

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Chest Radiograph Findings in children aged 2-59 months hospitalized with Community-Acquired Pneumonia, prior to the introduction of Pneumococcal Conjugate Vaccine in India

Journal:	BMJ Open
Journal.	וושקט נויום
Manuscript ID	bmjopen-2019-034066
Article Type:	Original research
Date Submitted by the Author:	05-Sep-2019
Complete List of Authors:	Awasthi, Shally; King George's Medical University, Pediatrics Rastogi, Tuhina; King George's Medical University, Paediatrics Mishra, Neha; King George's Medical University, Pediatrics Chauhan, Abhishek ; Dr Ram Manohar Lohia Institute of Medical Sciences, Department of Radio-diagnosis Mohindra, Namita; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radio-diagnosis Shukla, Ram ; Banaras Hindu University, Varanasi, India, Institute of Medical Sciences Agarwal, Monica; King George's Medical University, Department of Community Medicine Pandey, CM; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Biostatistics & Health Informatics Kohli, Neera ; King George's Medical University, Department of Radio- diagnosis Study Group, CAP; CAP study Group
Keywords:	Chest radiographs, Hospitalized community-acquired pneumonia, under- five, Streptococcus pneumoniae, India

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Title: Chest Radiograph Findings in children aged 2-59 months hospitalized with Community-Acquired Pneumonia, prior to the introduction of Pneumococcal Conjugate Vaccine in India

Short Title: Radiological Findings in Children hospitalized with Community-Acquired Pneumonia in India Pre-Pneumococcal Conjugate Vaccine introduction

Shally Awasthi^{1*}, Tuhina Rastogi¹, Neha Mishra¹, Abhishek Chauhan², Namita Mohindra³, Ram Chandra Shukla⁴, Monica Agarwal⁵, Chandra Mani Pandey⁶, Neera Kohli⁷ and CAP Group[^]

- ² Department of Radio-diagnosis, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
- ³ Department of Radio-diagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
- ⁴Department of Radio-diagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- ⁵ Department of Community Medicine, King George's Medical University, Lucknow, India
- ⁶Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
- ⁷Department of Radio-diagnosis, King George's Medical University, Lucknow, India

^ Members of the Lucknow CAP Group are given in the Acknowledgement

*Corresponding Author Postal Address: Prof. Shally Awasthi, Head, Department of Paediatrics, King George's Medical University, Lucknow , India Pincode: 226003 Mobile: +91-9839221244 E-mail: shally07@gmail.com

Word Count: 3587 Tables: 3 Figure: 1

¹ Department of Pediatrics, King George's Medical University, Lucknow, India

ABSTRACT

Objectives: To assess radiological abnormalities in chest X-rays and to identify the demographic and clinical correlates in children aged 2-59 months, hospitalized with World Health Organization defined community-acquired pneumonia, who reside in pre-specified districts of India

Design: Prospective, hospital-based surveillance

Setting: Multi-site study conducted in a network of 117 secondary/tertiary care hospitals in four districts of Uttar Pradesh and Bihar, India.

Participants: Included were children aged 2-59 months hospitalized with community-acquired pneumonia, residing in project district, with duration of illness of <14 days and who were not hospitalized elsewhere for this episode or nor had been recruited previously.

Main outcome measure: Radiological abnormalities in the chest X-rays, where there was concordance between two or more of the panel of three trained radiologists.

Results: From January 2015 to April 2017, 3214 cases were recruited and in 99.40 % (3195/3214) chest X-rays were available. Among 88.54 % (2829/3195) interpretable X-rays, 34.53 % (977/2829, 95% C.I. 32.78 - 36.28) had some radiological abnormalities, while the rest were normal. Primary end point pneumonia alone or with other infiltrates was found in 22.44 % (635/2829, C.I. 20.90 %-23.98 %), other infiltrates only in 12.09% (342/2829; C.I. 10.88 %-13.29 %). There was a statistically significant inter-district variation in radiological abnormality. Statistically significantly higher proportion of abnormal chest X-ray was found among girls, those with weight for age z score \leq -3 SD, longer duration of fever, pallor and with exposure to biomass fuel.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Conclusions: Among hospitalized cases of community-acquired pneumonia, almost one-third children had abnormal chest radiographs of which about two-thirds had abnormalities related with possible bacterial etiology (*Streptococcus pneumoniae*). Hence introduction of pneumococcal vaccination is likely to reduce burden of childhood pneumonia in India.

Key words: Chest radiographs, Hospitalized community-acquired pneumonia, under-five, *Streptococcus pneumoniae*, India

Strengths and Limitations of the Study

• Prospective, multisite recruitments from a large hospital surveillance network established for the project in four districts in two states of India that have high under-five mortality rates

• Standardized World Health Organization definition was used for identifying hospitalized cases of clinical pneumonia

• Radiological abnormalities interpreted by a panel of three trained radiologists at locations out of the surveillance network, blinded to each other as well as clinical features of the case

• Since pre-existing X-rays machines were used, there was variation in the quality of images obtained, which were minimized by digitizing them centrally

• Laboratory investigations were according to the routine hospital practice and were not uniform across hospitals, since the study objective was to assess radiological abnormalities in chest X-rays of recruited cases .

INTRODUCTION

Community-acquired pneumonia (CAP) is the single largest infectious cause of death in young children worldwide. Globally, pneumonia accounts for 16% of deaths in children under-five years of age and results in almost one million deaths (0.9 million children in 2016) every year 1^{-2} . Most deaths due to pneumonia occur in low and middle income countries particularly in sub-Saharan Africa and South Asia 2^{-3} . In India, there were approximately 0.44 million under-five deaths due to CAP in the year 2015 ⁴.

CAP could have viral or bacterial etiology ⁵⁻⁷. Etiology varies from country to country and also across different time periods. Pediatric bacterial pneumonia is predominantly caused by *Streptococcus pneumoniae* (*SP*) and *Hemophilus influenzae Type B* (HiB) while Respiratory syncytial virus and Influenza A or B virus are important contributors of pediatric viral pneumonia ^{5 6}. The World Health Organization (WHO) recommends the introduction of Pneumococcal Conjugate Vaccine (PCV) in the national immunization programme (NIP) of countries with high child mortality rates, which includes India ⁸. Consequently, PCV-13 was launched in May 2017 under the NIP of five Indian states (Uttar Pradesh, Bihar, Rajasthan, Madhya Pradesh and Himachal Pradesh) in a phased manner ⁹. It is expected to be rolled out in other parts of the country in the coming days. Vaccination against HiB is already under the NIP since 2011.

Differentiating bacterial from viral etiology of CAP on clinical features or by investigations remains difficult ⁷ ¹⁰ ¹¹. Several PCV probe trials have used radiographically confirmed alveolar

pneumonia, also called end-point pneumonia, to be an outcome for vaccine efficacy and this has been endorsed by WHO ¹²⁻¹⁴.

The current study was a hospital-based surveillance to assess the radiological abnormalities in chest X-rays (CXRs) and to identify the demographic clinical correlates of specific radiological abnormalities in children aged 2-59 months, hospitalized with WHO defined CAP, residing in pre-specified districts of Uttar Pradesh and Bihar, India.

METHODS

Setting

This multi-site site prospective study was conducted in Lucknow and Etawah districts of Uttar Pradesh and Patna & Darbhanga districts of Bihar, India. Uttar Pradesh is the most populated state of India and Bihar third populated ¹⁵ ¹⁶. Lucknow district has urban population of 66.2% ¹⁵ and Patna district 43.07% ¹⁶. In contrast, only 22.3%¹⁵ population of Etawah district and 9.74%¹⁶ population of Darbhanga district reside in rural areas. All four project districts have poor socio-demographic and child health indicators ¹⁵ ¹⁶ ¹⁷.

Study Population

A hospital-based surveillance system was established for this study. Recruitment was done from a network of public and private hospitals, which provided either secondary or tertiary level care, which admitted children. Children aged 2-59 months hospitalized in network hospitals with history of fast breathing with/without chest in-drawing were screened ¹⁷.

BMJ Open

Children with cough and respiratory symptoms for > 14 days were excluded ¹⁷. Children with history of hospitalization within 14 days of recruitment were excluded to remove the potential risk of acquiring hospital-acquired pneumonia¹⁷. Included were children hospitalized with symptoms of WHO defined CAP and residing in the project district. WHO has developed guidelines for the identification of CAP by the community health workers ¹⁸. According to these guidelines, CAP is defined as the presence of fast breathing above age-specific cutoff. The cutoff for infants less than 2 months is 60 more breaths per minute (bpm), for 2-11 months of age 50 or more bpm and 12-59 months of age is 40 or more bpm ¹⁸. In addition, WHO has defined severe pneumonia as CAP with presence of certain danger signs such as not able to drink, persistent vomiting, convulsions, lethargy or unconsciousness, stridor in a calm child or severe malnutrition¹⁸. Children with fast breathing with or without chest in-drawing are classified as "pneumonia" and children with pneumonia and with any danger signs are classified as "severe pneumonia"¹⁸.

Data collection

Information on socio-demographic and clinical variables was obtained by trained surveillance officers. Socio-demographic information was collected through face-to-face interviews from the parent/caregiver of the recruited child. Clinical data and anthropometric information (height, weight, mid-arm circumference and head circumference) was abstracted from clinical records of admitting hospital. Clinical Outcome (survival or mortality) was noted ¹⁷ ¹⁹.

Chest x-ray (CXR) image acquisition and archiving

CXR (poster-anterior view) was done on the advice of treating physician as part of routine clinical care. Surveillance staff obtained CXR at the time of recruitment. CXRs were either analogous or digital. In case of digital CXRs, second copy was obtained where possible. If only

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

single analog image was available, then the CXR hardcopy was obtained from the parent/guardian after the child was discharged. If this could not be done, image of the hardcopy was captured. CXR machines were not provided through the project.

CXRs of recruited cases were subsequently scanned and converted into digital format using a diagnostic-quality film image digitalizer (Microteck International Limited, model Medi 6000 plus) ²⁰. CXRs obtained/converted into digital image were stored as per the standard operating procedure and were subsequently archived for web-based radiological interpretation. Digital images were stored in JPEG format at 300 dpi resolution. Each CXR file was anonymized and given a unique identification number. Digital CXRs were uploaded on online data management software (www.capxrs.org), developed especially for the project. De-identified CXRs were uploaded every month in batches by the data manager.

Interpretation of radiological images

A panel of radiologists was constituted for standardized interpretations of pediatric CXRs. Four radiologists were part of this panel, one of whom was Project Co-Investigator-Radiology. Radiologists were trained as per the methodology developed by Department of Immunization, Vaccines, and Biologicals of the World Health Organization (WHO)¹¹.

After training, radiologists were required to independently review CXRs and register their findings in an online standardized chest radiograph interpretation form **[S1 Appendix]**. For optimal viewing of CXRs, all readers used similar workstations. Specifications were provided for the computer monitor and hardware to be used. It was ensured that monitors had the correct

BMJ Open

brightness and contrast adjustment for optimal viewing. The sequence of presentation of CXR to the readers was randomized.

Radiographic interpretation was done on film quality, findings of CXRs and conclusion. Radiologists interpreted film quality as follows: (a) *`Adequate/optimal`* for features allow confident interpretation of consolidation and pleural effusion as well as other infiltrates; (b) *`Suboptimal`* for features allow interpretation of consolidation and pleural effusion, but not of other infiltrates or findings and (c) *`Un-interpretable`* pertaining to features of the image that are not interpretable with respect to presence or absence of consolidation or pleural effusion without additional images ¹².

After interpreting film quality, readers interpreted the pathological findings. For each radiographic finding, there were two options to be chosen: 'yes' for the presence of findings and 'no' for its absence. Pathological findings were classified into (a)'*significant pathology*' such as presence of consolidation, infiltrates or effusion; (b) '*end-point consolidation*' for CXRs with a dense or confluent opacity that occupies a portion or whole of a lobe or the entire lung, that may or may not contain air bronchograms ; (c) '*other (non end-point) infiltrate*' for CXRs with linear and patchy opacities (interstitial infiltrate) in a lacy pattern, featuring peri-bronchial thickening and multiple areas of atelectasis; also including minor patchy infiltrates that are not of sufficient magnitude to constitute endpoint consolidation, and small areas of atelectasis that in children may be difficult to distinguish from consolidation and (d) '*pleural effusion*' on presence of fluid in the lateral pleural space between the lung and chest wall that is spatially associated with a pulmonary parenchymal infiltrate (including 'other infiltrate') or has obliterated enough of the

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

hemithorax to obscure any infiltrate; in most cases, this will be seen at the costo-phrenic angle or as a layer of fluid adjacent to the lateral chest-wall; this does not include fluid seen in the horizontal or oblique fissures ¹².

Radiologists concluded their interpretations of CXRs as per WHO guidelines ¹². Conclusions were categorised into: (a) *Primary End Point Pneumonia only* (PEP) on the presence of consolidation or pleural effusion; (b) *Other (non end-point) infiltrate only* on the presence of other (non-consolidation) infiltrates as defined above in the absence of a pleural effusion (c) *Both PEP and other infiltrate* and (d) *Normal* when there were no findings consistent with 'endpoint consolidation' or 'other infiltrate' or 'pleural effusion' ¹².

After radiological interpretation, online data was archived, stored and checked for inconsistencies and completeness by the data manager. CXRs with concordant and discordant interpretations were identified. Interpretations were considered concordant when two or more radiologists agreed on the same. If all the three radiologists disagreed on set of findings, then such CXRs with discordant interpretations were forwarded to the study arbitrator (Project Co-Investigator-Radiology) using customized software (www.capxrs.org). Arbitrator read discordant CXRs and submitted the interpretation to the data manager. Readings of arbitrator were taken as final in case of discordant interpretations.

Data management and statistical analysis

Clinical data of hospital surveillance network was entered online in customized software. Primary entry was by the four participating sites. Secondary data entry was done by the coordinating site in different customized software. Anonymized CXRs were uploaded on

customized software. Each of the three panelists had independent access to them. They assessed the CXRs online, blind to peer assessments as well as clinical features of the case, and uploaded their findings online. CXR assessment data was downloaded from the online software in MS Access database.

Exploratory data analysis was performed for outlier detection and missing observations for all the variables. Descriptive statistics was calculated for measurable variables in Mean \pm Standard Deviation (M \pm SD) and categorical variables in percent (%). Un-interpretable CXRs were removed from analysis. Among interpretable CXRs, radiological abnormalities, which were reported by two members of the panel, were taken as final. Weight-for-age z-score each child was calculated using Epi-Info software ²¹. Weight-for-age z score (WAZ) of \leq -3 was taken as `underweight` ²². Kappa statistics was performed for agreement analysis among radiologists for CXRs findings. Statistical analysis was performed using SPSS version 22.0 (Chicago, IL) ²³. A p value of <0.05 was taken as statistically significant using a two-tailed distribution.

Univariate analysis was performed to evaluate heterogeneity stratified by four participating sites for socio-demographic variables such as age, gender, place of residence, type of house, type of family, maternal & paternal education and their occupation, use of biomass fuel for cooking and parental smoking status. Likewise, univariate analysis was done for clinical variables such as height, weight, duration of illness and percent oxygen saturation, in cases where pulse oximetry was done.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

We report proportions of radiological abnormalities among hospitalized children for CAP for four districts. Univariate analysis was performed to find out associated socio-demographic variables and clinical signs of CAP with radiological abnormalities. Chi-square test was used to find out association for categorical variables and student's t-test for continuous variables. Multivariate binary logistic regression was performed find association of presence of various radiological abnormalities among cases hospitalized for CAP, controlling for district of residence and other variables that had univariate association with radiological abnormalities (p value ≤ 0.2) and/or were clinically meaningful.

Thereafter, we developed and report four models for estimation of adjusted odds ratios of sociodemographic and clinical variables with specific radiological abnormalities (dependent variable). In these four models, dependent (outcome) were as follows:

Model I: Abnormal vs. Normal

Model II: Primary End Point Pneumonia alone or with infiltrates vs. Normal

Model III: Primary End Point Pneumonia alone vs. Normal

Model IV: Other infiltrates only vs. Normal

Independent variables that were kept across all the four models were : participating districts, age, gender, use of biomass fuel, symptoms of CAP such as duration of illness, presence of rhonchi, pallor and vomiting and malnutrition status of the case [WAZ \leq -2 (malnourished) and WAZ \leq -3 (severely malnourished)].

Patient and public involvement in research

BMJ Open

Health Ministry Steering Committee of Indian Council of Medical Research, New Delhi, India approved the study. State governments of Uttar Pradesh and Bihar gave consent for initiating the study. Written, informed consent was obtained from parents/guardians of eligible children who were willing to participate in the study. Written informed consent was also taken from the administration of hospital for participation.

RESULTS

A total of 3290 hospitalized cases were screened in hospital surveillance network of Lucknow and Etawah districts of Uttar Pradesh and Patna & Darbhanga districts of Bihar from January 2015 to April 2017. Out of these, 3214 cases fulfilling the WHO diagnosis of CAP were included **[Figure 1].** Among them, 3195 (99.40%) cases were enrolled with CXRs and in 19 (1.0%) cases CXRs were not done. Concordance among \geq 2 radiologists for CXRs findings was 86.0%. Kappa statistics was calculated for agreement of CXRs findings between Reader 1 vs. Reader 2 (K₁=0.31), Reader 2 vs. Reader 3 (K₂=0.46) and Reader 3 vs. Reader 1(K₃=0.42). Thereafter, out of these 88.54% (2829/3195) CXRs were found interpretable and remaining 11.45% (366/3195) were found un-interpretable by radiologists. Among interpretable CXRs, we found 22.44% (635/2829) children had primary end point pneumonia (PEP) alone or with infiltrates, other infiltrates only 12.09% (342/2829) and 65.46% (1852/2829) had normal CXRs findings [**Figure 1**].

Table 1 shows univariate distribution of socio-demographic and clinical variables among hospitalized cases across four participating districts. A statistically significant variation was observed in all socio-demographic variables such as place of residence, type of house, type of

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

family, maternal and paternal education and occupation, use of biomass fuel and parental smoking status across the four districts. We also found and report clinical variables of recruited cases across the four districts in table 1. While oxygen saturation by pulse-oxymetry was statistically significantly different across the sites, the proportion of cases with oxygen saturation \leq 92 % was found not significant in the children across four districts (p=0.13).

Table 1: Distribution of socio-demographic and clinical variables among hospitalized children for participating districts (Jan 2015-April 2017)

Characteristics	Lucknow	Etawah	Patna	Darbhanga	Total	
Socio-demographic	n=1025	n=389	n=744	n=671	N=2829	p valu
Characteristics	(%)	(%)	(%)	(%)	(%)	p van
Gender						
Male	659(64.29)	287(73.78)	557(74.87)	502(74.81)	2005(70.87)	< 0.00
Place of residence						
Rural	195(19.02)	279(71.72)	304(40.86)	614(91.51)	1392(49.20)	< 0.00
Urban	830(80.98)	110(28.28)	440(59.14)	57(8.49)	1437(50.80)	
Family Type		\sim				
Joint	688(67.12)	360(92.54)	707(95.03)	383(57.08)	2138(75.57)	< 0.00
Nuclear	337(32.88)	29(7.46)	37(4.97)	287(42.77)	690(24.39)	
House type						
Mud	64(6.24)	54(13.88)	123(16.53)	374(55.74)	615(21.74)	
Bricks	854(83.32)	256(65.81)	453(60.89)	85(12.67)	1648(58.25)	< 0.00
Combined	107(10.4)	79(20.31)	168(22.58)	212(31.59)	566(20.01)	
Mother's Education						
No formal education	203(19.80)	56(14.40)	328(44.09)	496(73.92)	1083(38.28)	
Class I-V	108(10.54)	28(7.20)	82(11.02)	38(5.66)	256(9.05)	< 0.00
Class VI-XII	379(36.98)	176(45.24)	243(33.66)	112(16.69)	910(32.17)	
Graduate/ Post graduation	335(32.68)	129(33.16)	91(12.23)	25(3.73)	580(20.50)	
Father's Education						
No formal education	167(16.29)	29(7.46)	153(20.56)	345(51.42)	694(24.53)	
Class I-V	85(8.29)	19(4.88)	91(12.23)	82(12.22)	277(9.79)	
Class VI-XII	437(42.63)	206(52.96)	328(44.09)	205(30.55)	1176(41.57)	< 0.00
Graduate/ Post graduation	336(32.78)	135(34.70)	172(23.12)	39(5.81)	682(24.11)	
Birth Order	, , , , , , , , , , , , , , , , , , ,	``````````````````````````````````````			, , , , , , , , , , , , , , , , , , ,	
0	435(42.44)	187(48.07)	315(42.34)	192(28.61)	1129(39.91)	
1 st	343(33.46)	120(30.85)	235(31.59)	258(38.45)	956(33.79)	< 0.00
2 nd	153(14.93)	47(12.08)	129(17.34)	137(20.42)	466(16.47)	
More than 2 nd	93(9.07)	35(9.00)	62(8.33)	83(12.37)	273(9.65)	
Immunization Status						
Complete for age	792(77.27)	300(77.12)	711(95.56)	544(81.07)	2347(82.96)	
Incomplete for age	220(21.46)	84(21.59)	25(3.36)	126(18.78)	455(16.08)	< 0.00

Unimmunized	13(1.27)	5(1.29)	8(1.08)	1(0.15)	27(0.95)	
Currently Breast Feeding				· · · · ·		
Yes	653(63.71)	256(65.81)	589(79.17)	537(80.03)	2035(71.93)	< 0.00
No	372(36.29)	133(34.19)	155(20.83)	134(19.97)	794(28.07)	
Father's Occupation						
Unemployed	13(1.27)	20(5.14)	27(3.63)	63(9.39)	123(4.35)	
Daily wages	329(32.10)	81(20.82)	165(22.18)	474(70.64)	1049(37.08)	
Salaried/ Professional	397(38.73)	104(26.74)	245(32.93)	55(8.20)	801(28.31)	< 0.00
Self-Employment	286(27.90)	184(47.30)	307(41.26)	79(11.77)	856(30.26)	
Mother's Occupation						
Home maker	961(93.76)	376(96.66)	701(94.22)	484(72.13)	2522(89.15)	
Daily wages	17(1.66)	3(0.77)	17(2.28)	171(25.48)	208(7.35)	
Salaried/Professionals	47(4.59)	9(2.31)	18(2.42)	7(1.04)	81(2.86)	< 0.00
Self-Employment	0(0.0)	1(0.26)	8(1.08)	9(1.34)	18(0.64)	
Biomass fuel						
Yes	211(20.59)	245(62.98)	263(35.35)	609(90.76)	1328(46.94)	< 0.00
No	814(79.41)	144(37.02)	481(64.65)	62(9.24)	1501(53.06)	0.00
Smoking Status-Father		111(07102)		02(9.2.1)		
Yes	152(14.83)	45(11.57)	56(7.53)	59(8.79)	312(11.03)	< 0.00
No	873(85.17)	344(88.43)	688(92.47)	612(91.21)	2517(88.97)	0.00
Indoor smoking-Father			000()2.17)	012()1.21)	2017(00.57)	
Yes	83(8.10)	21(5.40)	16(2.15)	43(6.41)	163(5.76)	< 0.00
No	942(91.90)	368(91.60)	728(97.85)	628(93.59)	2666(94.24)	-0.00
Smoking Status-)12()1.)0)	500()1.00)	720(97.00)	020(75.57)	2000()1.21)	
Family member						
Yes	129(12.59)	55(14.14)	45(6.05)	102(15.20)	331(11.70)	< 0.00
No	896(87.41)	334(85.86)	699(93.95)	569(84.80)	2498(83.30)	0.00
Indoor smoking –	0,0(0,11)		077(75.75)	209(01.00)	2190(05.50)	
Family member						
Yes	84(8.20)	27(6.94)	27(3.63)	94(14.01)	232(8.20)	< 0.00
No	941(91.80)	362(93.06)	717(96.37)	577(85.99)	2597(91.80)	0.00
Clinical Variables at the) (() (.00)	502(75.00)	/1/(50.57)	577(05.57)	2007(01:00)	p val
time of admission at	n,	n,	n,	n,	n,	p van
hospital	Mean± SD					
•	1025,	389,	744,	671,	2829,	
Age (months)	14.53±13.88	10.69±10.95	10.26±11.35	12.30±13.29	12.35±12.85	< 0.00
TT • 1 · ()	303,	324,	34,	266,	927,	.0.01
Height (cm)	68.61±13.78	70.66±13.75	64.38±10.25	70.46±12.14	69.70±13.26	< 0.01
	900,	387,	682,	643,	2612,	.0.00
Weight (Kg)	7.89±3.02	7.35±2.74	7.07±2.79	7.70±2.88	7.55±2.90	< 0.00
	929,	321,	689,	569,	2508,	-0.00
Fever Duration (days)	4.46±2.71	3.59±2.37	4.25±2.52	3.54±2.47	4.08±2.59	< 0.00
	528,	343,	236,	319,	1426,	-0.00
Oxygen saturation (%)	93.68±5.56	92.56±6.20	92.23±5.28	94.19±4.63	93.28±5.53	< 0.00
≤92 Oxygen Saturation	179,	132,	122,	70,	503,	0.12
Value	88.26±6.37	87.12±6.94	88.57±4.69	87.1±4.17	87.87±5.98	0.13

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Table 2 shows proportions of radiological pneumonia among cases hospitalized for CAP in four participating districts. We found higher proportion of radiological abnormalities in Patna district [38.58 (95% CI: 35.07-42.07)] and Lucknow district [37.95 (95%CI: 34.98-40.92)] which have a large and urban population. Lower proportion of radiological abnormalities were noted in Etawah district [29.31 (95%CI: 24.78-33.82)] and Darbhanga district [27.87 (95% CI: 24.47-31.26)] which in contrast had larger rural population. We also observed correspondingly higher proportion of PEP alone or with other infiltrates in districts of Lucknow [72.49 (95% CI: 68.05-76.93)]; and Patna [64.11 (95% CI: 58.56-69.66)] and lower in districts of Etawah [64.04 (95% CI: 55.22 -72.84)]; and Darbhanga [51.34 (95% CI: 44.17-58.50)].

Table 2 also describes univariate distribution of socio-demographic and clinical factors of CAP among hospitalized children aged 2-59 months. We observed statistically significant district-wise heterogeneity in radiological abnormalities. Statistically significantly higher proportion of females hospitalized for CAP had radiologically abnormal CXR. Likewise, statistically significantly higher proportion of abnormal vs. normal CXRs findings were reported in hospitalized cases who had symptoms of fever, pallor rhonchi and vomiting or were malnourished.

Table 2: Distribution of socio-demographic and clinical factors by chest radiograph
findings among hospitalized children from January 2015-April 2017

		Interpretable chest X rays				Abnormal chest X rays		
Socio- demographic & clinical factors	N=2829	Normal 1852 n (%)	Abnormal 977 n (%)	p value	PEP* alone or with other infiltrate 635 n (%)	Other infiltrates 342 n (%)	p value	
Participating site								
Lucknow	1025	636 (62.05)	389 (37.95)		282 (72.49)	107 (27.51)		

58

59

60

BMJ Open

Etawah	389	275	114		73	41	< 0.000
	507	(70.69)	(29.31)	< 0.0001	(64.04)	(35.96)	
Patna	744	457	287		184	103	
	, 11	(61.42)	(38.58)		(64.11)	(35.89)	
Darbhanga	671	484	187		96	91	
A		(72.13)	(27.87)		(51.34)	(48.66)	
Age-group (months)							
2-11	10.6	1223	642		409	233	
	1865	(65.58)	(34.42)	0.86	(63.71)	(36.29)	0.26
12-59	064	629	335		226	109	
	964	(65.25)	(34.75)		(67.46)	(32.54)	
Gender							
Male	2005	1354	651		426	225	
	2003	(67.53)	(32.46)	< 0.0001	(65.44)	(34.56)	
Female	824	498	326		209	117	0.72
	024	(60.43)	(39.56)		(64.44)	(35.89)	
Place of residence							
Rural	1392	921	471		299	172	
· · · 1		(66.16)	(33.83)	0.44	(63.48)	(36.52)	0.34
Urban	1437	931	506		336	170	
Biomass fuel		(64.78)	(35.21)		(66.40)	(33.60)	
Yes		867	461	•		167	
1 (5	1501	(65.29)	(34.71)		294(63.77)	(36.23)	0.24
No		985	516	0.44	341	175	
	1328	(65.62)	(34.38)		(66.09)	(33.91)	
Immunization							
status		1546	0.01		516	295	
Complete for age	2347	1546 (68.87)	801 (34.12)	0.32	516 (64.42)	285 (35.58)	
Incomplete		306	176	0.32	119	57	0.54
meompiete	482	(63.48)	(36.51)		(67.61)	(32.39)	0.54
Symptoms of		(05.10)	(50.51)		(07.01)	(32.35)	
pneumonia							
Fever	2499	1616	883	0.014	575	308	0.82
	2499	(64.66)	(35.33)		(65.12)	(34.88)	0.82
Cyanosis	62	39	23	0.34	16	7	0.64
	02	(62.90)	(37.09)		(69.57)	(30.43)	0.04
Pallor	764	465	299	0.002	200	99	0.41
D1 1.		(60.86)	(39.13)	0.007	(66.89)	(33.11)	
Rhonchi	2054	1377 (67.03)	677 (32.96)	0.005	415 (61.30)	262 (38.70)	0.0003
Duration of illness fever in	2508	3.91±2.51	4.40±2.70	<0.0001	4.57±2.82	4.08±2.44	0.011

days (Mean ± SD)							
Danger Signs of							
pneumonia		<i></i>					
Vomiting	899	605 (67.30)	294 (32.70)	0.17	174 (59.18)	120 (40.82)	0.01
Lethargy	1101	732 (66.49)	369 (33.51)	0.39	247 (66.94)	122 (33.06)	0.33
Difficulty in breathing	2705	1766 (65.29)	939 (34.71)	0.39	<u>609</u> (64.86)	330 (35.14)	073
Inability to drink	937	612 (65.31)	325 (34.69)	0.46	211 (64.92)	114 (35.08)	0.97
Convulsion	148	98 (66.22)	50 (33.78)	0.93	33 (66.0)	17 (34.0)	0.87
Blue Lips	42	27 (64.29)	15 (35.71)	0.87	12 (80.0)	3 (20.0)	0.28
Malnutrition Status							
Normal *	1912	1312 (68.62)	600 (31.38)		374 (62.33)	226 (37.67)	
Malnutrition*	485	314 (64.74)	171 (35.26)	< 0.0001	115 (67.25)	56 (32.75)	0.06
Severe malnutrition*	432	226 (52.31)	206 (47.69)		146 (70.87)	60 (29.13)	0.00

*Normal-weight of age z score> -2SD; Malnutrition-weight of age $z \le -2SD$ and Severe malnutrition-weight of age $z \leq -3SD$

Table 3 describes four multivariate logistic regression models to find associates of abnormal CXR findings. After controlling for age, gender, symptoms of pneumonia, duration of illness, biomass fuel and malnutrition status of cases, statistically significant district-wise heterogeneity remained in the first three models. Models I, II and III had similar associates for radiological abnormalities whereas Model IV was different. Across all the four models, female cases of CAP and those who had severe malnutrition had statistically significantly higher risk for having abnormal CXRs. A higher risk of radiological abnormalities was also observed in those children who had longer duration of illness.

Table 3: Independent Associations between Chest Radiograph Findings and demographic
and clinical factors, among hospitalized children January 2015-April 2017

	Adjusted	——	/Norma	ltrate Il ^{Ref}	Ref		Normal	Ref
)dd Ratio (95%CI)	p value	Adjusted Odd Ratio (95%CI)	p value	Adjusted Odd Ratio (95%CI)	p value	Adjusted Odd Ratio (95%CI)] va
Districts		I						
Lucknow Vs. Others (1.58 1.20-2.10)	< 0.0001	2.07 (1.48-2.89)	<0.0001	2.20 (1.52-3.19)	<0.0001	0.98 (0.65-1.47)	0
Etawah Vs. Others (1.22 0.88-1.70)	0.23	1.30 (0.87-1.95)	0.19	1.49 (0.95-2.30)	0.07	1.17 (0.74-1.87)	0
	1.67 1.27-2.20)	<0.0001	1.89 (1.36-2.64)	< 0.0001	2.25 (1.56-3.24)	< 0.0001	1.39 (0.95-2.07)	0
Age – Group (months))				1	<u> </u>		
2-11 ^{Ref} 12-59 ((0.92	0.34	0.95	0.62	1.03 (0.82-1.29)	0.79	0.86 (0.66-1.13)	0
Gender				_1		μ	(L
Male Ref								
Female (1.39 1.16-1.66)	< 0.0001	1.34 (1.08-1.65)	0.008	1.28 (1.01-1.61)	0.03	1.48 (1.14-1.92)	0.
Symptoms of pneumon	nia¶							
Rhonchi ((0.83 0.68-1.01)	0.06	0.72 (0.57-0.90)	0.005	0.75 (0.59-0.96)	0.02	1.14 (0.83-1.55)	0.
Pallor (1.30 1.08-1.58)	0.006	1.28 (1.03-1.60)	0.02	1.22 (0.95-1.55)	0.12	1.34 (1.01-1.77)	0
	0.90 0.75-1.09)	0.28	0.80 (0.64-0.99)	0.04	0.78 (0.62-1.01)	0.05	1.09 (0.83-1.08)	0
Duration of illness, fever (days) (1.06 1.04-1.09)	< 0.0001	1.08 (1.04-1.12)	<0.0001	1.08 (1.04-1.12)	<0.0001	1.03 (0.98-1.48)	0
	1.28 1.05-1.57)	0.02	1.39 (1.10-1.76)	0.006	1.40 (1.14-1.88)	0.003	1.08 (0.79-1.45)	0
Malnutrition Status		r						
Normal *Ref								
~	1.16 0.93-1.45)	0.20	1.19 (0.92-1.55)	0.19	1.19 (0.90-1.59)	0.22	1.06 (0.76-1.48)	0
	1.64 1.30-2.06)	< 0.0001	1.80 (1.39-2.34)	< 0.0001	1.86 (1.40-2.46)	<0.0001	1.33 (0.94-1.89)	<0
Abbreviations u			•••					
Footnotes: ¶ No	• •					and C -		
*Normal-weight malnutrition-wei	0		r, Mainutrition	-weight of	age $z \le -2SD$ a	and Severe		
	0	_						

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

DISCUSSION

This prospective hospital-based surveillance study was conducted to assess the radiological abnormalities in children (2-59 months) residing in pre-specified districts of Uttar Pradesh and Bihar, India and hospitalized with CAP. The study was conducted from January 2015 to April 2017, prior to introduction of PCV in NIP of Government of India ⁹. In our study, among interpretable CXRs, we found 22.44% (635/2829) children had PEP alone or with infiltrates, other infiltrates only 12.09% (342/2829) and 65.46% (1852/2829) had normal CXRs findings. Our study used WHO case definition for CAP ¹⁸. A panel of three trained radiologists interpreted CXRs, adopting WHO recommended methodology ¹¹ ¹². These make our study methodology robust and results generalizable.

In our study, there were 88.54% (2829/3195) interpretable CXRs. This is similar to 83% (3587/3973) interpretable CXRs reported by Pneumonia Etiology Research for Child Health (PERCH) study conducted on 4232 children (1-59 months) to assess the etiology of CAP in nine sites of seven countries ²⁴. Consistent with PERCH findings, a vaccine probe trial conducted in Gambia found the proportion of interpretable CXRs among unvaccinated cases of pneumonia to be 84.32% (242/287) ²⁵.

There have been several studies in the past two decades, which have reported CXRs findings in hospitalized cases of CAP. Almost all of these were conducted before the introduction of PCV in their respective regions. A small prospective study conducted in Ethiopia reported radiological abnormality in CXRs to be 48.3% (95% CI 39.49-57.22) in 122 children (3 months-14 years) clinically diagnosed with WHO-defined severe pneumonia ²⁶. Similar findings were reported

from the Gambian vaccine probe trial where the proportion of radiological abnormality was 45% (95% CI: 43.35-46.46) among unvaccinated hospitalized cases of clinical pneumonia. PERCH study found that 54% (95% CI: 52.31-55.57) of CXRs among cases of CAP were abnormal ²⁴. In all of these studies, proportion of cases with abnormal CXRs is higher than 34.5% (95% CI 32.8-36.3) found by us in the current study. However, our findings are similar to PERCH rural study site of Matlab, Bangladesh that reported radiological abnormality in 35.3% (95% CI: 29.77-40.85) CXRs of hospitalized cases of CAP ²⁴. Another PERCH urban site of Dhaka, Bangladesh reported 63.10% (95% CI 56.18 -70.02) cases with abnormal CXRs ²⁴. In our study, radiological abnormalities in CXRs were higher in cases from largely urban districts of Patna and Lucknow compared to rural districts of Darbhanga and Etawah. This is consistent with rural-urban differences in Bangladesh sites of PERCH. Variation in CXR findings among cases of CAP may be due to infecting organism, immune response of patient and prior duration of disease.

In 2016, WHO's Department of Immunization, Vaccines and Biologicals standardized the categorization of radiological pneumonia and established that PEP can be taken as a good surrogate marker of SP in epidemiological and vaccine efficacy studies ¹². In our study, 22.44 % (95% C.I. 20.90 -23.98), CXRs were having PEP alone or with other infiltrates. This is similar to PERCH study that reported PEP alone or with other infiltrates in 27% (95% C.I. 25.50 -28.40) hospitalized cases of CAP ²⁴. Another study conducted in Gambia reported that 45% (95% CI: 43.35-46.46) non-vaccinated children had PEP and/or other infiltrates ²⁵. PEP has been associated with increased risk of treatment failure (p=0.002), increased length of hospitalization

(p=0.0003) and more days of respiratory support (p=0.002) in Botswana when compared with cases reporting `no significant pathology` on CXRs 27 .

In our study, female gender (p<0.001) was at the higher risk of developing radiological abnormalities compared to males (**table 3**). The results are in concordance with a hospital-based case-control study carried out in Brazil that reported male gender as a protective factor against pneumonia (OR = 0.53; 95 % CI 0.39-0.72)²⁸. Another study in Mozambique, Africa reported that male gender was not significantly associated with presence of radiological abnormalities (OR =0.77 (95 % CI 0.56-1.05) in children (0-59 months) suffering from severe pneumonia ²⁹. However, in contrast, a Gambian study reported male preponderance for all pneumonia that was most marked for `other infiltrates/abnormalities` pneumonia²⁵.

A systematic review with meta-analysis conducted in 2019 suggests that no one clinical feature is sufficient on its own to diagnose of radiological pneumonia ³⁰. However other sociodemographic and clinical correlates of abnormal CXRs found by us (Model 1), which increased the risk of radiological abnormalities, were presence of pallor, severe malnutrition, longer duration of illness and exposure to biomass fuel. Exposure to biomass fuel at the time of cooking is an important factor that impacts the severity of CAP in developing countries ³¹. In rural India, majority of the households use biomass fuel like firewood, dung cakes and wood for cooking ³². Young children are at risk to adverse effects of exposure to biomass fuel as either the households have no separate cooking space or have poor ventilation and sometimes young children stay with their mother while she cooks.

Specific correlates of PEP/Radiological Pneumonia (Models II and III) possibly due to SP, other than those mentioned above, were presence of vomiting and ronchi on auscultation, both of which were found to be protective. These symptoms/signs are more often reported in viral pneumonia ³³. No specific correlates of radiological abnormalities of `other infiltrates` (Model IV) were found by us. Hence it is difficult to attribute radiological findings of other infiltrates to either bacterial or viral etiology.

Based on our study, almost two-third hospitalized cases of CAP had normal CXRs and this could be perhaps of viral etiology. This is supported by a recent study that reported 61.4% (95% CI $57\cdot3-65\cdot6$) cases to be viral ³³. Among one-third of cases of CAP had abnormal CXRs and thus were more likely to be bacterial in etiology, and two-thirds of which were possibly due to SP.

CONCLUSION

Among hospitalized cases of community-acquired pneumonia, almost one-third children had abnormal chest radiographs of which about two-thirds had abnormalities related with possible bacterial etiology (SP). Hence, the introduction of pneumococcal vaccination is likely to reduce the burden of childhood pneumonia in India. Since the study was done prior to the introduction of PCV in India, continued surveillance will be required to assess the impact of PCV on radiological findings in cases admitted with CAP. The impact of introduction of PCV in NIP on under-five mortality rate and burden of CAP needs to be assessed.

Acknowledgements: We thank the state governments of Uttar Pradesh and Bihar for giving us permission to conduct the study. We extend our gratitude to participating tertiary and

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

secondary care hospitals for their contribution. Members of the Lucknow Community-Acquired Pneumonia (CAP) Group: King George's Medical University (KGMU), Lucknow, India: Prof. Shally Awasthi, Department of Pediatrics, Prof. Neera Kohli, Department of Radio-diagnosis, Prof. Monica Agarwal, Department of Community Medicine; Mr. Puneet Dhasmana, Project Staff; Patna Medical College and Hospital, Patna, Bihar-Prof. Neelam Verma and Prof. Chandra Bhushan Kumar, Department of Pediatrics; Darbhanga Medical College and Hospital, Darbhanga, Bihar, India- Prof. Chittaranjan Roy, Department of Community Medicine, Prof. Kripanath Mishra, Department of Pediatrics; Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, India- Prof. Pankaj Kumar Jain, Department of Community Medicine, Prof. Rajesh Yadav, Department of Pediatrics.

Contributors: The study was conceived and designed by SA. CAP study group performed data acquisition. CMP and NM³ conducted the statistical analysis of the data. The paper was written by SA, TV, MA and CMP. AC, NM⁵, RCS and NK interpreted chest x-rays. All authors were involved with drafting and revising the work and approved the final submission.

Funding statement: The study was supported by Bill & Melinda Gates Foundation (<u>https://www.gatesfoundation.org/</u>) via Grant No: OPP1118005. Funding agency had no role in the design of the study and collection, analysis and interpretation of data, or in writing the manuscript.

Competing interests: None declared.

Patient consent for publication: Not required.

Ethics approval: The Institutional Ethics Committee of King George's Medical University (Lucknow), The Uttar Pradesh University of Medical Sciences (Etawah), Patna Medical College

and Hospital (Patna) and Darbhanga Medical College and Hospital (Darbhanga) gave ethical approval for the conduct of study.

Provenance and peer review: Not commissioned; externally peer reviewed.

Data sharing statement: The data contained within this study can be obtained by writing to shally07@gmail.com

Copyright information: This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: <u>http://creativecommons.org/licenses/by-nc/4.0/</u>

Supporting Information

S1 Appendix: Chest radiograph interpretation form

REFERENCES:

- 1. UNICEF U. Levels and trends in child mortality. Estimates developed by the UN interagency group for child mortality estimation. 2011.
- 2. Amouzou A, Velez LC, Tarekegn H, *et al.* One is too many: ending child deaths from pneumonia and diarrhoea.
- Mathew JL, Patwari AK, Gupta P, *et al.* Acute respiratory infection and pneumonia in India: a systematic review of literature for advocacy and action: UNICEF-PHFI series on newborn and child health, India. *Indian Pediatr* 2011; 48: 191–218.
- Farooqui H, Jit M, Heymann DL, et al. Burden of severe pneumonia, pneumococcal pneumonia and pneumonia deaths in Indian states: modelling based estimates. PLoS One

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

- 5. Rudan I, O'brien KL, Nair H, *et al.* Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. *Journal of global health.* 2013 Jun;3(1).
- 6. Leung DT, Chisti MJ, Pavia AT. Prevention and control of childhood pneumonia and diarrhea. *Pediatric Clinics*. 2016 Feb 1;63 (1):67-79.
- Virkki R, Juven T, Rikalainen H, *et al.* Differentiation of bacterial and viral pneumonia in children. *Thorax*. 2002 May 1;57(5):438-41.
- World Health Organization. Pneumococcal conjugate vaccines in infants and children under 5 years of age: WHO position paper–February 2019. Accessed 12th July 2019.
- Government of India. Introduction of Pneumococcal Conjugate Vaccine: Operational Guidelines. Ministry of Health and Family Welfare, 2017 Available at: <u>https://nhm.gov.in/New_Updates_2018/NHM_Components/Immunization/Guildelines_for_immunization/Operational_Guidelines_for_PCV_introduction.pdf</u> Assessed 12th July 2019.
- 10. Cherian T, Mulholland EK, Carlin JB, *et al.* Standardized interpretation of paediatric chest radiographs for the diagnosis of pneumonia in epidemiological studies. *Bulletin of the World Health Organization.* 2005;83:353-9
- 11. Pneumonia Vaccine Trial Investigators' Group. Standardization of Interpretation of Chest Radiographs for the Diagnosis of Pneumonia in Children. Geneva: Department of Vaccines and Biologicals, World Health Organization; 2001
- Mahomed N, Fancourt N, De Campo J, *et al.* Preliminary report from the World Health Organization chest radiography in epidemiological studies project. *Pediatric radiology*. 2017 Oct 1;47 (11):1399-404.
- Greenberg D, Givon-Lavi N, Ben-Shimol S, *et al.* Impact of PCV7/PCV13 introduction on community-acquired alveolar pneumonia in children
 years. *Vaccine*. 2015 Aug 26; 33(36):4623-9. 6.
- 14. Sutcliffe CG, Shet A, Varghese R, *et al.* Nasopharyngeal carriage of Streptococcus pneumoniae serotypes among children in India prior to the introduction of pneumococcal conjugate vaccines: a cross-sectional study. *BMC Infect Dis.* 2019 Dec;19(1):605.
- 15. Annual health survey (AHS) factsheet 2012–13 Uttar Pradesh [Internet]. New Delhi: Office of Registrar General & Census Commissioner, Ministry of Home Affairs, Government of India; 2010–2011. Available

2 3

4 5

6

7 8

9 10

11

12 13

14 15

16 17

18

19 20

21 22

23

24 25

26 27

28 29

30

31 32

33 34

35 36

37

38 39

40 41

42 43

44

45 46

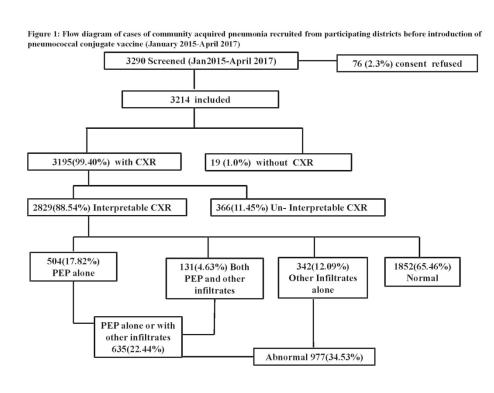
47 48

49

50 51

52 53

59 60


BMJ Open

from: http://www.censusindia.gov.in/vital_statistics/AHSBulletins/AHS_Factsheets_2012-
13/FACTSHEET-UTTAR_PRADESH.pdf [cited 2019 Aug 8].
16. Annual health survey (AHS) factsheet 2012-13 Bihar [Internet]. New Delhi: Office of
Registrar General & Census Commissioner, Ministry of Home Affairs, Government of India;
2010–2011. Available
from: http://www.censusindia.gov.in/vital_statistics/AHSBulletins/AHS_Factsheets_2012-
13/FACTSHEET-Bihar.pdf [cited 2019 Aug 8].
17. Awasthi S, Pandey CM, Verma T, et al. Incidence of community-acquired pneumonia in
children aged 2-59 months of age in Uttar Pradesh and Bihar, India, in 2016: An indirect
estimation. <i>PloS one</i> . 2019 Mar 20;14(3):e0214086.
18. World Health Organization. Revised WHO classification and treatment of childhood
pneumonia at health facilities. Geneva: World Health Organization. 2014:6-14.
19. Awasthi S, Singh JV, Kohli N, et al. Hospital-based surveillance for radiological pneumonia
in children under 5 years of age in Uttar Pradesh and Bihar. Pediatric Infectious Disease.
2016 Jun 30;8(2):52-7.
20. Bassignani MJ, Bubash-Faust L, Ciambotti J, et al. Conversion of teaching file cases from
film to digital format: a comparison between use of a diagnostic-quality digitizer and use of a
flatbed scanner with transparency adapter. Acad Radiol. 2003 May 1;10(5):536-42.
21. Dean AG, Arner AT, Sunki GG, et al. Epi Info [™] , a database and statistics program for
public health professionals. Atlanta, GA, USA: CDC; 2011.
22. De Onis M, Blossner M, World Health Organization. WHO global database on child growth
and malnutrition. Geneva: World Health Organization; 1997.
23. SPSS Inc. Released 2009. SPSS for Windows [software], Version 22.0. Chicago, SPSS Inc.
Available from: <u>www.spss.com</u>
24. Fancourt N, Deloria Knoll M, Baggett HC, et al. Chest radiograph findings in childhood
pneumonia cases from the multisite PERCH study. Clin Infect Dis. 2017 May
29;64(suppl_3):S262-70
25. Enwere G, Cheung YB, Zaman SM, et al. Epidemiology and clinical features of pneumonia
according to radiographic findings in Gambian children. Trop Med Int Health. 2007
Nov;12(11):1377-85.
26
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 26. Meiron Hassen, Alemayehu Toma, Mulugeta Tesfay, et al. Radiologic Diagnosis and Hospitalization among Children with Severe Community Acquired Pneumonia: A Prospective Cohort Study. *Biomed Res Int*, vol. 2019, Article ID 6202405, 8 pages, 2019. https://doi.org/10.1155/2019/6202405.
- 27. Kelly MS, Crotty EJ, Rattan MS, *et al.* Chest radiographic findings and outcomes of pneumonia among children in Botswana. *Pediatr Infect Dis J.* 2016 Mar;35(3):257.
- 28. da Fonseca Lima EJ, Mello MJ, Lopes MI, *et al.* Risk factors for community-acquired pneumonia in children under five years of age in the post-pneumococcal conjugate vaccine era in Brazil: a case control study. *BMC Pediatr.* 2016 Dec;16(1):157.
- 29. Sigauque B, Roca A, Bassat Q, *et al.* Severe pneumonia in Mozambican young children: clinical and radiological characteristics and risk factors. *J Trop Pediatr.* 2009 Apr 28;55(6):379-87.
- 30. Rambaud-Althaus C, Althaus F, Genton B, *et al.* Clinical features for diagnosis of pneumonia in children younger than 5 years: a systematic review and meta-analysis. *Lancet Infect Dis.* 2015 Apr 1;15(4):439-50
- Awasthi S, Glick AH, Fletcher RH. Effect of cooking fuels on Respiratory Diseases in Preschool children in Lucknow, India. *Am J Trop Med Hyg* 1996; 55: 48-51
- 32. Tielsch JM, Katz J, Thulasiraj RD, *et al.* Exposure to indoor biomass fuel and tobacco smoke and risk of adverse reproductive outcomes, mortality, respiratory morbidity and growth among newborn infants in south India. *Int J Epidemiol.* 2009 Sep 16;38 (5):1351-63.
- 33. O'Brien KL, Baggett HC, Brooks WA, *et al.* Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. *The Lancet.* 2019 Jun 27

Figure Legend

Figure 1: Flow diagram of cases of community acquired pneumonia recruited from participating districts before the introduction of pneumococcal conjugate vaccine (January 2015-April 2017)

Figure 1: Flow diagram of cases of community acquired pneumonia recruited from participating districts before the introduction of pneumococcal conjugate vaccine (January 2015-April 2017)

254x190mm (300 x 300 DPI)

	Departn	Earm P
		<u>Form-R</u> (RADIOLOGY REPORT FORM)
1	Drs_ID	
ng paga sa	Radiology Report	Patient Details
2	IDNo:	[_] / [_] / [_][_]/[_][_][_] State /District / Unit / Subject number (For office use)
2	Date Of Report	[_][_]/[_][_][_][_] (DD/MM/YYYY)
	Report Details	Findings (tick one)
3	Image Quality	Adequate 🗆 Suboptimal 🗆 Un-interpretable 🗆
4	Significant Pathology	Yes 🗆 No 🗆 Un-interpretable 🔲
5 5a 5b 6 6 6b 7 7a 7b 8 9	R Other Infiltrates/Abnormalities R Pleural Fluid	Leff Yes No Un-interpretable ight Yes No Un-interpretable Leff Yes No Un-interpretable ight Yes No Un-interpretable Leff Yes No Un-interpretable ight Yes No Un-interpretable .eff Yes No Un-interpretable .e Both PEP and other infiltrate .e Un-interpretable for any findings

Chest Radiograph Findings in children aged 2-59 months hospitalized with Community-Acquired Pneumonia, prior to the introduction of Pneumococcal Conjugate Vaccine in India- A Prospective Multisite Observational Study

Biostatistics & Health Informatics Kohli, Neera ; King George's Medical University, Department of Radio- diagnosis Study Group, CAP; CAP study Group Primary Subject Heading: Paediatrics Global health	Journal:	BMJ Open
Date Submitted by the Author: 02-Jan-2020 Complete List of Authors: Awasthi, Shally; King George's Medical University, Pediatrics Rastogi, Tuhina; King George's Medical University, Pediatrics Mishra, Neha; King George's Medical University, Pediatrics Chauhan, Abhishek ; Dr Ram Manohar Lohia Institute of Medical Sciences, Department of Radio-diagnosis Mohindra, Namita; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radio-diagnosis Shukla, Ram ; Banaras Hindu University, Varanasi, India, Institute of Medical Sciences Agarwal, Monica; King George's Medical University, Department of Community Medicine Pandey, CM; Sanjay Gandhi Post Graduate Institute of Medical Sciences Kohli, Neera ; King George's Medical University, Department of Radio-diagnosis Study Group, CAP; CAP study Group Primary Subject Heading: Paediatrics Global health Global health	Manuscript ID	bmjopen-2019-034066.R1
Author: 02-Jan-2020 Complete List of Authors: Awasthi, Shally; King George's Medical University, Pediatrics Rastogi, Tuhina; King George's Medical University, Pediatrics Chauhan, Abhishek ; Dr Ram Manohar Lohia Institute of Medical Sciences, Department of Radio-diagnosis Mohindra, Namita; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radio-diagnosis Shukla, Ram ; Banaras Hindu University, Varanasi, India, Institute of Medical Sciences Agarwal, Monica; King George's Medical University, Department of Community Medicine Pandey, CM; Sanjay Gandhi Post Graduate Institute of Medical Sciences Biostatistics & Health Informatics Kohli, Neera ; King George's Medical University, Department of Radio- diagnosis Study Group, CAP; CAP study Group Primary Subject Heading Paediatrics Global health Global health	Article Type:	Original research
Rastogi, Tuhina; King George's Medical University, Paediatrics Mishra, Neha; King George's Medical University, Pediatrics Chauhan, Abhishek ; Dr Ram Manohar Lohia Institute of Medical Sciences, Department of Radio-diagnosis Mohindra, Namita; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radio-diagnosis Shukla, Ram ; Banaras Hindu University, Varanasi, India, Institute of Medical Sciences Agarwal, Monica; King George's Medical University, Department of Community Medicine Pandey, CM; Sanjay Gandhi Post Graduate Institute of Medical Sciences Biostatistics & Health Informatics Kohli, Neera ; King George's Medical University, Department of Radio- diagnosis Study Group, CAP; CAP study Group Primary Subject Heading PaediatricsSecondary Subject Heading:Global health		02-Jan-2020
Heading: Paediatrics Secondary Subject Heading: Global health	Complete List of Authors:	Rastogi, Tuhina; King George's Medical University, Paediatrics Mishra, Neha; King George's Medical University, Pediatrics Chauhan, Abhishek ; Dr Ram Manohar Lohia Institute of Medical Sciences, Department of Radio-diagnosis Mohindra, Namita; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radio-diagnosis Shukla, Ram ; Banaras Hindu University, Varanasi, India, Institute of Medical Sciences Agarwal, Monica; King George's Medical University, Department of Community Medicine Pandey, CM; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Biostatistics & Health Informatics Kohli, Neera ; King George's Medical University, Department of Radio- diagnosis
		Paediatrics
Chart and is supply. User its line description of a supervised and a super	Secondary Subject Heading:	Global health
Keywords: Chest radiographs, Hospitalized community-acquired pheumonia, unde	Keywords:	Chest radiographs, Hospitalized community-acquired pneumonia, under- five, Streptococcus pneumoniae, India

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Title: Chest Radiograph Findings in children aged 2-59 months hospitalized with Community-Acquired Pneumonia, prior to the introduction of Pneumococcal Conjugate Vaccine in India- A Prospective Multisite Observational Study

Short Title: Radiological Findings in Children hospitalized with Community-Acquired Pneumonia in India Pre-Pneumococcal Conjugate Vaccine introduction

Shally Awasthi^{1*}, Tuhina Rastogi¹, Neha Mishra¹, Abhishek Chauhan², Namita Mohindra³, Ram Chandra Shukla⁴, Monica Agarwal⁵, Chandra Mani Pandey⁶, Neera Kohli⁷ and CAP Group[^]

¹Department of Pediatrics, King George's Medical University, Lucknow, India

²Department of Radio-diagnosis, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India

³Department of Radio-diagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India

⁴Department of Radio-diagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India

⁵ Department of Community Medicine, King George's Medical University, Lucknow, India

⁶Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

⁷Department of Radio-diagnosis, King George's Medical University, Lucknow, India

^Members of the Lucknow CAP Group are given in the Acknowledgement

*Corresponding Author Postal Address: Prof. Shally Awasthi, Head, Department of Paediatrics, King George's Medical University, Lucknow , India Pincode: 226003 Mobile: +91-9839221244 E-mail: shally07@gmail.com

Word Count: 4533 Tables: 3 Figure:1

ABSTRACT

Objectives: To assess radiological abnormalities in chest X-rays and to identify the demographic and clinical correlates of specific radiological abnormalities in children aged 2-59 months, hospitalized with World Health Organization defined community-acquired pneumonia, residing in pre-specified districts of Uttar Pradesh and Bihar, India.

Design: Prospective, hospital-based surveillance

Setting: Multi-site study conducted in a network of 117 secondary/tertiary care hospitals in four districts of Uttar Pradesh and Bihar, India.

Participants: Included were children aged 2-59 months hospitalized with community-acquired pneumonia, residing in project district, with duration of illness of <14 days and who were not hospitalized elsewhere for this episode nor had been recruited previously.

Main outcome measure: Radiological abnormalities in the chest X-rays, where there was concordance between two or more of the panel of three trained radiologists.

Results: From January 2015 to April 2017, 3214 cases were recruited and in 99.40 % (3195/3214) chest X-rays were available. Among 88.54 % (2829/3195) interpretable X-rays, 34.53 % (977/ 2829, 95% C.I. 32.78 -36.28) had some radiological abnormalities, while the rest were normal. Primary endpoint pneumonia alone or with other infiltrates was found in 22.44 % (635/2829, C.I. 20.90 %-23.98 %), other infiltrates only in 12.09% (342/ 2829; C.I. 10.88 %-13.29 %). There was a statistically significant inter-district variation in radiological abnormality. Statistically significantly higher proportion of abnormal chest X-ray was found among girls, those with weight-for-age z score \leq -3 SD, longer duration of fever, pallor and with exposure to biomass fuel.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Conclusions: Among hospitalized cases of community-acquired pneumonia, almost one-third children had abnormal chest radiographs of which about two-thirds had abnormalities related with possible bacterial etiology (*Streptococcus pneumoniae*). Hence introduction of pneumococcal vaccination is likely to reduce burden of childhood pneumonia in India.

Key words: Chest radiographs, Hospitalized community-acquired pneumonia, under-five, *Streptococcus pneumoniae*, India

Strengths and Limitations of the Study

• Prospective, multisite recruitments from a large hospital surveillance network established for the project in four districts in two states of India that have high under-five mortality rates

• Standard World Health Organization definition was used for identifying hospitalized cases of clinical pneumonia

• Radiological abnormalities interpreted by a panel of three trained radiologists at locations out of the surveillance network, blinded to each other as well as clinical features of the case

• Since pre-existing X-rays machines were used in this pragmatic study, there was a variation in the quality of images obtained, which were minimized by digitizing them centrally

• Since the objective of the study was to assess the radiological abnormalities in chest X-rays of recruited cases, clinical data was recorded by pre-existing hospital staff, there could be some inter-observer variations.

INTRODUCTION

Community-acquired pneumonia (CAP) is the single largest infectious cause of death in young
children worldwide. Globally, pneumonia accounts for 16% of deaths in children under-five years of
age and results in almost one million deaths (0.9 million children in 2016) every year¹². Most
deaths due to pneumonia occur in low and middle income countries particularly in sub-Saharan
Africa and South Asia²³. In India, there were approximately 0.44 million under-five deaths due to
CAP in the year 2015 ⁴.

CAP could have viral or bacterial etiology^{5 - 7}. Etiology varies from country to country and also across different time periods. Pediatric bacterial pneumonia is predominantly caused by Streptococcus pneumoniae (SP) and Hemophilus influenzae Type B (HiB) while Respiratory syncytial virus and Influenza A or B virus are important contributors of pediatric viral pneumonia⁵ ⁶. The World Health Organization (WHO) recommends the introduction of Pneumococcal Conjugate Vaccine (PCV) in the national immunization programme of countries with high child mortality rates, which includes India⁸. Consequently, PCV-13 was launched in May 2017 under the national immunization programme of five Indian states (Uttar Pradesh, Bihar, Rajasthan, Madhya Pradesh and Himachal Pradesh) in a phased manner⁹. It is expected to be rolled out in other parts of the country in the near future. Vaccination against HiB is already under the national immunization programme since 2011.

Differentiating bacterial from viral etiology of CAP on clinical features or by investigations
 remains difficult ^{7 10 11}. Several PCV probe trials have used radiographically confirmed alveolar

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

pneumonia, also called end-point pneumonia, to be an outcome for vaccine efficacy and this has

The current study was a hospital-based surveillance to assess the radiological abnormalities in

chest X-rays (CXRs) and to identify the demographic and clinical correlates of specific

radiological abnormalities in children aged 2-59 months, hospitalized with WHO defined CAP,
residing in pre-specified districts of Uttar Pradesh and Bihar, India.

31 METHODS

32 Study design and Setting

been endorsed by WHO 12-14.

This prospective multi-site observational study was conducted in Lucknow and Etawah districts of Uttar Pradesh and Patna & Darbhanga districts of Bihar, India. Uttar Pradesh is the first most populated and Bihar third most populated state of India¹⁵¹⁶. In Lucknow district 66.2% population resides in urban areas and in Patna district 43.07% ¹⁵ ¹⁶. In contrast, only 22.3% population of Etawah district and 9.74% population of Darbhanga district resides in urban areas ^{15 16}. All four project districts have alarmingly high infant and child mortality indicators ¹⁵⁻¹⁷. The under-five mortality rates of Lucknow (58/1000), Etawah (85/1000), Patna (46/1000) and Darbhanga (77/1000) districts are above the national average $(50/1000)^{15-17}$. Similarly, the infant mortality rates of Lucknow (44/1000), Etawah (56/1000), Patna (31/1000) and Darbhanga (44/1000) districts are also higher than the national average $(41/1000)^{15-17}$.

44 Study Population

Page 7 of 39

BMJ Open

A hospital-based surveillance system was established for this study¹⁷ ¹⁸. Included in the surveillance were public and private hospitals of study districts which provided either secondary or tertiary level care to admitted children. All children (2-59 months), hospitalized in network hospitals between January 2015 to April 2017, with history of fast breathing with/without chest in-drawing were screened ¹⁸.

Included were children hospitalized with symptoms of WHO defined CAP and residing in the project district ¹⁸. WHO has developed guidelines for hospital-based management of common childhood illness such as pneumonia ¹⁹. According to these guidelines, fast breathing ≥ 50 breaths/minute in a child aged 2–11 months and \geq 40 breaths/minute in a child aged 12-59 months along with chest indrawing was categorized as having `pneumonia`¹⁹. A child presenting with cough or difficulty in breathing with: (a) oxygen saturation < 90% or central cyanosis (b) severe respiratory distress (e.g. grunting, very severe chest indrawing) and (c) signs of pneumonia with a general danger sign (inability to breastfeed or drink, lethargy or reduced level of consciousness, convulsions) was categorized as having severe pneumonia¹⁹. Excluded were children with cough for > 14 days or those that had been hospitalized in last 14 days ¹⁸.

62 Sample Size

We assumed that the incidence of radiological pneumonia is 3/100 child years of observations. Then for a margin of error of 1.5/100 child years of observation, incidence of pneumonia in the community of 20/100 child years of observation, alpha level of 0.05, and power of 90% when the estimated population of children under-five years of age in Lucknow district ²⁰ is 750,000; 693 cases had to be included per district.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

68 Data collection

Data was collected by surveillance officers who had postgraduate degree in social sciences and almost 10 years experience in community based health research. After recruitment, they were imparted six-day centralized training on project procedures and logistics. Class-room as well as practical skills-training was given by the coordinating centre in Lucknow. Pre and post tests were conducted to ascertain knowledge and skills acquired by them through the training to ensure quality in data collection. The coordinating centre provided annual refresher trainings to the surveillance officers from all four sites in Lucknow.

After obtaining written, informed consent of the caregivers, data was collected through face-toface interviews with them as well as by abstraction from hospital records. Socio-demographic data, obtained by interviewing caregivers, was: child's age, gender, residence, birth order, immunization status, current breastfeeding status, parental education and occupation, smoking status of parents, family type, housing infrastructure, use of biomass fuel etc. Caregivers were also asked about the symptoms of disease and its duration in days.

Clinical data, recorded by pre-existing hospital staff at the time of hospitalization, was abstracted. Where available, data was collected on anthropometry (weight and height), fever (axillary temperature $\geq 37.5^{\circ}$ C), oxygen saturation by pulse oxymetry, pallor, central cyanosis, and danger signs of pneumonia and vital signs (heart rate and respiratory rate). Presence of wheezing on auscultation of chest was abstracted, when recorded. At the hospitals, clinicians generally used Integrated Management of Childhood Illness (IMCI) definitions²¹ to identify pallor, cyanosis, wheeze on auscultation and general danger sign as it is incorporated in their

BMJ Open

medical undergraduate training. Most doctors of public health sector also receive a formal inservice training on IMCI ²¹. Clinical outcome (survival or mortality) was noted from hospital
records on follow up.^{17 18}.

95 Chest x-ray (CXR) image acquisition and archiving

96 CXR (poster-anterior view) was done when advised by the treating physician. These CXRs were 97 obtained by the surveillance staff at the time of recruitment. CXRs were either analog or digital. 98 In case of digital CXRs, second copy was obtained where possible. If only single analog image 99 was available, then the hardcopy of CXR was obtained from the caregiver after the child was 100 discharged. If this could not be done, image of the hardcopy was captured. CXR machines were 101 not provided through the project.

103 CXRs of recruited cases were subsequently scanned and converted into digital format using a 104 diagnostic-quality film image digitalizer (Microteck International Limited, model Medi 6000 105 plus) ²². CXRs obtained/converted into digital image were stored as per the standard operating 106 procedure and were subsequently archived for web-based radiological interpretation. Digital 107 images were stored in JPEG format at 300 dpi resolution. Each CXR file was anonymized and 108 given a unique identification number. Digital CXRs were uploaded on online data management 109 software, developed especially for the project.

- - 111 Interpretation of radiological images

112 A panel of radiologists was constituted for standardized interpretations of CXRs. Four 113 radiologists were part of this panel, one of whom was Project co-investigator-Radiology (NK).

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open

All radiologists are faculty in medical teaching institutes and also look after pediatric radiology. They all have more than fifteen years experience in interpreting pediatric CXRs.

Radiologists were trained according to the methodology developed by Department of Immunization, Vaccines, and Biologicals of the WHO¹¹. An international WHO-certified trainer from the International Centre for Diarrhoeal Disease Research, Bangladesh imparted a two-day in-house training to the radiologists. Training objective was to standardize interpretation and coding of CXRs, to develop a CXR reporting form [S1 Appendix] and to provide training on web-based CXR retrieval and reporting system. During the training, 210 CXRs of WHO data set were used. For assessing concordance post training, another set of 48 CXRs was provided for interpretation to individual radiologists. Post-test agreement with WHO findings was calculated, which was about 80%. Inter-observer variation was about 25% and was for minor interpretation like quality of film, end point infiltrates etc. Repeat training was conducted on an additional set of 44 CXRs provided by WHO to ensure standardization in interpretation. Thereafter, concordance achieved by the radiologists was reviewed quarterly by the study arbitrator. Radiologists met annually to review key concepts and discuss challenges faced in interpreting CXRs.

After training, radiologists independently reviewed CXRs and registered their findings in an online standardized chest radiograph interpretation form [S1 Appendix]. For optimal viewing of CXRs, all radiologists used similar workstations. Specifications were provided for the computer monitor and hardware to be used. It was ensured that monitors had the correct brightness and contrast adjustment for optimal viewing.

BMJ Open

During online evaluation, radiologists recorded the quality of film, findings of CXRs and conclusion. Radiologists interpreted film quality as follows: (a) 'Adequate/optimal' for features that allow confident interpretation of consolidation and pleural effusion as well as other infiltrates; (b) *Suboptimal* for features that allow interpretation of consolidation and pleural effusion, but not of other infiltrates or findings and (c) `Un-interpretable` pertaining to features of the image that are not interpretable with respect to presence or absence of consolidation or pleural effusion without additional images¹². After interpreting film quality, radiologists interpreted the pathological findings. For each

radiographic finding, there were two options to be chosen: 'yes' for the presence of pathological findings and `no` for its absence. Pathological findings were classified into significant pathology (including pleural effusion) and the presence of consolidation and infiltrates. `End-point consolidation' for CXRs was defined as dense or confluent opacity that occupies a portion or whole of a lobe or the entire lung, that may or may not contain air bronchograms. Portion of the lung would mean the opacity covering the width of intercostal spaces plus the width of one adjacent rib. 'Other (non end-point) infiltrate' for CXRs was defined as linear and patchy opacities (interstitial infiltrate) in a lacy pattern, featuring peri-bronchial thickening and multiple areas of atelectasis or minor patchy infiltrates that are not of sufficient magnitude to constitute endpoint consolidation, and small areas of atelectasis that in children may be difficult to distinguish from consolidation. 'Pleural effusion' was defined as presence of fluid in the lateral pleural space between the lung and chest wall that is spatially associated with a pulmonary parenchymal infiltrate (including 'other infiltrate') or has obliterated enough of the hemithorax to

obscure any infiltrate. In most cases, this will be seen at the costo-phrenic angle or as a layer of
 fluid adjacent to the lateral chest-wall. This does not include fluid seen in the horizontal or
 oblique fissures ¹².

Final conclusions were categorised into: (a) *Primary End Point Pneumonia only* (PEP) on the presence of consolidation or pleural effusion; (b) *Other (non end-point) infiltrate only* on the presence of other (non-consolidation) infiltrates as defined above in the absence of a pleural effusion (c) *Both PEP and other infiltrate* and (d) *Normal* when there were no findings consistent with 'endpoint consolidation' or 'other infiltrate' or 'pleural effusion'¹².

After radiological interpretation, online data was archived, stored and checked for inconsistencies and completeness by the data manager. CXRs with concordant and discordant interpretations were identified. Interpretations were considered concordant when there was an agreement between two or more radiologists and discordant if all the three radiologists disagreed. Discordant interpretations were forwarded to the study arbitrator (NK). Arbitrator assessed discordant CXRs online and her interpretation was taken as final.

0 176

177 Data management and statistical analysis

178 Clinical data of hospital surveillance network was entered online in customized software. 179 Primary entry was done by the four participating sites. Secondary data entry was done by the 180 coordinating site in separate customized software. Anonymized CXRs were uploaded on 181 customized software. Each of the three panelists assessed the CXRs online, blind to peer

assessments as well as clinical features of the case. CXR assessment data was downloaded fromthe online software in MS Access database.

Exploratory data analysis was performed for detection of outlier and missing observations for all the variables. Descriptive statistics was calculated for continuous variables as mean \pm standard deviation and categorical variables in percent. Un-interpretable CXRs were not analyzed. Among interpretable CXRs, those radiological abnormalities where there was concordance between the two radiologists, were taken as final. Weight-for-age (WAZ) z-score each child was calculated using WHO Anthro Survey Analyser²³. Weight of 7.59% (215/2829) children was missing in our data. Missing weight of recruited children was estimated using regression based imputation technique²⁴. Kappa statistics was performed for agreement analysis among radiologists for CXRs findings. Statistical analysis was performed using SPSS version 22.0 (Chicago, IL)²⁵. A p-value of <0.05 was taken as statistically significant using a two-tailed distribution.

Univariate analysis was performed to evaluate heterogeneity, stratified by four participating sites for socio-demographic variables such as child's age, gender, residence, birth order, immunization status, current breastfeeding status, parental education and occupation, smoking status of parents, family type, housing infrastructure, use of biomass fuel and for clinical variables such as weight, height, duration of fever and oxygen saturation.

We report proportions of radiological abnormalities among hospitalized children for CAP by four districts. Univariate analysis was performed to assess association of socio-demographic variables and clinical signs of CAP with radiological abnormalities. Chi-square test was used for

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1 2		
2 3 4	205	categorical variables and student's t-test for continuous variables. ANOVA test was used for
5 6	206	more than two groups to test the significance of continuous variables. Multivariate unconditional
7 8 9	207	logistic regression was performed find association of presence of various radiological
10 11	208	abnormalities, controlling for district of residence and other variables that had univariate
12 13 14	209	association with radiological abnormalities (p value ≤ 0.2) and/or were clinically meaningful.
14 15 16	210	
17 18	211	We developed four models and in these four models dependent (outcome) were:
19 20	212	Model I: Abnormal vs. Normal
21 22 23	213	Model II: Primary End Point Pneumonia (PEP) alone or with infiltrates vs. Normal
24 25	214	Model III: Primary End Point Pneumonia (PEP) alone vs. Normal
26 27	215	Model IV: Other infiltrates only vs. Normal
28 29 30	216	
30 31 32	217	Independent variables that were kept across all the four models were : participating districts, age,
33 34	218	gender, use of biomass fuel, symptoms of CAP such as duration of illness, presence of wheeze
35 36 37	219	on ascultation, pallor, vomiting everything and malnutrition status of the case [WAZ \leq -2 SD
38 39	220	(malnourished) and WAZ \leq -3 SD (severely malnourished)].
40 41 42	221	
42 43 44	222	Patient and public involvement in research
45 46	223	Patients or public were not involved in the development of research question, study design or
47 48 49	224	conducting the research. Reporting of this research conforms to the guidelines for Strengthening
50 51	225	the Reporting of Observational Studies in Epidemiology (STROBE) ²⁶ .
52 53	226	
54 55 56	227	RESULTS
57 58		13
59		10

Page 15 of 39

BMJ Open

228	A total of 3290 hospitalized cases were screened in hospital surveillance network of Lucknow
229	and Etawah districts of Uttar Pradesh and Patna & Darbhanga districts of Bihar. Out of these,
230	3214 cases fulfilling the WHO diagnosis of CAP were included [Figure 1]. Among them, 3195
231	(99.40%) cases were enrolled with CXRs and only in 19 (1.0%) cases CXRs were not done. Out
232	of these 88.54% (2829/3195) CXRs were found interpretable and remaining 11.45% (366/3195)
233	were found un-interpretable by radiologists. Among interpretable CXRs, we found 22.44%
234	(635/2829) children had primary end point pneumonia (PEP) alone or with infiltrates, 12.09%
235	(342/2829) other infiltrates only and 65.46% (1852/2829) had normal CXRs findings [Figure 1].
236	Concordance among \geq 2 radiologists for CXRs findings was 86.0%. Kappa statistics was
237	calculated for agreement of CXRs findings between Reader 1 versus Reader 2 (K_1 =0.31), Reader
238	2 versus Reader 3 ($K_2=0.46$) and Reader 3 versus Reader 1($K_3=0.42$).

Table 1: Distribution of socio-demographic and clinical variables among hospitalized children for participating districts (Jan 2015-April 2017)

<u>2</u> 3	228	A total of 3290 hos	nitalized cases	were screened	in hospital s	urveillance netw	ork of Luckr	10W
4 5			-		-			
5	229	and Etawah districts	s of Uttar Prade	esh and Patna	& Darbhanga	districts of Biha	ar. Out of the	ese,
	230	3214 cases fulfilling	the WHO diag	nosis of CAP	were included	d [Figure 1]. Am	ong them, 3	195
	231	(99.40%) cases were	e enrolled with	CXRs and only	in 19 (1.0%)	cases CXRs we	re not done.	Out
12 13	232	of these 88.54% (28	29/3195) CXRs	s were found ir	terpretable a	nd remaining 11.	45% (366/31	95)
	233	were found un-inter	rpretable by ra	diologists. An	nong interpre	table CXRs, we	found 22.4	4%
16 17 18	234	(635/2829) children	had primary en	nd point pneur	nonia (PEP) a	alone or with inf	iltrates, 12.0	9%
10	235	(342/2829) other inf	iltrates only and	l 65.46% (1852	2/2829) had n	ormal CXRs find	ings [Figure	1].
21	236	Concordance among	$g \ge 2$ radiolog	sists for CXRs	s findings wa	as 86.0%. Kapp	a statistics	was
	237	calculated for agreer	nent of CXRs f	indings betwee	n Reader 1 ve	ersus Reader 2 (K	(1=0.31), Rea	der
25 26 27	238	2 versus Reader 3 (K	K ₂ =0.46) and Re	ader 3 versus I	Reader 1(K ₃ =0	0.42).		
28	239							
	240	Table 1 shows un	ivariate distrib	ution of socic	-demographic	e and clinical v	ariables amo	ong
32 33 34	241	hospitalized cases a	cross four par	ticipating distr	icts. A statis	tically significar	t variation	ow ese, 195 Out 95) 4% 9% 1]. was der ong was e of
35	242	observed in all socie	o-demographic	variables such	as place of 1	esidence, type o	f house, type	e of
37 38	243	family, maternal ar	nd paternal edu	ication and oc	cupation, use	e of biomass fu	el and pare	
	244	smoking status acros	ss the four distri	cts. We also re	port clinical v	variables of recrui	ited cases acr	OSS
41 42 43	245	the four districts in	table 1. Oxyger	n saturation by	pulse-oxyme	etry was statistica	lly significat	ntly
14	246	different across the	sites, the propo	rtion of cases	with oxygen s	saturation $\leq 90 \%$	was found a	r p value
16 17	247	found statistically sig	gnificant in chil	dren across fou	ur districts (p ·	< 0.0001).		
48 49 50	248							
51	249	Table 1: Distribution	of socio-demog	raphic and clin	cal variables	among hospitalize	ed children fo	r
	250	participating district	s (Jan 2015-Apr	il 2017)				
55	Charac	cteristics	Lucknow	Etawah	Patna	Darbhanga	Total	
56 5	Socio-d	lemographic	n=1025	n=389	n=744	n=671	N=2829	p value
57 58								14

Characteristics	(%)	(%)	(%)	(%)	(%)	
Gender						
Male	659(64.29)	287(73.78)	557(74.87)	502(74.81)	2005(70.87)	< 0.00
Place of residence						
Rural	195(19.02)	279(71.72)	304(40.86)	614(91.51)	1392(49.20)	< 0.000
Urban	830(80.98)	110(28.28)	440(59.14)	57(8.49)	1437(50.80)	
Family Type						
Joint	688(67.12)	360(92.54)	707(95.03)	383(57.08)	2138(75.57)	< 0.000
Nuclear	337(32.88)	29(7.46)	37(4.97)	287(42.77)	690(24.39)	
House type						
Mud	64(6.24)	54(13.88)	123(16.53)	374(55.74)	615(21.74)	
Bricks	854(83.32)	256(65.81)	453(60.89)	85(12.67)	1648(58.25)	< 0.000
Combined	107(10.4)	79(20.31)	168(22.58)	212(31.59)	566(20.01)	
Mother's Education						
No formal education	203(19.80)	56(14.40)	328(44.09)	496(73.92)	1083(38.28)	
Class I-V	108(10.54)	28(7.20)	82(11.02)	38(5.66)	256(9.05)	< 0.000
Class VI-XII	379(36.98)	176(45.24)	243(33.66)	112(16.69)	910(32.17)	
Graduate/ Post graduation	335(32.68)	129(33.16)	91(12.23)	25(3.73)	580(20.50)	
Father's Education						
No formal education	167(16.29)	29(7.46)	153(20.56)	345(51.42)	694(24.53)	
Class I-V	85(8.29)	19(4.88)	91(12.23)	82(12.22)	277(9.79)	
Class VI-XII	437(42.63)	206(52.96)	328(44.09)	205(30.55)	1176(41.57)	< 0.000
Graduate/ Post graduation	336(32.78)	135(34.70)	172(23.12)	39(5.81)	682(24.11)	
Birth Order						
1 st	435(42.44)	187(48.07)	315(42.34)	192(28.61)	1129(39.91)	
2 nd	343(33.46)	120(30.85)	235(31.59)	258(38.45)	956(33.79)	< 0.000
3 rd	153(14.93)	47(12.08)	129(17.34)	137(20.42)	466(16.47)	
More than 3 rd	93(9.07)	35(9.00)	62(8.33)	83(12.37)	273(9.65)	
Immunization Status						
Complete for age	792(77.27)	300(77.12)	711(95.56)	544(81.07)	2347(82.96)	
Incomplete for age	220(21.46)	84(21.59)	25(3.36)	126(18.78)	455(16.08)	< 0.000
Unimmunized	13(1.27)	5(1.29)	8(1.08)	1(0.15)	27(0.95)	
Currently Breast Feeding			6	~		
Yes	653(63.71)	256(65.81)	589(79.17)	537(80.03)	2035(71.93)	< 0.000
No	372(36.29)	133(34.19)	155(20.83)	134(19.97)	794(28.07)	
Father's Occupation						
Unemployed	13(1.27)	20(5.14)	27(3.63)	63(9.39)	123(4.35)	
Daily wages	329(32.10)	81(20.82)	165(22.18)	474(70.64)	1049(37.08)	
Salaried/ Professional	397(38.73)	104(26.74)	245(32.93)	55(8.20)	801(28.31)	< 0.000
Self-Employment	286(27.90)	184(47.30)	307(41.26)	79(11.77)	856(30.26)	
Mother's Occupation		· · · · · · · · · · · · · · · · · · ·				
Home maker	961(93.76)	376(96.66)	701(94.22)	484(72.13)	2522(89.15)	
Daily wages	17(1.66)	3(0.77)	17(2.28)	171(25.48)	208(7.35)	
Salaried/Professionals	47(4.59)	9(2.31)	18(2.42)	7(1.04)	81(2.86)	< 0.000
Self-Employment	0(0.0)	1(0.26)	8(1.08)	9(1.34)	18(0.64)	
Biomass fuel		(, , , , , , , , , , , , , , , , , , ,	- (- (
Yes	211(20.59)	245(62.98)	263(35.35)	609(90.76)	1328(46.94)	< 0.000
No	814(79.41)	144(37.02)	481(64.65)	62(9.24)	1501(53.06)	0.000
Smoking Status-Father		1.1(37.04)	101(01.00)	<i>v=(v.=1)</i>	1001(00.00)	

Yes	152(14.83)	45(11.57)	56(7.53)	59(8.79)	312(11.03)	<0.0
No	873(85.17)	344(88.43)	688(92.47)	612(91.21)	2517(88.97)	
Indoor smoking-Father						
Yes	83(8.10)	21(5.40)	16(2.15)	43(6.41)	163(5.76)	< 0.0
No	942(91.90)	368(91.60)	728(97.85)	628(93.59)	2666(94.24)	
Smoking Status-						
Family member						
Yes	129(12.59)	55(14.14)	45(6.05)	102(15.20)	331(11.70)	< 0.0
No	896(87.41)	334(85.86)	699(93.95)	569(84.80)	2498(83.30)	
Indoor smoking – Family member						
Yes	84(8.20)	27(6.94)	27(3.63)	94(14.01)	232(8.20)	< 0.0
No	941(91.80)	362(93.06)	717(96.37)	577(85.99)	2597(91.80)	
Clinical Variables at the	n,	n,	n,	n,	n,	p va
time of admission at	Mean± SD	Mean± SD	Mean± SD	Mean± SD	Mean± SD	
hospital						
Age (months)	1025,	389,	744,	671,	2829,	< 0.0
	14.53±13.88	10.69±10.95	10.26±11.35	12.30±13.29	12.35±12.85	-0.0
Height (cm)	303,	324,	34,	266,	927,	<0.0
	68.61±13.78	70.66±13.75	64.38±10.25	70.46±12.14	69.70±13.26	
Weight (Kg)	1025,	389,	744,	671,	2829,	< 0.0
	7.96±2.97	7.34±2.73	7.11±2.78	7.78 ± 2.93	7.61±2.90	
Fever Duration (days)	929,	321,	689,	569,	2508,	< 0.0
i ever Duration (days)	4.46±2.71	3.59±2.37	4.25±2.52	3.54±2.47	4.08±2.59	~0.0
	528(51.51)	343(88.17)	236(34.25)	319(56.06)	1426(50.40)	< 0.0
Oxygen saturation done n (%)	528(51.51)	545(00.17)	, ,			

Table 2 shows proportions of radiological pneumonia among cases hospitalized for CAP in four participating districts. We observed statistically significant district-wise heterogeneity in radiological abnormalities. We found higher proportion of radiological abnormalities in Patna and Lucknow districts, which have a larger urban population, and lower proportion in Etawah and Darbhanga districts, which in contrast have a larger rural population. We also observed correspondingly higher proportion of PEP alone or with other infiltrates in districts of Lucknow and Patna and lower in districts of Etawah and Darbhanga.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Page 18 of 39

BMJ Open

260 Table	2 also describe	s univariate dis	stribution of soci	o-demograr	bhic and clinical fa	actors of CAP	
					nificantly higher		
262 female	s hospitalized	for CAP ha	d radiologically	abnormal	CXR. Likewise	, statistically	
) 263 signifi	cantly higher p	proportion of a	bnormal versus	normal C	XRs findings wer	re reported in	
	alized cases wh	no had sympto	oms of fever, pa	allor, whee	zing on auscultati	ion, vomiting	
•	ning or were ma	Inourished.					
5 7 266 3							
9 267 Table 1 268 findin			ographic and cli en from Januar		rs by chest radiog il 2017	raph	
2 3		Interpretabl	e chest X rays		Abnorm	nal chest X ray	S
3 4 5 6 7 8 9	N=2829	Normal 1852 n (%)	Abnormal 977 n (%)	p value	PEP* alone or with other infiltrate 635	Other infiltrates 342	s value <0.000 1
Participating site	e			•	n (%)	n (%)	
(row %) Lucknow	1025	636 (62.05)	389 (37.95)		282 (72.49)	107 (27.51)	
5 Etawah	389	275 (70.69)	114 (29.31)	<0.0001	73 (64.04)	41 (35.96)	<0.000 1
Patna	744	457 (61.42)	287 (38.58)		184 (64.11)	103 (35.89)	
Darbhanga	671	484 (72.13)	187 (27.87)		96 (51.34)	91 (48.66)	
2 Socio- 3 demographic & 4 clinical factors 2 (column %)							0.26
Age-group 3 (months)							
2-11	1865	1223 (66.04)	642 (65.71)	0.86	409 (64.41)	233 (68.13)	0.26
12-59	964	629 (33.96)	335 (34.29)]	226 (35.59)	109 (31.87)]
3 4 Gender 5							
5 7 3						17	

BMJ Open

<u>.</u>							
Male	2005	1354	651		426	225	
	2003	(73.11)	(66.63)	< 0.0001	(67.09)	(65.79)	
Female	824	498	326		209	117	0.72
	824	(26.89)	(33.37)		(32.91)	(34.21)	
Place of residence							
Rural	1202	921	471		299	172	
)	1392	(49.73)	(48.21)	0.44	(47.09)	(50.29)	
Urban	1.407	931	506	-	336	170	0.34
3	1437	(50.27)	(51.79)		(52.91)	(49.71)	
¹ Biomass fuel							
Yes	1501	867	461		294	167	0.04
	1501	(46.81)	(47.19)		(42.30)	(48.83)	0.24
7 ₈ No	1000	985	516	0.44	341	175	
9	1328	(53.19)	(52.81)		(53.70)	(51.17)	
Immunization							
status							
Complete for age	02.47	1546	801		516	285	
	2347	(83.48)	(81.99)	0.32	(81.26)	(83.33)	
Incomplete	400	306	176	-	119	57	0.54
	482	(16.52)	(18.01)		(18.74)	(16.67)	
7 Symptoms of							
³ pneumonia							
Fever	2400	1616	883	0.014	575	308	0.02
) 1	2499	(87.26)	(90.38)		(90.55)	(90.06)	0.82
2 Cyanosis	()	39	23	0.34	16	7	0.64
3	62	(2.11)	(2.35)		(2.52)	(2.05)	0.64
4 Pallor	764	465	299	0.002	200	99	0.41
5	/04	(25.11)	(30.60)		(31.50)	(28.95)	0.41
Wheeze on	2054	1377	677	0.005	415	262	0.0002
auscultation	2034	(74.35)	(69.29)		(65.35)	(76.61)	0.0003
Duration of illness		1611	888,		577	242	
fever [days]	2499	3.91±2.51	4.40±2.70	< 0.0001	577, 4.57±2.82	$342, 4.08\pm 2.44$	0.011
$(n, Mean \pm SD)$		5.91±2.51	4.40±2.70		4.37±2.82	4.08±2.44	
² Respiratory Rate							0.011 0.69 0.88 0.69 0.53
and Fast							
Breathing							
Respiratory Rate		1243,	642,		409,	233,	
7[2-11 months]	1865	55.52±11.29	57.99±11.70	< 0.0001	58.12±11.88	57.74±11.40	0.69
$B(n, Mean \pm SD)$		55.52-11.25	57.77±11.70		J0.12±11.00	57.74±11.40	
Respiratory Rate		629,	335,		226,	109,	
[12-59 months]	964	49.78±12.41	51.28±13.37	0.08	51.35±13.31	51.12±13.35	0.88
$_{2}(n, Mean \pm SD)$							
Fast Breathing for	1725	1130	605	0.11	384	221	0.60
age (2-11 months)	1735	(61.02)	(61.92)	0.11	(60.47)	(64.62)	0.69
Fast Breathing for	862	562	300	0.92	204	96	0.53
		1	1	1	1	1	1
,						10	
						18	

age (12-59		(30.35)	(30.71)		(32.13)	(28.07)	
months)							
Danger Signs of pneumonia							
Lethargy	1101	732	369	0.39	247	122	0.33
	1101	(39.52)	(37.77)	0.39	(38.90)	(35.67)	0.55
Inability to drink	937	612 (33.05)	325 (33.27)	0.46	211 (33.23)	114 (33.33)	0.97
Convulsion	1.40	98	50	0.02	33	17	0.05
	148	(5.29)	(5.12)	0.93	(5.20)	(4.97)	0.87
Cyanosis	42	27	15	0.87	12	3	0.28
NATI 4 *4*		(1.46)	(1.54)	0.07	(1.89)	(0.88)	0.20
Malnutrition Status							
	1000	1293	587		367	220	
Normal *	1880	(69.82)	(60.08)		(57.80)	(64.33)	
Malnutrition*	517	333	184		122	62	
Manualition	517	(17.98)	(18.83)	< 0.0001	(19.21)	(18.13)	0.06
Severe malnutrition*	432	226 (12.20)	206(21.08)		146 (22.99)	60 (17.54)	
269 *Norma	-weight of a	e z score > -2SI		weight-for-ag			
270 malnutri 271	tion-weight-i	for- age $z \le -3SD$	R				
271	C	for- age $z \le -3SD$ ar multivariate un		gistic regressio	on models to fin	d associates of	
271 272 Table 3	describes for	C	nconditional log				
 271 272 Table 3 273 abnorma 	describes fou l CXR findir	ur multivariate un	nconditional log olling for age, g	gender, sympto	oms of pneumor	nia, duration of	
 271 272 Table 3 273 abnorma 274 illness, 	describes for l CXR findir biomass fue	ur multivariate un ngs. After contro	nconditional log olling for age, g ion status of	gender, sympto cases, statistic	oms of pneumor cally significar	iia, duration of the district-wise	
 271 272 Table 3 273 abnorma 274 illness, 275 heteroget 	describes fou l CXR findir biomass fue neity remain	ur multivariate un ngs. After contro l and malnutriti	nconditional log olling for age, g ion status of ree models. M	gender, sympto cases, statistic odels I, II and	oms of pneumor cally significar III had similar	nia, duration of t district-wise associates for	
 271 272 Table 3 273 abnorma 274 illness, 275 heteroge 276 radiolog 	describes for l CXR findir biomass fue neity remain ical abnorma	ur multivariate un ngs. After contro 1 and malnutriti ed in the first th	nconditional log olling for age, g ion status of ree models. M lodel IV was d	gender, sympto cases, statistic odels I, II and ifferent. Acro	oms of pneumor cally significan III had similar ss all the four 1	hia, duration of at district-wise associates for nodels, female	
 271 272 Table 3 273 abnorma 274 illness, 275 heteroge 276 radiolog 277 gender a 	describes for l CXR findir biomass fue neity remain ical abnorma	ar multivariate un ngs. After contro l and malnutriti ed in the first th lities whereas M	nconditional log olling for age, g ion status of ree models. M lodel IV was d crition had stati	gender, sympto cases, statistic odels I, II and ifferent. Acro istically signif	oms of pneumor cally significan III had similar ss all the four r icantly higher r	hia, duration of t district-wise associates for nodels, female tisk for having	
 271 272 Table 3 273 abnorma 274 illness, 275 heteroge 276 radiolog 277 gender a 278 abnorma 	describes for l CXR findir biomass fue neity remain ical abnorma	ur multivariate un ngs. After contro l and malnutriti ed in the first th lities whereas M th severe malnut igher risk of radi	nconditional log olling for age, g ion status of ree models. M lodel IV was d crition had stati	gender, sympto cases, statistic odels I, II and ifferent. Acro istically signif	oms of pneumor cally significan III had similar ss all the four r icantly higher r	hia, duration of t district-wise associates for nodels, female tisk for having	
 271 272 Table 3 273 abnorma 274 illness, 275 heteroge 276 radiolog 277 gender a 278 abnorma 	describes for l CXR findir biomass fue neity remain ical abnorma ind those wir l CXRs. A h	ur multivariate un ngs. After contro l and malnutriti ed in the first th lities whereas M th severe malnut igher risk of radi	nconditional log olling for age, g ion status of ree models. M lodel IV was d crition had stati	gender, sympto cases, statistic odels I, II and ifferent. Acro istically signif	oms of pneumor cally significan III had similar ss all the four r icantly higher r	hia, duration of at district-wise associates for nodels, female tisk for having	
 271 272 Table 3 273 abnorma 273 illness, 274 illness, 275 heteroge 276 radiolog 277 gender a 278 abnorma 279 with lon 280 281 	describes for l CXR findir biomass fue neity remain ical abnorma ind those wir l CXRs. A h	ur multivariate un ngs. After contro l and malnutriti ed in the first th lities whereas M th severe malnut igher risk of radi	nconditional log olling for age, g ion status of ree models. M lodel IV was d crition had stati	gender, sympto cases, statistic odels I, II and ifferent. Acro istically signif	oms of pneumor cally significan III had similar ss all the four r icantly higher r	hia, duration of at district-wise associates for nodels, female tisk for having	
 271 272 Table 3 273 abnorma 273 illness, 274 illness, 275 heteroge 276 radiolog 277 gender a 278 abnorma 279 with lon 280 281 282 	describes for l CXR findir biomass fue neity remain ical abnorma ind those wir l CXRs. A h	ur multivariate un ngs. After contro l and malnutriti ed in the first th lities whereas M th severe malnut igher risk of radi	nconditional log olling for age, g ion status of ree models. M lodel IV was d crition had stati	gender, sympto cases, statistic odels I, II and ifferent. Acro istically signif	oms of pneumor cally significan III had similar ss all the four r icantly higher r	hia, duration of at district-wise associates for nodels, female tisk for having	
 271 272 Table 3 273 abnorma 273 illness, 274 illness, 275 heteroge 276 radiolog 277 gender a 278 abnorma 279 with lon 280 281 	describes for l CXR findir biomass fue neity remain ical abnorma ind those wir l CXRs. A h	ur multivariate un ngs. After contro l and malnutriti ed in the first th lities whereas M th severe malnut igher risk of radi	nconditional log olling for age, g ion status of ree models. M lodel IV was d crition had stati	gender, sympto cases, statistic odels I, II and ifferent. Acro istically signif	oms of pneumor cally significan III had similar ss all the four r icantly higher r	hia, duration of at district-wise associates for nodels, female tisk for having	
 271 272 Table 3 273 abnorma 273 illness, 274 illness, 275 heteroge 276 radiolog 277 gender a 278 abnorma 279 with lon 280 281 282 	describes for l CXR findir biomass fue neity remain ical abnorma ind those wir l CXRs. A h	ur multivariate un ngs. After contro l and malnutriti ed in the first th lities whereas M th severe malnut igher risk of radi	nconditional log olling for age, g ion status of ree models. M lodel IV was d crition had stati	gender, sympto cases, statistic odels I, II and ifferent. Acro istically signif	oms of pneumor cally significan III had similar ss all the four r icantly higher r	hia, duration of at district-wise associates for nodels, female tisk for having	

1	
י ר	
2	
3	
4	
5	
6	
7	
,	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 31 32 33 34 35 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	

59 60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

85 and clinical fa Variables	factors, among hospital Model – I Abnormal/Normal ^{Ref}		Model – II PEP alone or with other infiltrate /Normal ^{Ref}		Model – III PEP alone / Normal ^{Ref}		Model – IV Other infiltrate Normal ^{Ref}	
v al lables	Adjusted Odd Ratio (95%CI)	p value	Adjusted Odd Ratio (95%CI)	p value	Adjusted Odd Ratio (95%CI)	p value	Adjusted Odd Ratio (95%CI)	va
Districts				†		t		
Lucknow vs. Others	1.58 (1.20-2.10)	< 0.0001	2.07 (1.48-2.89)	< 0.0001	2.20 (1.52-3.19)	<0.0001	0.98 (0.65-1.47)	0.
Etawah vs. Others	1.22 (0.88-1.70)	0.23	1.30 (0.87-1.95)	0.19	1.49 (0.95-2.30)	0.07	1.17 (0.74-1.87)	0.
Patna vs. Others	1.67 (1.27-2.20)	<0.0001	1.89 (1.36-2.64)	<0.0001	2.25 (1.56-3.24)	< 0.0001	1.39 (0.95-2.07)	0.
Age – Group (months)		0						
2-11 ^{Ref} 12-59	0.92 (0.77-1.10)	0.34	0.95 (0.77-1.17)	0.62	1.03 (0.82-1.29)	0.79	0.86 (0.66-1.13)	0.
Gender				\square				
Male Ref			-					
Female	1.39 (1.16-1.66)	< 0.0001	1.34 (1.08-1.65)	0.008	1.28 (1.01-1.61)	0.03	1.48 (1.14-1.92)	0.
Symptoms of pneumonia [¶]			1	2.				0.0
Wheezing	0.83 (0.68-1.01)	0.06	0.72 (0.57-0.90)	0.005	0.75 (0.59-0.96)	0.02	1.14 (0.83-1.55)	0
Pallor	1.30 (1.08-1.58)	0.006	1.28 (1.03-1.60)	0.02	1.22 (0.95-1.55)	0.12	1.34 (1.01-1.77)	0
Vomiting everything	0.90 (0.75-1.09)	0.28	0.80 (0.64-0.99)	0.04	0.78 (0.62-1.01)	0.05	1.09 (0.83-1.08)	0
Duration of illness, fever (days)	1.06 (1.04-1.09) 1.28	< 0.0001	1.08 (1.04-1.12) 1.39	< 0.0001	1.08 (1.04-1.12) 1.40	< 0.0001	1.03 (0.98-1.48) 1.08	0
Biomass fuel Malnutrition	(1.05-1.57)	0.02	(1.10-1.76)	0.006	(1.14-1.88)	0.003	(0.79-1.45)	0.
Status								
Normal *Ref				1				
Malnutrition*	1.18 (0.93-1.45)	0.15	1.17 (0.91-1.52)	0.23	1.17 (0.88-1.55)	0.27	1.12 (0.82-1.52)	0
Severe malnutrition*	1.65 (1.31-2.09)	< 0.0001	1.82 (1.34-2.36)	< 0.0001	1.87 (1.41-2.47)	< 0.0001	1.62 (1.71-2.23)	0.
 86 Abbreviation 87 88 Footnotes: [¶] Normal: weig 90 malnutrition: veig 	No signs of pr ght-for-age z	neumonia t score> -28	aken as a refer SD; Malnutritio		-for -age z≤-2	SD; Severe	2	0.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

DISCUSSION

This prospective hospital-based surveillance study was conducted to assess the radiological abnormalities in children (2-59 months) residing in pre-specified districts of Uttar Pradesh and Bihar, India and hospitalized with CAP. The study was conducted from January 2015 to April 2017, prior to introduction of PCV in the national immunization programme of the Government of India⁹.

In our study, among interpretable CXRs, we found 22.44% (635/2829) children had PEP alone or with infiltrates, other infiltrates only 12.09%(342/2829) and 65.46% (1852/2829) had normal CXRs findings. Our study used WHO case definition for CAP ¹⁹. A panel of three trained radiologists interpreted CXRs, adopting WHO recommended methodology ^{11 12}. These make our study methodology robust and results generalizable.

There were 88.54% (2829/3195) interpretable CXRs in the current study. This is similar to 83% (3587/3973) interpretable CXRs reported by Pneumonia Etiology Research for Child Health (PERCH) study conducted on 4232 children (1-59 months) to assess the etiology of CAP in nine sites of seven countries ²⁷. Consistent with PERCH findings, a vaccine probe trial conducted in Gambia found the proportion of interpretable CXRs among unvaccinated cases of pneumonia to be 84.32% (242/287)²⁸.

There have been several studies in the past two decades, which have reported CXRs findings in hospitalized cases of CAP. Almost all of these were conducted before the introduction of PCV in their respective regions. A small prospective study conducted in Ethiopia reported radiological Page 23 of 39

BMJ Open

abnormality in CXRs in 48.3% (95% CI 39.49-57.22) among 122 children (3 months-14 years) clinically diagnosed with WHO-defined severe pneumonia²⁹. Similar findings were reported from the Gambian vaccine probe trial where the proportion of radiological abnormality was 45% (95% CI: 43.35-46.46) among unvaccinated hospitalized cases of clinical pneumonia²⁸. PERCH study found that 54% (95% CI: 52.31-55.57) of CXRs among cases of CAP were abnormal ²⁷. In all of these studies, proportion of cases with abnormal CXRs is higher than 34.5% (95% CI 32.8-36.3) found by us in the current study. However, our findings are similar to PERCH rural study site of Matlab, Bangladesh that reported radiological abnormality in 35.3% (95% CI: 29.77-40.85) CXRs of hospitalized cases of CAP ²⁷. Another PERCH urban site of Dhaka, Bangladesh reported 63.10% (95% CI 56.18 -70.02) cases with abnormal CXRs ²⁷. In our study, radiological abnormalities in CXRs were higher in cases from largely urban districts of Patna and Lucknow compared to rural districts of Darbhanga and Etawah. This is consistent with rural-urban differences in Bangladesh sites of PERCH. Variation in CXR findings among cases of CAP may be due to infecting organism, immune response of patient and prior duration of disease.

, 8 329

In 2016, WHO's Department of Immunization, Vaccines and Biologicals standardized the categorization of radiological pneumonia and established that PEP can be taken as a good surrogate marker of SP in epidemiological and vaccine efficacy studies¹². In our study, 22.44 % (95% C.I. 20.90 -23.98), CXRs were having PEP alone or with other infiltrates. This is similar to PERCH study that reported PEP alone or with other infiltrates in 27% (95% C.I. 25.50 -28.40) hospitalized cases of CAP²⁷. Another study conducted in Gambia reported that 45% (95% CI: 43.35-46.46) non-vaccinated children had PEP and/or other infiltrates ²⁸. PEP has been BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

associated with increased risk of treatment failure (p=0.002), increased length of hospitalization (p=0.0003) and more days of respiratory support (p=0.002) in Botswana when compared with cases reporting` no significant pathology` on CXRs³⁰.

In our study, female gender (p<0.001) was at the higher risk of developing radiological abnormalities compared to males (table 3). The results are in concordance with a hospital-based case-control study carried out in Brazil that reported male gender as a protective factor against pneumonia (OR = 0.53; 95 % CI 0.39-0.72)³¹. Another study in Mozambigue, Africa reported that male gender was not significantly associated with presence of radiological abnormalities (OR =0.77; 95 % CI 0.56–1.05) in children (0-59 months) suffering from severe pneumonia 32 . However, in contrast, a Gambian study reported male preponderance for all pneumonia that was most marked for `other infiltrates/abnormalities` pneumonia²⁸.

In our study, it was observed that there was differential care-seeking by gender for CAP in all four project sites. Although females admitted with CAP were at higher risk of having radiological abnormalities, lower proportion were hospitalized for it. Gender inequality in health care seeking for females is common in India, as in other South Asian countries ³³ ³⁴. Since there is no health-care financing or health insurance provision in India, in case of severe illness, parents are less likely to incur out-of-pocket expenditure or incur debts to pay expenses on medical treatment of their daughters compared to sons ³⁵. Another Indian study found that male children were five times more likely to be taken early for medical care and three times more likely to be seen by qualified medical doctors compared to female children ³⁶. We also found

BMJ Open

that majority of hospitalized cases of pneumonia were from urban areas, in contrast with observations of other researchers who report poor health care seeking from rural areas³⁷.

A systematic review with meta-analysis conducted in 2019 suggests that no one clinical feature is sufficient on its own to diagnose radiological pneumonia ³⁸. However other socio-demographic and clinical correlates of abnormal CXRs found by us (Model 1), which increased the risk of radiological abnormalities, were presence of pallor, severe malnutrition, longer duration of illness and exposure to biomass fuel. Exposure to biomass fuel used for cooking is an important factor that increases the risk of CAP in developing countries³⁹. In rural India, majority of the households use biomass fuel like firewood, dung cakes and wood for cooking ⁴⁰. Young children are at risk to adverse effects of exposure to biomass fuel as either the households have no separate cooking space or have poor ventilation and sometimes young children stay with their mother while she cooks.

Other correlates of PEP/Radiological Pneumonia (Models II and III) possibly due to SP, besides those found in Model I, were presence of vomiting everything and wheeze on auscultation, both of which were found to be protective. These symptoms/signs are more often reported in viral pneumonia⁴¹. Correlates of radiological abnormalities of `other infiltrates` (Model IV), which increased the risk, were again female gender, pallor and severe malnutrition. Hence it is difficult to attribute radiological findings of other infiltrates to either bacterial or viral etiology.

Based on our study, almost two-third hospitalized cases of CAP had normal CXRs and this could be perhaps of viral etiology. This is supported by a recent study that reported 61.4% (95% CI

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

 $57 \cdot 3-65 \cdot 6)$ cases to be viral⁴¹. Among one-third of cases of CAP had abnormal CXRs and thus were more likely to be bacterial in etiology, two-thirds of which were possibly due to SP.

In India, 13-valent PCV is given using a three dose schedule (2 primary and one booster) at 6 weeks, 14 weeks and 9 months of age. PCV 13 provides coverage against 13 serotypes (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F) causing pneumococcal pneumonia⁴². Several studies have assessed serotype distribution of pneumococcal disease among children in India. A study conducted in Vellore, India found that the most common serotypes causing invasive infections among under-five children were 14, 19F, 5, 6A and 6B, all of which were covered by the 13-valent PCV ⁴³. Another population-based surveillance study conducted in rural Bangladesh found that the most common serotypes were 1, 5, 14, 18C and 19A and 38 and these comprised more than three-fourth of the S. pneumoniae isolates ⁴⁴. A systematic review and meta-analysis of data collected on Invasive Pneumococcal Disease serotypes from under-five children during the pre-PCV period (between 1980–2007) found that serotypes included in both the 10-valent and 13-valent PCVs accounted for 10 million cases and 600,000 deaths worldwide45.

Several strengths of the study are worth-noting. This was a prospective, multi-site study where recruitments were done from a large hospital surveillance network established especially for the study in four districts of two Indian states that have high under-five mortality rates. Standard WHO definition was used to identify hospitalized cases of CAP. Radiological abnormalities were interpreted by a panel of three trained radiologists at locations out of the surveillance network, blinded to each other as well as clinical features of the case. Despite these strengths,

our study findings have certain limitations. First, in our study, pre-existing x-rays machines which were not of uniform specification, were used. This might have caused variation in quality of CXR images, though this error was minimized by digitizing the CXR images centrally. Secondly, in our study, clinical data collection was recorded by physicians in the network hospitals and this could be subject to observer bias. However, the primary outcome of the study was radiological findings of CXRs of cases admitted with CAP. This was not subject to bias. In this study, we have not collected information on use of antibiotic prior to hospitalization; as such information is not available reliably. However, in another study, done in one of the network hospitals of Lucknow in the recent past, it was found that 70.5% children tested positive for antibiotics on urine examnation⁴⁶.

416 CONCLUSION

Among hospitalized cases of community-acquired pneumonia, almost one-third children had abnormal chest radiographs of which about two-thirds had abnormalities related with possible bacterial etiology (SP). Hence, the introduction of pneumococcal vaccination is likely to reduce the burden of childhood pneumonia in India. Since the study was done prior to the introduction of PCV in India, continued surveillance will be required to assess the impact of PCV on radiological findings in cases admitted with CAP. The impact of introduction of PCV in the national immunization programme on under-five mortality rate and burden of CAP needs to be assessed.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Acknowledgements: We thank the state governments of Uttar Pradesh and Bihar for giving us permission to conduct the study. We extend our gratitude to participating tertiary and secondary care hospitals for their contribution in the study. We offer thanks to Dr. Kamrun Nahar from the International Centre for Diarrhoeal Disease Research, Bangladesh for imparting training to the panel of study radiologists. Members of the Lucknow Community-Acquired Pneumonia (CAP) Group: King George's Medical University (KGMU), Lucknow, India: Prof. Shally Awasthi, Department of Pediatrics, Prof. Neera Kohli, Department of Radio-diagnosis, Prof. Monica Agarwal, Department of Community Medicine; Mr. Puneet Dhasmana, Project Staff; Patna Medical College and Hospital, Patna, Bihar-Prof. Neelam Verma and Prof. Chandra Bhushan Kumar, Department of Pediatrics; Darbhanga Medical College and Hospital, Darbhanga, Bihar, India- Prof. Chittaranjan Roy, Department of Community Medicine, Prof. Kripanath Mishra, Department of Pediatrics; Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, India- Prof. Pankaj Kumar Jain, Department of Community Medicine, Prof. Rajesh Yaday, Department of Pediatrics.

440 Contributors: The study was conceived and designed by SA. CAP study group performed data
441 acquisition.CMP and NM³conducted the statistical analysis of the data. The paper was written by
442 SA, TR, MA and CMP. AC, NM⁵, RCS and NK interpreted chest x-rays. All authors were
443 involved with drafting and revising the work and approved the final submission.

Funding statement: The study was supported by Bill & Melinda Gates Foundation (https://www.gatesfoundation.org/) via Grant No: OPP1118005. Funding agency had no role in the design of the study and collection, analysis and interpretation of data, or in writing the manuscript.

Competing interests: None declared.

BMJ Open

Patient consent for publication: Not required. Ethics approval: The Institutional Ethics Committee of King George's Medical University (Lucknow), The Uttar Pradesh University of Medical Sciences (Etawah), Patna Medical College and Hospital (Patna) and Darbhanga Medical College and Hospital (Darbhanga) gave ethical approval for the conduct of study. **Provenance and peer review:** Not commissioned; externally peer reviewed. **Data sharing statement**: The data contained within this study can be obtained by writing to shally07@gmail.com Copyright information: This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ **Supporting Information** S1 Appendix: Chest radiograph interpretation form

REFERENCES:

- 1. UNICEF U. Levels and trends in child mortality. Estimates developed by the UN interagency group for child mortality estimation. 2011.
- 2. Amouzou A, Velez LC, Tarekegn H, et al. One is too many: ending child deaths from pneumonia and diarrhoea. New York: Unicef, 2016. pp 73–75

1 2			
2 3 4	471	3.	Mathew JL, Patwari AK, Gupta P, et al. Acute respiratory infection and pneumonia in India:
5 6 7	472		a systematic review of literature for advocacy and action: UNICEF-PHFI series on newborn
7 8 9	473		and child health, India. Indian Pediatr2011; 48: 191-218.
10 11	474	4.	Farooqui H, Jit M, Heymann DL, et al. Burden of severe pneumonia, pneumococcal
12 13	475		pneumonia and pneumonia deaths in Indian states: modelling based estimates. PLoS One
14 15 16	476		2015
17 18	477	5.	Rudan I, O'brien KL, Nair H, et al. Epidemiology and etiology of childhood pneumonia in
19 20 21	478		2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and
21 22 23	479		causative pathogens for 192 countries. Journal of global health. 2013 Jun;3(1).
24 25	480	6.	Leung DT, Chisti MJ, Pavia AT. Prevention and control of childhood pneumonia and
26 27 28	481		diarrhea. Pediatric Clinics. 2016 Feb 1;63(1):67-79.
28 29 30	482	7.	Virkki R, Juven T, Rikalainen H, et al. Differentiation of bacterial and viral pneumonia in
31 32	483		children. <i>Thorax</i> . 2002 May 1;57(5):438-41.
33 34	484	8.	World Health Organization. Pneumococcal conjugate vaccines in infants and children under
35 36 37	485		5 years of age: WHO position paper–February 2019. Accessed 12th July 2019.
37 38 39	486	9.	Government of India. Introduction of Pneumococcal Conjugate Vaccine: Operational
40 41	487		Guidelines. Ministry of Health and Family Welfare, 2017 Available at:
42 43 44	488		https://nhm.gov.in/New_Updates_2018/NHM_Components/Immunization/Guildelines_for_i
44 45 46	489		mmunization/Operational_Guidelines_for_PCV_introduction.pdf. Assessed 12 July 2019.
47 48	490	10.	Cherian T, Mulholland EK, Carlin JB, et al. Standardized interpretation of paediatric chest
49 50	491		radiographs for the diagnosis of pneumonia in epidemiological studies. Bulletin of the World
51 52 53	492		Health Organization. 2005;83:353-9
55 54 55			
56 57			
58			29

59

BMJ Open

11 Pneumo	nia Vaccine Trial Investigators' Group. Standardization of Interpretation of Chest
_	aphs for the Diagnosis of Pneumonia in Children. Geneva: Department of Vaccines
and Biol	ogicals, World Health Organization; 2001
12. Mahome	ed N, Fancourt N, De Campo J, et al. Preliminary report from the World Health
Organiza	ation chest radiography in epidemiological studies project. Pediatric radiology. 2017
Oct 1;47	7(11):1399-404.
13. Greenbe	rg D, Givon-Lavi N, Ben-Shimol S, et al. Impact of PCV7/PCV13 introduction on
commun	ity-acquired alveolar pneumonia in children< 5 years. Vaccine. 2015 Aug
26;33(36	5):4623-9. 6.
14. Sutcliffe	CG, Shet A, Varghese R, et al. Nasopharyngeal carriage of Streptococcus
pneumoi	niae serotypes among children in India prior to the introduction of pneumococcal
conjugat	e vaccines: a cross-sectional study. BMC Infect Dis. 2019 Dec;19(1):605.
15. Annual	health survey (AHS) factsheet 2012-13 Uttar Pradesh [Internet]. New Delhi: Office
of Regis	strar General & Census Commissioner, Ministry of Home Affairs, Government of
India;	2010–2011. Available
from: <u>htt</u>	p://www.censusindia.gov.in/vital_statistics/AHSBulletins/AHS_Factsheets_2012-
13/FAC	TSHEET-UTTAR_PRADESH.pdf. Assessed 5th August, 2019.
16. Annual	health survey (AHS) factsheet 2012-13 Bihar [Internet]. New Delhi: Office of
Registra	r General & Census Commissioner, Ministry of Home Affairs, Government of India;
2010-20	Available
from: <u>htt</u>	p://www.censusindia.gov.in/vital_statistics/AHSBulletins/AHS_Factsheets_2012-
<u>13/FAC</u>	TSHEET-Bihar.pdf. Assessed 5 th August, 2019.
	30

Page 32 of 39

BMJ Open

2		
2 3 4	515	17. Awasthi S, Pandey CM, Verma T, et al. Incidence of community-acquired pneumonia in
5 6	516	children aged 2-59 months of age in Uttar Pradesh and Bihar, India, in 2016: An indirect
7 8 9	517	estimation. <i>PloS one</i> . 2019 Mar 20;14(3):e0214086.
9 10 11 12 13 14 15 16 17 18	518	18. Awasthi S, Singh JV, Kohli N, et al. Hospital-based surveillance for radiological pneumonia
	519	in children under 5 years of age in Uttar Pradesh and Bihar. Pediatric Infectious Disease.
	520	2016 Jun 30;8(2):52-7.
	521	19. World Health Organization. Pocket Book of Hospital Care for Children: Guidelines for the
19 20	522	Management of Common Childhood Illnesses. 2nd edn. Geneva, Switzerland: World Health
21 22	523	Organization, 2013.
23 24 25	524	20. Charan J, Biswas T. How to calculate sample size for different study designs in medical
26 27	525	research?. Indian journal of psychological medicine. 2013 Apr;35(2):121.
28 29	526	21. Integrated Management of Childhood Illness (IMCI) Chart Booklet [online] Geneva: World
30 31 32	527	Health Organization. Available at:
33 34	528	https://apps.who.int/iris/bitstream/handle/10665/104772/9789241506823_Chartbook_eng.pdf
35 36 37 38	529	Accessed:19th December, 2019.
	530	22. Bassignani MJ, Bubash-Faust L, Ciambotti J, et al. Conversion of teaching file cases from
39 40 41	531	film to digital format: a comparison between use of a diagnostic-quality digitizer and use of a
42 43	532	flatbed scanner with transparency adapter. Acad Radiol. 2003 May 1;10(5):536-42.
44 45	533	23. World Health Organization. The WHO Anthro Survey Analyser. In: World Health
46 47 48	534	Organization [Internet]. Available: <u>https://www.who.int/nutgrowthdb/software/en/</u> .
49 50	535	Accessed: 10 th June, 2019.
51		
52 53		
54		
55		
56 57		
56 57		

1 2		
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	536	24. Horton NJ, Kleinman KP. Much ado about nothing: A comparison of missing data methods
	537	and software to fit incomplete data regression models. The American Statistician. 2007 Feb
	538	1;61(1):79-90.
	539	25. SPSS Inc. Released 2009. SPSS for Windows [software], Version 22.0. Chicago, SPSS Inc.
	540	Available from: <u>www.spss.com</u>
	541	26. von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational
	542	studies in epidemiology (STROBE) statement: guidelines for reporting observational studies.
	543	J Clin Epidemiol 2008;61:344–9
	544	27. Fancourt N, Deloria Knoll M, Baggett HC, et al. Chest radiograph findings in childhood
	545	pneumonia cases from the multisite PERCH study. Clin Infect Dis. 2017 May
26 27	546	29;64(suppl_3):S262-70
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	547	28. Enwere G, Cheung YB, Zaman SM, et al. Epidemiology and clinical features of pneumonia
	548	according to radiographic findings in Gambian children. Trop Med Int Health. 2007
	549	Nov;12(11):1377-85.
	550	29. Meiron Hassen, Alemayehu Toma, Mulugeta Tesfay, et al. Radiologic Diagnosis and
	551	Hospitalization among Children with Severe Community Acquired Pneumonia: A
	552	Prospective Cohort Study. Biomed Res Int, vol. 2019, Article ID 6202405, 8 pages, 2019.
	553	https://doi.org/10.1155/2019/6202405.
	554	30. Kelly MS, Crotty EJ, Rattan MS, et al. Chest radiographic findings and outcomes of
	555	pneumonia among children in Botswana. Pediatr Infect Dis J. 2016 Mar;35(3):257.
	556	31. da Fonseca Lima EJ, Mello MJ, Lopes MI, et al. Risk factors for community-acquired
	557	pneumonia in children under five years of age in the post-pneumococcal conjugate vaccine
53 54 55	558	era in Brazil: a case control study. BMC Pediatr. 2016 Dec;16(1):157.
55 56 57		
58 59		32
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 34 of 39

BMJ Open

32. Sigauque B, Roca A, Bassat Q, et al. Severe pneumonia in Mozambican young children: clinical and radiological characteristics and risk factors. J Trop Pediatr. 2009 Apr 28;55(6):379-87. 33. Ismail SA, McCullough A, Guo S, et al. Gender-related differences in care-seeking behaviour for newborns: a systematic review of the evidence in South Asia. BMJ global health. 2019 May 1;4(3):e001309. 34. Fikree FF, Pasha O. Role of gender in health disparity: the South Asian context. BMJ 2004;328:823-6. 10.1136/bmj.328.7443.823 35. Asfaw A, Lamanna F, Klasen S. Gender gap in parents' financing strategy for hospitalization of their children: evidence from India. Health economics. 2010 Mar;19(3):265-79. 36. Pandey A, Sengupta PG, Mondal SK, et al. Gender differences in healthcare-seeking during common illnesses in a rural community of West Bengal, India. Journal of Health, Population and Nutrition. 2002 Dec 1:306-11. 37. Jana A, Basu R. Examining the changing health care seeking behavior in the era of health sector reforms in India: evidences from the National Sample Surveys 2004 & 2014. Global health research and policy. 2017 Dec; 2(1):6. 38. Rambaud-Althaus C, Althaus F, Genton B, et al. Clinical features for diagnosis of pneumonia in children younger than 5 years: a systematic review and meta-analysis. Lancet Infect Dis. 2015 Apr 1;15(4):439-50 39. Awasthi S, Glick AH, Fletcher RH. Effect of cooking fuels on Respiratory Diseases in Pre-school children in Lucknow, India. Am J Trop Med Hyg 1996; 55: 48-51 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1

59

60

BMJ Open

2		
3 4	580	40. Tielsch JM, Katz J, Thulasiraj RD, et al. Exposure to indoor biomass fuel and tobacco smoke
5 6	581	and risk of adverse reproductive outcomes, mortality, respiratory morbidity and growth
7 8	582	among newborn infants in south India. Int J Epidemiol. 2009 Sep 16;38(5):1351-63.
9 10 11	583	41. O'Brien KL, Baggett HC, Brooks WA, et al. Causes of severe pneumonia requiring hospital
12 13	584	admission in children without HIV infection from Africa and Asia: the PERCH multi-country
14 15	585	case-control study. The Lancet. 2019 Jun 27
16 17 18	586	42. World Health Organization. Pneumococcal conjugate vaccines in infants and children under
19 20	587	5 years of age: WHO position paper–February 2019. Accessed 12th March. 2019.
21 22	588	43. Balaji V, Jayaraman R, Verghese VP, Baliga PR, Kurien T. Pneumococcal serotypes
23 24	589	associated with invasive disease in under five children in India & implications for vaccine
25 26 27	590	policy. The Indian journal of medical research. 2015 Sep;142(3):286.
28 29	591	44. Arifeen SE, Saha SK, Rahman S, Rahman KM, Rahman SM, Bari S, Naheed A, Mannan I,
30 31	592	Seraji MH, Ahmed NU, Shameem Hassan M. Invasive pneumococcal disease among
32 33 34	593	children in rural Bangladesh: results from a population-based surveillance. Clinical
35 36	594	Infectious Diseases. 2009 Mar 1;48 (Supplement_2):S103-13.
37 38	595	45. Johnson HL, Deloria-Knoll M, Levine OS, Stoszek SK, Hance LF, Reithinger R, Muenz LR,
39 40 41	596	O'Brien KL. Systematic evaluation of serotypes causing invasive pneumococcal disease
42 43	597	among children under five: the pneumococcal global serotype project. PLoS medicine. 2010
44 45	598	Oct 5;7(10):e1000348
46 47 48	599	46. Bénet T, Picot VS, Awasthi S, Pandey N, Bavdekar A, Kawade A, Robinson A, Rakoto-
48 49 50	600	Andrianarivelo M, Sylla M, Diallo S, Russomando G. Severity of pneumonia in under 5-
51 52	601	year-old children from developing countries: a multicenter, prospective, observational study.
53 54	602	The American journal of tropical medicine and hygiene. 2017 Jul 12;97(1):68-76
55 56 57		
58		34

1 2		
3	603	
4 5	604	Figure Legend
6 7	605	Figure 1: Flow diagram of cases of community acquired pneumonia recruited from participating
8 9	606	districts before the introduction of pneumococcal conjugate vaccine (January 2015-April 2017)
10 11		
12		
13 14		
15 16		
17 18		
19 20		
21 22		
23		
24 25		
26 27		
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53		
54 55		
56 57		
58 59		35
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

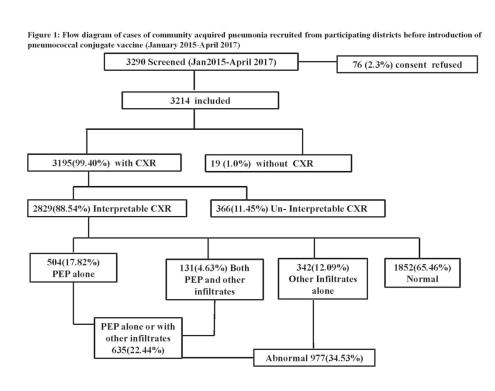


Figure 1: Flow diagram of cases of community acquired pneumonia recruited from participating districts before the introduction of pneumococcal conjugate vaccine (January 2015-April 2017)

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

254x190mm (300 x 300 DPI)

	(R/	<u>Form-R</u> ADIOLOGY REPORT FORM)
1	Drs_ID	
- objection 	Radiology Report	Patient Details
2	IDNo:	[] / [] / [] [] [] State /District / Unit / Subject number (For office use)
2	Date Of Report	[_][_]/[_][_][_][_] (DD/MM/YYYY)
	Report Details	Findings (tick one)
3	Image Quality	Adequate 🗆 Suboptimal 🗆 Un-interpretable 🗆
4	Significant Pathology	Yes 🗆 No 🗆 Un-interpretable 🛄
5 5a 5b		Yes No Un-interpretable Yes No Un-interpretable
6	Other Infiltrates/Abnormalities	Uninterpretable
6a 6b		Yes D No D Un-interpretable D Yes D No D Un-interpretable D
7 7a 7b	Pleural Fluid - Left Right	Yes I No I Un-interpretable I Yes I No I Un-interpretable I
8	Comments:	
9	Conclusion:	 a) Primary endpoint pneumonia only b) Other infiltrate only c) Both PEP and other infiltrate d) Normal e) Un-interpretable for any findings
		2

	Item No	Recommendation	Page Numbe
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of	2-3
		what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the	4
U		investigation being reported	
Objectives	3	State specific objectives, including any pre-specified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including	5
0		periods of recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	5-6
		selection of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	5-6
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	7-8
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	25
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	11-13
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control	11-13
		for confounding	
		(b) Describe any methods used to examine subgroups and	Table 1, 2 &
		interactions	
		(c) Explain how missing data were addressed	12
			reference 24
		(d) If applicable, describe analytical methods taking account of	11-13
		sampling strategy	
		(e) Describe any sensitivity analyses	NA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study-eg	14
		numbers potentially eligible, examined for eligibility, confirmed	
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Figure 1
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	14-15
		clinical, social) and information on exposures and potential	Table 1
		confounders	
		(b) Indicate number of participants with missing data for each	Figure 1

Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-	Table 3
		adjusted estimates and their precision (eg, 95% confidence	(adjusted odds
		interval). Make clear which confounders were adjusted for and why	ratio)
		they were included	
		(b) Report category boundaries when continuous variables were	Table 3
		categorized	
		(c) If relevant, consider translating estimates of relative risk into	NA
		absolute risk for a meaningful time period	(calculated
			only odds
			ratio)
Other analyses	17	Report other analyses done-eg analyses of subgroups and	Table 3
		interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	21-23
Limitations	19	Discuss limitations of the study, taking into account sources of	25-26
		potential bias or imprecision. Discuss both direction and magnitude	
		of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering	21-23
		objectives, limitations, multiplicity of analyses, results from similar	
		studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	21
Other information			
Funding	22	Give the source of funding and the role of the funders for the	27
		present study and, if applicable, for the original study on which the	
		present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Chest Radiograph Findings in children aged 2-59 months hospitalized with Community-Acquired Pneumonia, prior to the introduction of Pneumococcal Conjugate Vaccine in India- A Prospective Multisite Observational Study

Manuscript ID Article Type: Date Submitted by the	bmjopen-2019-034066.R2
Date Submitted by the	Original research
Author:	19-Mar-2020
Complete List of Authors:	Awasthi, Shally; King George's Medical University, Pediatrics Rastogi, Tuhina; King George's Medical University, Pediatrics Mishra, Neha; King George's Medical University, Pediatrics Chauhan, Abhishek ; Dr Ram Manohar Lohia Institute of Medical Sciences, Department of Radio-diagnosis Mohindra, Namita; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radio-diagnosis Shukla, Ram ; Banaras Hindu University, Varanasi, India, Institute of Medical Sciences Agrawal, Monika; King George's Medical University, Social and Preventive Medicine Pandey, CM; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Biostatistics & Health Informatics Kohli, Neera ; King George's Medical University, Department of Radio- diagnosis Study Group, CAP; CAP study Group
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Global health
Keywords:	Chest radiographs, Hospitalized community-acquired pneumonia, under- five, Streptococcus pneumoniae, India

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Title: Chest Radiograph Findings in children aged 2-59 months hospitalized with Community-Acquired Pneumonia, prior to the introduction of Pneumococcal Conjugate Vaccine in India- A Prospective Multisite Observational Study

Short Title: Radiological Findings in Children hospitalized with Community-Acquired Pneumonia in India Pre-Pneumococcal Conjugate Vaccine introduction

Shally Awasthi^{1*}, Tuhina Rastogi¹, Neha Mishra¹, Abhishek Chauhan², Namita Mohindra³, Ram Chandra Shukla⁴, Monika Agarwal⁵, Chandra Mani Pandey⁶, Neera Kohli⁷ and CAP Group[^]

¹Department of Pediatrics, King George's Medical University, Lucknow, India

²Department of Radio-diagnosis, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India

³Department of Radio-diagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India

⁴Department of Radio-diagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India

⁵ Department of Community Medicine, King George's Medical University, Lucknow, India

⁶Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

⁷Department of Radio-diagnosis, King George's Medical University, Lucknow, India

^Members of the Lucknow CAP Group are given in the Acknowledgement

*Corresponding Author Postal Address: Prof. Shally Awasthi, Head, Department of Paediatrics, King George's Medical University, Lucknow , India Pincode: 226003 Mobile: +91-9839221244 E-mail: shally07@gmail.com

Word Count: 4643 Tables: 3 Figure:1

ABSTRACT

Objectives: To assess radiological abnormalities in chest X-rays and to identify the demographic and clinical correlates of specific radiological abnormalities in children aged 2-59 months, hospitalized with World Health Organization defined community-acquired pneumonia, residing in pre-specified districts of Uttar Pradesh and Bihar, India.

Design: Prospective, hospital-based surveillance

Setting: Multi-site study conducted in a network of 117 secondary/tertiary care hospitals in four districts of Uttar Pradesh and Bihar, India.

Participants: Included were children aged 2-59 months hospitalized with community-acquired pneumonia, residing in project district, with duration of illness of <14 days and who were not hospitalized elsewhere for this episode nor had been recruited previously.

Main outcome measure: Radiological abnormalities in the chest X-rays, where there was concordance between two or more of the panel of three trained radiologists.

Results: From January 2015 to April 2017, 3214 cases were recruited and in 99.40 % (3195/3214) chest X-rays were available. Among 88.54 % (2829/3195) interpretable X-rays, 34.53 % (977/ 2829, 95% C.I. 32.78 -36.28) had some radiological abnormalities, while the rest were normal. Primary endpoint pneumonia alone or with other infiltrates was found in 22.44 % (635/2829, C.I. 20.90 %-23.98 %), other infiltrates only in 12.09% (342/ 2829; C.I. 10.88 %-13.29 %). There was a statistically significant inter-district variation in radiological abnormality. Statistically significantly higher proportion of abnormal chest X-ray was found among girls, those with weight-for-age z score \leq -3 SD, longer duration of fever, pallor and with exposure to biomass fuel.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Conclusions: Among hospitalized cases of community-acquired pneumonia, almost one-third children had abnormal chest radiographs, which were higher in females, malnourished children and those with longer illnesses; and an intra-district variation was observed.

Key words: Chest radiographs, Hospitalized community-acquired pneumonia, under-five, *Streptococcus pneumoniae*, India

Strengths and Limitations of the Study

• Prospective, multisite recruitments from a large hospital surveillance network established for the project in four districts in two states of India that have high under-five mortality rates

- Standard World Health Organization definition was used for identifying hospitalized cases of clinical pneumonia
- Radiological abnormalities interpreted by a panel of three trained radiologists at locations out of the surveillance network, blinded to each other as well as clinical features of the case
- Since pre-existing X-rays machines were used, there was a variation in the quality of images obtained, which were minimized by digitizing them centrally

• Since data of clinical examination was abstracted from hospital records, it could have resulted in inter-observer variation.

INTRODUCTION

Community-acquired pneumonia (CAP) is the single largest infectious cause of death in young
children worldwide. Globally, pneumonia accounts for 16% of deaths in children under-five years of
age and results in almost one million deaths (0.9 million children in 2016) every year^{1 2}. Most
deaths due to pneumonia occur in low and middle income countries particularly in sub-Saharan
Africa and South Asia^{2 3}. In India, there were approximately 0.44 million under-five deaths due to
CAP in the year 2015 ⁴.

CAP could have viral or bacterial etiology⁵⁻⁷. Etiology varies from country to country and also across different time periods. Pediatric bacterial pneumonia is predominantly caused by Streptococcus pneumoniae and Hemophilus influenzae Type B while Respiratory syncytial virus and Influenza A or B virus are important contributors of pediatric viral pneumonia⁵ ⁶. The World Health Organization (WHO) recommends the introduction of Pneumococcal Conjugate Vaccine (PCV) in the national immunization programme of countries with high child mortality rates, which includes India⁸. Consequently, PCV-13 was launched in May 2017 under the national immunization programme of five Indian states (Uttar Pradesh, Bihar, Rajasthan, Madhya Pradesh and Himachal Pradesh) in a phased manner⁹. It is expected to be rolled out in other parts of the country in the near future. Vaccination against *Hemophilus influenzae Type B* is already under the national immunization programme since 2011.

Differentiating bacterial from viral etiology of CAP on clinical features or by investigations remains difficult ⁷ ¹⁰ ¹¹. Several PCV probe trials have used radiographically confirmed endpoint pneumonia, to be an outcome for vaccine efficacy and this has been endorsed by WHO¹²⁻¹⁴.

The current study was a hospital-based surveillance to assess the radiological abnormalities in chest X-rays (CXRs) and to identify the demographic and clinical correlates of specific radiological abnormalities in children aged 2-59 months, hospitalized with WHO defined CAP, residing in pre-specified districts of Uttar Pradesh and Bihar, India. **METHODS Study design and Setting** This prospective multi-site observational study was conducted in Lucknow and Etawah districts of Uttar Pradesh and Patna & Darbhanga districts of Bihar, India. Uttar Pradesh is the first most populated and Bihar third most populated state of India^{15 16}. In Lucknow district 66.2% population resides in urban areas and in Patna district 43.07%^{15 16}. In contrast, only 22.3% population of Etawah district and 9.74% population of Darbhanga district resides in urban areas ^{15 16}. All four project districts have alarmingly high infant and child mortality indicators ¹⁵⁻¹⁷. The under-five mortality rates of Lucknow (58/1000), Etawah (85/1000), Patna (46/1000) and Darbhanga (77/1000) districts are above the national average $(50/1000)^{15-17}$. Similarly, the infant mortality rates of Lucknow (44/1000), Etawah (56/1000), Patna (31/1000) and Darbhanga (44/1000) districts are also higher than the national average $(41/1000)^{15-17}$.

43 Study Population

A prospective, active, hospital-based surveillance system was established for this study ^{17 18}.
Included in the surveillance were 117 public and private hospitals of four study districts which

Page 7 of 39

BMJ Open

provided either secondary or tertiary level care to admitted children. Surveillance officers visited the hospital every 48-72 hours to screen and recruit eligible cases. In between the visits they telephonically contacted the hospitals and made additional visits, if required. All children (2-59 months), hospitalized in network hospitals between January 2015 to April 2017, with history of fast breathing with/without chest in-drawing were screened ¹⁸.

Included were children hospitalized with symptoms of WHO defined CAP and residing in the project district ¹⁸. WHO has developed guidelines for hospital-based management of common childhood illness such as pneumonia ¹⁹. According to these guidelines, fast breathing ≥ 50 breaths/minute in a child aged 2–11 months and \geq 40 breaths/minute in a child aged 12-59 months along with chest indrawing was categorized as having `pneumonia`¹⁹. A child presenting with cough or difficulty in breathing plus at least one of the following: (a) oxygen saturation <90% or central cyanosis or (b) severe respiratory distress (e.g. grunting, very severe chest indrawing) or (c) signs of pneumonia with a general danger sign (inability to breastfeed or drink, lethargy or reduced level of consciousness, convulsions) was categorized as having 'severe pneumonia¹⁹. Excluded were children with cough for > 14 days or those that had been hospitalized in last 14 days ¹⁸.

Sample Size

We assumed that the incidence of radiological pneumonia is 3/100 child years of observations. Then for a margin of error of 1.5/100 child years of observation, incidence of pneumonia in the community of 20/100 child years of observation, alpha level of 0.05, and power of 90% when the

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

estimated population of children under-five years of age in Lucknow district ²⁰ is 750,000; 693
cases had to be included per district.

Data collection

Data was collected by surveillance officers who had postgraduate degree in social sciences and atleast 10 years experience in community based health research. After recruitment, they were imparted six-day centralized training on project procedures and logistics. Class-room as well as practical skills-training was given by the coordinating centre in Lucknow. Pre and post tests were conducted to ascertain knowledge and skills acquired by them through the training to ensure quality in data collection. The coordinating centre provided annual refresher trainings to the surveillance officers from all four sites in Lucknow.

After obtaining written, informed consent of the caregivers, data was collected through face-toface interviews with them as well as by abstraction from hospital records. Socio-demographic data, obtained by interviewing caregivers, was: child's age, gender, residence, birth order, immunization status, current breastfeeding status, parental education and occupation, smoking status of parents, family type, housing infrastructure, use of biomass fuel etc. Caregivers were also asked about the symptoms of disease and its duration in days.

Clinical data, recorded by pre-existing hospital staff at the time of hospitalization, was abstracted. Data was collected on anthropometry (weight and height), fever (axillary temperature $\geq 37.5^{\circ}$ C), oxygen saturation by pulse oxymetry, pallor, central cyanosis, signs of pneumonia with a general danger sign and vital signs (heart rate and respiratory rate). Presence of wheezing

on auscultation of chest was abstracted or inquired from the treating physician. At the hospitals, clinicians generally used Integrated Management of Childhood Illness (IMCI) definitions²¹ to identify pallor, cyanosis, wheeze on auscultation and general danger sign as it is incorporated in their medical undergraduate training. Most doctors of public health sector also receive a formal in-service training on IMCI²¹. Clinical outcome (survival or mortality) was noted from hospital records on follow up.¹⁷¹⁸.

Chest x-ray (CXR) image acquisition and archiving

CXR (poster-anterior view) was done when advised by the treating physician. These CXRs were obtained by the surveillance staff at the time of recruitment. CXRs were either analog or digital. In case of digital CXRs, second copy was obtained where possible. If only single analog image was available, then the hardcopy of CXR was obtained from the caregiver after the child was discharged. If the caregiver was not ready to give the hardcopy of CXR (in <1% cases), image of the same was captured by surveillance officers using 16 megapixel cell phone camera and portable CXR view-box.

CXRs of recruited cases were subsequently scanned and converted into digital format using a diagnostic-quality film image digitalizer (Microteck International Limited, model Medi 6000 plus)²². CXRs obtained/converted into digital image were stored as per the standard operating procedure and were subsequently archived for web-based radiological interpretation. Digital images were stored in JPEG format at 300 dpi resolution. Each CXR file was anonymized and given a unique identification number. Digital CXRs were uploaded on online data management software, developed especially for the project.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

115 Interpretation of radiological images

A panel of radiologists was constituted for standardized interpretations of CXRs. Four
radiologists were part of this panel, one of whom was Project co-investigator-Radiology (NK).
All radiologists are faculty in medical teaching institutes and also look after pediatric radiology.
They all have more than fifteen years experience in interpreting pediatric CXRs.

Radiologists were trained according to the methodology developed by Department of Immunization, Vaccines, and Biologicals of the WHO for research purpose ¹¹. An international WHO-certified trainer from the International Centre for Diarrhoeal Disease Research, Bangladesh imparted a two-day in-house training to the radiologists. Training objective was to standardize interpretation and coding of CXRs, to develop a CXR reporting form [S1 Appendix] and to provide training on web-based CXR retrieval and reporting system. During the training, 210 CXRs of WHO data set were used. For assessing concordance post training, another set of 48 CXRs was provided for interpretation to individual radiologists. Post-test agreement with WHO findings was calculated, which was about 80%. Inter-observer variation was about 25% and was for minor interpretation like quality of film, end point infiltrates etc. Repeat training was conducted on an additional set of 44 CXRs provided by WHO to ensure standardization in interpretation. Thereafter, concordance achieved by the radiologists was reviewed quarterly by the study arbitrator. Radiologists met annually to review key concepts and discuss challenges faced in interpreting CXRs.

Page 11 of 39

BMJ Open

After training, radiologists independently reviewed CXRs and registered their findings in an online standardized chest radiograph interpretation form **[S1 Appendix].** For optimal viewing of CXRs, all radiologists used similar workstations. Specifications were provided for the computer monitor and hardware to be used. It was ensured that monitors had the correct brightness and contrast adjustment for optimal viewing.

During online evaluation, radiologists reported the quality of film as `*interpretable*` or `*uninterpretable*`. Radiologists categorized `*interpretable*` CXRs as either `*adequate/optimal*` for features that allowed confident interpretation of consolidation and pleural effusion as well as other infiltrates or `*suboptimal*` for features that allowed interpretation of consolidation and pleural effusion, but not of other infiltrates or findings. In `*un-interpretable*` CXRs, no comment was possible for radiological abnormality with respect to presence or absence of consolidation or pleural effusion or other infiltrates ¹².

After interpreting film quality, radiologists evaluated interpretable CXRs for abnormal radiological findings. For each CXR evaluated, radiological abnormality could be presence of consolidation, other infiltrates or pleural effusion. 'Consolidation' was defined as a dense or confluent opacity that occupies a portion or whole of a lobe or the entire lung, that may or may not contain air bronchograms. `Other infiltrates` were defined as linear and patchy opacities (interstitial infiltrate) in a lacy pattern, featuring peri-bronchial thickening and multiple areas of atelectasis; also including minor patchy infiltrates that are not of sufficient magnitude to constitute endpoint consolidation, and small areas of atelectasis that in children may be difficult to distinguish from consolidation. 'Pleural effusion' was defined as the fluid in the lateral

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

pleural space between the lung and chest wall that is spatially associated with a pulmonary parenchymal infiltrate (including `other infiltrates`) or has obliterated enough of the hemithorax to obscure any infiltrates. In most cases, this will be seen at the costo-phrenic angle or as a layer of fluid adjacent to the lateral chest-wall and this does not include fluid seen in the horizontal or oblique fissures ¹². Primary end point pneumonia (PEP) for research purpose was the presence of consolidation or pleural effusion which could be with or without other infiltrates.

Final conclusions were categorised as: (a) "*Abnormal*" when it was `*PEP only*` or `*Other infiltrates only*` or `*Both PEP and other infiltrates*` and (b) `*Normal*` when no findings were abnormal¹².

After radiological interpretation, online data was archived, stored and checked for inconsistencies and completeness by the data manager. CXRs with concordant and discordant interpretations were identified. Interpretations were considered concordant when there was an agreement between two or more radiologists on final conclusions and discordant if all the three radiologists disagreed. Discordant interpretations were forwarded to the study arbitrator (NK). Arbitrator assessed discordant CXRs online and her interpretation was taken as final.

177 Data management and statistical analysis

178 Clinical data of hospital surveillance network was entered online in customized software. 179 Primary entry was done by the four participating sites. Secondary data entry was done by the 180 coordinating site in separate customized software. Anonymized CXRs were uploaded on 181 customized software. Each of the three panelists assessed the CXRs online, blind to peer

assessments as well as clinical features of the case. CXR assessment data was downloaded fromthe online software in MS Access database.

Exploratory data analysis was performed for detection of outlier and missing observations for all the variables. Descriptive statistics was calculated for continuous variables as mean \pm standard deviation and categorical variables in percent. Un-interpretable CXRs were not analyzed. Among interpretable CXRs, those radiological abnormalities where there was concordance between the two radiologists, were taken as final. Weight-for-age (WAZ) z-score each child was calculated using WHO Anthro Survey Analyser²³. Weight of 7.59% (215/2829) children was missing in our data. Missing weight of recruited children was estimated using regression based imputation technique²⁴. Kappa statistics was performed for agreement analysis among radiologists for CXRs findings. Statistical analysis was performed using SPSS version 22.0 (Chicago, IL)²⁵. A p-value of <0.05 was taken as statistically significant using a two-tailed distribution.

Univariate analysis was performed to evaluate heterogeneity, stratified by four participating sites for socio-demographic variables such as child's age, gender, residence, birth order, immunization status, current breastfeeding status, parental education and occupation, smoking status of parents, family type, housing infrastructure, use of biomass fuel and for clinical variables such as weight, height, duration of fever and oxygen saturation.

We report proportions of radiological abnormalities among hospitalized children for CAP by four districts. Univariate analysis was performed to assess association of socio-demographic variables and clinical signs of CAP with radiological abnormalities. Chi-square test was used for

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1 2		
- 3 4	205	categorical variables and student's t-test for continuous variables. ANOVA test was used for
5 6	206	more than two groups to test the significance of continuous variables. Multivariate unconditional
7 8 9	207	logistic regression was performed find association of presence of various radiological
10 11	208	abnormalities, controlling for district of residence and other variables that had univariate
12 13	209	association with radiological abnormalities (p value ≤ 0.2) and/or were clinically meaningful.
14 15 16	210	
17 18	211	We developed four models and in these four models dependent (outcome) were:
19 20	212	Model I: Abnormal vs. Normal
21 22 23	213	Model II: Primary End Point Pneumonia alone or with other infiltrates vs. Normal
24 25	214	Model III: Primary End Point Pneumonia alone vs. Normal
26 27	215	Model IV: Other infiltrates only vs. Normal
28 29 30	216	
30 31 32	217	Independent variables that were kept across all the four models were : participating districts, age,
33 34	218	gender, use of biomass fuel, symptoms of CAP such as duration of illness, presence of wheeze
35 36 37	219	on ascultation, pallor, vomiting everything and malnutrition status of the case [WAZ \leq -2 SD
37 38 39	220	(malnourished) and WAZ \leq -3 SD (severely malnourished)].
40 41	221	
42 43 44	222	Patient and public involvement in research
45 46	223	Patients or public were not involved in the development of research question, study design or
47 48	224	conducting the research. Reporting of this research conforms to the guidelines for Strengthening
49 50 51	225	the Reporting of Observational Studies in Epidemiology (STROBE) ²⁶ .
52 53	226	
54 55	227	RESULTS
56 57	<u> </u>	
58 59		13

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Page 15 of 39

BMJ Open

A total of 3290 hospitalized cases were screened in hospital surveillance network of Lucknow and Etawah districts of Uttar Pradesh and Patna & Darbhanga districts of Bihar. Out of these, 3214 cases fulfilling the WHO diagnosis of CAP were included [Figure 1]. Among them, 3195 (99.40%) cases were enrolled with CXRs and only in 19 (1.0%) cases CXRs were not done. Out of these 88.54% (2829/3195) CXRs were found interpretable and remaining 11.45% (366/3195) were found un-interpretable by radiologists. Among interpretable CXRs, 99.11 % (2804/2829) children had `severe pneumonia` as per the WHO criteria ¹⁹.

Among interpretable CXRs, we found 22.44% (635/2829) children had PEP alone or with infiltrates, 12.09% (342/2829) had other infiltrates only and 65.46% (1852/2829) had normal CXRs findings [**Figure 1**]. Concordance among \geq 2 radiologists on final conclusion of CXRs findings was 86.0%. Kappa statistics was calculated for agreement of CXRs findings between Reader 1 versus Reader 2 (K₁=0.31), Reader 2 versus Reader 3 (K₂=0.46) and Reader 3 versus Reader 1(K₃=0.42).

Table 1 shows univariate distribution of socio-demographic and clinical variables among hospitalized cases across four participating districts. A statistically significant variation was observed in all socio-demographic variables such as place of residence, type of house, type of family, maternal and paternal education and occupation, use of biomass fuel and parental smoking status across the four districts. We also report other clinical variables of recruited cases across the four districts in table 1. Oxygen saturation by pulse-oxymetry was statistically significantly different across the sites, the proportion of cases with oxygen saturation < 90 % was found also found statistically significant in children across four districts (p < 0.0001).

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Table 1: Distribution of socio-demographic and clinical variables among hospitalized children for participating districts (Jan 2015-April 2017)

Characteristics	Lucknow	Etawah	Patna	Darbhanga	Total
Socio-demographic	n=1025	n=389	n=744	n=671	N=2829
Characteristics	(%)	(%)	(%)	(%)	(%)
Gender					
Male	659(64.29)	287(73.78)	557(74.87)	502(74.81)	2005(70.87
Place of residence					
Rural	195(19.02)	279(71.72)	304(40.86)	614(91.51)	1392(49.20
Urban	830(80.98)	110(28.28)	440(59.14)	57(8.49)	1437(50.80
Family Type				• •	
Joint	688(67.12)	360(92.54)	707(95.03)	383(57.08)	2138(75.57
Nuclear	337(32.88)	29(7.46)	37(4.97)	287(42.77)	690(24.39)
House type		K			
Mud	64(6.24)	54(13.88)	123(16.53)	374(55.74)	615(21.74)
Bricks	854(83.32)	256(65.81)	453(60.89)	85(12.67)	1648(58.25
Combined	107(10.4)	79(20.31)	168(22.58)	212(31.59)	566(20.01)
Mother's Education				.	
No formal education	203(19.80)	56(14.40)	328(44.09)	496(73.92)	1083(38.28
Class I-V	108(10.54)	28(7.20)	82(11.02)	38(5.66)	256(9.05)
Class VI-XII	379(36.98)	176(45.24)	243(33.66)	112(16.69)	910(32.17
Graduate/ Post graduation	335(32.68)	129(33.16)	91(12.23)	25(3.73)	580(20.50
Father's Education					
No formal education	167(16.29)	29(7.46)	153(20.56)	345(51.42)	694(24.53)
Class I-V	85(8.29)	19(4.88)	91(12.23)	82(12.22)	277(9.79)
Class VI-XII	437(42.63)	206(52.96)	328(44.09)	205(30.55)	1176(41.57
Graduate/ Post graduation	336(32.78)	135(34.70)	172(23.12)	39(5.81)	682(24.11)
Birth Order					
1 st	435(42.44)	187(48.07)	315(42.34)	192(28.61)	1129(39.91
2 nd	343(33.46)	120(30.85)	235(31.59)	258(38.45)	956(33.79)
3 rd	153(14.93)	47(12.08)	129(17.34)	137(20.42)	466(16.47
More than 3 rd	93(9.07)	35(9.00)	62(8.33)	83(12.37)	273(9.65)
Immunization Status					
Complete for age	792(77.27)	300(77.12)	711(95.56)	544(81.07)	2347(82.96
Incomplete for age	220(21.46)	84(21.59)	25(3.36)	126(18.78)	455(16.08)
Unimmunized	13(1.27)	5(1.29)	8(1.08)	1(0.15)	27(0.95)
Currently Breast Feeding					
Yes	653(63.71)	256(65.81)	589(79.17)	537(80.03)	2035(71.93
No	372(36.29)	133(34.19)	155(20.83)	134(19.97)	794(28.07
Father's Occupation	· · · · · ·	, , , , , , , , , , , , , , , , , , ,		· · · · · ·	Ì
Unemployed	13(1.27)	20(5.14)	27(3.63)	63(9.39)	123(4.35)
Daily wages	329(32.10)	81(20.82)	165(22.18)	474(70.64)	1049(37.08
Salaried/ Professional	397(38.73)	104(26.74)	245(32.93)	55(8.20)	801(28.31

58

59

Self-Employment	286(27.90)	184(47.30)	307(41.26)	79(11.77)	856(30.26)
Mother's					
Occupation					
Home maker	961(93.76)	376(96.66)	701(94.22)	484(72.13)	2522(89.15
Daily wages	17(1.66)	3(0.77)	17(2.28)	171(25.48)	208(7.35)
Salaried/Professionals	47(4.59)	9(2.31)	18(2.42)	7(1.04)	81(2.86)
Self-Employment	0(0.0)	1(0.26)	8(1.08)	9(1.34)	18(0.64)
Biomass fuel					
Yes	211(20.59)	245(62.98)	263(35.35)	609(90.76)	1328(46.94
No	814(79.41)	144(37.02)	481(64.65)	62(9.24)	1501(53.06
Smoking Status- Father					
Yes	152(14.83)	45(11.57)	56(7.53)	59(8.79)	312(11.03)
No	873(85.17)	344(88.43)	688(92.47)	612(91.21)	2517(88.97
Indoor smoking-	075(05.17)	511(00.15)	000()2.17)	012()1.21)	2317(00.57
Father					
Yes	83(8.10)	21(5.40)	16(2.15)	43(6.41)	163(5.76)
No	942(91.90)	368(91.60)	728(97.85)	628(93.59)	2666(94.24
Smoking Status-			,_0(,,)		
Family member					
Yes	129(12.59)	55(14.14)	45(6.05)	102(15.20)	331(11.70
No	896(87.41)	334(85.86)	699(93.95)	569(84.80)	2498(83.30
Indoor smoking –	0,000,000,000				2.33(00.00
Family member					
Yes	84(8.20)	27(6.94)	27(3.63)	94(14.01)	232(8.20)
No	941(91.80)	362(93.06)	717(96.37)	577(85.99)	2597(91.80
Clinical Variables at	n	n	n	n	n
the time of admission	Mean± SD	Mean± SD	Mean± SD	Mean± SD	Mean± SI
at hospital					
Age	1025	389	744	671	2829
(in months)	14.53±13.88	10.69±10.95	10.26±11.35	12.30±13.29	12.35±12.8
Height	303	324	34	266	927
(in cm)	68.61±13.78	70.66±13.75	64.38±10.25	70.46±12.14	69.70±13.2
Weight	1025	389	744	671	2829
(in kg)	7.96±2.97	7.34±2.73	7.11±2.78	7.78±2.93	7.61±2.90
Fever Duration	929	321	689	569	2508
(in days)	4.46±2.71	3.59±2.37	4.25±2.52	3.54±2.47	4.08±2.59
Respiratory Rate					
Respiratory Rate	602	272	540	451	1864
[2-11 months]	53.38±14.05	60.87±9.60	53.82±10.16	60.78±7.26	56.37±11.4
Respiratory Rate	423	117	204	220	964
[12-59 months]	47.75±14.17	53.22±13.17	45.59±10.11	58.03±6.83	50.30±12.7
	n	n	n	n	n
	(%)	(%)	(%)	(%)	(%)
Oxygen saturation	528	343	236	319	1426
done	(51.51)	(88.17)	(34.25)	(56.06)	(50.40)
<u> </u>	61	57	49	43	210
Oxygen saturation <	01	57	47	H J	210

Grunting	461	353	687	649	2150
Orunning	(44.98)	(90.75)	(92.34)	(96.72)	(76.00)
Very severe chest in-	953	352	739	651	2695
drawing	(92.97)	(90.49)	(99.33)	(97.02)	(95.26)
Signs of Pneumonia					
with a general					
danger sign					
Lethargy or reduced	423	259	6	412	
level of	(41.27)	(66.58)	(0.81)	(61.40)	1100
consciousness	(+1.27)	(00.50)	(0.01)	(01.40)	(38.88)
Inability to	291	259	75	312	
breastfeed or drink	(28.39)	(66.58)	(10.08)	(46.50)	937
	`	、 <i>,</i> ,	· · ·	· · · ·	(33.12)
Convulsions	16	19	13	100	148
Convuisions	(1.56)	(4.58)	(1.75)	(14.90)	(5.23)
Central cyanosis	15	7	26	14	62
Contral Cyanosis	(1.46)	(1.80)	(3.49)	(2.09)	(2.19)

Table 2 shows proportions of radiological pneumonia which includes PEP alone or with other infiltrate and other infiltrates among cases hospitalized for CAP in four participating districts. We observed statistically significant district-wise heterogeneity in radiological abnormalities. We found higher proportion of radiological abnormalities in Patna and Lucknow districts, which have a larger urban population, and lower proportion in Etawah and Darbhanga districts, which in contrast have a larger rural population. We also observed correspondingly higher proportion of PEP alone or with other infiltrates in districts of Lucknow and Patna and lower in districts of Etawah and Darbhanga.

Table 2 also describes univariate distribution of socio-demographic and clinical factors of CAP among hospitalized children (2-59 months). Statistically significantly higher proportion of females hospitalized for CAP had radiologically abnormal CXR. Likewise, statistically significantly higher proportion of abnormal versus normal CXRs findings were reported in

hospitalized cases who had symptoms of fever, pallor, wheezing on auscultation, vomitingeverything or were malnourished.

, 8 270

Table 2: Distribution of socio-demographic and clinical factors by chest radiograph

272	findings among hos	spitalized children	from January 2	2015-April 2017
-----	--------------------	---------------------	----------------	-----------------

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	p value
² Participating site	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.000
28 Patna 744 457 (61.42) 287 (38.58) 184 (64.11) 103 (35.89)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
33 Socio- 34 demographic & 35 clinical factors 36 (column %)	
³⁷ Age-group ₃₈ (months)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
⁴⁴ ₄₅ Gender	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.72
50 Place of residence	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
54 (912) (1	0.34

 BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Biomass fuel							
Yes	1501	867	461		294	167	0.24
1 05	1301	(46.81)	(47.19)	0.44	(42.30)	(48.83)	0.24
No	1328	985	516	0.44	341	175	
	1520	(53.19)	(52.81)		(53.70)	(51.17)	
Immunization status							
Complete for age	2347	1546 (83.48)	801 (81.99)	0.32	516 (81.26)	285 (83.33)	
Incomplete	482	306 (16.52)	176 (18.01)		119 (18.74)	57 (16.67)	0.54
Clinical Features							
Fever	2499	1616 (87.26)	883 (90.38)	0.014	575 (90.55)	308 (90.06)	0.82
Pallor	764	465 (25.11)	299 (30.60)	0.002	200 (31.50)	99 (28.95)	0.41
Wheeze on auscultation	2054	1377 (74.35)	677 (69.29)	0.005	415 (65.35)	262 (76.61)	0.000
Duration of illness fever [days] 7 (n, Mean ± SD)	2499	1611 3.91±2.51	888, 4.40±2.70	<0.0001	577, 4.57±2.82	342, 4.08±2.44	0.011
Respiratory Rate							
Respiratory Rate [2-11 months] $(n, Mean \pm SD)$	1865	1243 55.52±11.29	642 57.99±11.70	<0.0001	409 58.12±11.88	233 57.74±11.40	0.69
Respiratory Rate $\frac{1}{2}$ [12-59 months] $\frac{1}{2}$ (n, Mean \pm SD)	964	629 49.78±12.41	335 51.28±13.37	0.08	226 51.35±13.31	109 51.12±13.35	0.88
Fast Breathing for age [2-11 months]	1735	1130 (61.02)	605 (61.92)	0.11	384 (60.47)	221 (64.62)	0.69
Fast Breathing for age [12-59 months]	862	562 (30.35)	300 (30.71)	0.92	204 (32.13)	96 (28.07)	0.53
Signs of Pneumonia with a general danger sign n (%)							
Lethargy or reduced level of consciousness	1101	732 (39.52)	369 (37.77)	0.39	247 (38.90)	122 (35.67)	0.33
Inability to breastfeed or drink	937	612 (33.05)	325 (33.27)	0.46	211 (33.23)	114 (33.33)	0.97
³ Convulsions	148	98 (5.29)	50 (5.12)	0.93	33 (5.20)	17 (4.97)	0.87
Central Cyanosis	62	39	23	0.34	16	7	0.64

1 2								
3			43222620614660(12.20)(21.08)(22.99)(17.54)reight of age z score > -2SD; Malnutrition-weight-for-age z \leq -2SD and Severen-weight-for- age z \leq -3SDscribes four multivariate unconditional logistic regression models to find associates ofCXR findings. After controlling for age, gender, symptoms of pneumonia, duration ofomass fuel and malnutrition status of cases, statistically significant district-wiseity remained in the first three models. Models I, II and III had similar associates for					
) Statura	ition							
7		1880						
9 10 Malnutrit	ion*	517			< 0.0001		-	0.06
12 Severe ma	atus ormal * alnutrition* evere malnutrition* 273 *Normal- 274 malnutrit 275 276 Table 3 of 277 abnormal 278 illness, b 279 heteroger 280 radiologie 281 gender and	432						
					-weight-for-a	ge $z \leq -2SD$ and $z \leq -2SD$	Severe	
15 274 16	malnutriti	on-weight-fo	or- age $z \le -3SD$					
18								
₂₀ 276	Table 3 d	escribes fou	r multivariate ur	conditional log	gistic regressi	on models to find	d associates of	
22 277	abnormal	CXR finding	gs. After contro	lling for age, g	ender, sympt	oms of pneumon	ia, duration of	
24	illness, b	iomass fuel	and malnutriti	on status of	cases, statist	ically significant	t district-wise	
27	heterogen	eity remaine	ed in the first the	ree models. M	odels I, II an	d III had similar	associates for	
29 280	radiologic	al abnormal	ities whereas M	odel IV was di	fferent. Acr	oss all the four n	nodels, female	
31 281	gender an	d those with	h severe malnut	rition had stati	stically signi	ficantly higher r	isk for having	
Addition(2.11)(2.35)(2.52)(2.05)Malnutrition1293587367220Normal *1880(69.82)(60.08)(57.80)(64.33)Malnutrition*517(17.98)(18.83)< 0.0001(19.21)(18.13)0.00Severe malnutrition*432(22.60206146600.0001Severe malnutrition*432(12.20)(21.08)(22.99)(17.54)0.00Severe malnutrition-weight of age z score > -2SD; Malnutrition-weight-for-age z ≤ -2SD and Severe367367367367Table 3 describes four multivariate unconditional logistic regression models to find associates of367367367367276Table 3 describes four multivariate unconditional logistic regression models to find associates of367367367367277abnormal CXR findings. After controlling for age, gender, symptoms of pneumonia, duration of367367367367278illness, biomass fuel and malnutrition status of cases, statistically significant district-wise367367367367280radiological abnormalities whereas Model IV was different. Across all the four models, female360361361361281gender and those with severe malnutrition had statistically significantly higher risk for having38238038038038038338438438038038038038038038038038438538038								
35	.11	1	C .11					

Patna vs. Others	(1.27-2.2	0) (0.0001)	(1.36-2.64)	.0.0001	(1.56 - 3.24)	-0.0001	(0.95-2.07)	0.0
Data a sua Othana	1.67	< 0.0001	1.89	< 0.0001	2.25	< 0.0001	1.39	0.0
Etawah vs. Othe	rs 1.22 (0.88-1.7	0) 0.23	1.30 (0.87-1.95)	0.19	1.49 (0.95-2.30)	0.07	1.17 (0.74-1.87)	0.9 0.5 0.0
Lucknow vs. Oth	(1.20-2.1	0) <0.0001	2.07 (1.48-2.89)	< 0.0001	2.20 (1.52-3.19)	< 0.0001	0.98 (0.65-1.47)	0.9
Districts	1.50		2.07		2.20		0.00	
	(95%Cl	1	(95%CI)	P and	(95%CI)	P mut	(95%CI)	val
	Adjuste Odd Rat		Adjusted Odd Ratio	p value	Adjusted Odd Ratio	p value	Adjusted Odd Ratio	p
Variables	Adiusto	d			Adjusted	1	Adjusted	1
			other infi /Norma				Normal	Ref
	Abnorm	al/Normal ^{Ref}	PEP alone		PEP alone / N	ormal ^{Ref}	Other infil	
		odel – I	Model		Model -		Model –	
	cal factors, an	nong hospital	ized children	January 2	015-April 201	7	,	
	Independent A	Associations	between Ches	t Radiogra	ph Findings	and demos	graphic	
34								
with long	er duration of	illness.						
	_		U					
2 abnormal	CXRs. A high	ner risk of rad	iological abno	ormalities w	vas also observ	ed in those	e children	
1 gender ar	d those with	severe malnut	trition had sta	tistically si	gnificantly high	gher risk f	or having	
	1.1 .4				· (* ,1 1 ·	1 . 1 .	· · ·	
o radiologio	al abnormaliti	es whereas M	lodel IV was o	different. A	Across all the	four mode	ls, female	
9 heterogen	eity remained	in the first th	ree models. N	Aodels I, II	and III had s	imilar asso	ciates for	
8 illness, b	iomass fuel a	and malnutrit	ion status of	cases, sta	tistically sign	ificant dis	strict-wise	
7 abnormal	CXR findings	. After contro	olling for age,	gender, syı	nptoms of pne	eumonia, d	uration of	
				0 0				
6 Table 3 d	escribes four 1	nultivariate u	nconditional lo	ogistic regr	ession models	to find ass	ociates of	
5								
'4 malnutriti	on-weight-101	$-age 2 \ge -35L$,					
	weight of age on-weight-for			n-weight-fo	or-age $z \le -2SI$) and Seve	re	
e malnutrition*	432	(12.20)	(21.08)		(22.99	/	(17.54)	
		<u>(17.98)</u> 226	(18.83) 206	< 0.000	01 (19.21) 146)	$\frac{(18.13)}{60}$	0.06
itrition*	517	333	184	< 0.000	122	、	62	0.07
al *	1880	(69.82)	(60.08)		(57.80)	(64.33)	
S		1293	587		367		220	
utrition								
· · · ·								

								D					
Age – Group								0.27					
(months)													
2-11 Ref	0.92		0.95		1.03		0.86						
12-59	(0.77-1.10)	0.34	(0.77-1.17)	0.62	(0.82-1.29)	0.79	(0.66-1.13)	0.27					
Gender													
Male Ref		139 134 128 148											
Female	1.39 (1.16-1.66)	< 0.0001	1.34 (1.08-1.65)	0.008	1.28 (1.01-1.61)	0.03	1.48 (1.14-1.92)	0.004					
Symptoms of pneumonia¶								0.42					
Wheezing	0.83	0.06	0.72	0.005	0.75	0.02	1.14	0.42					
6	(0.68-1.01)		(0.57-0.90) 1.28		(0.59-0.96) 1.22		(0.83-1.55) 1.34						
Pallor	(1.08-1.58)	0.006	(1.03-1.60)	0.02	(0.95-1.55)	0.12	(1.01-1.77)	$0.04\frac{1}{5}$					
Vomiting	0.90	0.28	0.80	0.04	0.78	0.05	1.09	0.51 ±					
everything	(0.75-1.09)	0.20	(0.64-0.99)		(0.62-1.01)		(0.83-1.08)						
Duration of illness fever (days)	, 1.06 (1.04-1.09)	< 0.0001	1.08 (1.04-1.12)	< 0.0001	1.08 (1.04-1.12)	< 0.0001	1.03 (0.98-1.48)	0.24					
Biomass fuel	1.28	0.02	1.39	0.006	1.40	0.003	1.08	0.64					
	(1.05-1.57)	0.02	(1.10-1.76)	0.000	(1.14-1.88)	0.003	(0.79-1.45)	0.04					
Malnutrition Status													
Normal *Ref													
	1.18	0.1.5	1.17	0.00	1.17	0.05	1.12						
Malnutrition*	(0.93-1.45)	0.15	(0.91-1.52)	0.23	(0.88-1.55)	0.27	(0.82-1.52)	0.47					
Severe malnutrition*	1.65 (1.31-2.09)	< 0.0001	1.82 (1.34-2.36)	< 0.0001	1.87 (1.41-2.47)	< 0.0001	1.62 (1.71-2.23)	0.003					
	ons used: Ref Ref	ference ((1.41-2.47)		(1./1-2.23)						
88	iis useur itt		acebory										
89 Footnotes: ¶	No signs of pi	neumonia	taken as a refer	ence				1					
90 *Normal: we	eight-for-age z	score > -2	SD; Malnutritic	on: weight	for -age $z \le -2$	SD; Severe	e						
91 malnutrition	: weight-for-ag	$z \le -3SI$)										
DIGGIU													
92 DISCUS	SSION							ç					
.93 This active.	prospective	hospital-l	based surveilla	ance study	v was condu	cted to a	ssess the						
,		1		-	,			, ,					
94 radiological	abnormalities	in childre	n (2-59 month	s) residing	; in pre-specifi	ed districts	s of Uttar	202					
95 Pradesh and	Bihar, India	and hospit	talized with CA	AP. The st	tudy was cond	ucted fron	n January	+ Dy (
	radesh and Bihar, India and hospitalized with CAP. The study was conducted from January												
96 2015 to Apri	11 2017, prior to	o introduc	tion of PCV in	the nation	al immunizatio	n program	me of the	יסווע סון קטוו וס, בסביד מץ guest. הוסופטיפע מץ טעראוועווע					
97 Government	of India ⁹ .							Iecie					
								u vy					
298													
								y i y					
							21	F					

DISCUSSION

Page 23 of 39

BMJ Open

In our study, among interpretable CXRs, we found that 22.44% (635/2829) children had PEP alone or with infiltrates, 12.09% (342/2829) had other infiltrates only and 65.46% (1852/2829) had normal CXRs findings. Our study used WHO case definition for CAP ¹⁹. A panel of three trained radiologists interpreted CXRs, adopting WHO recommended methodology ¹¹¹². These make our study methodology robust and results generalizable.

There were 88.54% (2829/3195) interpretable CXRs in the current study. This is similar to 83% (3587/3973) interpretable CXRs reported by Pneumonia Etiology Research for Child Health (PERCH) study conducted on 4232 children (1-59 months) to assess the etiology of CAP in nine sites of seven countries ²⁷. Consistent with PERCH findings, a vaccine probe trial conducted in Gambia found the proportion of interpretable CXRs among unvaccinated cases of pneumonia to be 84.32% (242/287)²⁸.

There have been several studies in the past two decades, which have reported CXRs findings in hospitalized cases of CAP. Almost all of these were conducted before the introduction of PCV in their respective regions. A small prospective study conducted in Ethiopia reported radiological abnormality in CXRs in 48.3% (95% CI 39.49-57.22) among 122 children (3 months-14 years) clinically diagnosed with WHO-defined severe pneumonia²⁹. Similar findings were reported from the Gambian vaccine probe trial where the proportion of radiological abnormality was 45% (95% CI: 43.35-46.46) among unvaccinated hospitalized cases of clinical pneumonia²⁸. PERCH study found that 54% (95% CI: 52.31-55.57) of CXRs among cases of CAP were abnormal ²⁷. In all of these studies, proportion of cases with abnormal CXRs is higher than 34.5% (95% CI 32.8-36.3) found by us in the current study. However, our findings are similar to PERCH rural

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

study site of Matlab, Bangladesh that reported radiological abnormality in 35.3% (95% CI: 29.77-40.85) CXRs of hospitalized cases of CAP ²⁷. Another PERCH urban site of Dhaka, Bangladesh reported 63.10% (95% CI 56.18 -70.02) cases with abnormal CXRs²⁷. In our study, radiological abnormalities in CXRs were higher in cases from largely urban districts of Patna and Lucknow compared to rural districts of Darbhanga and Etawah. This is consistent with rural-urban differences in Bangladesh sites of PERCH. Variation in CXR findings among cases of CAP may be due to infecting organism, immune response of patient and prior duration of disease.

In 2016, WHO's Department of Immunization, Vaccines and Biologicals standardized the categorization of radiological pneumonia and established that PEP can be taken as a good surrogate marker of bacterial pneumonia in epidemiological and vaccine efficacy studies¹². In our study, 22.44 % (95% C.I. 20.90 -23.98), CXRs were having PEP alone or with other infiltrates. This is similar to PERCH study that reported PEP alone or with other infiltrates in 27% (95% C.I. 25.50 -28.40) hospitalized cases of CAP²⁷. Another study conducted in Gambia reported that 45% (95% CI: 43.35-46.46) non-vaccinated children had PEP and/or other infiltrates ²⁸. PEP has been associated with increased risk of treatment failure (p=0.002), increased length of hospitalization (p=0.0003) and more days of respiratory support (p=0.002) in Botswana when compared with cases reporting no significant pathology on $CXRs^{30}$.

In our study, female gender (p<0.001) was at the higher risk of developing radiological abnormalities compared to males (table 3). The results are in concordance with a hospital-based case-control study carried out in Brazil that reported male gender as a protective factor against

BMJ Open

pneumonia (OR = 0.53; 95 % CI 0.39–0.72) ³¹. Another study in Mozambique, Africa reported that male gender was not significantly associated with presence of radiological abnormalities (OR =0.77; 95 % CI 0.56–1.05) in children (0-59 months) suffering from severe pneumonia ³². However, in contrast, a Gambian study reported male preponderance for all pneumonia that was most marked for `other infiltrates/abnormalities` pneumonia²⁸.

In our study, it was observed that there was differential care-seeking by gender for CAP in all four project sites. Although females admitted with CAP were at higher risk of having radiological abnormalities, lower proportion were hospitalized for it. Gender inequality in health care seeking for females is common in India, as in other South Asian countries ³³ ³⁴. Since there is no health-care financing or health insurance provision in India, in case of severe illness, parents are less likely to incur out-of-pocket expenditure or incur debts to pay expenses on medical treatment of their daughters compared to sons ³⁵. Another Indian study found that male children were five times more likely to be taken early for medical care and three times more likely to be seen by qualified medical doctors compared to female children ³⁶. We also found that majority of hospitalized cases of pneumonia were from urban areas, in contrast with observations of other researchers who report poor health care seeking from rural areas³⁷.

A systematic review with meta-analysis conducted in 2019 suggests that no one clinical feature is sufficient on its own to diagnose radiological pneumonia ³⁸. However other sociodemographic and clinical correlates of abnormal CXRs found by us (Model 1), which increased the risk of radiological abnormalities, were presence of pallor, severe malnutrition, longer duration of illness and exposure to biomass fuel. Exposure to biomass fuel used for cooking is an BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

important factor that increases the risk of CAP in developing countries³⁹. In rural India, majority
of the households use biomass fuel like firewood, dung cakes and wood for cooking ⁴⁰. Young
children are at risk to adverse effects of exposure to biomass fuel as either the households have
no separate cooking space or have poor ventilation and sometimes young children stay with their
mother while she cooks.

Other correlates of PEP/Radiological Pneumonia (Models II and III), besides those found in Model I, were presence of vomiting everything and wheeze on auscultation, both of which were found to be protective. These symptoms/signs are more often reported in viral pneumonia⁴¹. Correlates of radiological abnormalities of `other infiltrates` (Model IV), which increased the risk, were again female gender, pallor and severe malnutrition. Hence it is difficult to attribute radiological findings of other infiltrates to either bacterial or viral etiology.

Based on our study, almost two-third hospitalized cases of CAP had normal CXRs and this could be perhaps of viral etiology. This is supported by a recent study that reported 61.4% (95% CI 57·3–65·6) cases to be viral⁴¹. Among one-third of cases of CAP had abnormal CXRs and thus were more likely to be bacterial in etiology.

In India, 13-valent PCV is given using a three dose schedule (2 primary and one booster) at 6 weeks, 14 weeks and 9 months of age. PCV 13 provides coverage against 13 serotypes (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F) causing pneumococcal pneumonia⁴². Several studies have assessed serotype distribution of pneumococcal disease among children in India. A study conducted in Vellore, India found that the most common serotypes causing invasive

infections among under-five children were 14, 19F, 5, 6A and 6B, all of which were covered by the 13-valent PCV⁴³. Another population-based surveillance study conducted in rural Bangladesh found that the most common serotypes were 1, 5, 14, 18C and 19A and 38 and these comprised more than three-fourth of the S. pneumoniae isolates ⁴⁴. A systematic review and meta-analysis of data collected on Invasive Pneumococcal Disease serotypes from under-five children during the pre-PCV period (between 1980–2007) found that serotypes included in both the 10-valent and 13-valent PCVs accounted for 10 million cases and 600,000 deaths worldwide⁴⁵.

Several strengths of the study are worth-noting. This was an active, prospective, multi-site study where recruitments were done from a large hospital surveillance network established especially for the study in four districts of two Indian states that have high under-five mortality rates. Standard WHO definition was used to identify hospitalized cases of CAP. Radiological abnormalities were interpreted by a panel of three trained radiologists at locations out of the surveillance network, blinded to each other as well as clinical features of the case. Despite these strengths, our study findings have certain limitations. First, in our study, pre-existing x-rays machines which were not of uniform specification, were used. This might have caused variation in quality of CXR images, though this error was minimized by digitizing the CXR images centrally. Secondly, in our study, clinical data collection was recorded by physicians in the network hospitals and this could be subject to observer bias. This could also have lead to possibly over reporting of presence of wheezing. In this study, we have not collected information on use of antibiotic prior to hospitalizations, as such information is not available reliably. However, in another study, done in one of the network hospitals of Lucknow in the recent past, it

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

414 was found that 70.5% children tested positive for antibiotics on urine examnation⁴⁶. Prior use of 415 antibiotics could have possibly lead to underestimation of radiological pneumonia. We also 416 observed that pulse oxymetry was routinely done in the network hospitals. This could have an 417 impact on the case management but would not have affected the radiological findings of CXRs.

CONCLUSION

Among hospitalized cases of community-acquired pneumonia, almost one-third children had abnormal chest radiographs of which about two-thirds had abnormalities related with possible bacterial etiology (Streptococcus pneumonia). Hence, the introduction of pneumococcal vaccination is likely to reduce the burden of childhood pneumonia in India. Since the study was done prior to the introduction of PCV in India, continued surveillance will be required to assess the impact of PCV on radiological findings in cases admitted with CAP. The impact of introduction of PCV in the national immunization programme on under-five mortality rate and burden of CAP needs to be assessed.

Acknowledgements: We thank the state governments of Uttar Pradesh and Bihar for giving us permission to conduct the study. We extend our gratitude to participating tertiary and secondary care hospitals for their contribution in the study. We offer thanks to Dr. Kamrun Nahar from the International Centre for Diarrhoeal Disease Research, Bangladesh for imparting training to the panel of study radiologists. Members of the Lucknow Community-Acquired Pneumonia (CAP) Group: King George's Medical University (KGMU), Lucknow, India: Prof. Shally Awasthi, Department of Pediatrics, Prof. Neera Kohli, Department of Radio-diagnosis, Page 29 of 39

BMJ Open

Prof. Monika Agarwal, Department of Community Medicine; Mr. Puneet Dhasmana, Project
Staff; Patna Medical College and Hospital, Patna, Bihar-Prof. Neelam Verma and Prof. Chandra
Bhushan Kumar, Department of Pediatrics; Darbhanga Medical College and Hospital,
Darbhanga, Bihar, India- Prof. Chittaranjan Roy, Department of Community Medicine, Prof.
Kripanath Mishra, Department of Pediatrics; Uttar Pradesh University of Medical Sciences,
Etawah, Uttar Pradesh, India- Prof. Pankaj Kumar Jain, Department of Community Medicine,
Prof. Rajesh Yaday, Department of Pediatrics.

443 Contributors: The study was conceived and designed by SA. CAP study group performed data
444 acquisition.CMP and NM¹conducted the statistical analysis of the data. The paper was written by
445 SA, TR, MA and CMP. AC, NM³, RCS and NK interpreted chest x-rays. All authors were
446 involved with drafting and revising the work and approved the final submission.

Funding statement: The study was supported by Bill & Melinda Gates Foundation (https://www.gatesfoundation.org/) via Grant No: OPP1118005. Funding agency had no role in the design of the study and collection, analysis and interpretation of data, or in writing the manuscript.

Competing interests: None declared.

Patient consent for publication: Not required.

453 Ethics approval: The Institutional Ethics Committee of King George's Medical University
454 (Lucknow), The Uttar Pradesh University of Medical Sciences (Etawah), Patna Medical College
455 and Hospital (Patna) and Darbhanga Medical College and Hospital (Darbhanga) gave ethical
456 approval for the conduct of study.

Provenance and peer review: Not commissioned; externally peer reviewed.

Data sharing statement: The data contained within this study can be obtained by writing to

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

shally07@gmail.com **Copyright information:** This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: http://creativecommons.org/licenses/by-nc/4.0/ **Supporting Information** S1 Appendix: Chest radiograph interpretation form **REFERENCES:** 1. UNICEF U. Levels and trends in child mortality. Estimates developed by the UN inter-agency group for child mortality estimation. 2011. 2. Amouzou A, Velez LC, Tarekegn H, et al. One is too many: ending child deaths from pneumonia and diarrhoea. New York: Unicef, 2016. pp 73–75 3. Mathew JL, Patwari AK, Gupta P, et al. Acute respiratory infection and pneumonia in India: a systematic review of literature for advocacy and action: UNICEF-PHFI series on newborn and child health, India. Indian Pediatr2011; 48: 191-218. 4. Farooqui H, Jit M, Heymann DL, et al. Burden of severe pneumonia, pneumococcal pneumonia and pneumonia deaths in Indian states: modelling based estimates. PLoS One

59

60

BMJ Open

2						
2 3 4	480	5.	Rudan I, O'brien KL, Nair H, et al. Epidemiology and etiology of childhood pneumonia in			
5 6	481		2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and			
7 8	482		causative pathogens for 192 countries. Journal of global health. 2013 Jun;3(1).			
9 10 11	483	6.	Leung DT, Chisti MJ, Pavia AT. Prevention and control of childhood pneumonia and			
12 13	484		diarrhea. Pediatric Clinics. 2016 Feb 1;63(1):67-79.			
14 15	485	7.	Virkki R, Juven T, Rikalainen H, et al. Differentiation of bacterial and viral pneumonia in			
16 17	486		children. Thorax. 2002 May 1;57(5):438-41.			
18 19 20	487	8.	World Health Organization. Pneumococcal conjugate vaccines in infants and children under			
21 22	488		5 years of age: WHO position paper-February 2019. Accessed 12th July 2019.			
23 24	489	9.	Government of India. Introduction of Pneumococcal Conjugate Vaccine: Operational			
25 26 27	490		Guidelines. Ministry of Health and Family Welfare, 2017 Available at:			
27 28 29	491		https://nhm.gov.in/New_Updates_2018/NHM_Components/Immunization/Guildelines_for_i			
30 31	492		mmunization/Operational_Guidelines_for_PCV_introduction.pdf. Accessed 12 July 2019.			
32 33 34	493	10	. Cherian T, Mulholland EK, Carlin JB, et al. Standardized interpretation of paediatric chest			
34 35 36	494		radiographs for the diagnosis of pneumonia in epidemiological studies. Bulletin of the World			
37 38	495		Health Organization. 2005;83:353-9			
39 40	496	11	. Pneumonia Vaccine Trial Investigators' Group. Standardization of Interpretation of Chest			
41 42 43	407 Padiagraphs for the Diagnosis of Pnaumonia in Children Geneva: Department of Va					
44 45	498		and Biologicals, World Health Organization; 2001			
46 47	499	12	. Mahomed N, Fancourt N, De Campo J, et al. Preliminary report from the World Health			
48 49 50	500		Organization chest radiography in epidemiological studies project. Pediatric radiology. 2017			
51 52	501		Oct 1;47(11):1399-404.			
53 54						
55 56						
57 58			30			

Page 32 of 39

BMJ Open

1

2

59

3 4	502	13. Greenberg D, Givon-Lavi N, Ben-Shimol S, et al. Impact of PCV7/PCV13 introduction on
5 6 7	503	community-acquired alveolar pneumonia in children< 5 years. Vaccine. 2015 Aug
7 8 9	504	26;33(36):4623-9. 6.
10 11	505	14. Sutcliffe CG, Shet A, Varghese R, et al. Nasopharyngeal carriage of Streptococcus
12 13 14	506	pneumoniae serotypes among children in India prior to the introduction of pneumococcal
14 15 16	507	conjugate vaccines: a cross-sectional study. BMC Infect Dis. 2019 Dec;19(1):605.
17 18	508	15. Annual health survey (AHS) factsheet 2012–13 Uttar Pradesh [Internet]. New Delhi: Office
19 20 21	509	of Registrar General & Census Commissioner, Ministry of Home Affairs, Government of
21 22 23	510	India; 2010–2011. Available
24 25	511	from: <u>http://www.censusindia.gov.in/vital_statistics/AHSBulletins/AHS_Factsheets_2012-</u>
26 27	512	<u>13/FACTSHEET-UTTAR_PRADESH.pdf</u> . Accessed 5 th August, 2019.
28 29 30	513	16. Annual health survey (AHS) factsheet 2012-13 Bihar [Internet]. New Delhi: Office of
31 32	514	Registrar General & Census Commissioner, Ministry of Home Affairs, Government of India;
33 34	515	2010–2011. Available
35 36 37	516	from:http://www.censusindia.gov.in/vital_statistics/AHSBulletins/AHS_Factsheets_2012-
38 39	517	<u>13/FACTSHEET-Bihar.pdf</u> . Accessed 5 th August, 2019.
40 41	518	17. Awasthi S, Pandey CM, Verma T, et al. Incidence of community-acquired pneumonia in
42 43	519	children aged 2-59 months of age in Uttar Pradesh and Bihar, India, in 2016: An indirect
44 45 46	520	estimation. <i>PloS one</i> . 2019 Mar 20;14(3):e0214086.
47 48	521	18. Awasthi S, Singh JV, Kohli N, et al. Hospital-based surveillance for radiological pneumonia
49 50	522	in children under 5 years of age in Uttar Pradesh and Bihar. Pediatric Infectious Disease.
51 52 53	523	2016 Jun 30;8(2):52-7.
55 55		
56 57		
58		31

59

60

BMJ Open

	BMJ
	BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.t
	2019-034066 on 7
	May 2020. Downl
	oaded from http://
	omj.
	com/ on April 18, 2024 by guest. Protected by copyright.
	4 by guest. Protec
	ted by copyright

1 2				
2 3 4	524	19. World Health Organization. Pocket Book of Hospital Care for Children: Guidelines for the		
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	525	Management of Common Childhood Illnesses. 2nd edn. Geneva, Switzerland: World Health		
	526	Organization, 2013.		
	527	20. Charan J, Biswas T. How to calculate sample size for different study designs in medical		
	528	research?. Indian journal of psychological medicine. 2013 Apr;35(2):121.		
	529	. Integrated Management of Childhood Illness (IMCI) Chart Booklet [online] Geneva: World		
	530	Health Organization. Available at:		
	531	https://apps.who.int/iris/bitstream/handle/10665/104772/9789241506823_Chartbook_eng.pdf		
21 22	532	Accessed:19 th December, 2019.		
23 24 25 26 27 28 29 30 31	533	22. Bassignani MJ, Bubash-Faust L, Ciambotti J, et al. Conversion of teaching file cases from		
	534	film to digital format: a comparison between use of a diagnostic-quality digitizer and use of a		
	535	flatbed scanner with transparency adapter. Acad Radiol. 2003 May 1;10(5):536-42.		
	536	23. World Health Organization. The WHO Anthro Survey Analyser. In: World Health		
32 33 34	537	Organization [Internet]. Available: <u>https://www.who.int/nutgrowthdb/software/en/</u> .		
34 35 36 37 38	538	Accessed: 10 th June, 2019.		
	539	24. Horton NJ, Kleinman KP. Much ado about nothing: A comparison of missing data methods		
39 40	540	and software to fit incomplete data regression models. The American Statistician. 2007 Feb		
41 42 43	541	1;61(1):79-90.		
44 45	542	25. SPSS Inc. Released 2009. SPSS for Windows [software], Version 22.0. Chicago, SPSS Inc.		
46 47	543	Available from: <u>www.spss.com</u>		
48 49 50	544	26. von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational		
50 51 52	545	studies in epidemiology (STROBE) statement: guidelines for reporting observational studies.		
53 54	546	J Clin Epidemiol 2008;61:344–9		
55 56				
57 58 50		32		

1

60

2		
3 4	547	27. Fancourt N, Deloria Knoll M, Baggett HC, et al. Chest radiograph findings in childhood
5 6	548	pneumonia cases from the multisite PERCH study. Clin Infect Dis. 2017 May
7 8 9	549	29;64(suppl_3):S262-70
9 10 11	550	28. Enwere G, Cheung YB, Zaman SM, et al. Epidemiology and clinical features of pneumonia
12 13	551	according to radiographic findings in Gambian children. Trop Med Int Health. 2007
14 15	552	Nov;12(11):1377-85.
16 17 18	553	29. Meiron Hassen, Alemayehu Toma, Mulugeta Tesfay, et al. Radiologic Diagnosis and
19 20	554	Hospitalization among Children with Severe Community Acquired Pneumonia: A
21 22	555	Prospective Cohort Study. Biomed Res Int, vol. 2019, Article ID 6202405, 8 pages, 2019.
23 24 25	556	https://doi.org/10.1155/2019/6202405.
25 26 27	557	30. Kelly MS, Crotty EJ, Rattan MS, et al. Chest radiographic findings and outcomes of
28 29	558	pneumonia among children in Botswana. Pediatr Infect Dis J. 2016 Mar;35(3):257.
30 31 22	559	31. da Fonseca Lima EJ, Mello MJ, Lopes MI, et al. Risk factors for community-acquired
32 33 34	560	pneumonia in children under five years of age in the post-pneumococcal conjugate vaccine
35 36	561	era in Brazil: a case control study. BMC Pediatr. 2016 Dec;16(1):157.
37 38	562	32. Sigauque B, Roca A, Bassat Q, et al. Severe pneumonia in Mozambican young children:
39 40 41	563	clinical and radiological characteristics and risk factors. J Trop Pediatr. 2009 Apr
42 43	564	28;55(6):379-87.
44 45	565	33. Ismail SA, McCullough A, Guo S, et al. Gender-related differences in care-seeking
46 47 48	566	behaviour for newborns: a systematic review of the evidence in South Asia. BMJ global
49 50	567	health. 2019 May 1;4(3):e001309.
51 52	568	34. Fikree FF, Pasha O. Role of gender in health disparity: the South Asian context. BMJ
53 54 55	569	2004;328:823-6. 10.1136/bmj.328.7443.823
55 56 57		
58 59		33

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 35 of 39

BMJ Open

ω	
BMJ Op	
ے د	
g	
oen:	
n: E	
īrs	
T T	
: pub	
ŝ	
ed	
l as 1	
10	
0.1136/	
ယ္ထ	
Ъ,	
Ĕ	
i/bmjopen-2	
<u>e</u>	
<u> </u>	
20	
6	
ő	
õ	
-2019-034066 on	
6	
g	
ر اد	
Z M	
/la	
~	
2020	
20	
8	
Ę	
ð	
ã	
ē	
<u> </u>	
d fror	
from	
lished as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from htt	
from http:	
from http://b	
ttp://bm	
ttp://bm	
ttp://bm	
ttp://bm	
from http://bmjopen.bm	
ttp://bm	
ttp://bmjopen.bmj.com/ on April 18,	
ttp://bmjopen.bmj.com/ on April 18, 2024 by gu	
ttp://bmjopen.bmj.com/ on April 18, 2024 by gu	
ttp://bmjopen.bmj.com/ on April 18, 2024 by guest.	
ttp://bmjopen.bmj.com/ on April 18, 2024 by guest.	
ttp://bmjopen.bmj.com/ on April 18, 2024 by guest.	
ttp://bmjopen.bmj.com/ on April 18, 2024 by guest.	
ttp://bmjopen.bmj.com/ on April 18, 2024 by guest.	
ttp://bmjopen.bmj.com/ on April 18, 2024 by guest.	
ttp://bmjopen.bmj.com/ on April 18, 2024 by guest.	
ttp://bmjopen.bmj.com/ on April 18, 2024 by guest.	
ttp://bmjopen.bmj.com/ on April 18, 2024 by guest.	

1 2		
3 4	570	35. Asfaw A, Lamanna F, Klasen S. Gender gap in parents' financing strategy for hospitalization
5 6	571	of their children: evidence from India. Health economics. 2010 Mar;19(3):265-79.
7 8 9	572	36. Pandey A, Sengupta PG, Mondal SK, et al. Gender differences in healthcare-seeking during
10 11	573	common illnesses in a rural community of West Bengal, India. Journal of Health, Population
12 13	574	and Nutrition. 2002 Dec 1:306-11.
14 15 16	575	37. Jana A, Basu R. Examining the changing health care seeking behavior in the era of health
17 18	576	sector reforms in India: evidences from the National Sample Surveys 2004 & 2014. Global
19 20	577	health research and policy. 2017 Dec;2(1):6.
21 22 23	578	38. Rambaud-Althaus C, Althaus F, Genton B, et al. Clinical features for diagnosis of
23 24 25	579	pneumonia in children younger than 5 years: a systematic review and meta-analysis. Lancet
26 27	580	Infect Dis. 2015 Apr 1;15(4):439-50
28 29	581	39. Awasthi S, Glick AH, Fletcher RH. Effect of cooking fuels on Respiratory Diseases in Pre-
30 31 32	582	school children in Lucknow, India. Am J Trop Med Hyg 1996; 55: 48-51
33 34	583	40. Tielsch JM, Katz J, Thulasiraj RD, et al. Exposure to indoor biomass fuel and tobacco smoke
35 36	584	and risk of adverse reproductive outcomes, mortality, respiratory morbidity and growth
37 38 30	585	among newborn infants in south India. Int J Epidemiol. 2009 Sep 16;38(5):1351-63.
39 40 41	586	41. O'Brien KL, Baggett HC, Brooks WA, et al. Causes of severe pneumonia requiring hospital
42 43	587	admission in children without HIV infection from Africa and Asia: the PERCH multi-country
44 45	588	case-control study. The Lancet. 2019 Jun 27
46 47 48	589	42. World Health Organization. Pneumococcal conjugate vaccines in infants and children under
49 50	590	5 years of age: WHO position paper-February 2019. Accessed 12th March. 2019.
51 52		
53 54		
55 56 57		
57 58 59		34
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 36 of 39

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open

43. Balaji V, Jayaraman R, Verghese VP, Baliga PR, Kurien T. Pneumococcal serotypes
associated with invasive disease in under five children in India & implications for vaccine
policy. The Indian journal of medical research. 2015 Sep;142(3):286.

594 44. Arifeen SE, Saha SK, Rahman S, Rahman KM, Rahman SM, Bari S, Naheed A, Mannan I, 595 Seraji MH, Ahmed NU, Shameem Hassan M. Invasive pneumococcal disease among 596 children in rural Bangladesh: results from a population-based surveillance. Clinical 597 Infectious Diseases. 2009 Mar 1;48 (Supplement_2):S103-13.

45. Johnson HL, Deloria-Knoll M, Levine OS, Stoszek SK, Hance LF, Reithinger R, Muenz LR,
O'Brien KL. Systematic evaluation of serotypes causing invasive pneumococcal disease
among children under five: the pneumococcal global serotype project. PLoS medicine. 2010
Oct 5;7(10):e1000348

46. Bénet T, Picot VS, Awasthi S, Pandey N, Bavdekar A, Kawade A, Robinson A, RakotoAndrianarivelo M, Sylla M, Diallo S, Russomando G. Severity of pneumonia in under 5year-old children from developing countries: a multicenter, prospective, observational study.

The American journal of tropical medicine and hygiene. 2017 Jul 12;97(1):68-76

Figure Legend

Figure 1: Flow diagram of cases of community acquired pneumonia recruited from participating
districts before the introduction of pneumococcal conjugate vaccine (January 2015-April 2017)

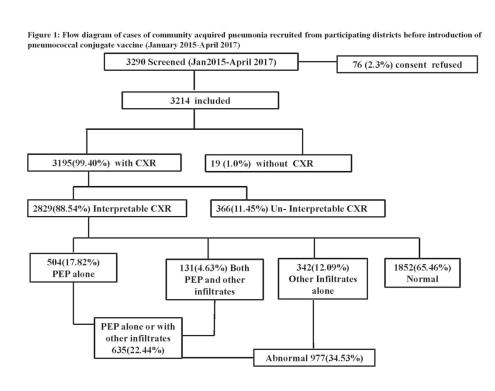


Figure 1: Flow diagram of cases of community acquired pneumonia recruited from participating districts before the introduction of pneumococcal conjugate vaccine (January 2015-April 2017)

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

254x190mm (300 x 300 DPI)

	(R/	<u>Form-R</u> ADIOLOGY REPORT FORM)
1	Drs_ID	
- objection 	Radiology Report	Patient Details
2	IDNo:	[] / [] / [] [] [] State /District / Unit / Subject number (For office use)
2	Date Of Report	[_][_]/[_][_][_][_] (DD/MM/YYYY)
	Report Details	Findings (tick one)
3	Image Quality	Adequate 🗆 Suboptimal 🗆 Un-interpretable 🗆
4	Significant Pathology	Yes 🗆 No 🗆 Un-interpretable 🛄
5 5a 5b		Yes I No I Un-interpretable I Yes No I Un-interpretable I
6	Other Infiltrates/Abnormalities	Uninterpretable
6a 6b		Yes D No D Un-interpretable D Yes D No D Un-interpretable D
7 7a 7b	Pleural Fluid - Left Right	Yes I No I Un-interpretable I Yes I No I Un-interpretable I
8	Comments:	
9	Conclusion:	 a) Primary endpoint pneumonia only b) Other infiltrate only c) Both PEP and other infiltrate d) Normal e) Un-interpretable for any findings
		2

	Item No	Recommendation	Page Numbe
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of	2-3
		what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the	4
U		investigation being reported	
Objectives	3	State specific objectives, including any pre-specified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including	5
0		periods of recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	5-6
		selection of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	5-6
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	7-8
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	25
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	11-13
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control	11-13
		for confounding	
		(b) Describe any methods used to examine subgroups and	Table 1, 2 &
		interactions	
		(c) Explain how missing data were addressed	12
			reference 24
		(d) If applicable, describe analytical methods taking account of	11-13
		sampling strategy	
		(e) Describe any sensitivity analyses	NA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study-eg	14
		numbers potentially eligible, examined for eligibility, confirmed	
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Figure 1
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	14-15
		clinical, social) and information on exposures and potential	Table 1
		confounders	
		(b) Indicate number of participants with missing data for each	Figure 1

Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-	Table 3
		adjusted estimates and their precision (eg, 95% confidence	(adjusted odds
		interval). Make clear which confounders were adjusted for and why	ratio)
		they were included	
		(b) Report category boundaries when continuous variables were	Table 3
		categorized	
		(c) If relevant, consider translating estimates of relative risk into	NA
		absolute risk for a meaningful time period	(calculated
			only odds
			ratio)
Other analyses	17	Report other analyses done-eg analyses of subgroups and	Table 3
		interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	21-23
Limitations	19	Discuss limitations of the study, taking into account sources of	25-26
		potential bias or imprecision. Discuss both direction and magnitude	
		of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering	21-23
		objectives, limitations, multiplicity of analyses, results from similar	
		studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	21
Other information			
Funding	22	Give the source of funding and the role of the funders for the	27
		present study and, if applicable, for the original study on which the	
		present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Chest Radiograph Findings in children aged 2-59 months hospitalized with Community-Acquired Pneumonia, prior to the introduction of Pneumococcal Conjugate Vaccine in India- A Prospective Multisite Observational Study

and Public Health Pandey, CM; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Biostatistics & Health Informatics Kohli, Neera ; King George's Medical University, Department of Radio- diagnosis Study Group, CAP; CAP study Group Primary Subject Heading :PaediatricsSecondary Subject Heading:Global health, Public health, Radiology and imagingKenwords:Chest radiographs, Hospitalized community-acquired pneumonia, under-	Journal:	BMJ Open
Date Submitted by the Author: 12-Apr-2020 Complete List of Authors: Awasthi, Shally; King George's Medical University, Pediatrics Rastogi, Tuhina; King George's Medical University, Pediatrics Chauhan, Abhishek ; Dr Ram Manohar Lohia Institute of Medical Sciences, Department of Radio-diagnosis Mohindra, Namita; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radio-diagnosis Shukla, Ram ; Banaras Hindu University, Varanasi, India, Institute of Medical Sciences Agrawal, Monika; King George's Medical University, Community Medicine and Public Health Pandey, CM; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radio-diagnosis Study Group, CAP; CAP study Group Primary Subject Heading Paediatrics Global health, Public health, Radiology and imaging Chest radiographs, Hospitalized community-acquired pneumonia, under-	Manuscript ID	bmjopen-2019-034066.R3
Author:12-Apr-2020Complete List of Authors:Awasthi, Shally; King George's Medical University, Pediatrics Rastogi, Tuhina; King George's Medical University, Paediatrics Mishra, Neha; King George's Medical University, Pediatrics Chauhan, Abhishek ; Dr Ram Manohar Lohia Institute of Medical Sciences, Department of Radio-diagnosis Mohindra, Namita; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radio-diagnosis Shukla, Ram ; Banaras Hindu University, Varanasi, India, Institute of Medical Sciences Agrawal, Monika; King George's Medical University, Community Medicine and Public Health Pandey, CM; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Biostatistics & Health Informatics Kohli, Neera ; King George's Medical University, Department of Radio- diagnosis Study Group, CAP; CAP study Group Primary Subject Heading PaediatricsSecondary Subject Heeading:Global health, Public health, Radiology and imagingKownords:Chest radiographs, Hospitalized community-acquired pneumonia, under-	Article Type:	Original research
Rastogi, Tuhina; King George's Medical University, Paediatrics Mishra, Neha; King George's Medical University, Pediatrics Chauhan, Abhishek ; Dr Ram Manohar Lohia Institute of Medical Sciences, Department of Radio-diagnosis Mohindra, Namita; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radio-diagnosis Shukla, Ram ; Banaras Hindu University, Varanasi, India, Institute of Medical Sciences Agrawal, Monika; King George's Medical University, Community Medicine and Public Health Pandey, CM; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Biostatistics & Health Informatics Kohli, Neera ; King George's Medical University, Department of Radio- diagnosis Study Group, CAP; CAP study Group Primary Subject HeadingSecondary Subject Heading: Global health, Public health, Radiology and imagingKenwards:Chest radiographs, Hospitalized community-acquired pneumonia, under-		12-Apr-2020
Heading: Paediatrics Secondary Subject Heading: Global health, Public health, Radiology and imaging Keywords: Chest radiographs, Hospitalized community-acquired pneumonia, under-	Complete List of Authors:	Rastogi, Tuhina; King George's Medical University, Paediatrics Mishra, Neha; King George's Medical University, Pediatrics Chauhan, Abhishek ; Dr Ram Manohar Lohia Institute of Medical Sciences, Department of Radio-diagnosis Mohindra, Namita; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radio-diagnosis Shukla, Ram ; Banaras Hindu University, Varanasi, India, Institute of Medical Sciences Agrawal, Monika; King George's Medical University, Community Medicine and Public Health Pandey, CM; Sanjay Gandhi Post Graduate Institute of Medical Sciences, Biostatistics & Health Informatics Kohli, Neera ; King George's Medical University, Department of Radio- diagnosis
Keywords. Chest radiographs, Hospitalized community-acquired pneumonia, under-		Paediatrics
	Secondary Subject Heading:	Global health, Public health, Radiology and imaging
ive, or epiceded preamonac, mar	Keywords:	Chest radiographs, Hospitalized community-acquired pneumonia, under- five, Streptococcus pneumoniae, India

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

Title: Chest Radiograph Findings in children aged 2-59 months hospitalized with Community-Acquired Pneumonia, prior to the introduction of Pneumococcal Conjugate Vaccine in India - A Prospective Multisite Observational Study

Short Title: Radiological Findings in Children hospitalized with Community-Acquired Pneumonia in India Pre-Pneumococcal Conjugate Vaccine introduction

Shally Awasthi^{1*}, Tuhina Rastogi¹, Neha Mishra¹, Abhishek Chauhan², Namita Mohindra³, Ram Chandra Shukla⁴, Monika Agarwal⁵, Chandra Mani Pandey⁶, Neera Kohli⁷ and CAP Group[^]

¹Department of Pediatrics, King George's Medical University, Lucknow, India

²Department of Radio-diagnosis, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India

³Department of Radio-diagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India

⁴Department of Radio-diagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India

⁵ Department of Community Medicine and Public Health, King George's Medical University, Lucknow, India

⁶Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

⁷Department of Radio-diagnosis, King George's Medical University, Lucknow, India

^Members of the Lucknow CAP Group are given in the Acknowledgement

*Corresponding Author Postal Address: Prof. Shally Awasthi, Head, Department of Pediatrics, King George's Medical University, Lucknow, India. Pincode: 226003 Mobile: +91-9839221244 E-mail: shally07@gmail.com

Word Count: 4808 Tables: 3 Figure: 1

ABSTRACT

Objectives: The current study was a hospital-based surveillance of cases hospitalized with World Health Organization defined community-acquired pneumonia in children, aged 2-59 months, to assess the radiological abnormalities in chest X-rays and to identify the demographic and clinical correlates of specific radiological abnormalities, in residents of pre-specified districts of Uttar Pradesh and Bihar, India.

Design: Prospective, active, hospital-based surveillance.

Setting: Multisite study conducted in a network of 117 secondary/tertiary care hospitals in four districts of Uttar Pradesh and Bihar, India.

Participants: Included were children aged 2-59 months, hospitalized with community-acquired pneumonia, residing in the project district, with duration of illness <14 days and who had not been hospitalized elsewhere for this episode nor had been recruited previously.

Main outcome measure: Concordant radiological abnormalities in the chest X-rays.

Results: From January 2015 to April 2017, 3214 cases were recruited and in 99.40 % (3195/3214) chest X-rays were available, among which 88.54 % (2829/3195) were interpretable. Relevant radiological abnormalities were found in 34.53 % (977/ 2829, 95% C.I. 32.78 -36.28). These were primary end-point pneumonia alone or with other infiltrates in 22.44 % (635/2829, C.I. 20.90 %-23.98 %) and other infiltrates in 12.09% (342/ 2829; C.I. 10.88 %- 13.29 %). There was a statistically significant inter-district variation in radiological abnormalities. Statistically significantly higher proportion of abnormal chest X-ray were found in girls, those with weightfor-age z score <-3 SD, longer duration of fever, pallor and with exposure to biomass fuel.

Conclusions: Among hospitalized cases of community-acquired pneumonia, almost one-third children had abnormal chest radiographs, which were higher in females, malnourished children and those with longer illnesses; and an intra-district variation was observed.

Key words: Chest radiographs, Hospitalized community-acquired pneumonia, under-five, *Streptococcus pneumoniae*, India

Strengths and Limitations of the Study

• Prospective, multisite study recruiting cases from a large hospital surveillance network established for the project in four districts in two states of India that have high under-five mortality rates.

• World Health Organization definition of clinical pneumonia was used for identifying hospitalized cases for generalizability.

• Radiological abnormalities were interpreted by a panel of three independent, trained radiologists outside the surveillance network, blinded to each other as well as clinical features of the case.

• Since pre-existing X-rays machines were used, there were variations in the quality of images, which was, however, minimized by digitizing them centrally.

• Since data of clinical examination was abstracted from hospital records, inter-observer variation in documentation was possible.

BMJ Open

INTRODUCTION

Community-acquired pneumonia (CAP) is the leading cause of death in young children
worldwide. Globally, pneumonia accounts for 16% of deaths in children under-five years of age,
which translates into almost one million deaths annually, with 0.9 million deaths reported in
2016. ^{1 2} Most deaths due to pneumonia occur in low and middle income countries, particularly
in sub-Saharan Africa and South Asia. ^{2 3} In India, there were approximately 0.44 million underfive deaths due to CAP in the year 2015. ⁴

CAP could be of either viral or bacterial etiology. ⁵⁻⁷ In young children, bacteria associated with pneumonia are predominantly Streptococcus pneumoniae and Hemophilus influenzae Type B, while viruses are Respiratory Syncytial Virus and Influenza A or B.⁶ However, etiology varies from country to country and also across different time periods. To reduce the incidence of bacterial pneumonia, vaccination against *Hemophilus influenzae Type B* is already under the national immunization programme of India since 2011. Thereafter, World Health Organization (WHO) introduced Pneumococcal Conjugate Vaccine (PCV) in countries, such as India, with high child mortality rates. ⁸ Consequently, PCV-13 was launched in May 2017 under the national immunization programme of five Indian states (Uttar Pradesh, Bihar, Rajasthan, Madhya Pradesh) and Himachal Pradesh) in a phased manner. ⁹ It is expected to be rolled out in other parts of the country in the near future.

Differentiating bacterial from viral etiology of CAP based on clinical features or investigations
 remains difficult. ^{7 10 11} Therefore, several PCV probe trials have used radiographically

confirmed end-point pneumonia to be a surrogate marker of bacterial etiology and hence used this as an outcome measure for vaccine efficacy. This approach has been endorsed by WHO.¹²⁻¹⁴

The current study was conducted to assess the radiological abnormalities in chest X-rays (CXRs) and to identify the demographic and clinical correlates of specific radiological abnormalities in children aged 2-59 months, hospitalized with WHO defined CAP, residing in pre-specified districts of Uttar Pradesh and Bihar.

METHODS

OPPC. **Study design and Setting**

This was a prospective, multisite observational study conducted in the northern Indian states of Uttar Pradesh and Bihar. Uttar Pradesh is the first most populated and Bihar third most populated state of the country.¹⁵¹⁶ This study was conducted in Lucknow and Etawah districts of Uttar Pradesh and Patna and Darbhanga districts of Bihar, India. In Lucknow district 66.2% population is urban and in Patna district 43.07%.^{15 16} In contrast, only 22.3% population of Etawah district and 9.74% population of Darbhanga district is urban.¹⁵ ¹⁶ All four project districts have high infant and child mortality rates. ¹⁵⁻¹⁷ Infant mortality rate per 1000 live births of Lucknow district is 44, Etawah district 56, Patna district 31 and Darbhanga district 44, all being higher than the national average 41.¹⁵⁻¹⁷ Similarly, under-five mortality rates per 1000 live births of districts included in this study are above the national average 50, being 58 for Lucknow, 85 for Etawah, 46 for Patna and 77 for Darbhanga. ¹⁵⁻¹⁷

BMJ Open

Study Population This study was conducted after obtaining institutional ethical clearance from all four participating academic institutions, one in each district. Each institution then established a prospective, active, hospital-based surveillance system for this study.^{17 18} After obtaining written informed consent from the private hospital management and district administration for public hospitals, included in the surveillance were 117 public and private hospitals of four study districts which provided either secondary or tertiary level care to admitted children. Surveillance officers of the project visited these hospitals every 48-72 hours to screen and

recruit eligible cases. In between the scheduled visits they telephonically contacted the hospitals daily to inquire about hospitalization of any potentially eligible case and made additional visits, if required. All children between the ages of 2-59 months, hospitalized in network hospitals with history of fast breathing with/without chest in-drawing were screened. ¹⁸

Included were children hospitalized with symptoms of WHO defined CAP and residing in the project district. ¹⁸ WHO defined CAP was categorized into pneumonia and severe pneumonia. Fast breathing \geq 50 breaths/minute in a child aged 2–11 months and \geq 40 breaths/minute in a child aged 12-59 months, with or without chest in-drawing was categorized as `pneumonia`.¹⁹ Cough or difficulty in breathing plus at least one of the following: (a) oxygen saturation < 90%or central cyanosis or (b) severe respiratory distress (e.g. grunting, very severe chest in-drawing) or (c) signs of pneumonia with a general danger sign (inability to breastfeed or drink, lethargy or reduced level of consciousness, convulsions) was categorized as 'severe pneumonia'.¹⁹ Excluded were children with cough for > 14 days or those that had been hospitalized in last 14 days.¹⁸

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

68 Sample Size

We assumed that the incidence of radiological pneumonia is 3/100 child years of observations. Then for a margin of error of 1.5/100 child years of observation, incidence of pneumonia in the community of 20/100 child years of observation, alpha level of 0.05, and power of 90% when the estimated population of children under-five years of age in Lucknow district ²⁰ is 750,000; 693 cases had to be included per district.

75 Data collection

Data was collected by surveillance officers hired for the project at each of the four district sites. They had postgraduate degree in social sciences and at least 10 years experience in community based health research. After recruitment, they were imparted six-day centralized training on project procedures and logistics. Classroom as well as practical skills training in real life setting was given by the coordinating centre in Lucknow. Pre and post tests were conducted to ascertain knowledge. Skills acquired by them were assessed during field observations. The coordinating centre provided annual refresher training to the surveillance officers from all four district sites in Lucknow. This was done to ensure quality of data collected.

After obtaining written, informed consent of the caregivers, data was collected through face-toface interviews with caregivers, as well as by abstraction from hospital records. Sociodemographic data obtained by interviewing caregivers was: child's age, gender, residence, birth order, immunization status, current breastfeeding status, parental education and occupation, smoking status of parents, family type, housing infrastructure, use of biomass fuel etc. Caregivers were also asked about the symptoms of disease and its duration in days.

BMJ Open

Clinical data, recorded by pre-existing hospital staff at the time of hospitalization, was abstracted by surveillance officers. Data was collected on anthropometry (weight and height), fever (axillary temperature \geq 37.5°C), oxygen saturation by pulse oxymetry where done, pallor, central cyanosis, signs of pneumonia along with general danger sign and vital signs (heart rate and respiratory rate). Presence of auscultatory wheeze was abstracted or inquired from the treating clinician. In case information on a clinical variable was missing in the medical chart, the surveillance officers contacted the clinician and obtained the same. Thus, there was no missing data for clinical variables reported in this manuscript. At the hospitals, clinicians generally used Integrated Management of Childhood Illness

definitions ²¹ to identify pallor, cyanosis, wheeze on auscultation and general danger sign as it is incorporated in their medical undergraduate training. Most clinicians of public health sector had also received a formal in-service training on Integrated Management of Childhood Illness. ²¹ Clinical outcome (survival or mortality) was noted from the hospital records on follow up.¹⁷ ¹⁸

106 Chest x-ray (CXR) image acquisition and archiving

107 CXR (poster-anterior view) was done on the advice of treating physician. These CXRs were 108 obtained by the surveillance officers at the time of recruitment. CXRs were either analog or 109 digital. In case of digital CXRs, second copy was obtained where possible. If only single analog 110 image was available, then the hardcopy of CXR was obtained from the caregiver after the child 111 was discharged. If the caregiver was not ready to give the hardcopy of CXR (in <1% cases),

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

image of the same was captured by surveillance officers using 16 megapixel cell phone cameraand portable CXR view-box.

BMJ Open

115 CXRs of recruited cases were subsequently scanned and converted into digital format using a 116 diagnostic quality film image digitizer (Microteck International Limited [®], Medi 6000 plus). ²² 117 These were archived for web-based radiological interpretation. Digital images were stored in 118 JPEG format at 300 dpi resolution. Each CXR file was anonymized and given a unique 119 identification number. Digital CXRs were uploaded on customized online data management 120 software.

122 Interpretation of radiological images

A panel of radiologists was constituted for standardized interpretations of CXRs. Four
radiologists were part of this panel, one of whom was Project co-investigator-Radiology (NK).
All radiologists are faculty in medical teaching institutes and also look after pediatric radiology.
They have more than fifteen years experience in interpreting pediatric CXRs.

Radiologists were trained according to the methodology developed by Department of Immunization, Vaccines and Biologicals of the WHO for research purpose. ¹¹ An international WHO-certified trainer from the International Centre for Diarrhoeal Disease Research, Bangladesh imparted two-day in-house training to the radiologists. The objectives of this training were to standardize interpretation and coding of CXRs, to develop a CXR reporting form [S1 Appendix] and to provide training on web-based CXR retrieval and reporting system. During the training, 210 CXRs of the WHO data set were used. For assessing post training concordance,

another set of 48 CXRs was provided for interpretation to individual radiologists. Post-test agreement with WHO findings was about 80%. Inter-observer variation was about 25% and was for only minor interpretations such as quality of film, end-point infiltrates etc. Repeat training was conducted on an additional set of 44 CXRs provided by the WHO to ensure standardization in interpretation. Thereafter, concordance achieved by the radiologists was reviewed quarterly by the study arbitrator. Radiologists met annually to review key concepts and discuss challenges faced in interpreting CXRs.

After training, radiologists independently reviewed CXRs and registered their findings in an online standardized chest radiograph interpretation form **[S1 Appendix].** For optimal viewing of CXRs, all radiologists used similar workstations. Specifications were provided for the computer monitor and hardware to be used. It was ensured that computer monitors had the correct brightness and contrast adjustment for optimal viewing.

During online evaluation, radiologists reported the quality of film as `*interpretable*` or `*un-interpretable*`. Further, they categorized `*interpretable*` CXRs as either `adequate/optimal` which allowed for confident interpretation of consolidation and pleural effusion as well as other infiltrates or `suboptimal` which allowed interpretable` CXRs, no comment was possible for radiological abnormality such as consolidation, pleural effusion or other infiltrates. ¹²

After interpreting film quality, radiologists evaluated interpretable CXRs for abnormalradiological findings. For each CXR evaluated, radiological abnormality could be presence of

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

consolidation, other infiltrates or pleural effusion. 'Consolidation' was defined as a dense or confluent opacity that occupied a portion or whole of a lobe or the entire lung that may or may not contain air bronchograms. `Other infiltrates` were defined as linear and patchy opacities (interstitial infiltrate) in a lacy pattern, featuring peri-bronchial thickening and multiple areas of atelectasis, also including minor patchy infiltrates that were not of sufficient magnitude to constitute end-point consolidation, and small areas of atelectasis which may be difficult to distinguish from consolidation. 'Pleural effusion' was defined as the fluid in the lateral pleural space between the lung and chest wall that was spatially associated with a pulmonary parenchymal infiltrate (including `other infiltrates`) or had obliterated enough of the hemithorax to obscure any infiltrates. In most cases, this was to be seen at the costo-phrenic angle or as a layer of fluid adjacent to the lateral chest-wall and this does not include fluid seen in the horizontal or oblique fissures.¹² Primary end-point pneumonia (PEP) for research purpose was the presence of consolidation or pleural effusion which could be with or without other infiltrates.

Final conclusions were categorised as: (a) *`Abnormal`* when it was *`PEP* only*`* or *`other* infiltrates only*`* or *`Both PEP* and other infiltrates*`* and (b) *`Normal`* when no abnormal findings were seen. ¹²

2 175

Data manager checked for inconsistencies and completeness after online evaluation of CXRs by individual radiologists. Thereafter, CXRs with concordant and discordant interpretations were identified. Interpretations were considered concordant when there was an agreement between two or more radiologists on final conclusions and discordant if all the three radiologists

disagreed. Discordant interpretations were forwarded to the study arbitrator (NK). Arbitratorassessed discordant CXRs online and her interpretation was taken as final.

183 Data management and statistical analysis

184 Clinical data of hospital surveillance network was entered online in customized software. 185 Primary entry was done by the four participating sites. Secondary data entry was done by the 186 coordinating site in separate customized software. Anonymized CXRs were uploaded on 187 customized software. Each of the three panelists assessed the CXRs online, blind to peer 188 assessments as well as clinical features of the case. CXR assessment data was downloaded from 189 the online software in MS Access database.

Exploratory data analysis was performed for detection of outlier and missing observations for all the variables. Un-interpretable CXRs were not analyzed. Among interpretable CXRs, concordant radiological abnormalities were taken as final. Weight-for-age (WAZ) z-score each child was calculated using WHO Anthro Survey Analyser. ²³ Weight of 7.59% (215/2829) children was missing. Missing weight was estimated using regression based imputation technique.²⁴ Kappa statistics was performed for agreement analysis among radiologists for CXRs findings. Statistical analysis was performed using SPSS version 22.0 (Chicago, IL). ²⁵ A p-value of <0.05 was taken as statistically significant using a two-tailed distribution.

200 Univariate analysis was performed to evaluate heterogeneity, stratified by four participating 201 districts for socio-demographic variables such as child's age, gender, residence, birth order, 202 immunization status, current breastfeeding status, parental education and occupation, smoking

Page 14 of 40

BMJ Open

status of parents, family type, housing infrastructure, use of biomass fuel and for clinical variables such as weight, height, duration of fever and oxygen saturation. We report proportions of radiological abnormalities among children hospitalized for CAP by four districts. Univariate analysis was performed to assess association of socio-demographic variables and clinical signs of CAP with radiological abnormalities. Chi-square test was used for categorical variables and student's t-test for continuous variables. ANOVA was used to test the significance of continuous variables when there were more than two groups. Multivariate unconditional logistic regression was performed to find association of presence of various radiological abnormalities with other variables that had univariate association with radiological abnormalities (p value < 0.2) and/or were clinically meaningful, controlling for district of residence. We developed four models in which the dependent (outcome) were different CXR findings and these were as follows:

38 218 Model I: Abnormal versus Normal

40 219 Model II: Primary End-Point Pneumonia alone or with Other Infiltrates versus Normal

42 An Anton 220 Model III: Primary End-Point Pneumonia alone versus Normal

- 45 221 Model IV: Other Infiltrates only versus Normal
- 47 222

223 Independent variables were the same in all the four models. These were participating districts,

age, gender, use of biomass fuel, symptoms of CAP such as duration of illness, presence of

BMJ Open

wheeze on auscultation, pallor, vomiting everything and malnutrition status of the case [WAZ \leq - 2 SD (malnourished) and WAZ \leq -3 SD (severely malnourished)].

228 Patient and public involvement in research

Patients or public were not involved in the development of research question, study design or
conducting the research. Reporting of this research conforms to the guidelines for Strengthening
the Reporting of Observational Studies in Epidemiology (STROBE)²⁶.

RESULTS

From January 2015 to April 2017, 3290 cases were screened in hospital surveillance network of four districts. Out of these, 3214 were eligible and consenting for inclusion [Figure 1]. Among them, in 3195 (99.40%) CXR was done and only in 19 (1.0%) cases CXR not done. However, only 88.54% (2829/3195) CXRs were interpretable and remaining 11.45% (366/3195) were uninterpretable. In cases with interpretable CXRs, 99.11 % (2804/2829) had `severe pneumonia` as per the WHO criteria ¹⁹.

40 240

> Concordance among ≥ 2 radiologists on final conclusion of CXRs findings was 86.0%. Kappa statistics was calculated for agreement of CXRs findings between Reader 1 versus Reader 2 (K₁=0.31), Reader 2 versus Reader 3 (K₂=0.46) and Reader 3 versus Reader 1(K₃=0.42). Among interpretable CXRs, 22.44% (635/2829) cases had PEP alone or with other infiltrates, 12.09% (342/2829) had other infiltrates only and 65.46% (1852/2829) were normal [**figure 1**].

Page 16 of 40

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

Table 1 shows univariate distribution of socio-demographic and clinical variables among hospitalized cases across participating districts. A variation was observed in socio-demographic variables such as place of residence, type of house, type of family, maternal and paternal education and occupation, use of biomass fuel and parental smoking status across the four districts. We also report clinical variables of recruited cases across the four districts in table 1. Among those where pulse-oximetry was done, the proportion of cases with oxygen saturation < 90 % was found to be different across four districts.

Table 1: Distribution of socio-demographic and clinical variables among hospitalized children for
 participating districts (January 2015-April 2017)

Characteristics	Lucknow	Etawah	Patna	Darbhanga	Total
Socio-demographic	n=1025	n=389	n=744	n=671	N=2829
Characteristics	(%)	(%)	(%)	(%)	(%)
Gender					
Male	659(64.29)	287(73.78)	557(74.87)	502(74.81)	2005(70.8
Place of residence					
Rural	195(19.02)	279(71.72)	304(40.86)	614(91.51)	1392(49.2
Urban	830(80.98)	110(28.28)	440(59.14)	57(8.49)	1437(50.8
Family Type			4		
Joint	688(67.12)	360(92.54)	707(95.03)	383(57.08)	2138(75.5
Nuclear	337(32.88)	29(7.46)	37(4.97)	287(42.77)	690(24.39
House type	· · ·			· · ·	
Mud	64(6.24)	54(13.88)	123(16.53)	374(55.74)	615(21.74
Bricks	854(83.32)	256(65.81)	453(60.89)	85(12.67)	1648(58.2
Combined	107(10.4)	79(20.31)	168(22.58)	212(31.59)	566(20.01
Mother's Education					
No formal education	203(19.80)	56(14.40)	328(44.09)	496(73.92)	1083(38.2
Class I-V	108(10.54)	28(7.20)	82(11.02)	38(5.66)	256(9.05
Class VI-XII	379(36.98)	176(45.24)	243(33.66)	112(16.69)	910(32.17
Graduate/ Post graduation	335(32.68)	129(33.16)	91(12.23)	25(3.73)	580(20.50
Father's Education					
No formal education	167(16.29)	29(7.46)	153(20.56)	345(51.42)	694(24.53
Class I-V	85(8.29)	19(4.88)	91(12.23)	82(12.22)	277(9.79
Class VI-XII	437(42.63)	206(52.96)	328(44.09)	205(30.55)	1176(41.5
Graduate/ Post graduation	336(32.78)	135(34.70)	172(23.12)	39(5.81)	682(24.11

59

60

Clinical Variables at	n	n	n	n	n
No	941(91.80)	362(93.06)	717(96.37)	577(85.99)	2597(91.8
Yes	84(8.20)	27(6.94)	27(3.63)	94(14.01)	232(8.20
Family member					
Indoor smoking –	0/0(07.71)			202(01.00)	
No	896(87.41)	334(85.86)	699(93.95)	569(84.80)	2498(83.3
Family memberYes	129(12.59)	55(14.14)	45(6.05)	102(15.20)	331(11.7
Smoking Status-					
No	942(91.90)	368(91.60)	728(97.85)	628(93.59)	2666(94.2
Yes	83(8.10)	21(5.40)	16(2.15)	43(6.41)	163(5.76
Father					
Indoor smoking-	× /				
No	873(85.17)	344(88.43)	688(92.47)	612(91.21)	2517(88.9
Yes	152(14.83)	45(11.57)	56(7.53)	59(8.79)	312(11.0
Father					
Smoking Status-	51 (77.11)	111(37.02)			
No	814(79.41)	144(37.02)	481(64.65)	62(9.24)	1501(53.0
Yes	211(20.59)	245(62.98)	263(35.35)	609(90.76)	1328(46.9
Biomass fuel		1(0.20)	0(1.00))(1.54)	10(0.04
Self-Employment	$\frac{47(4.39)}{0(0.0)}$	1(0.26)	8(1.08)	9(1.34)	18(0.64
Salaried/Professional	47(4.59)	9(2.31)	18(2.42)	7(1.04)	81(2.86
Daily wages	17(1.66)	3(0.77)	17(2.28)	171(25.48)	208(7.35
Home maker	961(93.76)	376(96.66)	701(94.22)	484(72.13)	2522(89.1
Occupation					
Mother's	200(27.90)	104(47.30)	307(41.20)	/7(11.//)	030(30.2
Self-Employment	286(27.90)	184(47.30)	307(41.26)	79(11.77)	856(30.2
Salaried/ Professional	397(38.73)	104(26.74)	245(32.93)	55(8.20)	801(28.3
Daily wages	329(32.10)	81(20.82)	165(22.18)	474(70.64)	1049(37.0
Unemployed	13(1.27)	20(5.14)	27(3.63)	63(9.39)	123(4.35
Father's Occupation	12(1.27)	20(5.14)	27(2(2)	(2(0.20)	102(4.25
No Eathor's Occupation	372(36.29)	133(34.19)	155(20.83)	134(19.97)	794(28.0
Yes	653(63.71)	256(65.81)	589(79.17)	537(80.03)	2035(71.9
Feeding		25(((5.01)	500/70.17	527 (00.02)	2025/71.7
Currently Breast	· · · · · ·	, , , , , , , , , , , , , , , , , , ,		. ,	Ì
Unimmunized	13(1.27)	5(1.29)	8(1.08)	1(0.15)	27(0.95
Incomplete for age	220(21.46)	84(21.59)	25(3.36)	126(18.78)	455(16.0
Complete for age	792(77.27)	300(77.12)	711(95.56)	544(81.07)	2347(82.9
Immunization Status					
More than 3 rd	93(9.07)	35(9.00)	62(8.33)	83(12.37)	273(9.65
3 rd	153(14.93)	47(12.08)	129(17.34)	137(20.42)	466(16.4
2 nd	343(33.46)	120(30.85)	235(31.59)	258(38.45)	956(33.7
1 st	435(42.44)	187(48.07)	315(42.34)	192(28.61)	1129(39.9

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

admission at	Mean± SD	Mean± SD	Mean± SD	Mean± SD	Mean± SE
hospital					
Age	1025	389	744	671	2829
(months)	14.53 ± 13.88	10.69±10.95	10.26±11.35	12.30±13.29	12.35±12.8
Height	303	324	34	266	927
(cm)	68.61±13.78	70.66±13.75	64.38±10.25	70.46±12.14	69.70±13.20
Weight	1025	389	744	671	2829
(kg)	7.96±2.97	7.34±2.73	7.11±2.78	7.78±2.93	7.61±2.90
Fever Duration	929	321	689	569	2508
(days)	4.46±2.71	3.59±2.37	4.25±2.52	3.54±2.47	4.08±2.59
Respiratory Rate					
Respiratory Rate	602	272	540	451	1864
(2-11 months)	53.38±14.05	60.87±9.60	53.82±10.16	60.78±7.26	56.37±11.4
Respiratory Rate	423	117	204	220	964
(12-59 months)	47.75±14.17	53.22±13.17	45.59±10.11	58.03±6.83	50.30±12.7
Oxygen saturation done (n, %)	528 (51.51)	343 (88.17)	236 (34.25)	319 (56.06)	1426 (50.40)
Oxygen saturation < 90% (n, %)	61(11.53)	57(16.61)	49 (20.76)	43(13.47)	210 (14.72)
Grunting (n, %)	461(44.98)	353 (90.75)	687 (92.34)	649 (96.72)	2150 (76.00
Very severe chest in- drawing (n, %)	953 (92.97)	352 (90.49)	739 (99.33)	651 (97.02)	2695 (95.26
Signs of Pneumonia with a general danger sign			0		
Lethargy or reduced level of consciousness (n, %)	423 (41.27)	259 (66.58)	6 (0.81)	412 (61.40)	1100(38.88
Inability to breastfeed or drink (n, %)	291(28.39)	259 (66.58)	75 (10.08)	312 (46.50)	937(33.12)
Convulsions (n, %)	16 (1.56)	19 (4.58)	13 (1.75)	100 (14.90)	148(5.23)
	15 (1.46)	7 (1.80)	26 (3.49)	14 (2.09)	62 (2.19)

were PEP alone or with other infiltrates in 64.9% (635/977) and other infiltrates in 35.1%
(342/977) (table 2). In the same table, we report these findings by district as well as sociodemographical and clinical associates of normal versus abnormal CXR as well among those with

abnormal CXRs, in those with PEP alone or with other infiltrates versus other infiltrates only.

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

We obse	erved statistic	cally significan	t district-wise ł	neterogeneit	y in radiological	abnormalities	
(table 2)	. We found h	igher proportion	n of radiological	abnormalit	ies as well as PEP	alone or with	
other infi	iltrates in Pat	na and Luckno	w districts, and	lower propo	ortion in Etawah a	nd Darbhanga	
districts.	Statistically	significant hi	igher proportion	n of femal	es hospitalized f	or CAP had	
	-	-			gnificantly higher		
-				-	had symptoms of		
			-		urished (table 2).		
-	-				n of cases with of	-	
		italized childre	en from Januar		1	-	
		*	e chest X rays		Abnormal chest X ra		
		Normal	Abnormal	p value	PEP* alone or with other infiltrates	Other infiltrates	
	N=2829	1852 n (%)	977 n (%)		635 n (%)	342 n (%)	
ing site					n (70)		
	1025	636	389		282	107	
	389	(62.05) 275 (70.60)	(37.95)		(72.49) 73	(27.51) 41 (25.00)	
	744	<u>(70.69)</u> 457	(29.31) 287	< 0.0001	(64.04) 184	(35.96) 103	
		<u>(61.42)</u> 484	(38.58)	-	(64.11) 96	(35.89) 91	
l	671	(72.13)	(27.87)		(51.34)	(48.66)	
hic & ctors							

10	266
11	
12	267
13	267
14	
15	268
16	
17	269
18	
19	270
20	270
21	
22	271
23	
24	272
25	
26	273
27	275
28	274
29	274
30	275
31	

Table 2: Distribution of socio-demographic and clinical factors by chest radiographic 274 findings among hospitalized children from January 2015-April 2017 275

	W	1025 389 744 671	n (%) 636 (62.05) 275 (70.69) 457 (61.42) 484 (72.13)	n (%) 389 (37.95) 114 (29.31) 287 (38.58) 187 (27.87)	<0.0001	n (%) 282 (72.49) 73 (64.04) 184 (64.11) 96 (51.34)	107 (27.51) 41 (35.96) 103 (35.89) 91 (48.66)	<0.000
Particip (row %) Luckno ⁻ Etawah)	1025 389	n (%) 636 (62.05) 275 (70.69)	389 (37.95) 114 (29.31)	<0.0001	n (%) 282 (72.49) 73 (64.04)	n (%) 107 (27.51) 41 (35.96)	<0.000
Particip (row %) Luckno)	1025	n (%) 636 (62.05)	389 (37.95)	_	n (%) 282 (72.49)	n (%) 107 (27.51)	<0.000
Particip (row %))		n (%)			n (%)	n (%)	
		1(-202)		n (%)				
		N=2829	1852	977		635	342	
			Normal	Abnormal	p value	PEP* alone or with other infiltrates	Other infiltrates	p value
			Interpretable	e chest X rays		Abnorm	al chest X ray	S
273 274 275				graphic and cli en from Januar		s by chest radiog il 2017	raph	s p value
272	had whee	zing on auscu	litation.					
271				gnificantly highe	er proportio	n of cases with ot	her infiltrates	
270						urished (table 2).		
269		L		1		had symptoms of		
268	radiologic	ally abnorma	al CXR (table	2). Likewise, sta	atistically si	gnificantly higher	proportion of	
267	districts.	Statistically	significant hi	gher proportior	n of femal	es hospitalized f	or CAP had	
266	other infi	ltrates in Patr	a and Lucknov	w districts, and	lower propo	rtion in Etawah ar	nd Darbhanga	
265	(table 2).	We found hi	gher proportion	n of radiological	abnormalit	ies as well as PEP	alone or with	
	We obser	rved statistica	ally significant	t district-wise h	eterogeneit	y in radiological	abnormalities	
264								

Age-group								
(months)								
2-11	1865	1223 (66.04)	642 (65.71)	0.86	409 (64.41)	233 (68.13)	0.26	
12-59	964	629 (33.96)	335 (34.29)		226 (35.59)	109 (31.87)		
Gender		(55.70)	(34.27)		(33.37)	(31.67)		
	2 00 <i>5</i>	1354	651		426	225		
Male	2005	(73.11)	(66.63)	< 0.0001	(67.09)	(65.79)		
Female	824	498 (26.89)	326 (33.37)		209 (32.91)	117 (34.21)	0.72	
Place of residence								
Rural	1392	921 (49.73)	471 (48.21)	0.44	299 (47.09)	172 (50.29)		
Urban	1437	931 (50.27)	506 (51.79)		336 (52.91)	170 (49.71)	0.34	
Biomass fuel			(01.77)		(52.71)	(19.71)		
Yes	1501	867 (46.81)	461 (47.19)	0.44	294 (42.30)	167 (48.83)	0.24	
No	1328	985 (53.19)	516 (52.81)	0.44	341 (53.70)	175 (51.17)		
Immunization status		((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
Complete for age	2347	1546	801	•	516	285		
	2317	(83.48)	(81.99)	0.32	(81.26)	(83.33)	-	
Incomplete	482	306 (16.52)	176 (18.01)	1	119 (18.74)	57 (16.67)	0.54	
Clinical Features								
Fever	2499	1616 (87.26)	883 (90.38)	0.014	575 (90.55)	308 (90.06)	0.82	
Pallor	764	465 (25.11)	299 (30.60)	0.002	200 (31.50)	99 (28.95)	0.41	
Wheeze on auscultation	2054	1377 (74.35)	677 (69.29)	0.005	415 (65.35)	262 (76.61)	0.0003	
Duration of illness fever [days] (n, Mean ± SD)	2499	1611 3.91±2.51	888, 4.40±2.70	<0.0001	577, 4.57±2.82	342, 4.08±2.44	0.011	
Respiratory Rate								
Respiratory Rate [2-11 months] (n, Mean ± SD)	1865	1243 55.52±11.29	642 57.99±11.70	<0.0001	409 58.12±11.88	233 57.74±11.40	0.69	
Respiratory Rate [12-59 months] (n, Mean ± SD)	964	629 49.78±12.41	335 51.28±13.37	0.08	226 51.35±13.31	109 51.12±13.35	0.88	
Fast Breathing for	1735	1130	605	0.11	384	221	0.69	

1		
~		

1 2								
³ age [2-11 mc	onths]		(61.02)	(61.92)		(60.47)	(64.62)	0.53 0.53 0.57 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64
-	Breathing for 862		562	300		204	96	
6 age 7 [12-59 month	age [12-59 months]		(30.35)	(30.71)	0.92	(32.13)	(28.07)	0.53
⁸ Signs of								
⁹ Pneumonia								
general dang	0							
19 sign n (%) 18 Lethargy or								
14 reduced level	l of	1101	732	369	0.39	247	122	0.33
¹⁵ consciousnes			(39.52)	(37.77)		(38.90)	(35.67)	l mjof
¹⁶ Inability to		937	612	325	0.46	211	114	0.97
18 breastfeed or	drink	751	(33.05)	(33.27)	0.10	(33.23)	(33.33)	
¹⁹ Convulsions		148	98 (5.29)	50	0.93	33 (5.20)	17 (4.97)	0.87 🕏
20 21			39	(5.12) 23	0.34	16	(4.97)	
²¹ ₂₂ Central Cyan	nosis	62	(2.11)	(2.35)	0.54	(2.52)	(2.05)	0.64
²⁸ ₂₄ Malnutrition	n							
²⁴ 25 Status								ay z
²⁶ Normal *	6 _{Normal} *		1293	587		367	220	
7 8 9 Malnutrition*			(69.82) 333	(60.08)	< 0.0001	(57.80) 122	(64.33) 62	
		517	(17.98)	(18.83)		(19.21)	(18.13)	0.06
30			226	206		146	60	
31 Severe malnut 32	Severe malnutrition*		(12.20)	(21.08)		(22.99)	(17.54)	
33 276 *Ì	Normal-	weight of ag	ge z score > -2SI); Malnutrition	-weight-for-ag	ge $z \leq -2SD$ and	Severe	
34 277 m	alnutriti	on-weight-f	or- age $z \le -3SD$)				indo: 2
35 ³⁶ 278								(ind
37								ope
³⁸ 39 279 T a	able 3 d	escribes fou	r multivariate ur	nconditional log	gistic regressi	on models to fin	d associates of	
40								
41 280 va	arious al	onormal CX	R findings. Af	fter controlling	for age, gen	der, symptoms	of pneumonia,	
42 43 281 du	uration of	fillnoss bi	omass fuel and r	nalnutrition ato	tue of one of	statistically sign	ificant district	n Af
43 281 du 44		or miness, or		namuti tion sta	ius of cases, s	statistically sign	incant district-	
45 282 W	ise hetei	ogeneity rei	mained in the fir	st three models	. Model I, wh	ich compared ab	onormal versus	, Σ
46 202 W 47		0 1			,	Ĩ		024
48 283 nc	ormal C	XRs, II, whi	ch compared C2	XRs with PEP	alone or with	other infiltrates	versus normal	g ya
49 50 284 an	л ш. т	uhiah aamr	ared CXRs wit	th DED along	voraug norm	al had similar	associatos for	uest
50 284 an	iu III, v	which comp	Jaieu CARS wi		versus norma	ai, nau siinnai	associates 101	
52 285 ra	diologic	al abnorma	lities whereas M	odel IV, which	compared C	XRs with other	infiltrates only	omj.com/ on April 18, 2024 by guest. Protected by copyright
53 2 00 1 <i>a</i> 54	-							ied D
55 286 ve	ersus no	rmal, was d	ifferent. Across	all the four m	odels, female	gender and tho	se with severe	y ca
56 57								руп
58							20	gnı.

망

291and clinic292using Unc	-	mong hospi	italized childro		aph findings a munity Acquir	0	aphic onia,	
293 Model – I Model – II Model – III Mo								
Variables	Abnormal/Normal ^{Ref}		PEP alone or with other infiltrates /Normal ^{Ref}		PEP alone / Normal _{Ref}		gher risk illness. aphic onia, Model – IV Other infiltra Normal Re Adjusted Odd Ratio (95%CI) 0.98 (0.65-1.47) 1.17 (0.74-1.87) 1.39 (0.95-2.07) 0.86 (0.66-1.13)	
	Adjusted Odd Ratio (95%CI)	p value	Adjusted Odd Ratio (95%CI)	p value	Adjusted Odd Ratio (95%CI)	p value	Adjusted Odd Ratio (95%CI)	
Districts								Ţ
Lucknow vs. Others	1.58 (1.20-2.10)	< 0.0001	2.07 (1.48-2.89)	<0.0001	2.20 (1.52-3.19)	<0.0001	0.98 (0.65-1.47)	
Etawah vs. Others	1.22 (0.88-1.70)	0.23	1.30 (0.87-1.95)	0.19	1.49 (0.95-2.30)	0.07	1.17 (0.74-1.87)	
Patna vs. Others	1.67 (1.27-2.20)	< 0.0001	1.89 (1.36-2.64)	< 0.0001	2.25 (1.56-3.24)	<0.0001	1.39 (0.95-2.07)	
Age – Group (months)			L	2				
2-11 Ref								ļ
12-59	0.92 (0.77-1.10)	0.34	0.95 (0.77-1.17)	0.62	1.03 (0.82-1.29)	0.79	0.86 (0.66-1.13)	
Gender				—				\downarrow
Male Ref	1.20		1.2.4	`	1.00		1.40	\downarrow
Female	1.39 (1.16-1.66)	< 0.0001	1.34 (1.08-1.65)	0.008	1.28 (1.01-1.61)	0.03	1.48 (1.14-1.92)	
Symptoms of pneumonia¶								
Wheezing	0.83 (0.68-1.01)	0.06	0.72 (0.57-0.90)	0.005	0.75 (0.59-0.96)	0.02	1.14 (0.83-1.55)	
Pallor	1.30 (1.08-1.58)	0.006	1.28 (1.03-1.60)	0.02	1.22 (0.95-1.55)	0.12	1.34 (1.01-1.77)	
Vomiting everything	0.90 (0.75-1.09)	0.28	0.80 (0.64-0.99)	0.04	0.78 (0.62-1.01)	0.05	1.09 (0.83-1.08)	
Duration of	1.06		1.08		1.08		1.03	

1 2										BM		
3 4 5	Ma Stat	Inutrition tus								BMJ Open: first publishedras 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjo 0.00000000000000000000000000000000000		
5 6	Nor	mal * ^{Ref}								firs		
7 8	Malnutrition*		1.18 (0.93-1.45)	0.15	1.17 (0.91-1.52)	0.23	1.17 (0.88-1.55)	0.27	1.12 (0.82-1.52)	0.4 ^{blist}		
9 10 11		Severe 1.65 (1.31-2.09) <0.0001 1.82 (1.34-2.36) <0.0001 1.87 (1.41-2.47) <0.0001 1.62 (1.41-2.47)							1.62 (1.71-2.23)	0.00 as		
12	294	Abbreviat	ions: Ref : Refe	erence Cate	gory; PEP: Prin	nary End-P	oint Pneumoni	a		10.1		
13	295									1136		
14	296	Footnotes: [¶] No signs of pneumonia taken as a reference										
15	297	*Normal: weight-for-age z score> -2SD; Malnutrition: weight-for -age $z \le$ -2SD; Severe										
16 17	298	malnutritio	malnutrition: weight-for-age $z \le -3SD$									
18												
19	299											
20										340		
21		DISCI										
22	300	DISCU	DISCUSSION									
23 24												
25	301	This active, prospective, hospital-based surveillance study was conducted to assess radiological										
26		1 1.										
27	302	abnormalities in CXRs and to identify the demographic and clinical correlates of specific										
28		1. 1 .										
29	303	radiological abnormalities in children aged 2-59 months, hospitalized with WHO defined CAP,										
30			residing in pre-specified districts of Uttar Pradesh and Bihar. The study was conducted from									
31 32	304	residing in	pre-specified	districts o	f Uttar Pradesl	n and Biha	r. The study w	as conduct	ed from	d fro		
33			1.5	· · ·					. <u>,</u> .	m		
34	305	January 20	DIS to April 2	2017, prior	to the introdu	iction of P	UV in the nat	ional immu	inization	http		
35					1. 0					://b		
36	306	programme of the Government of India. ⁹										

In our study, among interpretable CXRs, we found that 22.44% (635/2829) cases had PEP alone or with infiltrates, 12.09% (342/2829) had other infiltrates only and 65.46% (1852/2829) had normal findings. Our study used WHO case definition for CAP. ¹⁹ A panel of three trained radiologists interpreted CXRs, adopting WHO recommended methodology. ^{11 12} These make our study methodology robust and results generalizable.

There were 88.54% (2829/3195) interpretable CXRs in the current study. This is similar to 83%
(3587/3973) interpretable CXRs reported by Pneumonia Etiology Research for Child Health

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

(PERCH) study conducted on 4232 children (1-59 months) in nine sites in seven countries. ²⁷
Consistent with PERCH findings, a vaccine probe trial conducted in Gambia found proportion of
interpretable CXRs among unvaccinated cases of pneumonia to be 84.32% (242/287). ²⁸

There have been several studies in the past two decades, which have reported CXRs findings in hospitalized cases of pediatric CAP. Almost all of these were conducted before the introduction of PCV in their respective regions. A small prospective study conducted in Ethiopia reported radiological abnormality in CXRs in 48.3% (95% CI 39.49-57.22) among 122 children aged 3 months to 14 years with clinically diagnosed WHO-defined severe pneumonia.²⁹ Similar findings were reported from the Gambian vaccine probe trial where the proportion of radiological abnormality was 45% (95% CI: 43.35-46.46) among unvaccinated hospitalized cases of clinical pneumonia. ²⁸ Likewise, PERCH study found that 54% (95% CI: 52.31-55.57) of CXRs among cases of CAP were abnormal.²⁷ In all of these studies, proportion of cases with abnormal CXRs is higher than 34.5% (95% CI 32.8-36.3) found by us in the current study. However, our findings are similar to PERCH rural study site of Matlab, Bangladesh that reported radiological abnormality in 35.3% (95% CI: 29.77-40.85) CXRs of hospitalized cases of CAP.²⁷ Another PERCH urban site of Dhaka, Bangladesh reported 63.10% (95% CI 56.18 -70.02) cases with abnormal CXRs. ²⁷ In our study, radiological abnormalities in CXRs were higher in cases from largely urban districts of Patna and Lucknow compared to rural districts of Darbhanga and Etawah. This is consistent with rural-urban differences in Bangladesh sites of PERCH. 27 Variation in CXR findings among cases of CAP may be due to place of residence, infecting organism, immune response of patient and prior duration of disease.

In 2016, WHO's Department of Immunization, Vaccines and Biologicals standardized the categorization of radiological pneumonia and established that PEP can be taken as a good surrogate marker of bacterial pneumonia in epidemiological and vaccine efficacy studies.¹¹ In our study, 22.44 % (95% C.I. 20.90 -23.98), CXRs had PEP alone or with other infiltrates and hence were probably bacterial in etiology. This is similar to findings of PERCH study that reported PEP alone or with other infiltrates in 27% (95% C.I. 25.50 -28.40) hospitalized cases of CAP. ²⁷ However, a study conducted in Gambia reported that 45% (95% CI: 43.35-46.46) non-vaccinated children had PEP and/or other infiltrates ²⁸ which is higher than that found by us or the PERCH study. PEP in CXR has been associated with increased risk of treatment failure (p=0.002), increased length of hospitalization (p=0.0003) and more days of respiratory support (p=0.002) in Botswana when compared with cases reporting' no significant pathology' on CXRs.30

In our study, female gender (p<0.001) was at the higher risk of developing radiological abnormalities compared to males (table 3). The results are in concordance with a hospital-based case-control study carried out in Brazil that reported male gender as a protective factor against pneumonia (OR=0.53; 95%CI 0.39–0.72). ³¹ However, a study in Mozambique, Africa reported that male gender was not significantly associated with presence of radiological abnormalities (OR =0.77; 95%CI 0.56–1.05) in children (0-59 months) suffering from severe pneumonia. ³² In contrast, a Gambian study reported male preponderance for all pneumonia that was most marked for those whose CXRs showed `other infiltrates/abnormalities`.²⁸

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

In our study, we observed differential care-seeking by gender for CAP in all four project districts. Although females admitted with CAP were at higher risk of having radiological abnormalities, lower proportions were hospitalized. Gender inequality in health care seeking for females is common in India, as in other South Asian countries. ³³ ³⁴ Since there is no health-care financing or provision of health insurance in India, in case of severe illness, parents are less likely to incur out-of-pocket expenditure or incur debts to pay expenses on medical treatment of their daughters as compared to sons. ³⁵ Another Indian study found that male children were five times more likely to be taken early for medical care and three times more likely to be seen by qualified medical doctors compared to female children. ³⁶ We also found that large proportion of hospitalized cases of pneumonia were from urban areas, as there is poor health-care seeking from rural areas. 37

A systematic review with meta-analysis conducted in 2019 suggests that no one clinical feature is sufficient on its own to diagnose radiological pneumonia. ³⁸ However other socio-demographic and clinical correlates of abnormal CXRs found by us in Model 1 (abnormal versus normal), which increased the risk of radiological abnormalities were presence of pallor, severe malnutrition, longer duration of illness and exposure to biomass fuel. In developing countries exposure to biomass fuel used for cooking has been reported as an important risk factor for CAP.³⁹ In rural India, majority of the households use biomass fuel like firewood, dung cakes and wood for cooking.⁴⁰ Young children are at risk to adverse effects of exposure to biomass fuel as either the households have no separate cooking space or have poor ventilation and sometimes young children stay with their mother while she cooks.

Page 27 of 40

BMJ Open

Other correlates of PEP/radiological pneumonia, which were more likely to be bacterial in etiology, as found in Model II, which compared PEP alone or with other infiltrates versus normal, and Model III, which compared PEP alone versus normal (table 3), besides those found in Model I, were presence of vomiting everything and wheeze on auscultation, both of which were found to be protective. These symptoms/signs are more often reported in viral pneumonia.⁴¹ Correlates of radiological abnormalities of `other infiltrates` (Model IV which compared other infiltrates with normal), which increased the risk, were again female gender, pallor and severe malnutrition. Hence it is difficult to attribute radiological findings of other infiltrates to either bacterial or viral etiology. Based on our study, almost two-third hospitalized cases of CAP had normal CXRs and could be perhaps of viral etiology. This is supported by a recent study that reported 61.4% (95% CI 57.3-65.6) cases to be viral.⁴¹ One-third of cases of CAP had abnormal CXRs and thus were more likely to be bacterial in etiology. In India, 13-valent PCV has been introduced in May 2017. A three dose schedule is followed with two primary and one booster, at 6 weeks, 14 weeks and 9 months of age, respectively. PCV 13 provides coverage against 13 serotypes (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F). ⁴² Several studies have assessed serotype distribution of pneumococcal disease among children in India. A study conducted in Vellore, India, found that the most common serotypes causing invasive infections among under-five children were 14, 19F, 5, 6A and 6B, all of which are covered by the 13-valent PCV. ⁴³ Another population-based surveillance study conducted in rural Bangladesh found that the most common serotypes of S. pneumoniae were 1, 5, 14, 18C

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

and 19A and 38 which caused invasive disease and all but one were covered by the 13 valent
vaccine. ⁴⁴ A systematic review and meta-analysis of data collected on Invasive Pneumococcal
Disease serotypes from under-five children during the pre-PCV period (between 1980-2007)
found that serotypes included in both the 10-valent and 13-valent PCVs accounted for 10 million
cases and 600,000 deaths worldwide.⁴⁵

Several strengths of the study are worth-noting. This was an active, prospective, multisite study where recruitments were done from a large hospital surveillance network established especially for the study in four districts of two Indian states that have high under-five mortality rates. Standard WHO definition was used to identify hospitalized cases of CAP. Radiological abnormalities were interpreted by a panel of three trained radiologists at locations out of the surveillance network, blinded to each other as well as clinical features of the case. Despite these strengths, our study findings have certain limitations. First, in our study, pre-existing x-rays machines which were not of uniform specification were used. This might have caused variation in quality of CXR images, though this error was minimized by digitizing the CXR images centrally. Secondly, in our study, clinical data collection was recorded by clinicians in the network hospitals and there could be observer bias. This could also have lead to possibly over reporting of presence of wheezing. In this study, we have not collected information on use of antibiotic prior to hospitalizations; as such information is not available reliably. However, in another study, done in one of the network hospitals of Lucknow in the recent past, it was found that 70.5% children tested positive for antibiotics on urine examnation.⁴⁶ Prior use of antibiotics could have possibly lead to under-estimation of radiological pneumonia. We also observed that

pulse oxymetry was not routinely done in the network hospitals. This could have an impact on the case management but would not have affected the radiological findings of CXRs.

CONCLUSION

Among hospitalized cases of CAP, almost one-third children had abnormal chest radiographs of which about two-thirds had abnormalities related with possible bacterial etiology (Streptococcus *pneumonia*). Hence, the introduction of pneumococcal vaccination is likely to reduce the burden of childhood pneumonia in India. Since the study was done prior to the introduction of PCV in India, continued surveillance will be required to assess the impact of PCV on radiological findings in cases admitted with CAP. The impact of introduction of PCV in the national immunization programme on under-five mortality rate and burden of CAP needs to be assessed TR. too.

Acknowledgements: We thank the state governments of Uttar Pradesh and Bihar for giving us permission to conduct the study. We extend our gratitude to participating tertiary and secondary care hospitals for their contribution in this study. We offer thanks to Dr. Kamrun Nahar from the International Centre for Diarrhoeal Disease Research, Bangladesh for training the panel of study radiologists. Members of the Lucknow Community-Acquired Pneumonia (CAP) Group: King George's Medical University (KGMU), Lucknow, India: Prof. Shally Awasthi, Department of Pediatrics, Prof. Neera Kohli, Department of Radio-diagnosis, Prof. Monika Agarwal, Department of Community Medicine and Public Health; Mr. Puneet Dhasmana, Project Staff; Patna Medical College and Hospital, Patna, Bihar-Prof. Neelam Verma

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

and Prof. Chandra Bhushan Kumar, Department of Pediatrics; Darbhanga Medical College and Hospital, Darbhanga, Bihar, India- Prof. Chittaranjan Roy, Department of Community Medicine, Prof. Kripanath Mishra, Department of Pediatrics; Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, India- Prof. Pankaj Kumar Jain, Department of Community Medicine, Prof. Rajesh Yadav, Department of Pediatrics.

Contributors: The study was conceived and designed by SA. CAP study group performed data acquisition.CMP and NM¹ conducted the statistical analysis of the data. The paper was written by SA, TR, MA and CMP. AC, NM³, RCS and NK interpreted chest x-rays. All authors were involved in drafting and revising the work and approved final submission.

Funding statement: The study was supported by Bill & Melinda Gates Foundation (https://www.gatesfoundation.org/) via Grant No: OPP1118005. Funding agency had no role in the design of study and collection, analysis and interpretation of data, or in writing the manuscript.

Competing interests: None declared.

Patient consent for publication: Not required.

Ethics approval: The Institutional Ethics Committee of King George's Medical University (Lucknow), The Uttar Pradesh University of Medical Sciences (Etawah), Patna Medical College and Hospital (Patna) and Darbhanga Medical College and Hospital (Darbhanga) gave ethical approval for conduct of study.

Provenance and peer review: Not commissioned; externally peer reviewed.

Data sharing statement: The data contained within this study can be obtained by writing to shally07@gmail.com

472 Copyright information: This is an Open Access article distributed in accordance with the
473 Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others
474 to distribute, remix, adapt, build upon this work non-commercially, and license their derivative
475 works on different terms, provided the original work is properly cited and the use is non476 commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

478 Supporting Information

479 S1 Appendix: Chest radiograph interpretation form

REFERENCES:

482 1. UNICEF U. Levels and trends in child mortality. Estimates developed by the UN inter483 agency group for child mortality estimation. 2011.

484 2. Amouzou A, Velez LC, Tarekegn H, *et al.* One is too many: ending child deaths from 485 pneumonia and diarrhoea. New York: Unicef, 2016. pp 73–75

486 3. Mathew JL, Patwari AK, Gupta P, *et al.* Acute respiratory infection and pneumonia in India:
487 a systematic review of literature for advocacy and action: UNICEF-PHFI series on newborn
488 and child health, India. *Indian Pediatr*2011; 48: 191–218.

489 4. Farooqui H, Jit M, Heymann DL, *et al.* Burden of severe pneumonia, pneumococcal
490 pneumonia and pneumonia deaths in Indian states: modelling based estimates. *PLoS One*491 2015; 10(6).

2 3	492	5	Rudan I, O'brien KL, Nair H, et al. Epidemiology and etiology of childhood pneumonia in
4 5		5.	
6 7	493		2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and
7 8 9	494		causative pathogens for 192 countries. Journal of global health. 2013 Jun; 3(1).
10 11	495	6.	Leung DT, Chisti MJ, Pavia AT. Prevention and control of childhood pneumonia and
12 13	496		diarrhea. Pediatric Clinics. 2016 Feb 1;63(1):67-79.
14 15 16	497	7.	Virkki R, Juven T, Rikalainen H, et al. Differentiation of bacterial and viral pneumonia in
10 17 18	498		children. <i>Thorax</i> . 2002 May 1;57(5):438-41.
19 20	499	8.	World Health Organization. Pneumococcal conjugate vaccines in infants and children under
21 22	500		5 years of age: WHO position paper-February 2019. [Accessed 12 July 2019]
23 24 25	501	9.	Government of India. Introduction of Pneumococcal Conjugate Vaccine: Operational
25 26 27	502		Guidelines. Ministry of Health and Family Welfare, 2017 Available:
28 29	503		https://nhm.gov.in/New_Updates_2018/NHM_Components/Immunization/Guildelines_for_i
30 31 32	504		mmunization/Operational_Guidelines_for_PCV_introduction.pdf. [Accessed 12 July 2019]
32 33 34	505	10	. Cherian T, Mulholland EK, Carlin JB, et al. Standardized interpretation of paediatric chest
35 36	506		radiographs for the diagnosis of pneumonia in epidemiological studies. Bulletin of the World
37 38	507		Health Organization. 2005;83:353-9
39 40 41	508	11	. Pneumonia Vaccine Trial Investigators' Group. Standardization of Interpretation of Chest
42 43	509		Radiographs for the Diagnosis of Pneumonia in Children. Geneva: Department of Vaccines
44 45	510		and Biologicals, World Health Organization; 2001
46 47 48	511	12	. Mahomed N, Fancourt N, De Campo J, et al. Preliminary report from the World Health
49 50	512		Organization chest radiography in epidemiological studies project. Pediatric radiology. 2017
51 52	513		Oct 1;47(11):1399-404.
53 54			
55 56			
57 58			31
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

BMJ Open

1 2		
3 4	514	13. Greenberg D, Givon-Lavi N, Ben-Shimol S, et al. Impact of PCV7/PCV13 introduction on
5 6	515	community-acquired alveolar pneumonia in children< 5 years. Vaccine. 2015 Aug
7 8 9	516	26;33(36):4623-9. 6.
10 11	517	14. Sutcliffe CG, Shet A, Varghese R, et al. Nasopharyngeal carriage of Streptococcus
12 13	518	pneumoniae serotypes among children in India prior to the introduction of pneumococcal
14 15 16	519	conjugate vaccines: a cross-sectional study. BMC Infect Dis. 2019 Dec;19(1):605.
17 18	520	15. Annual health survey (AHS) factsheet 2012–13 Uttar Pradesh [Internet]. New Delhi: Office
19 20	521	of Registrar General & Census Commissioner, Ministry of Home Affairs, Government of
21 22	522	India; 2010–2011.
23 24 25	523	Available: <u>http://www.censusindia.gov.in/vital_statistics/AHSBulletins/AHS_Factsheets_201</u>
26 27	524	2-13/FACTSHEET-UTTAR_PRADESH.pdf. [Accessed 5 August 2019]
28 29	525	16. Annual health survey (AHS) factsheet 2012-13 Bihar [Internet]. New Delhi: Office of
30 31 32	526	Registrar General & Census Commissioner, Ministry of Home Affairs, Government of India;
33 34	527	2010–2011.
35 36	528	Available: <u>http://www.censusindia.gov.in/vital_statistics/AHSBulletins/AHS_Factsheets_201</u>
37 38 39	529	2-13/FACTSHEET-Bihar.pdf. [Accessed 5 August 2019].
40 41	530	17. Awasthi S, Pandey CM, Verma T, et al. Incidence of community-acquired pneumonia in
42 43	531	children aged 2-59 months of age in Uttar Pradesh and Bihar, India, in 2016: An indirect
44 45 46	532	estimation. <i>PloS one</i> . 2019 Mar 20;14(3):e0214086.
46 47 48	533	18. Awasthi S, Singh JV, Kohli N, et al. Hospital-based surveillance for radiological pneumonia
49 50	534	in children under 5 years of age in Uttar Pradesh and Bihar. Pediatric Infectious Disease.
51 52	535	2016 Jun 30;8(2):52-7.
53 54 55		
55 56 57		
58		32

Page 34 of 40

BMJ Open

1

2

3 4	536	19. World Health Organization. Pocket Book of Hospital Care for Children: Guidelines for the
5 6	537	Management of Common Childhood Illnesses. 2nd edn. Geneva, Switzerland: World Health
7 8 9	538	Organization, 2013.
9 10 11	539	20. Charan J, Biswas T. How to calculate sample size for different study designs in medical
12 13	540	research?. Indian journal of psychological medicine. 2013 Apr;35(2):121.
14 15	541	21. Integrated Management of Childhood Illness (IMCI) Chart Booklet [online] Geneva: World
16 17 18	542	Health Organization. Available:
19 20	543	https://apps.who.int/iris/bitstream/handle/10665/104772/9789241506823_Chartbook_eng.pdf
21 22	544	[Accessed19 December 2019].
23 24 25	545	22. Bassignani MJ, Bubash-Faust L, Ciambotti J, et al. Conversion of teaching file cases from
26 27	546	film to digital format: a comparison between use of a diagnostic-quality digitizer and use of a
28 29	547	flatbed scanner with transparency adapter. Acad Radiol. 2003 May 1;10(5):536-42.
30 31 32	548	23. World Health Organization. The WHO Anthro Survey Analyser. In: World Health
33 34	549	Organization [Internet]. Available: <u>https://www.who.int/nutgrowthdb/software/en/</u> .
35 36	550	[Accessed: 10 June 2019].
37 38	551	24. Horton NJ, Kleinman KP. Much ado about nothing: A comparison of missing data methods
39 40 41	552	and software to fit incomplete data regression models. The American Statistician. 2007 Feb
42 43	553	1;61(1):79-90.
44 45	554	25. SPSS Inc. Released 2009. SPSS for Windows [software], Version 22.0. Chicago, SPSS Inc.
46 47 48	555	Available from: <u>www.spss.com</u>
49 50	556	26. von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational
51 52	557	studies in epidemiology (STROBE) statement: guidelines for reporting observational studies.
53 54 55	558	J Clin Epidemiol 2008;61:344–9
56 57		
58 59		33
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

~	
2	
3	
4	
5 6 7	
5	
6	
7	
/	
8 9	
~	
9	
10	
11	
12	
13	
11	
14	
15	
10	
10	
15 16 17	
10	
18	
19	
~~	
20	
21	
22	
21 22 23	
23 24	
24	
25	
25	
26 27	
77	
27	
28	
20	
29	
30	
31	
32	
52	
33	
34	
54	
35	
20	
36	
37	
38	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
20	
57	
58	

59

60

559 27. Fancourt N, Deloria Knoll M, Baggett HC, *et al.* Chest radiograph findings in childhood
560 pneumonia cases from the multisite PERCH study. *Clin Infect Dis.* 2017 May
561 29;64(suppl_3):S262-70

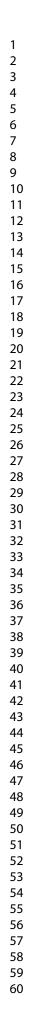
- 562 28. Enwere G, Cheung YB, Zaman SM, *et al.* Epidemiology and clinical features of pneumonia
 563 according to radiographic findings in Gambian children. *Trop Med Int Health.* 2007
 564 Nov;12(11):1377-85.
- ⁷ 565 29. Meiron Hassen, Alemayehu Toma, Mulugeta Tesfay, *et al.* Radiologic Diagnosis and
 ⁹ 566 Hospitalization among Children with Severe Community Acquired Pneumonia: A
 ¹ 567 Prospective Cohort Study. *Biomed Res Int*, vol. 2019, Article ID 6202405, 8 pages, 2019.
 ³ <u>https://doi.org/10.1155/2019/6202405</u>.
- 569 30. Kelly MS, Crotty EJ, Rattan MS, *et al.* Chest radiographic findings and outcomes of
 570 pneumonia among children in Botswana. *Pediatr Infect Dis J.* 2016 Mar;35(3):257.
- 571 31. da Fonseca Lima EJ, Mello MJ, Lopes MI, *et al.* Risk factors for community-acquired
 572 pneumonia in children under five years of age in the post-pneumococcal conjugate vaccine
 573 era in Brazil: a case control study. *BMC Pediatr.* 2016 Dec;16(1):157.
- 574 32. Sigauque B, Roca A, Bassat Q, *et al.* Severe pneumonia in Mozambican young children:
 575 clinical and radiological characteristics and risk factors. *J Trop Pediatr.* 2009 Apr
 576 28;55(6):379-87.
- 577 33. Ismail SA, McCullough A, Guo S, *et al.* Gender-related differences in care-seeking
 578 behaviour for newborns: a systematic review of the evidence in South Asia. BMJ global
 48
 49
 579 health. 2019 May 1;4(3):e001309.
- 580 34. Fikree FF, Pasha O. Role of gender in health disparity: the South Asian context. BMJ 2 2004;328:823-6. 10.1136/bmj.328.7443.823

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

582	35. Asfaw A, Lamanna F, Klasen S. Gender gap in parents' financing strategy for hospitalization
583	of their children: evidence from India. Health economics. 2010 Mar;19(3):265-79.
584	36. Pandey A, Sengupta PG, Mondal SK, et al. Gender differences in healthcare-seeking during
585	common illnesses in a rural community of West Bengal, India. Journal of Health, Population
586	and Nutrition. 2002 Dec 1:306-11.
587	37. Jana A, Basu R. Examining the changing health care seeking behavior in the era of health
588	sector reforms in India: evidences from the National Sample Surveys 2004 & 2014. Global
589	health research and policy. 2017 Dec;2(1):6.
590	38. Rambaud-Althaus C, Althaus F, Genton B, et al. Clinical features for diagnosis of
591	pneumonia in children younger than 5 years: a systematic review and meta-analysis. Lancet
592	Infect Dis. 2015 Apr 1;15(4):439-50
593	39. Awasthi S, Glick AH, Fletcher RH. Effect of cooking fuels on Respiratory Diseases in Pre-
594	school children in Lucknow, India. Am J Trop Med Hyg 1996; 55: 48-51
595	40. Tielsch JM, Katz J, Thulasiraj RD, et al. Exposure to indoor biomass fuel and tobacco smoke
596	and risk of adverse reproductive outcomes, mortality, respiratory morbidity and growth
597	among newborn infants in south India. Int J Epidemiol. 2009 Sep 16;38(5):1351-63.
598	41. O'Brien KL, Baggett HC, Brooks WA, et al. Causes of severe pneumonia requiring hospital
599	admission in children without HIV infection from Africa and Asia: the PERCH multi-country
600	case-control study. The Lancet. 2019 Jun 27
601	42. World Health Organization. Pneumococcal conjugate vaccines in infants and children under
602	5 years of age: WHO position paper–February 2019. Accessed 12th March. 2019.

Page 37 of 40


59

60

BMJ Open

1 2		
2 3 4	603	43. Balaji V, Jayaraman R, Verghese VP, et al. Pneumococcal serotypes associated with
5 6	604	invasive disease in under five children in India & implications for vaccine policy. The Indian
7 8 9	605	journal of medical research. 2015 Sep;142(3):286.
9 10 11	606	44. Arifeen SE, Saha SK, Rahman S, et al. Invasive pneumococcal disease among children in
12 13	607	rural Bangladesh: results from a population-based surveillance. Clinical Infectious Diseases.
14 15 16	608	2009 Mar 1;48 (Supplement_2):S103-13.
10 17 18	609	45. Johnson HL, Deloria-Knoll M, Levine OS, et al. Systematic evaluation of serotypes causing
19 20	610	invasive pneumococcal disease among children under five: the pneumococcal global serotype
21 22 22	611	project. PLoS medicine. 2010 Oct 5;7(10):e1000348
23 24 25	612	46. Bénet T, Picot VS, Awasthi S, et al. Severity of pneumonia in under 5-year-old children from
26 27	613	developing countries: a multicenter, prospective, observational study. The American journal
28 29	614	of tropical medicine and hygiene. 2017 Jul 12;97(1):68-76
30 31	615	
32 33	616	Figure Legend
34 25	617	Figure 1: Flow diagram of cases of community acquired pneumonia recruited from participating
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 57	618	districts before the introduction of pneumococcal conjugate vaccine (January 2015-April 2017)
57 58		36

BMJ Open: first published as 10.1136/bmjopen-2019-034066 on 7 May 2020. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

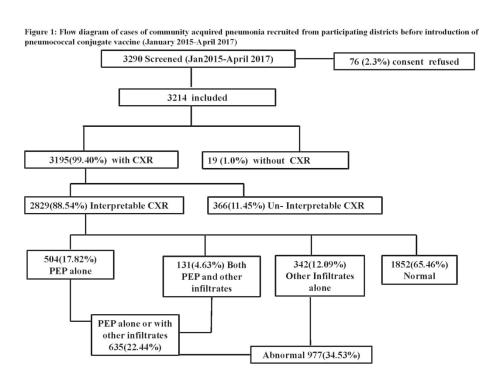


Figure 1: Flow diagram of cases of community acquired pneumonia recruited from participating districts before the introduction of pneumococcal conjugate vaccine (January 2015-April 2017)

254x190mm (300 x 300 DPI)

Radiology Report Patient Details 2 DNo:		(RADIOLOGY REPORT FORM)
2 IDNo:	1	Drs_ID	
State / District / Unit / Subject number (For office use) 2 Date Of Report []]]/[][][][]][][(DD/MM/YYYY) Report Details Findings (tick one) 3 Image Quality 4 Significant Pathology 5 End Point Consolidation 5a Left Yes No Un-interpretable 5b Right Yes No Un-interpretable 56 Right Yes No Un-interpretable 56 Right Yes No Un-interpretable 56 Right Yes No Un-interpretable 57 Pleural Fhild 78 Comments: 69 Conclusion: a) Primary endpoint pneuronia only b) Other infiltrate only c) Both PEP and other infiltrate	uotine	Radiology Report	Patient Details
Report Details Findings (tick one) 3 Image Quality Adequate Suboptimal Un-interpretable 4 Significant Pathology Yes No Un-interpretable 5 End Point Consolidation 5a Left Yes No Un-interpretable 55 End Point Consolidation 56 Right Yes No Un-interpretable 56 Right Yes No Un-interpretable 56 Other Uninterpretable Uninterpretable 56 Right Yes No Un-interpretable 56 Right Yes No Un-interpretable 57 Pleural Fluid Yes No Un-interpretable 58 Right Yes No Un-interpretable Secondary 58 Conclusion: a) Primary endpoint pneumonia only Secondary 59 Conclusion: a) Primary endpoint pneumonia only Secondary 59 Onclusion: a) Primary endpoint pneumonia only Secondary	2	WNo:	State /District / Unit / Subject number
3 Image Quality Adequate Suboptimal Un-interpretable 4 Significant Pathology Yes No Un-interpretable 5 End Point Consolidation 5a Left Yes No Un-interpretable 5b Right Yes No Un-interpretable 56 Right Yes No Un-interpretable 56 Right Yes No Un-interpretable 56 Other Infiltrates/Abnormalities Uninterpretable 56 Right Yes No Un-interpretable 57 Pleural Fhuid Yes No Un-interpretable 58 Comments:	2 !	Date Of Report	[_][_]/[_][_][_][_][_] (DD/MM/YYYY)
4 Significant Pathology Yes No Un-interpretable 5 End Point Consolidation 5a Left Yes No 5b Right Yes No 6 Other 1nfiltrates/Abnormalities 5a 6b 7 9 Conclusion: Yes No Un-interpretable Un-interpretable Un-interpretable Other Infiltrates/Abnormalities Key Yes No Un-interpretable Un-interpretable Yes No Un-interpretable Un-interpretable Other Key Yes No Un-interpretable Un-interpretable Other Key Yes No Un-interpretable Un-interpretable Yes No Un-interpretable Un-interpretable On Un-interpretable Un-interpretable Other Key Yes No Un-interpretable Un-interpretable On Un-interpretable Un-interpretable Other Yes No Un-interpretable Un-interpretable On Un-interpretable On Un-interpretable Un-interpretable On Un-interpretab	i (i la	Report Details	Findings (tick one)
5 End Point Consolidation 5a Left Yes No Un-interpretable 5b Right Yes No Un-interpretable 56 Other Uninterpretable Uninterpretable 56 Left Yes No Un-interpretable 56 Right Yes No Un-interpretable 56 Right Yes No Un-interpretable 56 Right Yes No Un-interpretable 70 Pleural Fluid Yes No Un-interpretable 7a Left Yes No Un-interpretable 7b Right Yes No Un-interpretable 7b Right Yes No Un-interpretable 7a Left Yes No Un-interpretable 7a Left Yes No Un-interpretable 7b Right Yes No Un-interpretable 8 Conclusion:	3	Image Quality	Adequate 🗆 Suboptimal 🗆 Un-interpretable 🗆
5a Left Yes No Un-interpretable 5b Right Yes No Un-interpretable 56 Other Uninterpretable Uninterpretable 56 Left Yes No Un-interpretable 56 Left Yes No Un-interpretable 56 Right Yes No Un-interpretable 70 Pleural Fluid Yes No Un-interpretable 77 Pleural Fluid Yes No Un-interpretable 78 Comments:	4	Significant Pathology	Yes 🗆 No 🗆 Un-interpretable 🗔
5b Right Yes No Un-interpretable 6 Other Uninterpretable Uninterpretable 6a Left Yes No Un-interpretable 6b Right Yes No Un-interpretable 7 Pleural Fluid Yes No Un-interpretable 7a Left Yes No Un-interpretable 7b Right Yes No Un-interpretable 7b Comments:	5	End Point Consolidation	
6 Other Infiltrates/Abnormalities 5a Left 5a Right 5b Right 7 Pleural Fluid 7a Left 7b Yes 7b No 7c Un-interpretable 7b Yes 8 Comments: 9 Conclusion: a) Primary endpoint pneumonia only b) Other infiltrate only c) Both PEP and other infiltrate d) Normal	5a 5b		t Yes 🗆 No 🗆 Un-interpretable 🗔
6b Right Yes No Un-interpretable 7 Pleural Fluid 7a Left Yes No Un-interpretable 7b Right Yes No Un-interpretable 8 Comments:			
7a Left Yes No Un-interpretable 7b Right Yes No Un-interpretable 8 Comments: 9 Conclusion: a) Primary endpoint pneumonia only b) Other infiltrate only c) Both PEP and other infiltrate d) Normal	6a 6b		
7a Left Yes INO Un-interpretable I 7b Right Yes No Un-interpretable I 7b No Un-interpretable I 7b No Un-interpretable I 76 No Un-interpretable I 76 No Un-interpretable I 77 No Un-interpretable I 78 Comments: 9 Conclusion: 9 Conclusion: 9 Other infiltrate only I 0 Normal I	7		
 a) Primary endpoint pneumonia only b) Other infiltrate only c) Both PEP and other infiltrate d) Normal 	7a 7b	- Le:	
 b) Other infiltrate only □ c) Both PEP and other infiltrate □ d) Normal □ 	8	Comments:	
	9	Conclusion:	 b) Other infiltrate only □ c) Both PEP and other infiltrate □ d) Normal □

STROBE Statement-Checklist of items that should be included in reports of cross-sectional studies

	Item No	Recommendation	Page Numbe
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the	1
		title or the abstract (b) Provide in the electron informative and belanced summary of	2.2
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the	4
8		investigation being reported	
Objectives	3	State specific objectives, including any pre-specified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including	5
C		periods of recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	5-6
		selection of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	5-6
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	7-8
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	25
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	11-13
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control	11-13
		for confounding	
		(b) Describe any methods used to examine subgroups and	Table 1, 2 &
		interactions	
		(c) Explain how missing data were addressed	12
			reference 24
		(<i>d</i>) If applicable, describe analytical methods taking account of	11-13
		sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	NA
Results Participants	13*	(a) Report numbers of individuals at each stage of study—eg	14
Participants	13.	numbers potentially eligible, examined for eligibility, confirmed	14
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Figure 1
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	14-15
2 compare dula	17	clinical, social) and information on exposures and potential	Table 1
		confounders	10010 1
		(b) Indicate number of participants with missing data for each	Figure 1
		variable of interest	0410 1

Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Table 3 (adjusted odd ratio)
		(<i>b</i>) Report category boundaries when continuous variables were categorized	Table 3
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA (calculated only odds ratio)
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Table 3
Discussion			
Key results	18	Summarise key results with reference to study objectives	21-23
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	25-26
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	21-23
Generalisability	21	Discuss the generalisability (external validity) of the study results	21
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the	27

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.