography procedure independently. TCP, FTP, CAK and DAP were defined as
6 7	156	the time of procedure and related parameters of the assessed angiography procedure at
8 9 10	157	the end of the training.
11 12 13	158	Patient and public involvement
14 15	159	Patients and the public were not involved in the design or planning of the study.
16 17 18	160	Statistical Analysis
19 20 21	161	All data were analyzed using SPSS v. 11.0 (SPSS, Chicago, IL, USA), and $P < .05$ was
22 23	162	considered statistically significant. To test the difference between groups, we used
24 25 26	163	Chi-square analysis for categorical variables and Student's t-tests for continuous
27 28	164	variables, and we tested the significance of the difference between 2 independent
29 30 31	165	proportions when the results were presented as percentages.
32 33 34	166	RESULTS
34 35 36	167	The baseline data of the two groups
37 38 39	168	This study included 48 residents and 47 residents who were retrospectively recruited in
40 41	169	this study, and there was no significant difference in baseline data between the two
42 43 44	170	groups (Table 1, P>0.05). There were 44 males and 4 females who received CT training,
45 46	171	with a mean age of 33.13 years, and 42 males and 5 females who received ST training,
47 48 49	172	with a mean age of 33.91 years (P >0.05). The background academic degrees were
50 51 52	173	bachelor and postgraduate degrees in the CT and ST groups (P >0.05), and 30 and 26
53 54	174	residents had a specialty background in vascular surgery in both groups (62.50% vs
55 56	175	55.32%, P >0.05). The clinical work experience of most residents was less than three
57		

177 The theoretical scores between both groups

All residents passed the training test; however, the mean scores of the residents were higher in the ST group than in the CT group $(8.74\pm1.09 \text{ vs } 8.13\pm1.31, P=0.014)$. After the clinical training, the training satisfaction rates of all residents were similar (97.87% vs 91.67%, *P*>0.05); however, when asked whether they wished to participate in the training again, the residents in the ST group showed a higher willingness rate than residents in the CT groups (93.62% vs 79.17%, *P*=0.04).

184 The performance of arterial puncture in residents

After the training, all residents underwent an arterial puncture test (Table 2), and the success rate of the procedure was higher in the ST group than in the CT group (78.72%) vs 58.33%, P=0.033); however, the total puncture success rate was similar between the two groups (95.74% vs 91.67%, P>0.05). The complications of the puncture sites included bruising, hematoma, infection and pseudoaneurysm, and there was no significant difference in the incidence of complications between the ST and CT groups (17.02% vs 18.75%, P>0.05); however, the time of the puncture procedure was shorter in the ST group than in the CT group $(9.56\pm5.24 \text{ min vs } 12.15\pm6.87 \text{ min}, P=0.002)$, and the comfort score of patients was higher in the ST group than in the CT group according to the NRS scores (5.49±1.72 vs 4.71±1.57, P=0.023).

195 The outcome of cerebrovascular angiography

All residents needed to complete the final cerebrovascular angiography test; the related
parameters are listed in Table 3. The residents in the ST group showed a shorter study
curve with a lower mean LTP than residents in the CT groups (3.65 mon vs 4.07 mon,

P<0.01), and the TCP of the final test was higher in the CT group than in the ST group (41.32 min vs 33.81 min, *P*=0.002). The radiation damage-related parameters were recorded, and the residents in the CT group showed higher mean values of FTP (631.47 s vs 489.33 s, *P*<0.001) and CAK than the residents in the ST group (463.16 vs 401.30 mGy, *P*=0.043); however, the mean DAP value in both groups indicated no difference (128624.30 mGy.cm² vs 128012.10 mGy.cm², *P*>0.052).

205 DISCUSSION

The development of vascular surgery occurred relatively late in China; thus, the training model used for vascular residents in most university hospitals has been the CT model; however, traditional training did not improve residents' understanding and interest in vascular surgery. Therefore, in past decades, there were fewer residents who chose vascular surgery as a career option in China, which was consistent with the reports of previous studies [7]. Therefore, improving residents' interest in vascular surgery and promoting vascular clinical skills have been the main problems associated with vascular surgery training [8]. Earlier studies have shown that compared with traditional training, the use of network media, social media and simulation systems can achieve better training results [9-11]. In this study, we used the vascular simulation system to assist residents in clinical training. The results revealed that simulation training could significantly improve the clinical practice effect of residents. The residents who received the simulation training had significantly higher theoretical scores; in addition, the interest level of residents was higher after simulation training. The vascular simulation system could standardize complex vascular systems and different vascular

BMJ Open

2	
3	
4	
4 5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

lesions through analog calculations, which could help residents practice vascular skillstraining earlier and improve the interest level and skills of residents [3].

After simulation training and basic training, residents need further vascular skills 223 training. The basic skill procedure for vascular residents is arterial puncture. However, 224 in clinical practice, it is impossible for residents to repeatedly perform the procedure 225 during the treatment of patients. Therefore, in vitro simulation training has become the 226 main teaching method in the training of vascular residents. It has been reported that 227 simulation training can promote the clinical performance and vascular skills of residents 228 229 [12]. Residents who received simulator training showed better clinical performance in the vascular surgery rotation, more motivation to learn, a shorter learning time and a 230 lower number of clinical procedural errors, and the patients indicated a lower 231 232 discomfort rate with the procedure [13]. In our study, the results confirmed that the residents who underwent the simulation training had a significantly higher success rate 233 of arterial puncture, and the time of the puncture procedure was also significantly lower. 234 235 Each step of the vascular procedure could be programmed and standardized in the simulation system. After the teacher's explanation and auxiliary training, it was easier 236 for residents to develop standardized vascular skill habits and the correct procedural 237 process. Finally, we evaluated the training effect with the cerebrovascular angiography 238 239 procedure. Our results proved that the learning time of the angiography procedure and time of completed procedures were significantly lower in residents with simulation 240 training; these results were consistent with previous reports [14]. This finding also 241 confirmed that different simulation systems and teaching models could improve the 242

effectiveness of clinical teaching and promote the understanding and proficiency ofvascular practical skills.

Furthermore, the final effect of clinical training should be assessed by the practice procedure of residents. Our study confirmed that vascular simulation training could significantly promote the practice skills of residents and promote the understanding of basic knowledge. Most cases of vascular disease teaching need to be performed under radiation; thus, simulation training could avoid radiation damage to teachers and residents. In this study, the results demonstrated that simulation training could decrease the fluo time and cumulative air kerma of the procedure, which meant that simulation training could reduce the radiation damage of patients and residents, and radiation protection was an important teaching ethics component in vascular surgery practice. However, due to the limitations of our teaching funding and the time course, only selective residents underwent the simulation training for 2 weeks, which was different from what occurs in advanced vascular centers. Other reports have shown that simulation training for 8 weeks can improve the procedure skills of residents, contribute to patient safety and have a positive impact on the career planning and choice of vascular surgeons [15].

In conclusion, our results confirmed that a vascular simulation system could improve the clinical skills of residents and reduce the radiation damage received by patients and residents in endovascular procedures. Nevertheless, this study was not a prospective randomized study, and simulation training was not used for every resident; thus, the conclusions of this study should be confirmed in the future. BMJ Open

2		
3		
4	265	Acknowledgments: This project was supported by the Natural Science Foundation of
5		
6	266	China (NO.8197 0365), and the language of this article was edited by American Journal
7	200	ennia (1(0.01) / 0500), and the language of this article was called by Thildrean Fournar
8		
9 10	267	Experts (AJE).
10 11		
11	268	Conflicts of Interest: None.
12	200	Connets of Interest. None.
13		
15	269	Author Contributions: All authors made contributions to the conception and design of
16		
17	270	the paper. LY and YZ L contributed to the drafting of the work; LY, JLL and YML
18	270	the paper. ET and TZ E contributed to the dratting of the work, ET, JEE and TWE
19		
20	271	contributed to the critical revision of the paper. All authors approved the final
21		
22	272	manuscript for submission and have acread to be accountable for all acreate of the
23	272	manuscript for submission and have agreed to be accountable for all aspects of the
24		
25	273	paper.
26		
27	274	Ethical annuarials The study received institutional review heard annuarial
28	274	Ethical approval: The study received institutional review board approval.
29		
30	275	
31		
32		
33	276	
34		
35	277	
36		
37	0.50	
38	278	
39		
40	279	
41		
42	•	
43 44	280	
44 45		
46	281	
47		
48	202	
49	282	
50		
51	283	
52		
53	284	
54	204	
55		
56	285	
57		
58	286	
59 60	200	
60		

2		
3	• • •	
4 5	287	
6 7	288	References:
8 9 10	289	[1] Song P, Rudan D, Wang M, Chang X, Rudan I. National and subnational estimation
11 12 13	290	of the prevalence of peripheral artery disease (PAD) in China: a systematic review
14 15	291	and meta-analysis. J Glob Health. 2019;9010601.
16 17 18	292	[2] Mills J. Vascular surgery training in the United States: A half-century of evolution. J
19 20 21	293	Vasc Surg. 2008;48:90S-97S.
22 23	294	[3] Lee JT, Qiu M, Teshome M. The utility of endovascular simulation to improve
24 25 26	295	technical performance and stimulate continued interest of preclinical medical
27 28 29	296	students in vascular surgery. J Surg Educ, 2010, 66: 367-369.
30 31	297	[4] Aggarwal R, Black S, Hance J, et al. Virtual reality simulation training can improve
32 33 34	298	inexperienced surgeons' endovascular skills. Eur J Vasc Endovasc Surg.
35 36 27	299	2007;31:588-593.
37 38 39	300	[5] Chaer RA, Derubertis BG, Lin SC, et al. Simulation improves resident performance
40 41 42	301	in catheter-based intervention: Results of a randomized, controlled study. Ann Surg.
43 44	302	2006;244:343-352.
45 46 47	303	[6] Tedesco MM, Pak JJ, Harris EJ, et al. Simulation-based endovascular skills
48 49 50	304	assessment: The future of credentialing? J Vasc Surg. 2008;47:1008-1001.
51 52	305	[7] Farrar JT, Young JP Jr, LaMoreaux L, Werth JL, Poole RM. Clinical importance of
53 54 55	306	changes in chronic pain intensity measured on an 11-point numerical pain rating
56 57	307	scale. Pain 2001; 94:149–158.
58 59 60	308	[8] Zimmerman P, O'Brien-Irr M, Dryjski M, et al. The new training paradigms and the

2		
3 4	309	unfilled match positions of 2004: Will history repeat itself? J Vasc Surg. 2006;
5	309	unified match positions of 2004. Will instory repeat risen? J vase Surg. 2000,
6	310	44:145-150.
7	510	44.145-150.
8 9	211	[0] Saymour N. Colleger A. Domon S. et al. Virtual reality training improves operating
10	311	[9] Seymour N, Gallager A, Roman S, et al. Virtual reality training improves operating
11		
12	312	room performance: Results of a randomized, double-blind study. Ann Surg.
13 14		
15	313	2002;236:458-463.
16		
17	314	[10] Raval MV, Wang X, Cohen ME, et al. The influence of resident involvement on
18 19		
20	315	surgical outcomes. J Am Coll Surg. 2011;212:889-898.
21		
22	316	[11] Smith BK, Greenberg JA, Mitchell EL. The evolving integrated vascular surgery
23 24		
24	317	residency curriculum. Ann Vasc Surg. 2014;28:1761-1768.
26		
27	318	[12] Van Sickle K, Ritter E, Baghai M, et al. Prospective, randomized, double-blind
28 29		
29 30	319	trial of curriculum-based training for intracorporeal suturing and knot-tying. J Am
31	517	that of carried and based durining for induced porear saturning and knot tyring. 57 km
32	320	Coll Surg. 2008;207: 560-568.
33 34	520	Con Surg. 2008,207. 500-508.
34 35	201	[12] Tan SS Sarkar SK Simulation in Aurgany, a raviaw Soatt Mad L
36	321	[13] Tan SS, Sarker SK. Simulation in surgery: a review. Scott Med J.
37		2011 57 104 100
38	322	2011;56:104-109.
39 40		
41	323	[14] Sturm LP, Windsor JA, Cosman PH, Cregan P, Hewett PJ, Maddern GJ. A
42		
43	324	systematic review of skills transfer after surgical simulation training. Ann Surg.
44 45		
46	325	2008;248:166-179.
47		
48	326	[15] Egle JP, Subramanyam Malladi SV, Gopinath N, Mittal VK. Simulation Training
49 50		
51	327	Improves Resident Performance in Hand-Sewn Vascular and Bowel Anastomoses. J
52		
53	328	Surg. 2014;72:291-296.
54 55		
56	329	[16] Zayed MA, Lilo EA, Lee JT. Impact of an Interactive Vascular Surgery
57	-	
58	330	Web-Based Educational Curriculum on Surgical Trainee Knowledge and Interest. J
59 60		

2		
3		
4	331	Surg Educ. 2016; 74:251-257.
5		
6	332	
7		
8 9		
9 10	333	Figure legends
11		
12	334	Figure 1. The vascular simulator system (Angiomentor system, Simbionix, Ltd.,
13		
14		
15	335	Cleveland, OH) used in this study simulated the vascular interventional procedures of
16		
17	336	the cardiovascular, peripheral and cerebrovascular systems in 3 dimensions.
18		
19		
20	337	
21		
22	338	
23		
24	220	
25	339	
26		
27	340	
28		
29	2.4.1	
30 31	341	
32		
33	342	
34		
35	343	
36	545	
37		
38	344	
39		
40	345	
41	515	
42	.	
43	346	
44 45		
45 46	347	
46 47		
47 48	2.40	
48 49	348	
50		
51	349	
52		
53	250	
54	350	
55		
56	351	
57		
58	352	
59	552	
60		
		16

353				
354				
355	Tables			
356	Tab	le 1 The baseline da	ta of both groups	
		CT group (n=48)	ST group (n=47)	P valı
	Sex (M)	44 (91.67)	42 (89.36)	0.70
	Age (years)	33.13±3.04	33.91±4.94	0.35
	Academic degree			0.36
	bachelor	22 (45.83)	26 (55.32)	
	postgraduate	26 (54.17)	21 (44.68)	
	Specialty background			0.48
	vascular	30 (62.50)	26 (55.32)	
	nonvascular	18 (37.50)	21 (44.68)	
	Work experience			0.35
	> 3 years	16 (33.33)	20 (42.55)	
	\leq 3 years	32 (66.67)	27 (57.45)	
357	CT: conventional training;	ST: simulation traini	ng; M: male.	
358	P value, compared with the	e CT group		
359				
360				
361				
501				

364				
365	Table 2 The perf	formance of arterial	puncture in resident	S
		CT group (n=48)	ST group (n=47)	P valu
	Puncture success rate	28 (58.33)	37 (78.72)	0.033
	Total puncture success rate	44 (91.67)	45 (95.74)	0.69
	Complications from puncture	9 (18.75)	8 (17.02)	0.83
	bruising	5 (10.42)	6 (12.77)	
	hematoma	3 (6.25)	2 (4.26)	
	infection	0	0	
	arteriovenous fistula	0	0	
	pseudoaneurysm	1 (2.08)	0	
	time of puncture (min)	12.15±6.87	9.56±5.24	0.002
	Comfort score of patients	4.71±1.57	5.49±1.72	0.023
366	CT: conventional training; ST:	simulation training.	0	
367	<i>P</i> value, compared with the CT	group		
368				
369				
370				
371				
372				
373				

374				
875				
876	Table 3 The p	erformance on cerebrov	vascular angiography in	residents
		CT group (n=48)	ST group (n=47)	P value
	LTP (mon)	4.07±0.77	3.65±0.64	<0.01
	TCP (min)	41.32±12.56	33.81±10.11	0.002
	FTP (s)	631.47±243.65	489.33±237.13	0.005
	CAK (mGy)	463.16±134.14	401.30±149.06	0.043
	DAP (mGy.cm ²)	128624.30±28982.22	128012.10±31035.08	0.92
7	CT: conventional tr	aining; ST: simulation	training; LTP: learn tin	ne to complet
8	procedure from begin	nning; TCP: time of com	plete procedure at the fina	l test; FTP: flu
9	time of procedure; CA	AK: cumulative air kerma	a; DAP: dose area product	
0	P value, compared w	ith the CT group		

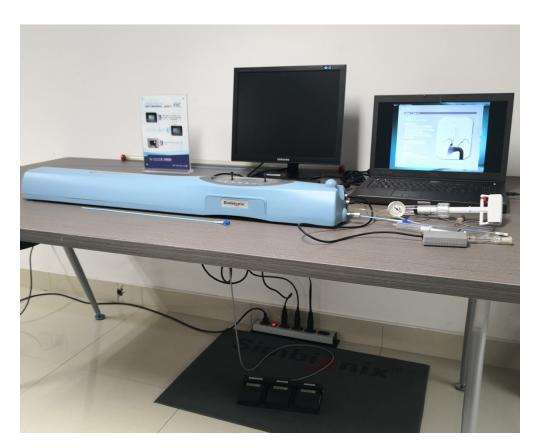


Figure 1. The vascular simulator system (Angiomentor system, Simbionix, Ltd., Cleveland, OH) used in this study simulated the vascular interventional procedures of the cardiovascular, peripheral and cerebrovascular systems in 3 dimensions.

BMJ Open: first published as 10.1136/bmjopen-2020-037338 on 21 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

1099x897mm (72 x 72 DPI)

BMJ Open

 mjopen-2020

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract σ	1-2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1-2
Introduction		hber	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any pre-specified hypotheses	3-4
Methods			
Study design	4	Present key elements of study design early in the paper	4-6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4-6
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants	4-6
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls ger case	4-6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	4-6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	4-6
Bias	9	Describe any efforts to address potential sources of bias	4-6
Study size	10	Explain how the study size was arrived at	4-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	4-6
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	7
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addresse	7

 mjopen-2020

yright.

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	7
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7-9
		(b) Give reasons for non-participation at each stage	7-9
		(c) Consider use of a flow diagram	7-9
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and informatio on exposures and potential confounders	7-9
		(b) Indicate number of participants with missing data for each variable of interest	7-9
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	7-9
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	7-9
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	7-9
		Cross-sectional study—Report numbers of outcome events or summary measures	7-9
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7-9
		(b) Report category boundaries when continuous variables were categorized	7-9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaning time period	7-9
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7-9
Discussion	I		
Key results	18	Summarise key results with reference to study objectives	9-11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	9-11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	9-11
Generalisability	21	Discuss the generalisability (external validity) of the study results	9-11
Other information	I	by c	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable for the original study on which the present article is based	11

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.spote-statement.org. BMJ Open

BMJ Open

The effect of vascular simulation training on practice performance in residents: a retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037338.R1
Article Type:	Original research
Date Submitted by the Author:	18-May-2020
Complete List of Authors:	Yang, Lin; First hoapital of Xi'an Jiaotong University, vascular surgery Li, Yanzi; First hoapital of Xi'an Jiaotong University, Department of Medical Administration Liu, Jianlin; First hoapital of Xi'an Jiaotong University, vascular surgery Liu, Yamin; First hoapital of Xi'an Jiaotong University, international radiology
Primary Subject Heading :	Medical education and training
Secondary Subject Heading:	Medical education and training, Surgery
Keywords:	Vascular surgery < SURGERY, MEDICAL EDUCATION & TRAINING, VASCULAR MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

3 4 5	1	The effect of vascular simulation training on practice
6 7 8	2	performance in residents: a retrospective cohort study
8 9 10	3	Lin Yang ^{1**} , MD., Ph.D. Yanzi Li ^{2*} , MD. Jianlin Liu ¹ , MD. Yamin Liu ³ , MD
11 12 13	4	1. Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong
14 15 16	5	University, Xi'an, China
17 18	6	2. Department of Medical Administration, First Affiliated Hospital of Xi'an Jiaotong
19 20 21	7	University, Xi'an, China
22 23 24	8	3. Department of Interventional Radiology, First Affiliated Hospital of Xi'an Jiaotong
25 26	9	University, Xi'an, China
27 28 29	10	* Yanzi Li is the co-first author.
30 31 32	11	**Corresponding author: LIN Yang. Department of Vascular Surgery, First Affiliated
33 34	12	Hospital of Xi'an Jiaotong University, Xi'an, China. Tel.: +86 29 85324050. Fax: +86
35 36 37	13	29 85324050. <i>Email:</i> jdvascs@163.com
38 39 40	14	Running head: Effect of ST in residents
41 42	15	
43 44 45	16	
46 47 48	17 18	
49 50	18	
51 52 53	20	
54 55 56	20	
57 58	21	
59 60		

1	
2	
3 4	
4 5	
6	
7	
8	
9	
10	
11	
12	
13 14	
14 15	
16	
17	
18	
19	
20	
21 22	
22	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36	
37 38	
30 39	
40	
41	
42	
43	
44 45	
45 46	
47	
48	
49	
50	
51 52	
52 53	
55 54	
55	
56	
57	
58	
59	
60	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

23 Abstract

Objective: This study aims to investigate the teaching effect of vascular simulation training in rotating vascular residents.

26 **Design:** Retrospective cohort study

Setting and participants: A total of 95 vascular residents were recruited from 2015 to 28 2018 in a university affiliated center western China, and divided into a simulation 29 training (ST) group and a conventional training (CT) group. ST group received 30 simulation training and conventional training, and the CT group only received 31 conventional training.

Primary outcome measures: Theoretical scores were assessed, and the technique 32 parameters, complications and radiation damage of the procedures were analyzed. 33 34 **Results:** The mean scores $(8.74\pm1.09 \text{ vs } 8.13\pm1.31)$ and the rate of willingness for retraining (93.62% vs 79.17%) in residents were higher in the ST group than in the CT 35 group (P < 0.05). The success rate of arterial puncture was significantly higher in the ST 36 37 group (78.72% vs 58.33%, P=0.03); however, the incidence of complications was similar between the two groups (P > 0.05). The time of the puncture procedure was 38 significantly lower $(9.56 \pm 5.24 \text{ min vs } 12.15 \pm 6.87 \text{ min})$, and the comfort score of the 39 patient (5.49±1.72 vs 4.71±1.57) was higher in the ST group than in the CT group 40 41 $(P \le 0.05)$. At the end of the assessment, the learning time for angiography (3.65 ± 0.64) mon vs 4.07±0.77 mon) and the complete procedure time (33.81±10.11 min vs 42 41.32 ± 12.56 min) were lower in the ST group than in the CT group (P<0.01). The fluo 43 time for angiography (489.33±237.13s vs 631.47±243.65 s) and the cumulative air 44

2		
3 4 5	45	kerma (401.30±149.06 mGy vs 461.16±134.14 mGy) were significantly decreased in
6 7 8	46	ST group (<i>P</i> <0.05).
9 10	47	Conclusion: The application of a vascular simulation system can significantly improve
11 12 13	48	the clinical performance of residents and reduce the radiation damage from a single
14 15 16	49	intervention procedure in patients.
17 18	50	Keywords: Vascular surgery; Medical education & training; Teaching modes;
19 20 21	51	Simulation training; Traditional teaching
22 23	52	
24 25 26	53	
27 28 29	54	
30 31	55	
32 33 34	56	
35 36 37	57	
38 39	58	
40 41 42	59	
43 44 45	60	
46 47	61	
48 49 50	62	
51 52	63	
53 54 55	64	
56 57 58	65	
59 60	66	
		3

1 2		
3 4 5	67	Article summary
6 7	68	Strengths and limitations of this study
8 9 10	69	• The simulation training could promote the mean scores of residents
11 12 13	70	• The simulation training could improve the clinical performance of residents
14 15	71	• The simulation training could reduce the radiation damage
16 17 18	72	• The simulation training should be wildly used in clinical teaching practice.
19 20 21	73	• The conclusions of this study should be confirmed via prospective randomized
22 23	74	study.
24 25 26	75	
27 28	76	
29 30 31	77	
32 33 34	78	
35 36	79	
37 38 39	80	
40 41	81	
42 43 44	82	
45 46 47	83	
48 49	84	
50 51 52	85	
53 54	86	
55 56 57	87	
58 59 60	88	
50		4

89 INTRODUCTION

In recent years, with changes in the disease spectrum of Chinese patients, the incidence of peripheral arterial disease has increased significantly, which has also caused a severe economic and social burden [1]. Therefore, it is becoming increasingly important to strengthen general and specialized vascular disease skills education in the training of medical residents [2, 3]. In the past decade, the practical skills training of resident has been mainly carried out through conventional teaching (CT) modes (including classroom teaching, lectures and surgical practice), and residents lack sufficient practical procedures with simulation training from theoretical knowledge to practical procedures, therefore, the true teaching effect was not ideal.

Three-dimensional vascular simulator systems (Angiomentor system, Simbionix, Ltd., Cleveland, OH) use digital simulation to quantify the vascular interventional procedures of the cardiovascular, peripheral and cerebrovascular systems. Residents can use the system to select cases for simulation training; ultimately, the simulation training results are scored according to the operating steps of the system. This simulation training can promote the mastery of vascular procedure performance in residents [4-6], and this system provides an opportunity to perform endovascular procedures in a safe environment as an educational tool for novice residents.

However, due to the late entry of simulation systems in China, there has been no report of the use of 3-dimensional vascular simulation systems in clinical practice teaching in the area of vascular surgery. The aim of this study was to assess the effect of simulation-based training on improving the technical performance and subsequent clinical procedures of residents in vascular surgery.

Study procedures

A total of 95 vascular resident trainees at the First Affiliated Hospital of Xi'an Jiaotong University were respectively collected in this study from Jan 2015 to Dec 2018, 47 vascular residents received simulation-based vascular training (ST group) for two weeks, and then they completed the last clinical training. The other 48 residents only completed conventional clinical training (CT group, including classroom teaching, lectures and surgical practice) without the simulation course, and all residents needed to complete 6 months of endovascular training in vascular surgery. A survey was administered to determine the demographics, academic degree, specialty level, and previous work experiences that may have been relevant in terms of the residents' ability to learn vascular interventional skills. This study was approved by the institutional review and ethics board of the First Affiliated Hospital of Xi'an Jiaotong University (XJTU1AF2014LSK-112), all of the patients provided written informed consent.

Before the course was performed, the residents in the ST group received a standardized introduction the endovascular simulator to and performed a cerebrovascular angiography procedure. The 2-week curriculum consisted of theory teaching and 30-60 min lectures per day covering basic catheter-based interventions, cerebrovascular disease, superficial femoral artery disease and renal artery disease. The residents received 1-hour mentored simulator sessions per day and practiced carotid, renal and superficial femoral artery interventions. This course was performed by a tutor.

Then, residents needed to complete the primary endovascular procedure with direct instruction. During the entire training process, each resident was required to complete the simulation training for no less than 1 hour per day. The course concluded with a final cerebrovascular angiography procedure performed on the simulator. The residents in the CT group underwent the basic 2-week curriculum consisting of theory teaching and 30-60 min lectures per day covering basic endovascular intervention procedures but without the simulation training course.

140 Simulation system

The vascular simulator system (Angiomentor system, Simbionix, Ltd., Cleveland, OH, Fig 1) was composed of a standard desktop computer with software that simulated the human arterial system in 3 dimensions, and any user could perform the endovascular interventional procedures under the instruction of the system. This simulation system was connected to a haptic pressure feedback module, which used a force feedback system to detect external devices. When the users inserted the angiography catheters and wires, injected contrast and performed the endovascular procedures with digital subtraction angiography, all procedures could then be displayed on the screen in real time. The user was able to select the device to be simulated through one monitor, and the second monitor was used to display the simulated fluoroscopic image.

Procedure evaluation

When the residents completed the training course, all residents received assessments of theoretical knowledge at 1 month and practical assessments at 6 months. The teaching expert group made the theoretical test questions based on the key points of vascular Page 9 of 23

disease as well as the endovascular interventional procedures and technical points involved in vascular surgery clinical training, and then the residents completed the assessment independently. Finally, the expert group determined the student's score based on the results of the test (including the detailed information of knowledge and practice). The theoretical score range was 0-10, and a passing score was defined as a score higher than 7. All residents completed the arterial puncture procedure with the Seldinger technique and performed the cerebrovascular angiography procedure. The success criterion of arterial puncture was defined as follows: all puncture procedures were successfully completed, and the sheath was successfully inserted into the femoral artery. If the residents failed to complete the processes of puncture and sheath placement, which was defined as a puncture failure, then the puncture was performed by the teacher. The puncture success rate, puncture time and complications were recorded, and the comfort scores of the patients during the puncture procedure were assessed with a numerical rating scale (NRS). The NRS score ranged from 0 to 10, where 0 indicates worst uncomfortable pain and 10 indicates comfortable pain [7]. Subsequently, the residents needed to complete the cerebrovascular angiography procedure. The evaluation indicators of angiography were as following: learn time to complete the procedure (LTP, defined as the time from the beginning of training to the completion of the first angiography independently), time of complete procedure at the final test (TCP), fluo time of procedure (FTP), cumulative air kerma (CAK) and dose area product (DAP). TCP, FTP, CAK and DAP were defined as the time of procedure and related parameters of the assessed angiography procedure at the end of the training.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13 14	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46 47	
47 48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

177 Patient and public involvement

178 Patients and the public were not involved in the design or planning of the study.

179 Statistical Analysis

All data were analyzed using SPSS v. 11.0 (SPSS, Chicago, IL, USA), and P < .05 was considered statistically significant. To test the difference between groups, we used Chi-square analysis for categorical variables and Student's t-tests for continuous variables, and we tested the significance of the difference between 2 independent proportions when the results were presented as percentages.

185 **RESULTS**

186 The baseline data of the two groups

This study included 48 residents and 47 residents who were retrospectively recruited in 187 188 this study, and there was no significant difference in baseline data between the two groups (Table 1, P>0.05). There were 44 males and 4 females who received CT training, 189 with a mean age of 33.13 years, and 42 males and 5 females who received ST training, 190 with a mean age of 33.91 years (P>0.05). The background academic degrees were 191 bachelor and postgraduate degrees in the CT and ST groups (P>0.05), and 30 and 26 192 193 residents had a specialty background in vascular surgery in both groups (62.50% vs 55.32%, P>0.05). The clinical work experience of most residents was less than three 194 years in both groups (66.67% vs 57.45, *P*>0.05). 195

196 The theoretical scores between both groups

All residents passed the training test; however, the mean scores of the residents were higher in the ST group than in the CT group (8.74 ± 1.09 vs 8.13 ± 1.31 , *P*=0.014). After Page 11 of 23

the clinical training, the training satisfaction rates of all residents were similar (97.87% vs 91.67%, P>0.05); however, when asked whether they wished to participate in the training again, the residents in the ST group showed a higher willingness rate than residents in the CT groups (93.62% vs 79.17%, P=0.04).

The performance of arterial puncture in residents

After the training, all residents underwent an arterial puncture test (Table 2), and the success rate of the procedure was higher in the ST group than in the CT group (78.72%) vs 58.33%, P=0.033); however, the total puncture success rate was similar between the two groups (95.74% vs 91.67%, P>0.05). The complications of the puncture sites included bruising, hematoma, infection and pseudoaneurysm, and there was no significant difference in the incidence of complications between the ST and CT groups (17.02% vs 18.75%, P>0.05); however, the time of the puncture procedure was shorter in the ST group than in the CT group (9.56 ± 5.24 min vs 12.15 ± 6.87 min, P=0.002), and the comfort score of patients was higher in the ST group than in the CT group according to the NRS scores (5.49 \pm 1.72 vs 4.71 \pm 1.57, P=0.023).

214 The outcome of cerebrovascular angiography

All residents needed to complete the final cerebrovascular angiography test; the related parameters are listed in Table 3. The residents in the ST group showed a shorter study curve with a lower mean LTP than residents in the CT groups (3.65 mon vs 4.07 mon, P<0.01), and the TCP of the final test was higher in the CT group than in the ST group (41.32 min vs 33.81 min, P=0.002). The radiation damage-related parameters were recorded, and the residents in the CT group showed higher mean values of FTP (631.47 **BMJ** Open

s vs 489.33 s, P<0.001) and CAK than the residents in the ST group (463.16 vs 401.30 mGy, P=0.043); however, the mean DAP value in both groups indicated no difference (128624.30 mGy.cm² vs 128012.10 mGy.cm², P>0.052).

DISCUSSION

The development of vascular surgery occurred relatively late in China; thus, the training model used for vascular residents in most university hospitals was traditional training; however, traditional training did not improve residents' understanding and interest in vascular surgery. In past decades, there were fewer residents who chose vascular surgery as a career option in China, which was consistent with the reports of previous studies [7]. Therefore, improving residents' interest in vascular surgery and promoting vascular clinical performance have been the main problems associated with clinical training [8]. Earlier studies have shown that compared with traditional training, the use of network media, social media and simulation systems can achieve better training results [9-11]. In this study, we used the vascular simulation system to assist residents in clinical training. The results revealed that simulation training could significantly improve the clinical practice effect of residents. The residents who received the simulation training had significantly higher theoretical scores; in addition, the interest level of residents was higher after simulation training. The vascular simulation system could standardize complex vascular systems and different vascular lesions through analog calculations, which could help residents practice vascular skills training earlier and improve the interest and performance of residents [3]. Our result reveals that the residents could deeply understand theoretical knowledge and practical knowledge

Page 13 of 23

BMJ Open

through simulation training, which also helps to improve the residents' theoretical andpractical knowledge.

After simulation training and basic training, residents need further vascular operation training under the guidance of tutors, and the basic procedure for vascular residents is arterial puncture. However, it is impossible for residents to repeatedly perform the procedure during the treatment of patients; thus, in vitro simulation training has become the main teaching method in the training of vascular residents. Residents who received simulator training showed better clinical performance in the vascular surgery rotation, more motivation to learn, a shorter learning time and a lower number of clinical procedural errors, and the patients indicated a lower discomfort rate with the procedure [12, 13]. In our study, the results confirmed that the residents who underwent the simulation training had a significantly higher success rate of arterial puncture, and the time of the puncture procedure was also significantly lower. Each step of the vascular procedure could be programmed and standardized in the simulation system. After the teacher's explanation and auxiliary training, it was easier for residents to develop standardized vascular skill habits and the correct procedural process. Finally, we evaluated the training effect with the cerebrovascular angiography procedure. Our results proved that the learning time of the angiography procedure and time of completed procedures were significantly lower in residents with simulation training; these results were consistent with previous reports [14]. This finding also confirmed that different simulation systems and teaching models could improve the effectiveness of clinical teaching and promote the understanding and proficiency of vascular practical

265 performance.

Furthermore, the final effect of clinical training should be assessed by the practice procedure of residents. Our study confirmed that vascular simulation training could promote the practice knowledge of residents and promote the understanding of vascular surgical procedure. Most cases of vascular disease teaching need to be performed under radiation; thus, simulation training could avoid radiation damage to teachers, patients and residents. In this study, the results demonstrated that simulation training could decrease the fluo time and cumulative air kerma of the procedure, which meant that simulation training could reduce the radiation damage of patients and residents, and radiation protection was an important teaching ethics component in vascular surgery practice. However, due to the limitations of our teaching funding and the time course, only selective residents underwent the simulation training for 2 weeks, which was different from what occurs in advanced vascular centers. Other reports have shown that simulation training for 8 weeks can improve the procedure skills of residents, contribute to patient safety and have a positive impact on the career planning and choice of vascular surgeons [15]. Therefore, the simulation training should be the basic course for residents. Therefore, the simulation training should be the basic course for residents, especially in pre-career students and residents in rotation, meanwhile the simulation training should be well-defined and step-planned, otherwise, the simulation training may result in an impaired learning and worse performance in real clinical practice [16]. Limitations

286 There were several limitations. First, this study was not a prospective randomized study,

Page 15 of 23

1 2

2	
4	
5	
6	
7	
8	
9	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

and the conclusions of this study should be confirmed in the future; Second, when compared with Western counties, the simulation training is not wildly used in China, thus the truly effect of the simulation training is not investigated deeply; Third, the clinical performance of the residents should be evaluated via the real clinical procedure after the simulation training, this is the next step of our study.

292 Conclusions

Our results confirmed that a vascular simulation system could improve the clinical skills of residents and reduce the radiation damage received by patients and residents in endovascular procedures.

Author Contributions: LY, YZ L: data collection. LY, YZ L, JL L and YM L: conception or design of the work; data analysis and interpretation; critical revision of the article; drafting of the article and final approval of the version to be published.

Acknowledgments: The language of this article was edited by American Journal
Experts (AJE).

301 Funding: This project was supported by the Natural Science Foundation of China
302 (NO.8197 0365)

303 **Conflicts of Interest:** None.

304 **Patient consent for publication:** Not required.

305 **Ethical approval:** This study was approved by the institutional review and ethics board

306 of the First Affiliated Hospital of Xi'an Jiaotong University.

307 **Data availability statement:** Data are available upon reasonable request.

309	References:
310	[1] Song P, Rudan D, Wang M, Chang X, Rudan I. National and subnational estimation
311	of the prevalence of peripheral artery disease (PAD) in China: a systematic review
312	and meta-analysis. J Glob Health. 2019;9010601.
313	[2] Mills J. Vascular surgery training in the United States: A half-century of evolution. J
314	Vasc Surg. 2008;48:90S-97S.
315	[3] Lee JT, Qiu M, Teshome M. The utility of endovascular simulation to improve
316	technical performance and stimulate continued interest of preclinical medical
317	students in vascular surgery. J Surg Educ, 2010, 66: 367-369.
318	[4] Aggarwal R, Black S, Hance J, et al. Virtual reality simulation training can improve
319	inexperienced surgeons' endovascular skills. Eur J Vasc Endovasc Surg.
320	2007;31:588-593.
321	[5] Chaer RA, Derubertis BG, Lin SC, et al. Simulation improves resident performance
322	in catheter-based intervention: Results of a randomized, controlled study. Ann Surg.
323	2006;244:343-352.
324	[6] Tedesco MM, Pak JJ, Harris EJ, et al. Simulation-based endovascular skills
325	assessment: The future of credentialing? J Vasc Surg. 2008;47:1008-1001.
326	[7] Farrar JT, Young JP Jr, LaMoreaux L, Werth JL, Poole RM. Clinical importance of
327	changes in chronic pain intensity measured on an 11-point numerical pain rating
328	scale. Pain 2001; 94:149–158.
329	[8] Zimmerman P, O'Brien-Irr M, Dryjski M, et al. The new training paradigms and the
330	unfilled match positions of 2004: Will history repeat itself? J Vasc Surg. 2006;

1		
2 3		
5 4 5	331	44:145-150.
6 7	332	[9] Seymour N, Gallager A, Roman S, et al. Virtual reality training improves operating
8 9 10	333	room performance: Results of a randomized, double-blind study. Ann Surg.
11 12	334	2002;236:458-463.
13 14 15	335	[10] Raval MV, Wang X, Cohen ME, et al. The influence of resident involvement on
16 17	336	surgical outcomes. J Am Coll Surg. 2011;212:889-898.
18 19 20	337	[11] Smith BK, Greenberg JA, Mitchell EL. The evolving integrated vascular surgery
21 22 23	338	residency curriculum. Ann Vasc Surg. 2014;28:1761-1768.
23 24 25	339	[12] Van Sickle K, Ritter E, Baghai M, et al. Prospective, randomized, double-blind
26 27 28	340	trial of curriculum-based training for intracorporeal suturing and knot-tying. J Am
29 30	341	Coll Surg. 2008;207: 560-568.
31 32 33	342	[13] Tan SS, Sarker SK. Simulation in surgery: a review. Scott Med J.
34 35	343	2011;56:104-109.
36 37 38	344	[14] Sturm LP, Windsor JA, Cosman PH, Cregan P, Hewett PJ, Maddern GJ. A
39 40	345	systematic review of skills transfer after surgical simulation training. Ann Surg.
41 42 43	346	2008;248:166-179.
44 45 46	347	[15] Egle JP, Subramanyam Malladi SV, Gopinath N, Mittal VK. Simulation Training
47 48	348	Improves Resident Performance in Hand-Sewn Vascular and Bowel Anastomoses. J
49 50 51	349	Surg. 2014;72:291-296.
52 53	350	[16] Jensen UJ, Jensen J, Olivecrona G, Ahlberg G, Lagerquist B, Tornvall P. The role
54 55 56	351	of a simulator-based course in coronary angiography on performance in real life cath
57 58	352	lab. BMC Med Educ. 2014;14:49.
59 60	552	100. 21110 11100 2000. 201 1,1 1,12.

2		
3 4	252	
5	353	
6 7 8	354	Figure legends
9 10	355	Figure 1. The vascular simulator system (Angiomentor system, Simbionix, Ltd.,
11 12 13	356	Cleveland, OH) used in this study simulated the vascular interventional procedures: a)
14 15 16	357	work station; b) pedal; c) simulator.
17 18	358	
19 20 21	359	
22 23 24	360	
25 26 27	361	
28 29	362	
30 31 32	363	
33 34 35	364	
36 37	365 366	
38 39 40	367	
41 42 43	368	
44 45 46	369	
47 48 49	370	
50 51	371	
52 53 54	372	
55 56 57	373	
58 59 60	374	

375				
376	Tables			
377	Table 1 The baseline data	a of both groups		
		CT group (n=48)	ST group (n=47)	<i>P</i> valı
	Sex (M)	44 (91.67)	42 (89.36)	0.70
	Age (years)	33.13±3.04	33.91±4.94	0.35
	Academic degree			0.36
	bachelor	22 (45.83)	26 (55.32)	
	postgraduate	26 (54.17)	21 (44.68)	
	Specialty background			0.48
	vascular	30 (62.50)	26 (55.32)	
	nonvascular	18 (37.50)	21 (44.68)	
	Work experience			0.35
	> 3 years	16 (33.33)	20 (42.55)	
	\leq 3 years	32 (66.67)	27 (57.45)	
378	CT: conventional training;	ST: simulation traini	ng; M: male.	
379	P value, compared with the	e CT group		
380				
381				
382				
383				
384				

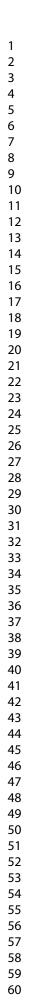
Table 2 The performance of arterial puncture in reside	nts
---	-----

		CT group (n=48)	ST group (n=47)	P value
	Puncture success rate	28 (58.33)	37 (78.72)	0.033
	Total puncture success rate	44 (91.67)	45 (95.74)	0.69
	Complications from puncture	9 (18.75)	8 (17.02)	0.83
	bruising	5 (10.42)	6 (12.77)	
	hematoma	3 (6.25)	2 (4.26)	
	infection	0	0	
	arteriovenous fistula	0	0	
	pseudoaneurysm	1 (2.08)	0	
	time of puncture (min)	12.15±6.87	9.56±5.24	0.002
	Comfort score of patients	4.71±1.57	5.49±1.72	0.023
387	CT: conventional training; ST:	simulation training.	2	
388 389	<i>P</i> value, compared with the CT	` group		
390				
391				
392				
393				
394				
395				
575				

1

1 2	
3	
4	
5	
6 7	
7	
8 9	
10	
11	
12	
13	
14	
15 16	
17	
18	
19	
20	
20 21 22	
23	
24	
25	
26 27	
28	
29	
30	
31	
32 33	
34	
35	
36	
37 38	
39	
40	
41	
42	
43 44	
45	
46	
47	
48	
49 50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

Table 3 The performance on cerebrovascular angiography in residents 397


	CT group (n=48)	ST group (n=47)	P value
LTP (mon)	4.07±0.77	3.65±0.64	<0.01
TCP (min)	41.32±12.56	33.81±10.11	0.002
FTP (s)	631.47±243.65	489.33±237.13	0.005
CAK (mGy)	463.16±134.14	401.30±149.06	0.043
DAP (mGy.cm ²)	128624.30±28982.22	128012.10±31035.08	0.92

CT: conventional training; ST: simulation training; LTP: learn time to complete 398 procedure from beginning; TCP: time of complete procedure at the final test; FTP: fluo 399

time of procedure; CAK: cumulative air kerma; DAP: dose area product 400

P value, compared with the CT group 401

BMJ Open: first published as 10.1136/bmjopen-2020-037338 on 21 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

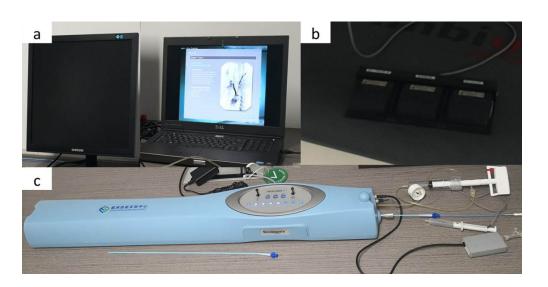


Figure 1. The vascular simulator system (Angiomentor system, Simbionix, Ltd., Cleveland, OH) used in this study simulated the vascular interventional procedures: a) work station; b) pedal; c) simulator.

124x63mm (300 x 300 DPI)

		BMJ Open	
	STROB	E 2007 (v4) checklist of items to be included in reports of observational studies in ebiddemiology*	
		Checklist for cohort, case-control, and cross-sectional studies (combined)	
Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract $\vec{\varphi}$	1-2
		(b) Provide in the abstract an informative and balanced summary of what was done and what ϕ was found	1-2
Introduction	I		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any pre-specified hypotheses	3-4
Methods			
Study design	4	Present key elements of study design early in the paper	4-6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposue, follow-up, and data collection	4-6
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of case ascertamment and control selection. Give the rationale for the choice of cases and controls <i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of selection of participants	4-6
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls ger case	4-6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	4-6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (massurement). Describe comparability of assessment methods if there is more than one group	4-6
Bias	9	Describe any efforts to address potential sources of bias	4-6
Study size	10	Explain how the study size was arrived at	4-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	4-6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	7
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addresse∰	7

 mjopen-202

yright.

13* 14*	Cross-sectional study—If applicable, describe analytical methods taking account of sampling rategy (e) Describe any sensitivity analyses S (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed S (b) Give reasons for non-participation at each stage S (c) Consider use of a flow diagram S (a) Give characteristics of study participants (eg demographic, clinical, social) and informatio on exposures and potential confounders S (b) Indicate number of participants with missing data for each variable of interest S	7 7-9 7-9 7-9 7-9 7-9 7-9
	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram (a) Give characteristics of study participants (eg demographic, clinical, social) and informatio confounders (b) Give reasons and potential confounders (c) Consider use of study participants (eg demographic, clinical, social) and informatio confounders (c) Consider use of study participants (eg demographic, clinical, social) and informatio confounders (c) Consider use of study participants (eg demographic, clinical, social) and informatio confounders (c) Consider use of study participants (eg demographic, clinical, social) and informatio confounders (c) Consider use of study participants (eg demographic, clinical, social) and informatio confounders (c) Consider use of study participants (c) Consider us	7-9 7-9 7-9 7-9
	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed Image: Confirmed eligible, examined for eligibility, confirmed eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage Image: Consider use of a flow diagram (c) Consider use of a flow diagram Image: Confirmed eligible, social) (a) Give characteristics of study participants (eg demographic, clinical, social) and informatio informatio information info	7-9 7-9
	confirmed eligible, included in the study, completing follow-up, and analysed Orgon (b) Give reasons for non-participation at each stage Image: Consider use of a flow diagram (c) Consider use of a flow diagram Image: Construct of study participants (eg demographic, clinical, social) and information of sudy participants and potential confounders	7-9 7-9
14*	(b) Give reasons for non-participation at each stage Image: Constitute (c) Consider use of a flow diagram Image: Constitute (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders Image: Constitute	7-9
14*	(c) Consider use of a flow diagram a (a) Give characteristics of study participants (eg demographic, clinical, social) and informatio on exposures and potential confounders b	7-9
14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and informatio on exposures and potential confounders	
14*	potential confounders 8	7-9
	(b) Indicate number of participants with missing data for each variable of interest	
		7-9
	(c) Cohort study—Summarise follow-up time (eg, average and total amount)	7-9
15*	Cohort study—Report numbers of outcome events or summary measures over time	7-9
	Case-control study—Report numbers in each exposure category, or summary measures of exposure	7-9
	Cross-sectional study—Report numbers of outcome events or summary measures	7-9
16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7-9
	(b) Report category boundaries when continuous variables were categorized	7-9
	(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaning time period	7-9
17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7-9
	8	
18	Summarise key results with reference to study objectives	9-11
19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	9-11
20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	9-11
21	Discuss the generalisability (external validity) of the study results	9-11
	by c	
22	Give the source of funding and the role of the funders for the present study and, if applicable for the original study on which the present article is based	11
	16 17 18 19 20 21	15* Cohort study—Report numbers of outcome events or summary measures over time Image: Case-control study—Report numbers in each exposure category, or summary measures of exposure Cross-sectional study—Report numbers of outcome events or summary measures Image: Case-control study—Report numbers of outcome events or summary measures 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized Image: Case-Case-Case-Case-Case-Case-Case-Case-

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.spobe-statement.org. BMJ Open

BMJ Open

The effect of vascular simulation training on practice performance in residents: a retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037338.R2
Article Type:	Original research
Date Submitted by the Author:	27-Jul-2020
Complete List of Authors:	Yang, Lin; Xi'an Jiaotong University Medical College First Affiliated Hospital, vascular surgery Li, Yanzi; Xi'an Jiaotong University Medical College First Affiliated Hospital, Department of Medical Administration Liu, Jianlin; Xi'an Jiaotong University Medical College First Affiliated Hospital, vascular surgery Liu, Yamin; Xi'an Jiaotong University Medical College First Affiliated Hospital, international radiology
Primary Subject Heading :	Medical education and training
Secondary Subject Heading:	Medical education and training, Surgery
Keywords:	Vascular surgery < SURGERY, MEDICAL EDUCATION & TRAINING, VASCULAR MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

3 4 5	1	The effect of vascular simulation training on practice
6 7 8	2	performance in residents: a retrospective cohort study
9 10	3	Lin Yang ^{1**} , MD., Ph.D. Yanzi Li ^{2*} , MD. Jianlin Liu ¹ , MD. Yamin Liu ³ , MD
11 12 13	4	1. Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong
14 15	5	University, Xi'an, China
16 17 18	6	2. Department of Medical Administration, First Affiliated Hospital of Xi'an Jiaotong
19 20 21	7	University, Xi'an, China
22 23	8	3. Department of Interventional Radiology, First Affiliated Hospital of Xi'an Jiaotong
24 25 26	9	University, Xi'an, China
27 28 29	10	* Yanzi Li is the co-first author.
30 31	11	**Corresponding author: LIN Yang. Department of Vascular Surgery, First Affiliated
32 33 34	12	Hospital of Xi'an Jiaotong University, Xi'an, China. Tel.: +86 29 85324050. Fax: +86
35 36 37	13	29 85324050. <i>Email:</i> jdvascs@163.com
38 39	14	Running head: Effect of ST in residents
40 41 42	15	
43 44 45	16	
46 47	17	
48 49 50	18	
51 52 53	19	
54 55	20	
56 57 58	21	
59 60	22	

1	
2	
3 4	
3 4 5	
6	
7	
8 Q	
10	
11	
12	
13	
15	
16	
17	
18	
20	
21	
22	
23 24	
25	
26	
27	
28 29	
30	
6 7 8 9 10 12 13 14 15 16 17 18 20 21 22 23 24 25 27 28 30 31 32 33 34 35 36 37	
32	
33 34	
35	
36	
37 38	
38 39	
40	
41	
42 43	
43 44	
45	
46	
47 48	
49	
50	
51	
52 53	
55 54	
55	
56	
57 58	
59	
60	

23 Abstract

Objective: This study aims to investigate the teaching effect of vascular simulation training in rotating vascular residents.

26 **Design:** Retrospective cohort study

Setting and participants: A total of 95 vascular residents were included from 2015 to 28 2018 in a university affiliated center western China, and divided into a simulation 29 training (ST) group and a conventional training (CT) group. ST group received 30 simulation training and conventional training, and the CT group only received 31 conventional training.

Primary outcome measures: Theoretical scores were assessed, and the technique 32 parameters, complications and radiation damage of the procedures were analyzed. 33 34 **Results:** The mean scores $(8.74\pm1.09 \text{ vs } 8.13\pm1.31)$ and the rate of willingness for retraining (93.62% vs 79.17%) in residents were higher in the ST group than in the CT 35 group (P < 0.05). The success rate of arterial puncture was significantly higher in the ST 36 37 group (78.72% vs 58.33%, P=0.03); however, the incidence of complications was similar between the two groups (P > 0.05). The time of the puncture procedure was 38 significantly lower $(9.56 \pm 5.24 \text{ min vs } 12.15 \pm 6.87 \text{ min})$, and the comfort score of the 39 patient (5.49±1.72 vs 4.71±1.57) was higher in the ST group than in the CT group 40 41 $(P \le 0.05)$. At the end of the assessment, the learning time for angiography (3.65 ± 0.64) mon vs 4.07±0.77 mon) and the complete procedure time (33.81±10.11 min vs 42 41.32 ± 12.56 min) were lower in the ST group than in the CT group (P<0.01). The fluo 43 time for angiography (489.33±237.13s vs 631.47±243.65 s) and the cumulative air 44

2		
3 4 5	45	kerma (401.30±149.06 mGy vs 461.16±134.14 mGy) were significantly decreased in
6 7 8	46	ST group (<i>P</i> <0.05).
9 10	47	Conclusion: The application of a vascular simulation system can significantly improve
11 12 13	48	the clinical performance of residents and reduce the radiation damage from a single
14 15 16	49	intervention procedure in patients.
17 18	50	Keywords: Vascular surgery; Medical education & training; Teaching modes;
19 20 21	51	Simulation training; Traditional teaching
22 23	52	
24 25 26	53	
27 28 29	54	
30 31	55	
32 33 34	56	
35 36 37	57	
38 39	58	
40 41 42	59	
43 44 45	60	
46 47	61	
48 49 50	62	
51 52	63	
53 54 55	64	
56 57 58	65	
59 60	66	
		3

1 2		
3 4 5	67	Article summary
6 7	68	Strengths and limitations of this study
8 9 10	69	• The simulation training could promote the mean scores of residents
11 12 13	70	• The simulation training could improve the clinical performance of residents
14 15	71	• The simulation training could reduce the radiation damage
16 17 18	72	• The simulation training should be wildly used in clinical teaching practice.
19 20 21	73	• The conclusions of this study should be confirmed via prospective randomized
22 23	74	study.
24 25 26	75	
27 28 29	76	
30 31	77	
32 33 34	78	
35 36 37	79	
38 39	80	
40 41 42	81	
43 44	82	
45 46 47	83	
48 49 50	84	
51 52	85	
53 54 55	86	
56 57 58	87	
58 59 60	88	
		4

89 INTRODUCTION

In recent years, with changes in the disease spectrum of Chinese patients, the incidence of peripheral arterial disease has increased significantly, which has also caused a severe economic and social burden [1]. Therefore, it is becoming increasingly important to strengthen general and specialized vascular disease skills education in the training of medical residents [2, 3]. In the past decade, the practical skills training of resident has been mainly carried out through conventional teaching (CT) modes (including classroom teaching, lectures and surgical practice), and residents lack sufficient practical procedures with simulation training from theoretical knowledge to practical procedures, therefore, the true teaching effect was not ideal.

Three-dimensional vascular simulator systems (Angiomentor system, Simbionix, Ltd., Cleveland, OH) use digital simulation to quantify the vascular interventional procedures of the cardiovascular, peripheral and cerebrovascular systems. Residents can use the system to select cases for simulation training; ultimately, the simulation training results are scored according to the operating steps of the system. This simulation training can promote the mastery of vascular procedure performance in residents [4-6], and this system provides an opportunity to perform endovascular procedures in a safe environment as an educational tool for novice residents.

However, due to the late entry of simulation systems in China, there has been no report of the use of 3-dimensional vascular simulation systems in clinical practice teaching in the area of vascular surgery. Therefore, we have retrospectively collected the teaching data of residents who received the simulation training and those who did Page 7 of 24

1

BMJ Open

2	
3	
4	
5	
5 6 7	
7	
<i>'</i>	
8	
9	
10	
11	
11	
12	
12 13 14 15 16 17	
14	
15	
16	
10	
17	
18	
19	
20	
21 22	
22	
23	
24	
24 25	
25	
26	
27	
28	
29	
30	
30 31 32 33	
31	
32	
33	
34	
25	
35 36	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
55	
56	
57	
58	
59	
r 0	

not in our hospital. The aim of this study was to assess the effect of simulation-based
training on improving the technical performance and subsequent clinical procedures of
residents in vascular surgery.

114 METHODS

115 Study procedures

A total of 95 vascular resident trainees at the First Affiliated Hospital of Xi'an Jiaotong 116 University were respectively collected in this study from Jan 2015 to Dec 2018, 47 117 vascular residents received simulation-based vascular training (ST group) for two weeks, 118 119 and then they completed the last clinical training. The other 48 residents only completed conventional clinical training (CT group, including classroom teaching, lectures and 120 surgical practice) without the simulation course, and all residents needed to complete 6 121 122 months of endovascular training in vascular surgery. A survey was administered to determine the demographics, academic degree, specialty level, and previous work 123 experiences that may have been relevant in terms of the residents' ability to learn 124 vascular interventional skills. This study was approved by the institutional review and 125 ethics board of the First Affiliated Hospital of Xi'an Jiaotong University 126 (XJTU1AF2014LSK-112), all of the patients provided written informed consent. 127

Before the course was performed, the residents in the ST group received a standardized introduction to the endovascular simulator and performed a cerebrovascular angiography procedure. The 2-week curriculum consisted of theory teaching and 30-60 min lectures per day covering basic catheter-based interventions, cerebrovascular disease, superficial femoral artery disease and renal artery disease. The

> residents received 1-hour mentored simulator sessions per day and practiced carotid, renal and superficial femoral artery interventions. This course was performed by a tutor. Then, residents needed to complete the primary endovascular procedure with direct instruction. During the entire training process, each resident was required to complete the simulation training for no less than 1 hour per day. The course concluded with a final cerebrovascular angiography procedure performed on the simulator. The residents in the CT group underwent the basic 2-week curriculum consisting of theory teaching and 30-60 min lectures per day covering basic endovascular intervention procedures but without the simulation training course.

142 Simulation system

The vascular simulator system (Angiomentor system, Simbionix, Ltd., Cleveland, OH, Fig 1) was composed of a standard desktop computer with software that simulated the human arterial system in 3 dimensions, and any user could perform the endovascular interventional procedures under the instruction of the system. This simulation system was connected to a haptic pressure feedback module, which used a force feedback system to detect external devices. When the users inserted the angiography catheters and wires, injected contrast and performed the endovascular procedures with digital subtraction angiography, all procedures could then be displayed on the screen in real time. The user was able to select the device to be simulated through one monitor, and the second monitor was used to display the simulated fluoroscopic image.

Procedure evaluation

154 When the residents completed the training course, all residents received assessments of

Page 9 of 24

theoretical knowledge at 1 month and practical assessments at 6 months. The teaching expert group made the theoretical test questions based on the key points of vascular disease as well as the endovascular interventional procedures and technical points involved in vascular surgery clinical training (the theoretical knowledge test is formulated according to the standardized question bank and the simulation system question bank), and then the residents completed the assessment independently. Finally, the expert group determined the student's score based on the results of the test (including the detailed information of knowledge and practice). The theoretical score range was 0-10, and a passing score was defined as a score higher than 7. All residents completed the arterial puncture procedure with the Seldinger technique and performed the cerebrovascular angiography procedure. The success criterion of arterial puncture was defined as follows: all puncture procedures were successfully completed, and the sheath was successfully inserted into the femoral artery. If the residents failed to complete the processes of puncture and sheath placement, which was defined as a puncture failure, then the puncture was performed by the teacher. The puncture success rate, puncture time and complications were recorded, and the comfort scores of the patients during the puncture procedure were assessed with a numerical rating scale (NRS). The NRS score ranged from 0 to 10, where 0 indicates worst uncomfortable pain and 10 indicates comfortable pain [7]. Subsequently, the residents needed to complete the cerebrovascular angiography procedure. The evaluation indicators of angiography were as following: learn time to complete the procedure (LTP, defined as the time from the beginning of training to the completion of the first angiography

BMJ Open

independently), time of complete procedure at the final test (TCP), fluo time of
procedure (FTP), cumulative air kerma (CAK) and dose area product (DAP). TCP, FTP,
CAK and DAP were defined as the time of procedure and related parameters of the
assessed angiography procedure at the end of the training.

Patient and public involvement

182 Patients and the public were not involved in the design or planning of the study.

183 Statistical Analysis

All data were analyzed using SPSS v. 11.0 (SPSS, Chicago, IL, USA), and P < .05 was considered statistically significant. To test the difference between groups, we used Chi-square analysis for categorical variables and Student's t-tests for continuous variables, and we tested the significance of the difference between 2 independent proportions when the results were presented as percentages.

RESULTS

190 The baseline data of the two groups

This study included 48 residents and 47 residents who were retrospectively recruited in this study, and there was no significant difference in baseline data between the two groups (Table 1, P>0.05). There were 44 males and 4 females who received CT training, with a mean age of 33.13 years, and 42 males and 5 females who received ST training, with a mean age of 33.91 years (P>0.05). The background academic degrees were bachelor and postgraduate degrees in the CT and ST groups (P>0.05), and 30 and 26 residents had a specialty background in vascular surgery in both groups (62.50% vs 55.32%, P > 0.05). The clinical work experience of most residents was less than three

Page 11 of 24

1

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
22	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
54 55	
56	
57	
58	
59	

60

199 years in both groups (66.67% vs 57.45, *P*>0.05).

All residents passed the training test; however, the mean scores of the residents were higher in the ST group than in the CT group $(8.74\pm1.09 \text{ vs } 8.13\pm1.31, P=0.014)$. After the clinical training, the training satisfaction rates of all residents were similar (97.87% vs 91.67%, *P*>0.05); however, when asked whether they wished to participate in the training again, the residents in the ST group showed a higher willingness rate than residents in the CT groups (93.62% vs 79.17%, *P*=0.04).

207 The performance of arterial puncture in residents

After the training, all residents underwent an arterial puncture test (Table 2), and the 208 success rate of the procedure was higher in the ST group than in the CT group (78.72%) 209 210 vs 58.33%, P=0.033); however, the total puncture success rate was similar between the two groups (95.74% vs 91.67%, P>0.05). The complications of the puncture sites 211 included bruising, hematoma, infection and pseudoaneurysm, and there was no 212 significant difference in the incidence of complications between the ST and CT groups 213 (17.02% vs 18.75%, P>0.05); however, the time of the puncture procedure was shorter 214 in the ST group than in the CT group $(9.56\pm5.24 \text{ min vs } 12.15\pm6.87 \text{ min}, P=0.002)$, and 215 the comfort score of patients was higher in the ST group than in the CT group according 216 217 to the NRS scores (5.49±1.72 vs 4.71±1.57, *P*=0.023).

218 The outcome of cerebrovascular angiography

All residents needed to complete the final cerebrovascular angiography test; the relatedparameters are listed in Table 3. The residents in the ST group showed a shorter study

curve with a lower mean LTP than residents in the CT groups (3.65 mon vs 4.07 mon, P<0.01), and the TCP of the final test was higher in the CT group than in the ST group (41.32 min vs 33.81 min, P=0.002). The radiation damage-related parameters were recorded, and the residents in the CT group showed higher mean values of FTP (631.47 s vs 489.33 s, P<0.001) and CAK than the residents in the ST group (463.16 vs 401.30 mGy, P=0.043); however, the mean DAP value in both groups indicated no difference (128624.30 mGy.cm² vs 128012.10 mGy.cm², P>0.052).

228 DISCUSSION

The development of vascular surgery occurred relatively late in China; thus, the training model used for vascular residents in most university hospitals was traditional training; however, traditional training did not improve residents' understanding and interest in vascular surgery. In past decades, there were fewer residents who chose vascular surgery as a career option in China, which was consistent with the reports of previous studies [7]. Therefore, improving residents' interest in vascular surgery and promoting vascular clinical performance have been the main problems associated with clinical training [8]. Earlier studies have shown that compared with traditional training, the use of network media, social media and simulation systems can achieve better training results [9-11]. In this study, we used the vascular simulation system to assist residents in clinical training. The results revealed that simulation training could significantly improve the clinical practice effect of residents. The residents who received the simulation training had significantly higher theoretical scores; in addition, the interest level of residents was higher after simulation training. The vascular simulation system

could standardize complex vascular systems and different vascular lesions through analog calculations, which could help residents practice vascular skills training earlier and improve the interest and performance of residents [3]. Our result reveals that the residents could deeply understand theoretical knowledge and practical knowledge through simulation training, which also helps to improve the residents' theoretical and practical knowledge.

After simulation training and basic training, residents need further vascular operation training under the guidance of tutors, and the basic procedure for vascular residents is arterial puncture. However, it is impossible for residents to repeatedly perform the procedure during the treatment of patients; thus, in vitro simulation training has become the main teaching method in the training of vascular residents. Residents who received simulator training showed better clinical performance in the vascular surgery rotation, more motivation to learn, a shorter learning time and a lower number of clinical procedural errors, and the patients indicated a lower discomfort rate with the procedure [12, 13]. In our study, the results confirmed that the residents who underwent the simulation training had a significantly higher success rate of arterial puncture, and the time of the puncture procedure was also significantly lower. Each step of the vascular procedure could be programmed and standardized in the simulation system. After the teacher's explanation and auxiliary training, it was easier for residents to develop standardized vascular skill habits and the correct procedural process. Finally, we evaluated the training effect with the cerebrovascular angiography procedure. Our results proved that the learning time of the angiography procedure and time of

completed procedures were significantly lower in residents with simulation training; these results were consistent with previous reports [14]. This finding also confirmed that different simulation systems and teaching models could improve the effectiveness of clinical teaching and promote the understanding and proficiency of vascular practical performance.

Furthermore, the final effect of clinical training should be assessed by the practice procedure of residents. Our study confirmed that vascular simulation training could promote the practice knowledge of residents and promote the understanding of vascular surgical procedure. Most cases of vascular disease teaching need to be performed under radiation; thus, simulation training could avoid radiation damage to teachers, patients and residents. In this study, the results demonstrated that simulation training could decrease the fluo time and cumulative air kerma of the procedure, which meant that simulation training could reduce the radiation damage of patients and residents, and radiation protection was an important teaching ethics component in vascular surgery practice. However, due to the limitations of our teaching funding and the time course, only selective residents underwent the simulation training for 2 weeks, which was different from what occurs in advanced vascular centers. Other reports have shown that simulation training for 8 weeks can improve the procedure skills of residents, contribute to patient safety and have a positive impact on the career planning and choice of vascular surgeons [15]. Therefore, the simulation training should be the basic course for residents. Therefore, the simulation training should be the basic course for residents, especially in pre-career students and residents in rotation, meanwhile the simulation

BMJ Open

(NO.8197 0365)

training should be well-defined and step-planned, otherwise, the simulation training may result in an impaired learning and worse performance in real clinical practice [16]. Limitations There were several limitations. First, this study was not a prospective randomized study. and the conclusions of this study should be confirmed in the future; Second, when compared with Western counties, the simulation training is not wildly used in China, thus the truly effect of the simulation training is not investigated deeply; Third, the clinical performance of the residents should be evaluated via the real clinical procedure after the simulation training, this is the next step of our study. Conclusions Our results confirmed that a vascular simulation system could improve the clinical skills of residents and reduce the radiation damage received by patients and residents in endovascular procedures. Author Contributions: LY, YZ L: data collection. LY, YZ L, JL L and YM L: conception or design of the work; data analysis and interpretation; critical revision of the article; drafting of the article and final approval of the version to be published. Acknowledgments: The language of this article was edited by American Journal Experts (AJE). Thanks to Prof. Jian Yang from the clinical research center of the First Affiliated Hospital of Xi'an Jiaotong University for providing statistical analysis support and proofread. Funding: This project was supported by the Natural Science Foundation of China

1 2		
3 4 5	309	Conflicts of Interest: None.
6 7	310	Patient consent for publication: Not required.
8 9 10	311	Ethical approval: This study was approved by the institutional review and ethics board
11 12 13	312	of the First Affiliated Hospital of Xi'an Jiaotong University.
14 15	313	Data availability statement: Data are available upon reasonable request.
16 17 18	314	
19 20 21	315	
22 23	316	
24 25 26	317	
27 28	318	
29 30 31	319	
32 33 34	320	
35 36	321	
37 38 39	322	
40 41	323	
42 43 44	324	
45 46 47	325	
48 49	326	
50 51 52	327	
53 54	328	
55 56 57	329	
58 59 60	330	
00		15

2		
3 4 5	331	References:
6 7	332	[1] Song P, Rudan D, Wang M, Chang X, Rudan I. National and subnational estimation
8 9 10	333	of the prevalence of peripheral artery disease (PAD) in China: a systematic review
11 12 13	334	and meta-analysis. J Glob Health. 2019;9010601.
14 15	335	[2] Mills J. Vascular surgery training in the United States: A half-century of evolution. J
16 17 18	336	Vasc Surg. 2008;48:90S-97S.
19 20	337	[3] Lee JT, Qiu M, Teshome M. The utility of endovascular simulation to improve
21 22 23	338	technical performance and stimulate continued interest of preclinical medical
24 25 26	339	students in vascular surgery. J Surg Educ, 2010, 66: 367-369.
27 28	340	[4] Aggarwal R, Black S, Hance J, et al. Virtual reality simulation training can improve
29 30 31	341	inexperienced surgeons' endovascular skills. Eur J Vasc Endovasc Surg.
32 33	342	2007;31:588-593.
34 35 36	343	[5] Chaer RA, Derubertis BG, Lin SC, et al. Simulation improves resident performance
37 38	344	in catheter-based intervention: Results of a randomized, controlled study. Ann Surg.
39 40 41	345	2006;244:343-352.
42 43 44	346	[6] Tedesco MM, Pak JJ, Harris EJ, et al. Simulation-based endovascular skills
45 46	347	assessment: The future of credentialing? J Vasc Surg. 2008;47:1008-1001.
47 48 49	348	[7] Farrar JT, Young JP Jr, LaMoreaux L, Werth JL, Poole RM. Clinical importance of
50 51	349	changes in chronic pain intensity measured on an 11-point numerical pain rating
52 53 54	350	scale. Pain 2001; 94:149–158.
55 56 57	351	[8] Zimmerman P, O'Brien-Irr M, Dryjski M, et al. The new training paradigms and the
58 59 60	352	unfilled match positions of 2004: Will history repeat itself? J Vasc Surg. 2006;

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
25 24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

353	44:145-150.
354	[9] Seymour N, Gallager A, Roman S, et al. Virtual reality training improves operating
355	room performance: Results of a randomized, double-blind study. Ann Surg.
356	2002;236:458-463.
357	[10] Raval MV, Wang X, Cohen ME, et al. The influence of resident involvement on
358	surgical outcomes. J Am Coll Surg. 2011;212:889-898.
359	[11] Smith BK, Greenberg JA, Mitchell EL. The evolving integrated vascular surgery
360	residency curriculum. Ann Vasc Surg. 2014;28:1761-1768.
361	[12] Van Sickle K, Ritter E, Baghai M, et al. Prospective, randomized, double-blind
362	trial of curriculum-based training for intracorporeal suturing and knot-tying. J Am
363	Coll Surg. 2008;207: 560-568.
364	[13] Tan SS, Sarker SK. Simulation in surgery: a review. Scott Med J.
365	2011;56:104-109.
366	[14] Sturm LP, Windsor JA, Cosman PH, Cregan P, Hewett PJ, Maddern GJ. A
367	systematic review of skills transfer after surgical simulation training. Ann Surg.
368	2008;248:166-179.
369	[15] Egle JP, Subramanyam Malladi SV, Gopinath N, Mittal VK. Simulation Training
370	Improves Resident Performance in Hand-Sewn Vascular and Bowel Anastomoses. J
371	Surg. 2014;72:291-296.

[16] Jensen UJ, Jensen J, Olivecrona G, Ahlberg G, Lagerquist B, Tornvall P. The role
of a simulator-based course in coronary angiography on performance in real life cath
lab. BMC Med Educ. 2014;14:49.

1		
2 3		
4	375	
5		
6 7	376	Figure legends
8		
9	377	Figure 1. The vascular simulator system (Angiomentor system, Simbionix, Ltd.,
10 11		
12	378	Cleveland, OH) used in this study simulated the vascular interventional procedures: a)
13		
14 15	379	work station; b) pedal; c) simulator.
15 16		
17	380	
18		
19 20	381	
20		
22	382	
23 24		
24 25	383	
26		
27	384	
28 29		
30	385	
31		
32 33	386	
34		
35	387	
36 37		
38	388	
39		
40 41	389	
42		
43	390	
44 45		
45 46	391	
47		
48	392	
49 50		
51	393	
52		
53 54	394	
55		
56	395	
57 58		
58 59	396	
60		
		18

397				
398	Tables			
399	Table 1 The baseline da	ta of both groups		
		CT group (n=48)	ST group (n=47)	P value
	Sex (M)	44 (91.67)	42 (89.36)	0.70
	Age (years)	33.13±3.04	33.91±4.94	0.35
	Academic degree			0.36
	bachelor	22 (45.83)	26 (55.32)	
	postgraduate	26 (54.17)	21 (44.68)	
	Specialty background	d C		0.48
	vascular	30 (62.50)	26 (55.32)	
	nonvascular	18 (37.50)	21 (44.68)	
	Work experience			0.35
	> 3 years	16 (33.33)	20 (42.55)	
	\leq 3 years	32 (66.67)	27 (57.45)	
100	CT: conventional training; ST: simulation training; M: male.			
01	<i>P</i> value, compared with the CT group			
02				
03				
04				
105				
06				

Table 2 The performance of arterial puncture in residents

		CT group (n=48)	ST group (n=47)	P value	
	Puncture success rate	28 (58.33)	37 (78.72)	0.033	
	Total puncture success rate	44 (91.67)	45 (95.74)	0.69	
	Complications from puncture	9 (18.75)	8 (17.02)	0.83	
	bruising	5 (10.42)	6 (12.77)		
	hematoma	3 (6.25)	2 (4.26)		
	infection	0	0		
	arteriovenous fistula	0	0		
	pseudoaneurysm	1 (2.08)	0		
	time of puncture (min)	12.15±6.87	9.56±5.24	0.002	
	Comfort score of patients	4.71±1.57	5.49±1.72	0.023	
409	CT: conventional training; ST: simulation training.				
410	<i>P</i> value, compared with the CT group				
411					
412					
413					
414					
415					
416					
417					

Table 3 The performance on cerebrovascular angiography in residents

	CT group (n=48)	ST group (n=47)	P value
LTP (mon)	4.07±0.77	3.65±0.64	<0.01
TCP (min)	41.32±12.56	33.81±10.11	0.002
FTP (s)	631.47±243.65	489.33±237.13	0.005
CAK (mGy)	463.16±134.14	401.30±149.06	0.043
DAP (mGy.cm ²)	128624.30±28982.22	128012.10±31035.08	0.92

CT: conventional training; ST: simulation training; LTP: learn time to complete procedure from beginning; TCP: time of complete procedure at the final test; FTP: fluo time of procedure; CAK: cumulative air kerma; DAP: dose area product

P value, compared with the CT group

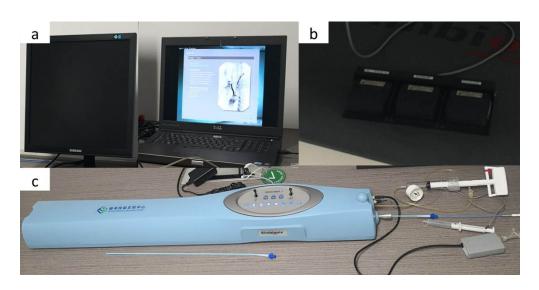


Figure 1. The vascular simulator system (Angiomentor system, Simbionix, Ltd., Cleveland, OH) used in this study simulated the vascular interventional procedures: a) work station; b) pedal; c) simulator.

124x63mm (500 x 500 DPI)

BMJ Open: first published as 10.1136/bmjopen-2020-037338 on 21 September 2020. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

 mjopen-2020

Section/Topic	Item #	Recommendation S	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		لع (b) Provide in the abstract an informative and balanced summary of what was done and what was found	1-2
Introduction		hber	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any pre-specified hypotheses	3-4
Methods			
Study design	4	Present key elements of study design early in the paper	4-6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4-6
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of case ascertanent and control selection. Give the rationale for the choice of cases and controls <i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of selection of participants	4-6
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls ger case	4-6
Variables	7		
Data sources/ measurement	ata sources/ measurement 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group		4-6
Bias	9	Describe any efforts to address potential sources of bias	4-6
Study size	10	Explain how the study size was arrived at	4-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe whick groupings were chosen and why	4-6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	7
		(<i>d</i>) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addresse	7

 mjopen-2020

yright.

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling grategy	
		(e) Describe any sensitivity analyses	7
Results		9	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	7-9
		(c) Consider use of a flow diagram	7-9
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and informatio on exposures and potential confounders	7-9
		(b) Indicate number of participants with missing data for each variable of interest	7-9
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	7-9
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	7-9
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	7-9
		Cross-sectional study—Report numbers of outcome events or summary measures	7-9
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7-9
		(b) Report category boundaries when continuous variables were categorized	7-9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaning full time period	7-9
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7-9
Discussion	I		
Key results	18	Summarise key results with reference to study objectives	9-11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	9-11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	9-11
Generalisability	21	Discuss the generalisability (external validity) of the study results	9-11
Other information		by c	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable for the original study on which the present article is based	11

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.spote-statement.org.