

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

# **BMJ Open**

#### Atrial fibrillation patients' adherence to oral anticoagulants: A systematic review and meta-analysis of observational studies

| Journal:                      | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Journal.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Manuscript ID                 | bmjopen-2019-034778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Article Type:                 | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date Submitted by the Author: | 05-Oct-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Complete List of Authors:     | Salmasi, Shahrzad; Collaboration for Outcomes Research and Evaluation<br>(CORE), The University of British Columbia; University of British<br>Columbia Faculty of Pharmaceutical Sciences<br>De Vera, MA ; University of British Columbia, Faculty of Pharmaceutical<br>Sciences; Collaboration for Outcomes Research and Evaluation (CORE),<br>The University of British Columbia<br>Tandun, Rachel; University of British Columbia Faculty of Pharmaceutical<br>Sciences<br>Andrade, Jason; University of British Columbia, Faculty of Medicine;<br>Institut De Cardiologie de Montreal<br>Loewen, Peter; University of British Columbia Faculty of Pharmaceutical<br>Sciences; Collaboration for Outcomes Research and Evaluation (CORE),<br>The University of British Columbia Faculty of Pharmaceutical<br>Sciences; Collaboration for Outcomes Research and Evaluation (CORE),<br>The University of British Columbia |
| Keywords:                     | Stroke medicine < INTERNAL MEDICINE, Thromboembolism < CARDIOLOGY, Anticoagulation < HAEMATOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Peter Loewen PharmD<sup>1</sup>

# Atrial fibrillation patients' adherence to oral anticoagulants: A systematic review and meta-analysis of observational studies Shahrzad Salmasi B.Pharmacy, MSc<sup>1</sup>, Mary A. De Vera PhD<sup>1</sup>, Rachel Tandun<sup>1</sup>, Andrade JG<sup>2,3</sup>, <sup>1</sup>Collaboration for Outcomes Research & Evaluation (CORE), Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada. <sup>2</sup>Atrial Fibrillation Clinic, Vancouver General Hospital, Vancouver, Canada.

<sup>3</sup> Faculty of Medicine, The University of British Columbia, Vancouver, Canada. Word count: 2870 **Tables:** 4; **Figures:** 2; **Supplementary files:** 4 (2 checklists) Short title: AF patients' adherence to anticoagulants **Corresponding author:** Shahrzad Salmasi B.Pharmacy(Hons), MSc

Faculty of Pharmaceutical Sciences, The University of British Columbia

2405 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3

Tel: 604-726-9970; Email:shahrzad.salmasi@ubc.ca

#### ABSTRACT

#### PURPOSE

Medications cannot exert their effect if not taken as prescribed by patients. Our objective was to summarize the evidence on atrial fibrillation (AF) patients' observational adherence to oral anticoagulants (OACs).

#### **METHODS**

We systematically searched for observational studies measuring adherence, its determinants and impacts in AF patients. Mean adherence measures and corresponding proportions of adherent patients were pooled using random effects models. Factors shown to be independently associated with adherence were extracted as well as the clinical and economic outcomes of adherence.

#### RESULTS

We included 30 studies. Pooled mean adherence scores of over half a million AF patients at sixmonth and one-year were 77 (95% CI: 74-79) and 74 (68-79), respectively. Drug-specific pooled mean adherence score six-month and one-year post index date were as follows: rivaroxaban: 78 (73-84) and 77 (69-86); apixaban: 77 (75-79) and 82 (74, 89); dabigatran: 74 (69-79) and 75 (68-82), respectively. There was inadequate information on warfarin for inclusion in meta-analysis. Factors associated with increased adherence included: older age, higher stroke risk, once-daily regimen, history of hypertension, diabetes, or stroke, concomitant cardiovascular medications, living in rural areas, and being an experienced OAC user. Non-adherent patients were more likely to experience bleeds and stroke, and incurred higher medical costs compared to patients with poor adherence.

#### CONCLUSIONS

Our findings show that only up to 70% of AF patients are adherent, suggesting an important therapeutic challenge in this patient population.

Keywords: Atrial fibrillation, anticoagulants, medication adherence, stroke.

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

# Strengths and limitations of this study

- This study synthesized observational data, from prospective and retrospective studies, of over half a million AF patients.
- Drug adherence consists of three phases: initiation, implementation, and discontinuation. This study focused on the implementation phase only.
- The study focused not only on the extent of poor adherence but also its predictors and outcomes (clinical and economical).

to been eview only

# INTRODUCTION

Atrial fibrillation (AF) - the most common chronic arrhythmia - is an epidemic affecting more than 33 million people worldwide.<sup>1</sup> AF increases stroke risk by up to five-fold, and is responsible for with a third of strokes in people over 60.<sup>2-45</sup> Strokes secondary to AF are far more debilitating and carry three times the risk of death than strokes due to other causes.<sup>6-12</sup>

Oral anticoagulants (OACs), which include vitamin K antagonists (VKA) and direct oral anticoagulants (DOACs), are effective in preventing stroke in AF patients, showing approximately 66% relative risk reduction in clinical trials.<sup>13-17</sup> When used outside the controlled environment of clinical trials, however, the effectiveness of these drugs is impacted by patients' adherence.<sup>18, 19</sup> Interruption of OAC therapy has been associated with substantial risk of stroke and bleeding in AF patients.<sup>20, 21</sup> Our objective was to summarize the evidence from letermini observational studies on the extent, determinants, and impacts of AF patients' adherence to OACs.

# METHODS

We conducted a systematic review and meta-analysis following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines (Supplementary files 1a and 1b).<sup>22, 23</sup>

# Search strategy

On March 2019 we systematically searched PubMed/Medline, Embase, CINAHL and PsycINFO (from inception) using the relevant keywords and MeSH terms (Supplementary 2). The search strategy was designed with the help of a medical librarian and aimed to identify peer-reviewed published manuscripts that reported on extent, determinants, and impacts of non-adherence to any OAC. A manual search was also performed on Google Scholar and the bibliography of included studies.

# Inclusion criteria and study selection

Studies were included if they utilized a prospective or retrospective observational study design, quantitatively measured secondary adherence (also known as "implementation")<sup>19</sup> and were published in English, French, Spanish, Persian, Finnish, Cantonese or Korean.<sup>24</sup> No limitations were imposed on setting, country, publication date, or quality.

While we were primarily interested in OAC adherence in non-valvular AF (NVAF) patients, we included studies that did not specifically restrict inclusion to this population, with notation in quality assessment. Studies of self-reported adherence were excluded as they are prone to overestimation of adherence (social desirability bias).<sup>24</sup> Cross-sectional and interventional studies, editorials, conference proceedings, and studies that evaluated or validated adherence measurement methods were also excluded.

Two authors independently screened titles and abstracts of the retrieved studies followed by full text review of candidate studies. Disagreements about inclusion were resolved by discussion with a third author.

# Data extraction and synthesis

The primary adherence measure extracted was the mean and standard deviation (SD) of patients' adherence at six or twelve months. Secondary adherence measure included corresponding

proportions of adherent patients (proportion of patients with mean adherence  $\geq$  the threshold specified by the corresponding authors, usually 80%). Six or twelve months were chosen as these were the most common follow-up times. If a study had variable follow-up time (e.g. from initiation to permanent discontinuation or death) the median follow-up time was used. For studies that reported the proportion of *non*-adherent participants, data were transformed to proportion *adherent* to allow pooling. When both unadjusted and adjusted outcomes were reported we extracted and analysed the adjusted results. When unmatched and propensity score matched results were reported, we extracted the matched results as they were expected to be more accurate estimates. When a study reported adherence to both index OAC and current OAC (allowing for switching), adherence to index OAC was analyzed to minimize heterogeneity since studies defined switching differently. Adherence results with switching allowed were still reported.

We extracted information on the determinants or factors shown in the included studies to be independently associated with adherence in multivariable regression analyses. We grouped these under the World Health Organization's (WHO) five dimensions of medication adherence.<sup>25</sup> Finally, we extracted information on the clinical and economic consequences of poor adherence.

#### Data analysis

Meta-analyses were carried out using Der Simonian & Laird random-effects models to determine the pooled mean adherence and the corresponding pooled proportion of adherent patients [those with mean score >80 (the conventional threshold for "good adherence")] at six-month and oneyear of observation.<sup>26, 27</sup> If a study reported adherence scores for multiple cohorts, all were included in the meta-analysis (multiple entries per study). In anticipation of heterogeneity subgroup analysis was performed for each adherence measure, and by presence of potential conflict of interest, and study quality. Additional meta-analyses were also performed focusing only on studies that reported comparative adherence between different OACs in the same cohort, to calculate the pooled odds ratio of adherence for each comparison.

I<sup>2</sup> statistics was used to quantify heterogeneity between studies.<sup>28</sup> Leave-one-out analysis was also performed for outliers to explore and potentially reduce heterogeneity.<sup>29</sup> Forest plots and funnel plots were constructed using OpenMeta-Analyst (Microsoft Corporation, Redmond,

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

WA)<sup>30</sup> or RevMan5 (version 5.3, Copenhagen, Denmark) software to illustrate the results and assess publication bias.<sup>31</sup> Clinical and economic impacts of poor adherence were summarized narratively as meta-analysis was not possible.

#### **Quality assessment**

We critically appraised the quality of adherence measurement in the included studies by adapting a condensed version of the checklist designed by the ISPOR Group.<sup>32</sup> We also critically appraised individual study quality using STROBE.<sup>33</sup> Studies received a point for each checklist item they met and a zero score if not met. A quality score was computed for each study (number of items satisfactorily met / the total number of applicable items) and reported as a percentage. Items deemed not applicable were excluded from the denominator of the study's score. Studies were categorized as low, moderate or high quality if they scored  $\leq$ 50%, 51-80%, or >80%, respectively.<sup>34, 35</sup>

Following Cochrane's commercial sponsorship policy as a guide, potential conflicts of interest were deemed present if any of the following were met: 1) provision of study funding by the forprofit manufacturer or marketer of any of the OACs included in the corresponding study, or 2) disclosure of past a potential conflict of interest with the study sponsor when the sponsor was a for-profit manufacturer or marketer of any of the OACs included in the corresponding study.<sup>36</sup>

#### Patient and Public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination of our research.

#### <u>Ethical approval</u>

Ethical approval for this study was not required per our institution's policies.

# RESULTS

Systematic review of the literature led to inclusion of 30 studies<sup>37-66</sup> (Figure 1.0) involving 593,683 participants (NOAC: 437,610, VKA: 156,073). Most studies were published after 2015 (n=22, 73% of total included), conducted in North America (n=19, 63%), and retrospective (n=29, 97%), (Table 1). A majority of the studies had high (59%) or moderate (38%) quality of adherence measurement (Supplementary 3). The most frequently reported adherence measures were proportion days covered (PDC) (n=21, 70% of the included studies), and medication possession ratio (MPR) (n=9, 20%) at six-month or one-year post index date (Table 2). There were no data on adherence to edoxaban, betrixaban, phenprocoumon, acenocoumarol, or fluindione.

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

#### 

#### **Adherence**

The range of reported adherence results was quite wide. Reported mean adherence ranged between 67 (out of 100)<sup>60, 63, 66</sup> to 86<sup>57</sup> at six months and 57<sup>60</sup> to 86<sup>43</sup> at one-year post index date, with corresponding reported proportion of adherent patients ranging between 47%<sup>61</sup> to 82%<sup>58</sup> at six months and 41%<sup>60</sup> to 95%<sup>47</sup> at one year. Wide range of adherence results were observed even at the individual OAC level (Table 2).

Pooled mean adherence scores at six-month and one-year post medication initiation were 77 (95% CI: 74-79) and 74 (68-79), with the corresponding pooled proportion of adherent patients as 63% (58%-68%) and 70% (65%-76%), respectively. Adherence was similar between NOACs, although adherence to apixaban and rivaroxaban was slightly higher than dabigatran (Table 3). There was insufficient information on warfarin for inclusion in meta-analysis, therefore, no drug class comparison could be made. Figure 2.0 illustrates the forest plots for patients' mean adherence score at six-month and one-year. The remaining forests plots, including forest plots of mean adherence to individual OACs, subgroup analyses [by adherence measure (PDC and MPR), study quality and potential for conflict of interest] can be found in supplementary 4.

Between-study variance (represented as I<sup>2</sup>) was high and not reduced by the leave-one out analysis or subgroup analysis. Exclusion of studies with potential conflicts of interest led to lower adherence scores for all OACs but did not change the rank-order of OACs (adherence to dabigatran remained lower than the others). Excluding studies of low and moderate quality or stratifying the analysis by adherence measure (PDC versus MPR), or country (USA versus others) had only minor impacts on pooled adherence results and the detected heterogeneity (Supplementary 4).

#### Studies comparing adherence between different OACs in the same cohort

Nineteen studies reported comparative adherence between different OACs in the same cohort (Table 4).<sup>37-39, 41-47, 51, 52, 54, 57-60, 62, 64</sup> Odds of being adherent was significantly higher for apixaban compared to dabigatran at both six-month (Odds Ratio (OR):1.24, 95% CI: 1.07-1.45) and one-year post index date (OR:1.76, 95% CI:1.35-2.29). Odds of adherence was significantly higher for rivaroxaban compared to dabigatran at six-months (OR:1.39, 95%CI: 1.15-1.67), but not one-year (OR:1.17, 95%CI: 0.38-3.60). Odds of adherence did not differ between apixaban

#### **BMJ** Open

and rivaroxaban at six-months (OR:0.80, 95% CI: 0.51-1.24) or one-year (OR:1.02, 95% CI: 0.79-1.33).

#### Studies reporting adherence among several cohorts with different characteristics

Three studies compared adherence between new versus experienced users.<sup>39, 52, 58</sup> McHorney et al. reported greater mean PDC score for both rivaroxaban and apixaban (0.90 and 0.88, respectively) among prior OAC users compared to naïve users (0.87 and 0.86, respectively).<sup>58</sup> Borne et al. reported a higher mean PDC score for apixaban users with prior warfarin experience compared to naïve users (0.89±0.14 vs naïve:  $0.87\pm0.15$ , P < 0.01).<sup>39</sup> Confirming these results, Manzoor et al. reported higher mean PDC for experienced users compared to naïve users at sixmonth (83.3±24.6 vs 72.3±31.3; p< 0.05), nine-month (81.2±26.4 vs 67.3±33.8); p< 0.05) and one-year (79.9±27.6 vs 63.7±35.2; p <0.05).<sup>52</sup>

One study, Eapen et al., compared adherence among those prescribed OAC at discharge versus after discharge and reported that patients prescribed warfarin at discharge had significantly higher prescription fill rates compared to those prescribed after discharge at three months (84.5% vs 12.3%; P<0.001) and one year (91.6% vs 16.8%; P<0.001).<sup>46</sup>

#### **Determinants of adherence**

Significant predictors of higher adherence to OACs included: **Patient factors:** history of hypertension<sup>45, 51</sup>, diabetes<sup>39</sup> stroke<sup>39, 54</sup>; **Condition factors:** higher risk of bleeding<sup>45</sup>; **Regimen factors:** once daily dosing<sup>37, 51</sup>, concomitant use of statin<sup>45, 54</sup>, angiotensin converting enzyme inhibitor or angiotensin II receptor blockers<sup>45, 54</sup>; and **Social/economic factors:** living in rural or deprived areas.<sup>54, 55</sup> Predictors of lower adherence to OAC were: being a naïve OAC user<sup>52, 58</sup>, twice daily dosing<sup>37, 51</sup> and impaired cognitive or functional ability.<sup>58</sup> No healthcare system related predictors of adherence were identified.

Conflicting results were reported for female sex<sup>49, 50, 55</sup>, age<sup>39, 45, 49-52, 54, 55</sup>, risk of stroke<sup>45, 49, 55</sup>, presence of multiple comorbidities<sup>45, 52, 53, 58</sup>, and higher number of concomitant medications.<sup>52, 53</sup> These factors were found to be predictors of high *and* low OAC adherence in different studies.

#### **Impacts of adherence**

Four studies assessed the clinical impact of adherence.<sup>37, 39, 40, 44</sup> Alberts et al. reported 50% increased hazard with NOAC non-adherence.<sup>37</sup> Desphande et al. reported non-adherent patients

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

to be 1.82 times (aHR:1.82, 95% CI: 1.24 to 2.67; p= 0.002) and 2.08 times (aHR:2.08, 95%CI: 1.11 to 3.89; p=0.02) more likely to experience an ischemic stroke compared to adherent patients, over six and 12 months, respectively.<sup>44</sup> Similarly, Borne et al. reported a higher risk of death or stroke per 0.1 drop in the PDC among dabigatran users (HR:1.07, 95% CI: 1.03 to 1.12; p < 0.01)<sup>39</sup> and Casiano et al. reported a significantly higher total number of bleeds (major, minor, other) in non-adherent patients [152 (2.79 per 100 person-years)] compared to adherent patients [97 (2.62 per 100 person-years)].<sup>40</sup>

Two studies measured the economic impacts of adherence. Casciano et al. reported significantly more inpatient and emergency room encounters and longer length of stay for non-adherent patients compare to adherent patients<sup>40</sup> and Desphande et al. reported significantly higher annual adjusted per-patient medical cost (inpatient and outpatient) for non-adherent users compared to adherent ones (\$30,485 versus \$23,544; p≤0.001).<sup>45</sup>

#### DISCUSSION

In this systematic review, we synthesized observational data of over half a million AF patients to reveal the extent of adherence to OACs, identify the determinants of adherence among AF patients that could potentially be targeted by interventions to improve it, and assessed the clinical and economic impacts of non-adherence in this patient population.

AF patients' adherence to their OACs has been thoroughly studied in developed countries. Pooled proportion of adherent AF patients at six-month and one-year was 63% and 70%, respectively, which is higher than other chronic cardiovascular medications such as statins (54%) and antihypertensives (59%).<sup>67</sup> However, our finding that up to 37% of AF patients do not adhere to OACs is concerning considering the detrimental consequences of nonadherence to these medications. We were unable to ascertain whether the conveniences of NOACs translates into better adherence compared to warfarin, due to lack of adherence data on warfarin, a likely result of warfarin dose variations complicating MPR and PDC ascertainment from administrative data. Between NOACs, however, adherence was found to be similar, although dabigatran appeared to have slightly lower adherence than apixaban and rivaroxaban.

Many patient-, condition-, regimen- and social/economic-related factors were identified by the included studies as significant determinants of adherence. The limited number of prospective observational studies on the topic restricted our ability to identify important psychosocial determinants as administrative data fall short in recording patient knowledge gaps, misconceptions, and varying values and preferences, all of which have frequently been reported in AF patients.<sup>35, 68-74</sup> Nevertheless, our findings indicate potential opportunities for interventions such as education and counselling for younger or newly diagnosed patients (naïve users) and adherence support for those on twice daily dosed OACs.

Lastly, we looked at outcomes of adherence. Our review found evidence of association between lower adherence and strokes, bleeds, death, healthcare utilization and costs. This supports the potential of interventions aimed at increasing OAC adherence in AF patients.

#### **Limitations**

This review was primarily limited by gaps in the available evidence. Given our interest in observational data, our evidence was narrowed to developed countries where the technology and infrastructure for systematic collection of such data is available. The high number of studies from a few developed countries introduced the possibility of duplicate patients in the analysis since many of the included studies used the same database with overlapping periods.<sup>37, 40-42, 52, 66</sup> Another limitation of our analysis was the high heterogeneity (I<sup>2</sup>>80%) among the studies. Possible sources of heterogeneity include differences in patient inclusion criteria (e.g. OAC naïve versus experienced); methods for handling and defining medication switches, stockpiling, refill gaps, and hospitalization dates; fixed versus variable observational periods and adherence measure used (PDC versus MPR). Subgroup analyses did not affect the amount of statistical heterogeneity detected. Nonetheless, in addition to the summary measures derived from metaanalysis, we were able to detect the range of adherence measures from the included studies. Finally, drug utilisation consists of initiation, implementation, and discontinuation,<sup>19,75</sup> and the focus of this study was confined to the implementation phase. Systematic reviews of OAC initiation and discontinuation are needed to provide a complete picture of AF patients' medication taking behaviour.

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

#### **FUTURE DIRECTIONS**

Our understanding of AF patients' comparative adherence between warfarin and NOACs is currently impeded by lack of observational data on warfarin. Sophisticated statistical models are needed to calculate days' supply of warfarin, despite its varying dose, to allow measurement of MPR or PDC for this drug using administrative data. Furthermore, we lack information on patterns of nonadherence to OACs. All of the current studies have treated adherence as a static behavior, calculating and reporting it using a single summary measure. This methodological approach does not provide a complete picture of adherence, which is a dynamic behavior that changes over time.<sup>26, 76</sup> Characterization of adherence patterns over time is vital in understanding the problem of poor adherence and targeting the right patients at the right time with the right interventions.<sup>77-81</sup>

There is a need for more research investigating the clinical and economic consequences of poor adherence as the current evidence is limited to findings of four studies. Moreover, a clinically meaningful OAC adherence threshold has yet to be determined in AF. While the association between taking >80% of medications and improved clinical outcomes has been shown in three AF studies, it remains unclear if this is the optimal threshold for AF. Clinically relevant adherence cut-off values have been shown to differ widely (from 58% to 85%) in different diseases, and even among drug classes.<sup>82, 83</sup> As with antiretroviral medications, given the detrimental consequences of OAC nonadherence, the clinically meaningful threshold for "good adherence" to OACs may need to be much higher than 80%.<sup>83</sup>

#### CONCLUSION

Synthesis of observational data suggests that overall OAC adherence in AF is below the conventional threshold of "adherent" (80%). These findings, combined with evidence that lower adherence is associated with poor clinical outcomes, suggest an important therapeutic challenge in this patient population. Our study also highlights the need for more consistent measures of adherence, and more research to characterize patterns of OAC non-adherence, identifying determinants of poor OAC adherence, and investigate the clinical and economic consequences of OAC non-adherence.

#### **FUNDING:**

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. Dr. Loewen's research is partially supported by the UBC David H MacDonald Professorship in Clinical Pharmacy.

#### **COMPETING INTERESTS**

Authors have no competing interests to declare.

# CONTRIBUTIONS

Conceived the study: SS, PL, MDV; Designed the search strategy: SS, MDV, PL; Conducted the literature search: SS; Screened titles and abstracts: SS, RT; Screened full texts: SS, RT; Extracted data: SS, RT; Analyzed the data: SS; Conducted quality assessment; SS, RT; Interpreted the results: SS, PL, MDV; Prepared the manuscript: SS, MDV, PL, RT;

ired tine .

#### REFERENCES

1. Morillo CA, Banerjee A, Perel P, Wood D and Jouven X. Atrial fibrillation: the current epidemic. *Journal of geriatric cardiology : JGC* 2017; 14: 195-203. DOI: 10.11909/j.issn.1671-5411.2017.03.011.

2. Wolf PA, Abbott RD and Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. *Stroke* 1991; 22: 983-988. DOI: 10.1161/01.str.22.8.983.

3. Hart RG, Pearce LA, Mcbride R, Rothbart RM and Asinger RW. Factors associated with ischemic stroke during aspirin therapy in atrial fibrillation: analysis of 2012 participants in the SPAF I-III clinical trials. The Stroke Prevention in Atrial Fibrillation (SPAF) Investigators. *Stroke* 1999; 30: 1223-1229. 1999/06/04.

4. World Health Organization. The top 10 causes of death [Internet], https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (cited 2018, accessed 2.05.2019 2019).

5. Wolf PA, Dawber TR, Thomas HE, Jr. and Kannel WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. *Neurology* 1978; 28: 973-977. 1978/10/01. DOI: 10.1212/wnl.28.10.973.

6. Gladstone DJ, Bui E, Fang J, Laupacis A, Lindsay MP, Tu JV, et al. Potentially preventable strokes in high-risk patients with atrial fibrillation who are not adequately anticoagulated. *Stroke* 2009; 40: 235-240. 2008/09/02. DOI: 10.1161/strokeaha.108.516344.

7. Jorgensen HS, Nakayama H, Reith J, Raaschou HO and Olsen TS. Acute stroke with atrial fibrillation. The Copenhagen Stroke Study. *Stroke* 1996; 27: 1765-1769. 1996/10/01. DOI: <u>https://doi.org/10.1161/01.STR.27.10.1765</u>.

8. Kimura K, Minematsu K and Yamaguchi T. Atrial fibrillation as a predictive factor for severe stroke and early death in 15,831 patients with acute ischaemic stroke. *Journal of neurology, neurosurgery, and psychiatry* 2005; 76: 679-683. 2005/04/19. DOI: 10.1136/jnnp.2004.048827.

9. Kolominsky-Rabas PL, Weber M, Gefeller O, Neundoerfer B and Heuschmann PU. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence,

and long-term survival in ischemic stroke subtypes: a population-based study. *Stroke* 2001; 32: 2735-2740. 2001/12/12. DOI: <u>https://doi.org/10.1161/hs1201.100209</u>.

10. Marini C, De Santis F, Sacco S, Russo T, Olivieri L, Totaro R, et al. Contribution of atrial fibrillation to incidence and outcome of ischemic stroke: results from a population-based study. *Stroke* 2005; 36: 1115-1119. 2005/05/10. DOI: 10.1161/01.STR.0000166053.83476.4a.

Mcgrath ER, Kapral MK, Fang J, Eikelboom JW, Conghaile A, Canavan M, et al.
 Association of atrial fibrillation with mortality and disability after ischemic stroke. *Neurology* 2013; 81: 825-832. 2013/08/02. DOI: 10.1212/WNL.0b013e3182a2cc15.

12. Fang MC, Go AS, Chang Y, Borowsky LH, Pomernacki NK, Udaltsova N, et al. Longterm survival after ischemic stroke in patients with atrial fibrillation. *Neurology* 2014; 82: 1033-1037. DOI: 10.1212/WNL.00000000000248.

13. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus Warfarin in Patients with Atrial Fibrillation. *New England Journal of Medicine* 2009; 361: 1139-1151. DOI: 10.1056/NEJMoa0905561.

Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, et al.
Edoxaban versus Warfarin in Patients with Atrial Fibrillation. 2013; 369: 2093-2104. DOI: 10.1056/NEJMoa1310907.

15. Hart RG, Pearce LA and Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. *Ann Intern Med* 2007; 146: 857-867. 2007/06/20. DOI: 10.7326/0003-4819-146-12-200706190-00007.

Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus
Warfarin in Nonvalvular Atrial Fibrillation. *New England Journal of Medicine* 2011; 365: 883891. DOI: 10.1056/NEJMoa1009638.

17. European Society of Cardiology. ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. *European Heart Journal* 

2016. DOI: 10.1093/eurheartj/ehw210.

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

18. Karve S, Cleves MA, Helm M, Hudson TJ, West DS and Martin BC. Good and poor adherence: optimal cut-point for adherence measures using administrative claims data. *Curr Med Res Opin* 2009; 25: 2303-2310. 2009/07/29. DOI: 10.1185/03007990903126833.

De Geest S, Zullig LL, Dunbar-Jacob J, Helmy R, Hughes DA, Wilson IB, et al.
 ESPACOMP Medication Adherence Reporting Guideline (EMERGE). *Ann Intern Med* 2018;
 169: 30-35. 2018/06/28. DOI: 10.7326/m18-0543.

20. Sherwood Matthew W, Douketis James D, Patel Manesh R, Piccini Jonathan P, Hellkamp Anne S, Lokhnygina Y, et al. Outcomes of Temporary Interruption of Rivaroxaban Compared With Warfarin in Patients With Nonvalvular Atrial Fibrillation. *Circulation* 2014; 129: 1850-1859. DOI: 10.1161/CIRCULATIONAHA.113.005754.

21. Patel MR, Hellkamp AS, Lokhnygina Y, Piccini JP, Zhang Z, Mohanty S, et al. Outcomes of discontinuing rivaroxaban compared with warfarin in patients with nonvalvular atrial fibrillation: analysis from the ROCKET AF trial (Rivaroxaban Once-Daily, Oral, Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation). *Journal of the American College of Cardiology* 2013; 61: 651-658. 2013/02/09. DOI: 10.1016/j.jacc.2012.09.057.

22. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. *PLoS medicine* 2009; 6: e1000100. DOI: 10.1371/journal.pmed.1000100.

23. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Metaanalysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. *JAMA* 2000; 283: 2008-2012. 2000/05/02. DOI: 10.1001/jama.283.15.2008.

24. Osterberg L and Blaschke T. Adherence to Medication. *the New England Journal of Medicine* 2005; 353: 487-497. DOI: 10.1056/NEJMra050100.

25. World Health Organisation. Adherence to long-term therapies: Evidence to action Towards the solution: five interacting dimensions affect adherence 2003.

Switzerland.<u>https://www.who.int/chp/knowledge/publications/adherence\_full\_report.pdf</u>

#### **BMJ** Open

26. Andrade SE, Kahler KH, Frech F and Chan KA. Methods for evaluation of medication adherence and persistence using automated databases. *Pharmacoepidemiol Drug Saf* 2006; 15: 565-574; discussion 575-567. 2006/03/04. DOI: 10.1002/pds.1230.

27. Baumgartner PC, Haynes RB, Hersberger KE and Arnet I. A Systematic Review of Medication Adherence Thresholds Dependent of Clinical Outcomes. 2018; 9. Systematic Review. DOI: 10.3389/fphar.2018.01290.

28. Higgins JPT, Thompson SG, Deeks JJ and Altman DG. Measuring inconsistency in metaanalyses. 2003; 327: 557-560. DOI: 10.1136/bmj.327.7414.557 %J BMJ.

29. Willis BH and Riley RD. Measuring the statistical validity of summary meta-analysis and meta-regression results for use in clinical practice. *Statistics in medicine* 2017; 36: 3283-3301. 2017/06/18. DOI: 10.1002/sim.7372.

30. Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P and Schmid CH. Closing the Gap between Methodologists and End-Users: R as a Computational Back-End. *2012* 2012; 49: 15. 2012-06-30. DOI: 10.18637/jss.v049.i05.

31. Peters JL, Sutton AJ, Jones DR, Abrams KR and Rushton L. Comparison of Two Methods to Detect Publication Bias in Meta-analysis. *JAMA* 2006; 295: 676-680. DOI: 10.1001/jama.295.6.676 %J JAMA.

32. Peterson AM, Nau DP, Cramer JA, Benner J, Gwadry-Sridhar F and Nichol M. A checklist for medication compliance and persistence studies using retrospective databases. *Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research* 2007; 10: 3-12. 2007/01/31. DOI: 10.1111/j.1524-4733.2006.00139.x.

33. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC and Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. *International Journal of Surgery* 2014; 12: 1495-1499. DOI: <u>https://doi.org/10.1016/j.ijsu.2014.07.013</u>.

34. Stevanovic A, Schmitz S, Rossaint R, Schürholz T and Coburn M. CONSORT Item Reporting Quality in the Top Ten Ranked Journals of Critical Care Medicine in 2011: A Retrospective Analysis. *PloS one* 2015; 10: e0128061. DOI: 10.1371/journal.pone.0128061.

35. Salmasi S, De Vera MA, Barry A, Bansback N, Harrison M, Lynd LD, et al. Assessment of Condition and Medication Knowledge Gaps Among Atrial Fibrillation Patients: A Systematic Review and Meta-analysis. *Annals of Pharmacotherapy* 2019; 0: 1060028019835845. DOI: https://doi.org/10.1177/1060028019835845.

36. Cochrane Community. Editorial and Publishing Policy Resource Conflicts of interest and Cochrane Reviews [Internet], <u>https://community.cochrane.org/editorial-and-publishing-policy-resource/ethical-considerations/conflicts-interest-and-cochrane-reviews</u> (cited 2014, accessed July 10 2019).

Alberts MJ, Peacock WF, Fields LE, Bunz TJ, Nguyen E, Milentijevic D, et al.
Association between once- and twice-daily direct oral anticoagulant adherence in nonvalvular atrial fibrillation patients and rates of ischemic stroke. *International journal of cardiology* 2016; 215: 11-13. 2016/04/23. DOI: 10.1016/j.ijcard.2016.03.212.

38. Beyer-Westendorf J, Ehlken B and Evers T. Real-world persistence and adherence to oral anticoagulation for stroke risk reduction in patients with atrial fibrillation. *Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology* 2016; 18: 1150-1157. 2016/02/03. DOI: 10.1093/europace/euv421.

39. Borne RT, O'donnell C, Turakhia MP, Varosy PD, Jackevicius CA, Marzec LN, et al. Adherence and outcomes to direct oral anticoagulants among patients with atrial fibrillation: findings from the veterans health administration. *BMC cardiovascular disorders* 2017; 17: 236. 2017/09/04. DOI: 10.1186/s12872-017-0671-6.

40. Casciano JP, Dotiwala ZJ, Martin BC and Kwong WJ. The costs of warfarin underuse and nonadherence in patients with atrial fibrillation: a commercial insurer perspective. *Journal of managed care pharmacy : JMCP* 2013; 19: 302-316. 2013/05/01. DOI: 10.18553/jmcp.2013.19.4.302.

41. Coleman C, Yuan Z, Schein J, Crivera C, Ashton V, Laliberte F, et al. Importance of balancing follow-up time and impact of oral-anticoagulant users' selection when evaluating medication adherence in atrial fibrillation patients treated with rivaroxaban and apixaban. *Curr Med Res Opin* 2017; 33: 1033-1043. 2017/04/04. DOI: 10.1080/03007995.2017.1297932.

#### **BMJ** Open

42. Coleman CI, Tangirala M and Evers T. Medication adherence to rivaroxaban and dabigatran for stroke prevention in patients with non-valvular atrial fibrillation in the United States. *International journal of cardiology* 2016; 212: 171-173. 2016/04/04. DOI: 10.1016/j.ijcard.2016.03.051.

43. Crivera C, Nelson WW, Bookhart B, Martin S, Germain G, Laliberte F, et al. Pharmacy quality alliance measure: adherence to non-warfarin oral anticoagulant medications. *Curr Med Res Opin* 2015; 31: 1889-1895. 2015/07/28. DOI: 10.1185/03007995.2015.1077213.

44. Deshpande CG, Kogut S, Laforge R and Willey C. Impact of medication adherence on risk of ischemic stroke, major bleeding and deep vein thrombosis in atrial fibrillation patients using novel oral anticoagulants. *Current Medical Research & Opinion* 2018; 34: 1285-1292. DOI: 10.1080/03007995.2018.1428543.

45. Deshpande CG, Kogut S and Willey C. Real-World Health Care Costs Based on Medication Adherence and Risk of Stroke and Bleeding in Patients Treated with Novel Anticoagulant Therapy. *Journal of managed care & specialty pharmacy* 2018; 24: 430-439. 2018/04/26. DOI: 10.18553/jmcp.2018.24.5.430.

46. Eapen ZJ, Mi X, Qualls LG, Hammill BG, Fonarow GC, Turakhia MP, et al. Adherence and persistence in the use of warfarin after hospital discharge among patients with heart failure and atrial fibrillation. *Journal of cardiac failure* 2014; 20: 23-30. 2013/11/28. DOI: 10.1016/j.cardfail.2013.11.006.

47. Forslund T, Wettermark B and Hjemdahl P. Comparison of treatment persistence with different oral anticoagulants in patients with atrial fibrillation. *European journal of clinical pharmacology* 2016; 72: 329-338. 2015/11/29. DOI: 10.1007/s00228-015-1983-z.

48. Gomez-Lumbreras A, Cortes J, Morros R, Giner-Soriano M and Quijada-Manuitt MA. Characteristics of Apixaban-Treated Patients, Evaluation of the Dose Prescribed, and the Persistence of Treatment: A Cohort Study in Catalonia. *Journal of Cardiovascular Pharmacology & Therapeutics* 2018; 23: 494-501. DOI: 10.1177/1074248418778544.

49. Gorst-Rasmussen A, Skjoth F, Larsen TB, Rasmussen LH, Lip GY and Lane DA. Dabigatran adherence in atrial fibrillation patients during the first year after diagnosis: a

nationwide cohort study. *Journal of thrombosis and haemostasis : JTH* 2015; 13: 495-504. 2015/01/17. DOI: 10.1111/jth.12845.

50. Harper P, Pollock D and Stephens M. Dabigatran persistence and adherence in New Zealand: a nationwide retrospective observational study. *BMJ open* 2018; 8: e020212.
2018/04/08. DOI: 10.1136/bmjopen-2017-020212.

51. Jacobs MS, Schouten JF, De Boer PT, Hoffmann M, Levin L-Å and Postma MJ. Secondary adherence to non-vitamin-K antagonist oral anticoagulants in patients with atrial fibrillation in Sweden and the Netherlands. *Current Medical Research & Opinion* 2018; 34: 1839-1847. DOI: 10.1080/03007995.2018.1459528.

52. Manzoor BS, Lee TA, Sharp LK, Walton SM, Galanter WL and Nutescu EA. Real-World Adherence and Persistence with Direct Oral Anticoagulants in Adults with Atrial Fibrillation. *Pharmacotherapy* 2017; 37: 1221-1230. 2017/07/22. DOI: 10.1002/phar.1989.

53. Marquez-Contreras E, Martell-Carlos N, Gil-Guillen V, De La Figuera-Von Wichmann M, Sanchez-Lopez E, Marquez-Rivero S, et al. Therapeutic compliance with rivaroxaban in preventing stroke in patients with non-valvular atrial fibrillation: CUMRIVAFA study. *Curr Med Res Opin* 2016; 32: 2013-2020. 2016/08/23. DOI: 10.1080/03007995.2016.1227311.

54. Maura G, Pariente A, Alla F and Billionnet C. Adherence with direct oral anticoagulants in nonvalvular atrial fibrillation new users and associated factors: a French nationwide cohort study. *Pharmacoepidemiol Drug Saf* 2017; 26: 1367-1377. 2017/07/29. DOI: 10.1002/pds.4268.

55. Mcalister FA, Wiebe N and Hemmelgarn BR. Time in therapeutic range and stability over time for warfarin users in clinical practice: a retrospective cohort study using linked routinely collected health data in Alberta, Canada. *BMJ open* 2018; 8: e016980. 2018/02/01. DOI: 10.1136/bmjopen-2017-016980.

56. Mccormick D, Gurwitz JH, Goldberg RJ, Becker R, Tate JP, Elwell A, et al. Prevalence and quality of warfarin use for patients with atrial fibrillation in the long-term care setting. *Arch Intern Med* 2001; 161: 2458-2463. 2001/12/01.

57. Mchorney CA, Ashton V, Laliberte F, Germain G, Wynant W, Crivera C, et al. Adherence to Rivaroxaban Compared with Other Oral Anticoagulant Agents Among Patients

with Nonvalvular Atrial Fibrillation. *Journal of managed care & specialty pharmacy* 2017; 23: 980-988. 2017/08/31. DOI: 10.18553/jmcp.2017.23.9.980.

58. Mchorney CA, Crivera C, Laliberte F, Germain G, Wynant W and Lefebvre P.
Adherence to rivaroxaban versus apixaban among patients with non-valvular atrial fibrillation:
Analysis of overall population and subgroups of prior oral anticoagulant users. *PloS one* 2018;
13: e0194099. 2018/04/06. DOI: 10.1371/journal.pone.0194099.

59. Mueller T, Alvarez-Madrazo S, Robertson C and Bennie M. Use of direct oral anticoagulants in patients with atrial fibrillation in Scotland: Applying a coherent framework to drug utilisation studies. *Pharmacoepidemiol Drug Saf* 2017; 26: 1378-1386. 2017/07/29. DOI: 10.1002/pds.4272.

60. Pham PN and Brown JDJBCD. Real-world adherence for direct oral anticoagulants in a newly diagnosed atrial fibrillation cohort: does the dosing interval matter? 2019; 19: 64. journal article. DOI: 10.1186/s12872-019-1033-3.

61. Shore S, Carey EP, Turakhia MP, Jackevicius CA, Cunningham F, Pilote L, et al. Adherence to dabigatran therapy and longitudinal patient outcomes: insights from the veterans health administration. *American heart journal* 2014; 167: 810-817. 2014/06/04. DOI: 10.1016/j.ahj.2014.03.023.

62. Sorensen R, Jamie Nielsen B, Langtved Pallisgaard J, Ji-Young Lee C and Torp-Pedersen C. Adherence with oral anticoagulation in non-valvular atrial fibrillation: a comparison of vitamin K antagonists and non-vitamin K antagonists. *European heart journal Cardiovascular pharmacotherapy* 2017; 3: 151-156. 2017/02/06. DOI: 10.1093/ehjcvp/pvw048.

63. Tsai K, Erickson SC, Yang J, Harada AS, Solow BK and Lew HC. Adherence, persistence, and switching patterns of dabigatran etexilate. *The American journal of managed care* 2013; 19: e325-332. 2014/01/24.

64. Yao X, Abraham NS, Alexander GC, Crown W, Montori VM, Sangaralingham LR, et al.
Effect of Adherence to Oral Anticoagulants on Risk of Stroke and Major Bleeding Among
Patients With Atrial Fibrillation. *J Am Heart Assoc* 2016; 5 2016/02/26. DOI:
10.1161/jaha.115.003074.

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

65. Zhou M, Chang HY, Segal JB, Alexander GC and Singh S. Adherence to a Novel Oral Anticoagulant Among Patients with Atrial Fibrillation. *Journal of managed care & specialty pharmacy* 2015; 21: 1054-1062. 2015/11/02. DOI: 10.18553/jmcp.2015.21.11.1054.

66. Brown JD, Shewale AR and Talbert JC. Adherence to Rivaroxaban, Dabigatran, and Apixaban for Stroke Prevention in Incident, Treatment-Naive Nonvalvular Atrial Fibrillation. *Journal of managed care & specialty pharmacy* 2016; 22: 1319-1329. 2016/10/27. DOI: 10.18553/jmcp.2016.22.11.1319.

67. Chowdhury R, Khan H, Heydon E, Shroufi A, Fahimi S, Moore C, et al. Adherence to cardiovascular therapy: a meta-analysis of prevalence and clinical consequences. *European heart journal* 2013; 34: 2940-2948. 2013/08/03. DOI: 10.1093/eurheartj/eht295.

68. Salmasi S, Kwan L, Macgillivray J, Bansback N, De Vera M, Barry AR, et al.
Assessment of atrial fibrillation patients' education needs from patient and clinician perspectives: A qualitative descriptive study. *Thrombosis research* 2018. DOI: <u>https://doi.org/10.1016/j.thromres.2018.11.015</u>.

69. Mccabe PJ, Barnason SA and Houfek J. Illness beliefs in patients with recurrent symptomatic atrial fibrillation. *Pacing and clinical electrophysiology : PACE* 2011; 34: 810-820.
2011/04/22. DOI: 10.1111/j.1540-8159.2011.03105.x.

70. Loewen P, Ji A and Kapanen A. Patient values and preferences for antithrombotic therapy for stroke prevention in AF: A systematic review *Canadian Journal of Cardiology* 2016;
32: S257-S258. DOI: 10.1016/j.cjca.2016.07.416.

 Lee VWY, Tam CS, Yan BP, Man Yu C and Yin Lam Y. Barriers to Warfarin Use for Stroke Prevention in Patients With Atrial Fibrillation in Hong Kong. *Clinical Cardiology* 2013; 36: 166-171. DOI: 10.1002/clc.22077.

72. Mccabe PJ, Barnason SA and Houfek J. Illness beliefs in patients with recurrent symptomatic atrial fibrillation. *Pacing and clinical electrophysiology : PACE* 2011; 34: 810-820. DOI: 10.1111/j.1540-8159.2011.03105.x.

73. Mccabe PJ, Rhudy LM and Devon HA. Patients' experiences from symptom onset to initial treatment for atrial fibrillation. *Journal of clinical nursing* 2015; 24: 786-796. DOI: 10.1111/jocn.12708.

#### **BMJ** Open

74. Loewen Ps, Ji At and Kapanen A. Patient values and preferences for antithrombotic therapy in atrial fibrillation. *Thrombosis and haemostasis* 2017.

75. Vrijens B, De Geest S, Hughes DA, Przemyslaw K, Demonceau J, Ruppar T, et al. A new taxonomy for describing and defining adherence to medications. *British Journal of Clinical Pharmacology* 2012; 73: 691-705. 2012/04/11. DOI: 10.1111/j.1365-2125.2012.04167.x.

76. Gellad WF, Thorpe CT, Steiner JF and Voils CI. The myths of medication adherence. *Pharmacoepidemiol Drug Saf* 2017; 26: 1437-1441. 2017/10/11. DOI: 10.1002/pds.4334.

77. Franklin JM, Krumme AA, Tong AY, Shrank WH, Matlin OS, Brennan TA, et al. Association between trajectories of statin adherence and subsequent cardiovascular events. *Pharmacoepidemiol Drug Saf* 2015; 24: 1105-1113. 2015/04/24. DOI: 10.1002/pds.3787.

78. Franklin JM, Shrank WH, Pakes J, Sanfelix-Gimeno G, Matlin OS, Brennan TA, et al.
Group-based trajectory models: a new approach to classifying and predicting long-term medication adherence. *Medical care* 2013; 51: 789-796. 2013/05/21. DOI: 10.1097/MLR.0b013e3182984c1f.

79. Lo-Ciganic WH, Donohue JM, Jones BL, Perera S, Thorpe JM, Thorpe CT, et al.
Trajectories of Diabetes Medication Adherence and Hospitalization Risk: A Retrospective
Cohort Study in a Large State Medicaid Program. *Journal of general internal medicine* 2016; 31:
1052-1060. 2016/05/28. DOI: 10.1007/s11606-016-3747-6.

80. Lo-Ciganic WH, Gellad WF, Gordon AJ, Cochran G, Zemaitis MA, Cathers T, et al. Association between trajectories of buprenorphine treatment and emergency department and inpatient utilization. *Addiction (Abingdon, England)* 2016; 111: 892-902. 2015/12/15. DOI: 10.1111/add.13270.

81. Modi AC, Rausch JR and Glauser TA. Patterns of nonadherence to antiepileptic drug therapy in children with newly diagnosed epilepsy. *JAMA* 2011; 305: 1669-1676. 2011/04/28. DOI: 10.1001/jama.2011.506.

82. Karve S, Cleves MA, Helm M, Hudson TJ, West DS and Martin BC. Good and poor adherence: optimal cut-point for adherence measures using administrative claims data. *Current Medical Research and Opinion* 2009; 25: 2303-2310. DOI: 10.1185/03007990903126833.

83. Viswanathan S, Justice AC, Alexander GC, Brown TT, Gandhi NR, Mcnicholl IR, et al.
Adherence and HIV RNA Suppression in the Current Era of Highly Active Antiretroviral
Therapy. *Journal of acquired immune deficiency syndromes (1999)* 2015; 69: 493-498.
2015/04/19. DOI: 10.1097/qai.0000000000643.

tor beet terien only

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

# **TABLES:**

# Table 1: Characteristics of the included studies

|                                        | IAD  | LES:          |                         |                           |                                                   |                       |                                                            |                                              |                                         |                             |                         |
|----------------------------------------|------|---------------|-------------------------|---------------------------|---------------------------------------------------|-----------------------|------------------------------------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------|-------------------------|
|                                        | Tabl | e 1: Charac   | teristics of            | f the incl                | uded studie                                       | 25                    |                                                            |                                              |                                         |                             |                         |
| Author<br>)                            | Year | Design        | Country                 | Total N;<br>(%Male)       | Age<br>Mean (SD)<br>Unless<br>otherwise<br>stated | Indication<br>for OAC | Adherence<br>reported to<br>index OAC<br>or current<br>OAC | Population<br>OAC Naïve<br>vs<br>Experienced | Potential<br>conflict<br>of<br>interest | Quality<br>Score:<br>STROBE | Quali<br>score:<br>ISPO |
| lberts                                 | 2016 | Retrospective | USA                     | 36,868<br>(55%)           | 76%>65<br>years                                   | NVAF                  | NA                                                         | Both                                         | Yes                                     | 61%                         | 67%                     |
| eyer-<br>Vestendorf                    | 2016 | Retrospective | Germany                 | 7,265<br>(52%)            | NA                                                | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 73%                         | 74%                     |
| orne                                   | 2017 | Retrospective | USA                     | 2,882<br>(97%)            | 67.4 (9.5)                                        | NVAF                  | NA                                                         | Naïve to<br>DOACs <sup>‡</sup>               | Yes                                     | 73%                         | 78%                     |
| rown                                   | 2016 | Retrospective | USA                     | 5,223<br>(40%)            | 59%≥65<br>years                                   | NVAF                  | Both                                                       | Naïve                                        | Yes                                     | 77%                         | 84%                     |
| asciano                                | 2013 | Retrospective | USA                     | 13,289<br>(47%)           | $78\% \ge 75$ years                               | AF                    | NA                                                         | Naïve                                        | Yes                                     | 63%                         | 79%                     |
| Coleman                                | 2016 | Retrospective | USA                     | 21,756<br>(54%)           | 66.5 (12.2)                                       | NVAF                  | NA                                                         | Naïve                                        | Yes                                     | 55%                         | 50%                     |
| Coleman                                | 2017 | Retrospective | USA                     | 106,227<br>(63%)          | 71.1 (11.0)                                       | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 77%                         | 84%                     |
| rivera                                 | 2015 | Retrospective | USA                     | 9,948<br>(53%)            | 75.5 (8.3)                                        | NVAF                  | Both                                                       | Naïve                                        | Yes                                     | 73%                         | 61%                     |
| <b>eshpande</b><br>MID:<br>9694285     | 2018 | Retrospective | USA                     | 2,981<br>(70%)            | 64.4 (10.7)                                       | AF                    | NA                                                         | Naïve to<br>DOACs <sup>‡</sup>               | No                                      | 77%                         | 83%                     |
| 9694285<br>esphande<br>MID:<br>9334815 | 2018 | Retrospective | USA                     | 4,856<br>(52%)            | 65.0 (10.5)                                       | Both                  | NA                                                         | Naïve                                        | No                                      | 81%                         | 83%                     |
| apen                                   | 2014 | Retrospective | USA                     | 2,691<br>(43%)            | 100%>65<br>years                                  | AF                    | NA                                                         | Both                                         | No                                      | 76%                         | 74%                     |
| orsuland                               | 2016 | Retrospective | Sweden                  | 16,096<br>(52%)           | 75.45<br>(SD not<br>reported)                     | NVAF                  | Current OAC                                                | Both                                         | No                                      | 63%                         | 61%                     |
| Gomez-<br>umberas                      | 2018 | Retrospective | Spain                   | 854<br>(NA%)              | 73.2 (11.0)                                       | NVAF                  | NA                                                         | Both                                         | Yes                                     | 50%                         | 67%                     |
| Forst-<br>Rasmussen                    | 2015 | Retrospective | Denmark                 | 2,960<br>(54%)            | 72.1 (10.8)                                       | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 80%                         | 100%                    |
| larper                                 | 2018 | Retrospective | New<br>Zealand          | 20,237<br>(NA%)           | 83%>60                                            | NVAF                  | NA                                                         | NA                                           | No                                      | 47%                         | 53%                     |
| acobs                                  | 2018 | Retrospective | Sweden &<br>Netherlands | 5,684<br>(60%)            | 78%≥65<br>years                                   | AF                    | Current OAC                                                | Both                                         | Yes                                     | 80%                         | 83%                     |
| lanzoor                                | 2017 | Retrospective | USA                     | 66,090<br>(62%)           | 68.7 (12.1)                                       | AF                    | Index OAC                                                  | Both                                         | Missing                                 | 70%                         | 85%                     |
| lárquez-<br>Contrera                   | 2016 | Prospective   | Spain                   | 412<br>(42%)              | 75.2 (7.5)                                        | NVAF                  | NA                                                         | Experienced                                  | Yes                                     | 63%                         | 83%                     |
| Jaura                                  | 2017 | Retrospective | France                  | 22,267<br>(53%)           | 74.0 (10.8)                                       | NVAF                  | Index 🦢                                                    | Naïve                                        | No                                      | 79%                         | 100%                    |
| IcAlister                              | 2018 | Retrospective | Canada                  | 57,669<br>(56%)           | 100%>65<br>years                                  | NVAF                  | Current OAC                                                | Naïve                                        | No                                      | 87%                         | 94%                     |
| <b>IcCormick</b>                       | 2001 | Retrospective | USA                     | (3078)<br>429<br>(22%)    | 87 (7.1)                                          | AF                    | Current OAC                                                | Experienced                                  | No                                      | 60%                         | 82%                     |
| 1cHorney                               | 2017 | Retrospective | USA                     | 36,675<br>(67%)           | 63.1<br>(SD not<br>reported)                      | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 87%                         | 89%                     |
| 1cHorney                               | 2018 | Retrospective | USA                     | 41,201<br>(58%)           | NA                                                | NVAF                  | Index OAC                                                  | Both                                         | Yes                                     | 84%                         | 100%                    |
| Iueller                                | 2017 | Retrospective | Scotland                | (3876)<br>5,398<br>(54%)  | 74.4 (11.3)                                       | AF                    | NA                                                         | NA                                           | No                                      | 70%                         | 53%                     |
| ham                                    | 2019 | Retrospective | USA                     | (5476)<br>38,947<br>(60%) | 100%>65                                           | NVAF                  | Index OAC & any OAC                                        | Naïve                                        | No                                      | 77%                         | 89%                     |
| hore                                   | 2014 | Retrospective | USA                     | (80%)<br>5,376<br>(98%)   | years<br>71.3 (9.7)                               | NVAF                  | Index OAC                                                  | NA                                           | No                                      | 90%                         | 94%                     |
| ørensen                                | 2017 | Retrospective | Denmark                 | (98%)<br>46,675<br>(58%)  | 79%>65                                            | NVAF                  | Current OAC                                                | Naïve                                        | Yes                                     | 67%                         | 79%                     |

| 1<br>2                                                                                                                                                                                                                                                                                        |      |               |     |                         |             |    |                   |                                                  |    |     |     | BM                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|-----|-------------------------|-------------|----|-------------------|--------------------------------------------------|----|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 <sub>Tsai</sub><br>4<br>5                                                                                                                                                                                                                                                                   | 2013 | Retrospective | USA | 17,691<br>(49%)         | 76.4 (8.7)  | NA | Current OAC       | Warfarin<br>Naïve and<br>warfarin<br>experienced | No | 60% | 78% | J Open: fi                                                                                                                                                            |
| б <sub>Yao</sub>                                                                                                                                                                                                                                                                              | 2016 | Retrospective | USA | 64,661                  | 75%>65      | AF | Index OAC         | Naïve                                            | No | 77% | 84% | irst p                                                                                                                                                                |
| /<br>8Zhou<br>9                                                                                                                                                                                                                                                                               | 2015 | Retrospective | USA | (56%)<br>5,951<br>(34%) | 36.1%>65    | AF | Index OAC         | Naïve                                            | No | 80% | 79% | ublist                                                                                                                                                                |
| $\begin{array}{c} 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$ |      |               |     |                         |             |    | n/site/about/guid |                                                  |    | 27  |     | BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright. |
|                                                                                                                                                                                                                                                                                               |      |               |     | /                       | . , , , , , | -  |                   |                                                  |    |     |     |                                                                                                                                                                       |

| Study (year)                       | Adherence<br>measure | Adherence<br>6 mon                                                                 |                                                                                                                                              |                                                                                                                                        | nce results<br>year                                                                       |
|------------------------------------|----------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                    | (Threshold)          | Mean adherence score<br>± SD                                                       | Proportion<br>adherent                                                                                                                       | Mean adherence<br>score ± SD                                                                                                           | Proportion adheren                                                                        |
| <b>Proportion Days Cover</b>       | red (PDC)            |                                                                                    |                                                                                                                                              | -                                                                                                                                      |                                                                                           |
| Alberts<br>(2016)                  | PDC (>80%)           | NA                                                                                 | NA                                                                                                                                           | NA                                                                                                                                     | Overall: 0.70<br>A and D: 0.68<br>R: 0.73                                                 |
| Borne<br>(2017)                    | PDC (>80%)           | NA                                                                                 | NA                                                                                                                                           | Overall: $0.85 \pm 0.19$<br>A: $0.89 \pm 0.14$<br>D: $0.84 \pm 0.20$<br>R: $0.86 \pm 0.18$                                             | Overall: 0.72<br>A: 0.77<br>D: 0.71<br>R: 0.75                                            |
| Brown (2016)                       | PDC (≥80%)           | A: $0.75 \pm 0.29$<br>D: $0.67 \pm 0.33$<br>R: $0.75 \pm 0.31$                     | A: 0.62<br>D: 0.54<br>R: 0.64                                                                                                                | NA                                                                                                                                     | NA                                                                                        |
| Casciano<br>(2013)                 | PDC (>80%)           | NA                                                                                 | NA                                                                                                                                           | NA                                                                                                                                     | W: 0.41                                                                                   |
| Coleman                            | PDC (>80%)           | D: 0.77 ± 0.32                                                                     | D: 0.65                                                                                                                                      | D: $0.65 \pm 0.37$                                                                                                                     | D: 0.52                                                                                   |
| (2016)                             | 1 DC (> 0070)        | $\begin{array}{c} D. \ 0.77 \pm 0.32 \\ R. \ 0.82 \pm 0.30 \end{array}$            | R: 0.74                                                                                                                                      | R: $0.73 \pm 0.35$                                                                                                                     | R: 0.62                                                                                   |
| Coleman<br>(2017)                  | PDC<br>(≥80%)        | NA                                                                                 | A: 0.57 and 0.62<br>R: 0.54 and 0.58<br>(Two different<br>databases were used<br>for this study hence<br>two adherence<br>results per drug.) | NA                                                                                                                                     | NA                                                                                        |
| Crivera<br>(2015)                  | PDC (>80%)           | NA                                                                                 | NA                                                                                                                                           | Index NOAC:<br>A: 0.83 ± 0.20<br>D: 0.81 ± 0.22<br>R: 0.86 ± 0.19<br>Any OAC:<br>A: 0.84 ± 0.18;<br>D: 0.85 ± 0.18;<br>R: 0.87 ± 0.17; | Index NOAC:<br>A: 0.71<br>D: 0.68<br>R: 0.75<br>Any OAC:<br>A: 0.71<br>D: 0.73<br>R: 0.77 |
| Deshpande (2018)<br>PMID: 29694285 | PDC<br>(≥80%)        | NA                                                                                 | R and D: 0.65                                                                                                                                | NA                                                                                                                                     | R and D: 0.54                                                                             |
| Desphande (2018)<br>PMID: 29334815 | PDC (≥80%)           | R and D:<br>0.86 ± SD missing                                                      | R and D: 0.77                                                                                                                                | R and D:<br>0.85 ± SD missing                                                                                                          | R and D: 0.76                                                                             |
| Forsuland<br>(2016)                | PDC (>80%)           | NA                                                                                 | NA                                                                                                                                           | NA                                                                                                                                     | A: 0.93<br>D: 0.92<br>R: 0.96                                                             |
| Gorst-Rasmussen<br>(2015)          | PDC<br>(>80%)        | $0.84 \pm 0.28$                                                                    | NA                                                                                                                                           | NA                                                                                                                                     | D: 0.77                                                                                   |
| Harper<br>(2018)                   | PDC<br>(>80%)        | NA                                                                                 | NA                                                                                                                                           | NA                                                                                                                                     | D: 0.84                                                                                   |
| Manzoor<br>(2017)                  | PDC high (≥<br>90%)  | Overall:<br>0.78 ± 28.40<br>A: 80.90 ± 24.9<br>D: 78.60 ± 27.70<br>R:76.50 ± 30.70 | <b>PDC90</b><br>0.55                                                                                                                         | Overall:<br>72.80 ± 32.20<br>A: No users of A at 12<br>months<br>D: 73.4± 31.6;<br>R: 69.7± 34.8                                       | <b>PDC90</b> 0.34                                                                         |
| Maura<br>(2017)                    | PDC>80               | NA                                                                                 | NA                                                                                                                                           | NA                                                                                                                                     | Index OAC:<br>Overall: 0.71<br>D: 0.70                                                    |

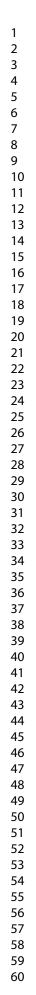
|                              |                     |                          |                       |                                        | R: 0.72            |
|------------------------------|---------------------|--------------------------|-----------------------|----------------------------------------|--------------------|
| McHorney (2017)              | PDC                 | NA                       | PDC 80:               | NA                                     | NA                 |
|                              | (>80% &             |                          | A: 0.76               |                                        |                    |
|                              | >90%)               |                          | D: 0.69               |                                        |                    |
|                              |                     |                          | R: 0.80               |                                        |                    |
|                              |                     |                          | W: 0.65               |                                        |                    |
|                              |                     |                          | PDC90:                |                                        |                    |
|                              |                     |                          | A: 0.57               |                                        |                    |
|                              |                     |                          | D: 0.51               |                                        |                    |
|                              |                     |                          | R: 0.64               |                                        |                    |
|                              |                     |                          | W: 0.47               |                                        |                    |
| McHorney                     | PDC                 | NA                       | PDC80:                | NA                                     | NA                 |
| (2018)                       | (>80% &             |                          | A:0.78                |                                        |                    |
|                              | >90%)               |                          | R: 0.82               |                                        |                    |
|                              |                     |                          | PDC90:                |                                        |                    |
|                              |                     |                          | A: 0.60               |                                        |                    |
| DI.                          | - DD G              |                          | R: 0.67               |                                        |                    |
| Pham                         | PDC                 | Index OAC:               | Index OAC:            | Index OAC:                             | Index OAC:         |
| (2019)                       | (>80%)              | A: 0.76 ± 0.29           | A: 0.63               | A: 0.70 ± 0.33                         | A: 0.56.           |
|                              |                     | D: 0.67± 0.33            | D: 0.53               | D: $0.57 \pm 0.36$                     | D: 0.41            |
|                              |                     | R: $0.72 \pm 0.32$       | R: 0.58               | R: $0.64 \pm 0.36$                     | R: 0.50            |
|                              |                     |                          |                       |                                        |                    |
|                              |                     |                          |                       | Any OAC:                               |                    |
|                              |                     |                          |                       | A: 0.73 ± 0.31                         |                    |
|                              |                     |                          |                       | D: $0.64 \pm 0.34$                     |                    |
|                              |                     |                          |                       | R: $0.68 \pm 0.34$                     |                    |
| Shore                        | PDC                 | NA                       | D: 0.28               | NA                                     | NA                 |
| (2014)                       | (>80%)              |                          |                       |                                        |                    |
| ( )                          |                     |                          |                       |                                        |                    |
|                              |                     |                          |                       |                                        |                    |
| Sørensen (2017)              | PDC                 | NA                       | Odds of being         | NA                                     | NA                 |
| · · · ·                      | (>80%)              |                          | adherent              |                                        |                    |
|                              |                     |                          | R: reference;         |                                        |                    |
|                              |                     |                          | A: 0.79 (0.69 - 0.92) |                                        |                    |
|                              |                     |                          | D: 0.72 (0.66 - 0.80) |                                        |                    |
|                              |                     |                          | VKA: 0.76 (0.69 -     |                                        |                    |
|                              |                     |                          | 0.83)                 |                                        |                    |
| Tsai                         | PDC                 | D:                       | NA                    | NA                                     | NA                 |
| (2013)                       | (no threshold)      | warfarin-naïve: 0.67 ±   |                       |                                        |                    |
| · /                          |                     | 0.36                     |                       |                                        |                    |
|                              |                     | warfarin-experienced:    |                       |                                        |                    |
|                              |                     | $0.71 \pm 0.35$          |                       |                                        |                    |
| Yao (2016)                   | PDC                 | NA                       | Overall: 47.5%        | NA                                     | NA                 |
| 100 (2010)                   | (>80%)              | 141                      | A: 0.52               | 1111                                   | 141                |
|                              | (* 6676)            |                          | D: 0.46               |                                        |                    |
|                              |                     |                          | R: 0.48               |                                        |                    |
|                              |                     |                          | W: 0.39               |                                        |                    |
| <b>Medication Possession</b> | Ratio (MPR)         |                          | 11.0.59               |                                        |                    |
| Beyer-Westendorf             | MPR (>0.8)          | D: $0.67 \pm SD$ missing | D: 0.50               | D: $0.64 \pm SD$ missing               | D: 0.48            |
| (2016)                       |                     | R: $0.76 \pm$ SD missing | R: 0.61               | R: $0.75 \pm SD$ missing               | R: 0.63            |
|                              |                     | -                        |                       |                                        |                    |
| Eapen                        | MPR                 | NA                       | NA                    | Median (IQR):                          | NA                 |
| (2014)                       | (no threshold)      |                          |                       | 0.77 (0.51- 0.98)                      |                    |
| Gomez-lumberas               | MPR                 | NA                       | NA                    | NA                                     | A: 0.62            |
| (2018)                       | (>0.8)              |                          |                       |                                        |                    |
| Jacobs                       | MPR                 | NA                       | NA                    | NA                                     | Sweden: 0.95       |
| (2018)                       | (≥0.8)              |                          |                       |                                        | Netherlands: 0.93  |
| ( ))                         | ()                  |                          |                       |                                        |                    |
| McHorney (2017)              | MPR                 | NA                       | NA                    | A: 0.85 ± 0.2                          | A: 0.76            |
|                              | (>0.8)              | 1 (4 <b>1</b>            | 1111                  | A: $0.83 \pm 0.2$<br>D: $0.81 \pm 0.2$ | D: 0.66            |
|                              | ( 0.0)              |                          |                       |                                        | R: 0.78            |
|                              |                     |                          |                       | R: $0.86 \pm 0.2$                      | W: 0.59            |
| 71                           |                     | D 0 72 + 0 22            | D 0 50                | W: 0.80 ± 0.2                          |                    |
| Zhou                         | MPR                 | D: $0.73 \pm 0.30$       | D: 0.59               | D: $0.65 \pm 0.35$                     | D: 0.51            |
| (2015)                       | (>0.8)              | NT 4                     |                       | NTA .                                  |                    |
| Mueller                      | MPR>80 <sup>‡</sup> | NA                       | NA                    | NA                                     | DOACs: 0.82        |
|                              |                     |                          |                       |                                        | A: 0.88            |
| (2017)                       |                     |                          |                       |                                        |                    |
| (2017)                       |                     |                          |                       |                                        | D: 0.65<br>R: 0.83 |

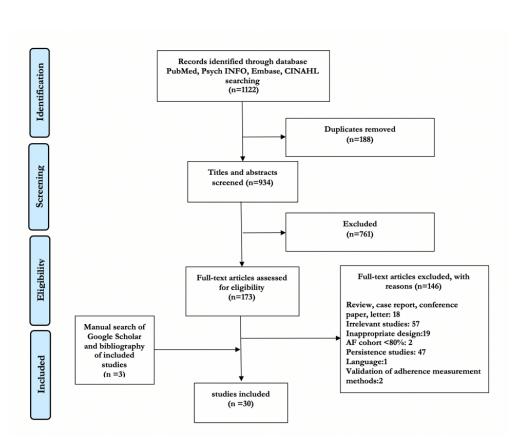
|                                                                                              |                        |                        | R: Global<br>compliance: 0.84<br>Daily compliance:<br>0.84<br>%therapeutic cover:<br>90.04%                                                        | NA                                        | R: Global compli<br>0.80<br>Daily compliance<br>0.80<br>% therapeutic cov<br>89.25% |
|----------------------------------------------------------------------------------------------|------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|
| McAlister<br>2018)                                                                           | TTR>65%<br>(INR2-3)    | NA                     | W: Percent patients<br>with time in<br>therapeutic range:<br>4.11%                                                                                 | NA                                        | NA                                                                                  |
| of America; NA: Not a<br>W: warfarin.<br>Drug specific proportion<br>he total number of pati | available/not applicab | ble; aHR: adjusted Haz | o; CP: Compliance percentage;<br>ard ratio; VKA: Vitamin K anta<br>e percent of total number of pat<br><i>rs</i> ' supply / total days in study) : | agonist. A: apixab<br>ients taking the re | an, D: dabigatran, R: rivarox                                                       |

|                                                           | Adherence at 6                |                        |                        | e at 1 year                |  |  |  |  |
|-----------------------------------------------------------|-------------------------------|------------------------|------------------------|----------------------------|--|--|--|--|
|                                                           | post index (                  |                        |                        | lex date                   |  |  |  |  |
|                                                           | Mean                          | Proportion             | Mean                   | <b>Proportion adherent</b> |  |  |  |  |
|                                                           | (95% CI)                      | adherent (95%          | (95% CI)               | (95% CI)                   |  |  |  |  |
|                                                           |                               | CI)                    |                        |                            |  |  |  |  |
| Apixaban                                                  | 77.15 (75.03, 79.27)          | 0.62 (0.53, 0.72)      | 81.75 (74.32, 89.18)   | 0.74 (0.62, 0.87)          |  |  |  |  |
| Dabigatran                                                | 73.94 (68.94, 78.93)          | 0.55 (0.48, 0.61)      | 75.04 (67.74, 82.34)   | 0.65 (0.54, 0.76)          |  |  |  |  |
| Rivaroxaban                                               | 78.30 (72.47, 84.14)          | 0.64 (0.54, 0.73)      | 77.45 (68.9, 85.96)    | 0.73 (0.64, 0.81)          |  |  |  |  |
| Warfarin                                                  | No data available             | 0.52 (0.26, 0.77) ++   | No data available      | 0.50 (0.32, 0.68) ++       |  |  |  |  |
| All OACs                                                  | 76.62 (73.91, 79.33)          | 0.63 (0.58, 0.68)      | 73.72 (68.36, 79.08)   | 0.70 (0.65, 0.76)          |  |  |  |  |
| Sub-analysis: Excluding studies with conflict of interest |                               |                        |                        |                            |  |  |  |  |
| Apixaban                                                  | 78.39 (73.59, 83.19) ++       | 0.51 (0.49, 0.53) ++   | One study              | 0.79 (0.55, 1.04)          |  |  |  |  |
| Dabigatran                                                | 72.87 (64.40, 81.33)          | 0.50 (0.46, 0.54)      | 65.20 (49.13, 81.27)++ | 0.67 (0.50, 0.84)          |  |  |  |  |
| Rivaroxaban                                               | 74.25 (69.84, 78.66)++        | 0.50 (0.46, 0.53) ++   | 66.85 (61.27, 72.44)++ | 0.75 (0.55, 0.96)          |  |  |  |  |
| Warfarin                                                  | No data available             | One study              | No data available      | No data available          |  |  |  |  |
| All OACs                                                  | 73.40 (69.86, 76.94)          | 0.56 (0.49, 0.62)      | 65.56 (59.41, 71.72)   | 0.68 (0.58, 0.79)          |  |  |  |  |
| Sub-analysis: Exclu                                       | iding studies with low and me | edium quality (assesse |                        |                            |  |  |  |  |
| Apixaban                                                  | 77.15 (75.03, 79.27) ++       | 0.62 (0.53, 0.72)++    | 77.50 (62.80, 92.20)   | 0.66 (0.47, 0.85)          |  |  |  |  |
| Dabigatran                                                | 73.32 (67.08, 79.57)          | 0.54 (0.47, 0.60)      | 73.83 (62.99, 84.65)   | 0.61 (0.45, 0.76)          |  |  |  |  |
| Rivaroxaban                                               | 77.38 (69.95, 84.80)          | 0.62 (0.51, 0.74)      | 72.23 (58.64, 87.83)   | 0.67 (0.5, 0.83)           |  |  |  |  |
| Warfarin                                                  | No data available             | 0.52 (0.26, 0.77)++    | No data available      | No data available          |  |  |  |  |
| All OACs                                                  | 77.29 (74.19, 80.40)          | 0.63 (0.58, 0.68)      | 68.61 (62.63, 74.58)   | 0.67 (0.58, 0.76)          |  |  |  |  |
| Sub-analysis: By ad                                       | lherence measure              |                        |                        |                            |  |  |  |  |
|                                                           |                               | MPR                    |                        |                            |  |  |  |  |
| Apixaban                                                  | No data available             | No data available      | No data available      | 0.75 (0.64, 0.87)          |  |  |  |  |
| Dabigatran                                                | 77.00 (69.16, 81.84) **       | 0.54 (0.45, 0.63) ++   | No data available      | 0.58 (0.49, 0.66)          |  |  |  |  |
| Rivaroxaban                                               | No data available             | No data available      | No data available      | 0.75 (0.69, 0.81)          |  |  |  |  |
| Warfarin                                                  | No data available             | No data available      | No data available      | 0.59+                      |  |  |  |  |
| All OACs                                                  | 81.01 (77.21, 84.81)          | 0.57 (0.51, 0.63)      | No data available      | 0.74 (0.64, 0.83)          |  |  |  |  |
|                                                           |                               | PDC                    |                        |                            |  |  |  |  |
| Apixaban                                                  | 77.15 (75.03, 79.27)          | 0.62 (0.53, 0.72)      | 80.67 (69.40, 91.94)   | 0.74 (0.45, 1.02)          |  |  |  |  |
| Dabigatran                                                | 72.41 (65.90, 78.91)          | 0.55 (0.47, 0.63)      | 74.05 (65.56, 82.53)   | 0.67 (0.52, 0.82)          |  |  |  |  |
| Rivaroxaban                                               | 76.38 (71.35, 81.40)          | 0.64 (0.54, 0.74)      | 75.74(67.44, 84.03)    | 0.69 (0.57, 0.82)          |  |  |  |  |
| Warfarin                                                  | No data available             | 0.52 (0.26, 0.77)++    | No data available      | 0.41+                      |  |  |  |  |
| All OACs                                                  | 74.93 (72.09, 77.77)          | 0.64 (0.58, 0.69)      | 74.5 (68.89, 80.14)    | 0.70 (0.62, 0.77)          |  |  |  |  |
| *I <sup>2</sup> <80%.                                     |                               |                        |                        |                            |  |  |  |  |
| + Not pooled. Based                                       |                               |                        |                        |                            |  |  |  |  |
| ++ Pooled results of                                      | only two studies              |                        |                        |                            |  |  |  |  |

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright.

Table 4: Pooled adherence results from studies reporting adherence to more than one drug in the same cohort


|                           |                             | e at 6 months<br>idex date |                             | nce at 1 year<br>index date |
|---------------------------|-----------------------------|----------------------------|-----------------------------|-----------------------------|
|                           | Number of unique<br>studies | Odds ratio<br>(95% CI)     | Number of unique<br>studies | Odds ratio<br>(95% CI)      |
| Apixaban vs dabigatran    | 3                           | 1.24 (1.07, 1.45)          | 5                           | 1.76 (1.35, 2.29)           |
| Rivaroxaban vs dabigatran | 5                           | 1.39 (1.15, 1.67)          | 8                           | 1.17 (0.38, 3.60)           |
| Rivaroxaban vs apixaban   | 4                           | 0.80 (0.51, 1.24)          | 5                           | 1.02 (0.79, 1.33)           |
|                           | Sub-an                      | alysis: By adherence me    | etric                       |                             |
|                           |                             | MPR                        |                             |                             |
| Apixaban vs dabigatran    | NA                          | NA                         | 2                           | 2.49 (0.98, 6.30)           |
| Rivaroxaban vs dabigatran | 1                           | 1.63 (1.36, 1.94)          | 3                           | 2.10 (1.56, 2.81)           |
| Rivaroxaban vs apixaban   | NA                          | NA                         | 2                           | 0.90 (0.54,1.17)            |
|                           |                             | PDC                        |                             |                             |
| Apixaban vs dabigatran    | 3                           | 1.24 (1.07, 1.45)          | 3                           | 1.41 (0.99, 2.01)           |
| Rivaroxaban vs dabigatran | 4                           | 1.34 (1.09, 1.65)          | 5                           | 0.82 (0.18, 3.69)           |
|                           |                             | 0.80 (0.51, 1.24)          | 3                           | 1.13 (0.71, 1.82)           |


+ Not pooled. Based on one study

 BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

Page 34 of 75

**BMJ** Open







| 1 |        |
|---|--------|
| 2 |        |
| 3 |        |
| 4 |        |
| 5 |        |
| 6 |        |
| 0 |        |
| / |        |
| 8 |        |
| 9 |        |
|   | 0      |
| 1 | 1      |
| 1 | 2      |
| 1 |        |
| 1 |        |
| 1 | 5      |
| 1 |        |
| 1 |        |
| 1 |        |
|   | 9      |
|   | 0      |
|   | 1      |
| 2 |        |
| 2 | _      |
| 2 | J<br>⊿ |
|   | 4      |
| 2 |        |
|   | 6      |
| 2 | 7      |
| 2 |        |
|   | 9      |
| 3 | 0      |
| 3 | 1      |
| 3 | 2      |
| 3 | 3      |
| 3 | 4      |
| 3 | 5      |
| 3 | 6      |
| 3 | 7      |
|   | ,<br>8 |
|   | 9      |
|   | 0      |
|   |        |
| 4 |        |
| 4 | 2      |
| 4 | 3      |
| 4 | 4      |
| 4 |        |
| 4 |        |
| 4 |        |
| 4 |        |
| 4 | 9      |
|   |        |

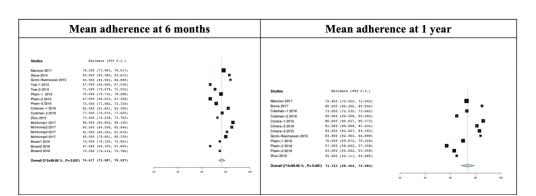



Figure 2.0: Atrial fibrillation patients' mean adherence score at six-months and one-year



|                                       |     | BMJ Open 36                                                                                                                                                                                                                                                                                                 | Page 36 of 2                                                               |
|---------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| PRISMA 2                              | 009 | Checklist 36/bmjopen 201                                                                                                                                                                                                                                                                                    |                                                                            |
| Section/topic                         | #   | Checklist item                                                                                                                                                                                                                                                                                              | Reported on page<br>#                                                      |
| TITLE                                 | i   |                                                                                                                                                                                                                                                                                                             |                                                                            |
| Title                                 | 1   | Identify the report as a systematic review, meta-analysis, or both. $\searrow^{\infty}$                                                                                                                                                                                                                     | Cover page                                                                 |
| ABSTRACT                              |     |                                                                                                                                                                                                                                                                                                             |                                                                            |
| Structured summary                    | 2   | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. | Abstract                                                                   |
| INTRODUCTION                          |     |                                                                                                                                                                                                                                                                                                             |                                                                            |
| Rationale                             | 3   | Describe the rationale for the review in the context of what is already known.                                                                                                                                                                                                                              | Introduction                                                               |
| Objectives                            | 4   | Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).                                                                                                                                                  | Introduction                                                               |
| METHODS                               |     |                                                                                                                                                                                                                                                                                                             |                                                                            |
| Protocol and registration             | 5   | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, available, provide registration information including registration number.                                                                                                                                  | NA                                                                         |
| Eligibility criteria                  | 6   | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.                                                                                                      | Inclusion/Exclusion<br>criteria                                            |
| Information sources                   | 7   | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.                                                                                                                                  | Search strategy                                                            |
| Search                                | 8   | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.                                                                                                                                                                               | Supplementary<br>File 2                                                    |
| Study selection                       | 9   | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                                                                                                                   | Inclusion/Exclusion<br>criteria, Study<br>selection and data<br>extraction |
| Data collection process               | 10  | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplic stee) and any processes for obtaining and confirming data from investigators.                                                                                                                                | Study selection and data extraction                                        |
| Data items                            | 11  | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.                                                                                                                                                                       | Study selection and data extraction                                        |
| Risk of bias in individual<br>studies | 12  | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.                                                                                      | Quality assessment,<br>data analysis,<br>supplementary file                |

|   | BRISMA |
|---|--------|
| 1 |        |
| h |        |

# PRISMA 2009 Checklist

| Pa          | ge 37 of 75          |     | BMJ Open                                                                                                                                                     |          |               |
|-------------|----------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|
| 1<br>2<br>3 | PRISMA 2             | 009 | Checklist 201                                                                                                                                                |          |               |
| 4<br>5      |                      |     | 9-0347<br>47                                                                                                                                                 |          | 3             |
| 6<br>7      | Summary measures     | 13  | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                |          | Data analysis |
| 8<br>9      | Synthesis of results | 14  | Describe the methods of handling data and combining results of studies, if done, including means consistency (e.g., I <sup>2</sup> ) for each meta-analysis. | sures of | Data analysis |
| 10          |                      |     | Page 1 of 2                                                                                                                                                  |          |               |

### Page 1 of 2

|                               |    | Page 1 of 2 6                                                                                                                                                                                            |                                                                     |
|-------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Section/topic                 | #  | Checklist item                                                                                                                                                                                           | Reported on page #                                                  |
| Risk of bias across studies   | 15 | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).                                                             | Quality<br>assessment,<br>data analysis,<br>supplementary<br>file 3 |
| Additional analyses           | 16 | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regress n), if done, indicating which were pre-specified.                                                          | Data analysis                                                       |
| RESULTS                       |    |                                                                                                                                                                                                          |                                                                     |
| Study selection               | 17 | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.                                          | Results (1 <sup>st</sup> paragraph)                                 |
| Study characteristics         | 18 | For each study, present characteristics for which data were extracted (e.g., study size, PICOS) follow-up period) and provide the citations.                                                             | Table 1                                                             |
| Risk of bias within studies   | 19 | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).                                                                                                | Quality<br>assessment,<br>supplementary<br>file 3                   |
| Results of individual studies | 20 | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. | Table 2                                                             |
| Synthesis of results          | 21 | Present results of each meta-analysis done, including confidence intervals and measures of consistency.                                                                                                  | Table 3,4                                                           |
| Risk of bias across studies   | 22 | Present results of any assessment of risk of bias across studies (see Item 15).                                                                                                                          | Supplementary file 4.                                               |
| Additional analysis           | 23 | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).                                                                                    | Table 3                                                             |
| DISCUSSION                    |    |                                                                                                                                                                                                          |                                                                     |

- 45
- 46 47



).1136/bmjopen-20

| 3           |                                              |         | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
|-------------|----------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 4<br>5      | Summary of evidence                          | 24      | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Discussion          |
| 6<br>7<br>8 | Limitations                                  | 25      | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Discussion          |
| 9           | Conclusions                                  | 26      | Provide a general interpretation of the results in the context of other evidence, and implications for future research.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Discussion,         |
| 10          |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | future              |
| 11          |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | directions          |
| 1⊿<br>13    | FUNDING                                      |         | Dow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| 14          | Funding                                      | 27      | Describe sources of funding for the systematic review and other support (e.g., supply of data b role of funders for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Funding             |
| 15          | _                                            |         | the systematic review.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 16<br>17    | 7                                            | •       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                   |
| 17          | , From: Moher D, Liberati A, Tetzlaff        | J, Altm | nan DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The BRISMA Statement. PLoS N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | led 6(6): e1000097. |
| 19          | <sup>3</sup> doi:10.1371/journal.pmed1000097 |         | For more information, visit: www.prisma-statement.org.<br>Page 2 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 20          |                                              |         | Page 2 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| 21          |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 22<br>23    |                                              |         | en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| 22          |                                              |         | E Service Se |                     |
| 25          |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 26          |                                              |         | njopen.bmj.com/ on April 16, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 27          |                                              |         | on N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| 28          |                                              |         | φr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| 29          |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 30<br>31    |                                              |         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 32          |                                              |         | 024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| 33          |                                              |         | ь<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 34          |                                              |         | gue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| 35          |                                              |         | st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 36          |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 37<br>38    |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 39          |                                              |         | ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 40          |                                              |         | S Y C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 41          |                                              |         | ö<br>p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 42          |                                              |         | /rigl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 43          | 3                                            |         | ter en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |

| MOOSE Guid | delines for Meta-Analyses and Systematic Reviews of Observation                                                                | al Studies                                                                                                                                                                                                                                                                                                                                        |
|------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Background |                                                                                                                                | al Studies<br>Introduction<br>Introduction<br>Introduction<br>Introduction<br>Introduction<br>Introduction<br>Search strategy<br>Search strategy<br>Search strategy<br>Google<br>Search strategy<br>PRISMA flow char<br>All included article<br>were in English<br>Study selection<br>All relevant<br>information for thi<br>systematic review of |
| 2          | Problem definition                                                                                                             | Introduction                                                                                                                                                                                                                                                                                                                                      |
|            | Hypothesis statement                                                                                                           | Introduction                                                                                                                                                                                                                                                                                                                                      |
|            | Description of study outcomes                                                                                                  | Introduction                                                                                                                                                                                                                                                                                                                                      |
|            | Type of exposure or intervention used                                                                                          | Introduction                                                                                                                                                                                                                                                                                                                                      |
|            | Type of study design used                                                                                                      | Introduction                                                                                                                                                                                                                                                                                                                                      |
|            | Study population                                                                                                               | Introduction                                                                                                                                                                                                                                                                                                                                      |
| Search     |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                   |
| Strategy   |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                   |
|            | Qualification of searchers<br>Search strategy including time periods included in the synthesis and                             | Search strategy                                                                                                                                                                                                                                                                                                                                   |
|            | keywords                                                                                                                       | Scaren strategy                                                                                                                                                                                                                                                                                                                                   |
|            | Effort to include all available studies, including contact with authors                                                        | Search strategy                                                                                                                                                                                                                                                                                                                                   |
|            | Databases and registries searched                                                                                              | Search strategy                                                                                                                                                                                                                                                                                                                                   |
|            | Search software used, name and version, including special features used                                                        | Google                                                                                                                                                                                                                                                                                                                                            |
|            | Use of hand searching                                                                                                          | Search strategy                                                                                                                                                                                                                                                                                                                                   |
|            | List of citations located and those excluded                                                                                   | PRISMA flow char                                                                                                                                                                                                                                                                                                                                  |
|            | Method of addressing articles published in languages other than                                                                | All included article                                                                                                                                                                                                                                                                                                                              |
|            | English                                                                                                                        | were in English                                                                                                                                                                                                                                                                                                                                   |
|            | Method of handling abstracts and unpublished studies                                                                           | Study selection                                                                                                                                                                                                                                                                                                                                   |
|            | Description of any contact with authors                                                                                        | information for the                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                | systematic review of                                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                | be find in the publ                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                | reports. There was                                                                                                                                                                                                                                                                                                                                |
|            |                                                                                                                                | need to contact the                                                                                                                                                                                                                                                                                                                               |
| Methods    |                                                                                                                                | respective authors                                                                                                                                                                                                                                                                                                                                |
|            | Description of relevance or appropriateness of studies assembled for                                                           | Inclusion criteria a                                                                                                                                                                                                                                                                                                                              |
|            | assessing the hypothesis to be tested                                                                                          | study selection                                                                                                                                                                                                                                                                                                                                   |
|            | Rationale for the selection and coding of data (eg, sound clinical                                                             | Inclusion criteria a                                                                                                                                                                                                                                                                                                                              |
|            | principles or convenience)                                                                                                     | study selection                                                                                                                                                                                                                                                                                                                                   |
|            | Documentation of how data were classified and coded (eg, multiple                                                              | Inclusion criteria a                                                                                                                                                                                                                                                                                                                              |
|            | raters, blinding, and interrater reliability)<br>Assessment of confounding (eg, comparability of cases and controls            | study selection<br>Data analysis.                                                                                                                                                                                                                                                                                                                 |
|            | in studies where appropriate)                                                                                                  | Quality assessment                                                                                                                                                                                                                                                                                                                                |
|            | Assessment of study quality, including blinding of quality assessors;                                                          | Data analysis.                                                                                                                                                                                                                                                                                                                                    |
|            | stratification or regression on possible predictors of study results                                                           | Quality assessment                                                                                                                                                                                                                                                                                                                                |
|            | Assessment of heterogeneity                                                                                                    | Data analysis                                                                                                                                                                                                                                                                                                                                     |
|            | Description of statistical methods (eg, complete description of fixed                                                          | Data analysis                                                                                                                                                                                                                                                                                                                                     |
|            | or random effects models, justification of whether the chosen<br>models account for predictors of study results, dose-response |                                                                                                                                                                                                                                                                                                                                                   |
|            | models account for predictors of study results, dose-response                                                                  |                                                                                                                                                                                                                                                                                                                                                   |

| s, or cumulative meta-analysis) in sufficient detail to be<br>ted<br>ion of appropriate tables and graphics<br>ic summarizing individual study estimates and overall estimate<br>giving descriptive information for each study included<br>s of sensitivity testing (eg, subgroup analysis)<br>cion of statistical uncertainty of findings<br>itative assessment of bias (eg, publication bias)<br>eation for exclusion (eg, exclusion of non–English-language<br>ns)<br>ment of quality of included studies | Figure 1<br>Figures 2 and 3<br>Tables 1 and 2<br>Table 3<br>Results: adherence<br>Supplementary file<br>Inclusion criteria and<br>study selection.<br>Limitations<br>Supplementary file.<br>Results<br>Table 1<br>Discussion |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ion of appropriate tables and graphics<br>ic summarizing individual study estimates and overall estimate<br>giving descriptive information for each study included<br>s of sensitivity testing (eg, subgroup analysis)<br>ion of statistical uncertainty of findings<br>itative assessment of bias (eg, publication bias)<br>attoin for exclusion (eg, exclusion of non–English-language<br>ns)<br>ment of quality of included studies                                                                       | Figures 2 and 3<br>Tables 1 and 2<br>Table 3<br>Results: adherence<br>Supplementary file<br>Inclusion criteria and<br>study selection.<br>Limitations<br>Supplementary file.<br>Results<br>Table 1                           |
| ic summarizing individual study estimates and overall estimate<br>giving descriptive information for each study included<br>s of sensitivity testing (eg, subgroup analysis)<br>tion of statistical uncertainty of findings<br>fatative assessment of bias (eg, publication bias)<br>tation for exclusion (eg, exclusion of non–English-language<br>ns)<br>ment of quality of included studies                                                                                                               | Figures 2 and 3<br>Tables 1 and 2<br>Table 3<br>Results: adherence<br>Supplementary file<br>Inclusion criteria and<br>study selection.<br>Limitations<br>Supplementary file.<br>Results<br>Table 1                           |
| giving descriptive information for each study included<br>s of sensitivity testing (eg, subgroup analysis)<br>tion of statistical uncertainty of findings<br>stative assessment of bias (eg, publication bias)<br>tation for exclusion (eg, exclusion of non–English-language<br>ns)<br>ment of quality of included studies                                                                                                                                                                                  | Tables 1 and 2<br>Table 3<br>Results: adherence<br>Supplementary file<br>Inclusion criteria and<br>study selection.<br>Limitations<br>Supplementary file.<br>Results<br>Table 1                                              |
| giving descriptive information for each study included<br>s of sensitivity testing (eg, subgroup analysis)<br>tion of statistical uncertainty of findings<br>stative assessment of bias (eg, publication bias)<br>tation for exclusion (eg, exclusion of non–English-language<br>ns)<br>ment of quality of included studies                                                                                                                                                                                  | Tables 1 and 2<br>Table 3<br>Results: adherence<br>Supplementary file<br>Inclusion criteria and<br>study selection.<br>Limitations<br>Supplementary file.<br>Results<br>Table 1                                              |
| s of sensitivity testing (eg, subgroup analysis)<br>tion of statistical uncertainty of findings<br>itative assessment of bias (eg, publication bias)<br>tation for exclusion (eg, exclusion of non–English-language<br>ns)<br>ment of quality of included studies                                                                                                                                                                                                                                            | Table 3<br>Results: adherence<br>Supplementary file<br>Inclusion criteria and<br>study selection.<br>Limitations<br>Supplementary file.<br>Results<br>Table 1                                                                |
| tion of statistical uncertainty of findings<br>itative assessment of bias (eg, publication bias)<br>ration for exclusion (eg, exclusion of non–English-language<br>ns)<br>ment of quality of included studies<br>leration of alternative explanations for observed results                                                                                                                                                                                                                                   | Results: adherence<br>Supplementary file<br>Inclusion criteria and<br>study selection.<br>Limitations<br>Supplementary file.<br>Results<br>Table 1                                                                           |
| itative assessment of bias (eg, publication bias)<br>eation for exclusion (eg, exclusion of non–English-language<br>ns)<br>ment of quality of included studies<br>leration of alternative explanations for observed results                                                                                                                                                                                                                                                                                  | Supplementary file<br>Inclusion criteria and<br>study selection.<br>Limitations<br>Supplementary file.<br>Results<br>Table 1                                                                                                 |
| ation for exclusion (eg, exclusion of non–English-language<br>ns)<br>ment of quality of included studies<br>leration of alternative explanations for observed results                                                                                                                                                                                                                                                                                                                                        | Inclusion criteria and<br>study selection.<br>Limitations<br>Supplementary file.<br>Results<br>Table 1                                                                                                                       |
| ation for exclusion (eg, exclusion of non–English-language<br>ns)<br>ment of quality of included studies<br>leration of alternative explanations for observed results                                                                                                                                                                                                                                                                                                                                        | Inclusion criteria and<br>study selection.<br>Limitations<br>Supplementary file.<br>Results<br>Table 1                                                                                                                       |
| ation for exclusion (eg, exclusion of non–English-language<br>ns)<br>ment of quality of included studies<br>leration of alternative explanations for observed results                                                                                                                                                                                                                                                                                                                                        | Inclusion criteria and<br>study selection.<br>Limitations<br>Supplementary file.<br>Results<br>Table 1                                                                                                                       |
| ns)<br>ment of quality of included studies<br>leration of alternative explanations for observed results                                                                                                                                                                                                                                                                                                                                                                                                      | study selection.<br>Limitations<br>Supplementary file.<br>Results<br>Table 1                                                                                                                                                 |
| ment of quality of included studies<br>leration of alternative explanations for observed results                                                                                                                                                                                                                                                                                                                                                                                                             | Limitations<br>Supplementary file.<br>Results<br>Table 1                                                                                                                                                                     |
| leration of alternative explanations for observed results                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Supplementary file.<br>Results<br>Table 1                                                                                                                                                                                    |
| leration of alternative explanations for observed results                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Results<br>Table 1                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Table 1                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D'                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                              |
| alization of the conclusions (ie, appropriate for the data                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limitations                                                                                                                                                                                                                  |
| ted and within the domain of the literature review)                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |
| ines for future research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Future directions                                                                                                                                                                                                            |
| sure of funding sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Funding                                                                                                                                                                                                                      |
| sure of funding sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                              |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1                                                                                |
|----------------------------------------------------------------------------------|
| 2                                                                                |
| 3                                                                                |
| 4                                                                                |
| 4<br>5                                                                           |
| 6                                                                                |
| 6<br>7<br>8<br>9                                                                 |
| γ<br>Q                                                                           |
| 0                                                                                |
| 9                                                                                |
| 10                                                                               |
| 11                                                                               |
| 12                                                                               |
| 13                                                                               |
| 14                                                                               |
| 15                                                                               |
| 16                                                                               |
| 17                                                                               |
| 14<br>15<br>16<br>17<br>18                                                       |
| 10                                                                               |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 |
| 21                                                                               |
| 22                                                                               |
| ~~<br>72                                                                         |
| 23                                                                               |
| 24                                                                               |
| 25                                                                               |
| 26                                                                               |
| 27                                                                               |
| 28                                                                               |
| 29                                                                               |
| 30                                                                               |
| 31<br>32<br>33<br>34<br>35<br>36                                                 |
| 32                                                                               |
| 33                                                                               |
| 3/                                                                               |
| 25                                                                               |
| 22                                                                               |
|                                                                                  |
| 37<br>38                                                                         |
|                                                                                  |
| 39                                                                               |
| 40                                                                               |
| 41                                                                               |
| 42                                                                               |
| 43                                                                               |
| 44                                                                               |
| 45                                                                               |
| 46                                                                               |
| 47                                                                               |
| 48                                                                               |
| 40<br>49                                                                         |
|                                                                                  |
| 50                                                                               |
| 51                                                                               |
| 52                                                                               |
| 53                                                                               |
| 54                                                                               |
| 55                                                                               |
| 56                                                                               |
| 57                                                                               |
| 58                                                                               |
| 50                                                                               |

59 60

## Supplementary file 1: Literature search

| Concept             | Keywords                                                                                                                                                                                                                                                                                                                                                                        | MeSH terms (Pubmed)                                     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Medications         | Anticoagulant* OR "blood thinner" OR<br>"Vitamin K antagonists"OR "new oral<br>anticoagulants" OR VKA OR NOAC OR<br>DOAC OR Apixaban OR Eliquis OR<br>dabigatran OR "dabigatran etexilate" mesylate<br>OR pradaxa OR edoxaban OR lixiana OR<br>rivaroxaban OR xarelto OR warfarin OR<br>coumadin OR betrixaban OR bevyxxa OR<br>acenocoumarol OR phenprocoumon OR<br>fluindione | Warfarin<br>Anticoagulants<br>Dabigatran<br>Rivaroxaban |
| Adherence           | Adherence OR persistence OR compliance<br>"Medication taking" OR "discontinuation"<br>OR "nonpersistence" OR "nonadherence"<br>OR "noncompliance"                                                                                                                                                                                                                               | Treatment Adherence and Compliance"[Mesh])              |
| Atrial fibrillation | "atrial fibrillation" OR NVAF OR "non-<br>valvular atrial fibrillation"                                                                                                                                                                                                                                                                                                         | atrial fibrillation                                     |

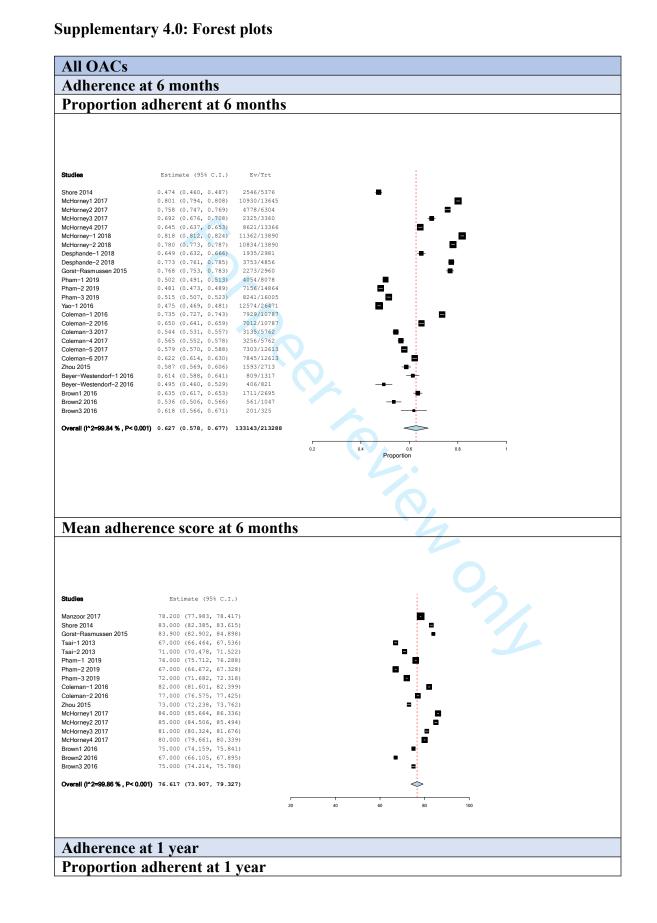
#### Complete search example for Pubmed:

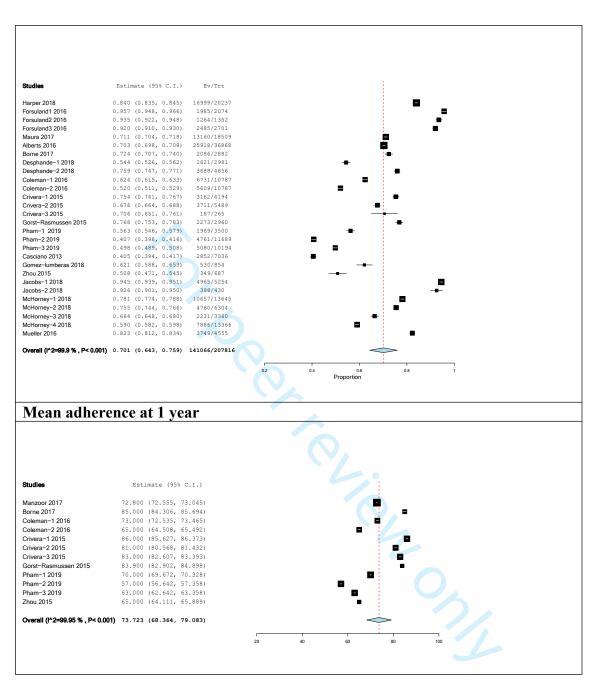
|                                                                                                                                                                                                                                                                   |            |                     |                                      |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   | BN                    | IJ Ope                             | en                                  |                    |                 |                     |                     |                | 36/bmjopen-2019                                     |                           |                      |                      |                     |              |               |                      | Pag          | ge 42 d     | of 75        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|--------------------------------------|---------------|-------------------|----------------------|---------------------|---------------------|------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------|-----------------------|------------------------------------|-------------------------------------|--------------------|-----------------|---------------------|---------------------|----------------|-----------------------------------------------------|---------------------------|----------------------|----------------------|---------------------|--------------|---------------|----------------------|--------------|-------------|--------------|
| 1<br>2                                                                                                                                                                                                                                                            |            |                     |                                      | _             | _                 |                      | _                   | _                   |                  | _                                                   |                                                     | _                 |                       |                                    |                                     |                    |                 | _                   | _                   |                |                                                     |                           |                      |                      | _                   | _            |               | _                    | _            | _           |              |
| 3<br>4<br>5 STROBE<br>6<br>7                                                                                                                                                                                                                                      | CODE       | Alber<br>ts<br>2016 | Beyer<br>-<br>Weste<br>ndorf<br>2016 | Borne<br>2017 | Brow<br>n<br>2016 | Casci<br>ano<br>2013 | Cole<br>man<br>2016 | Cole<br>man<br>2017 | Criver<br>a 2015 | Desh<br>pand<br>e 2018<br>PMI<br>D:<br>29694<br>285 | Desh<br>pand<br>e 2018<br>PMI<br>D:<br>29334<br>815 | Eape<br>n<br>2014 | Forsu<br>land<br>2016 | Gome<br>z-<br>Lum<br>beras<br>2018 | Gorst<br>-<br>Rasm<br>ussen<br>2015 | Harp<br>er<br>2018 | Jacob<br>s 2018 | Manz<br>oor<br>2017 | Marq<br>uez<br>2016 | Maur<br>a 2017 | 034778 on 8 A                                       | McC<br>ormic<br>k<br>2001 | McH<br>orney<br>2017 | McH<br>orney<br>2018 | Mueil<br>er<br>2017 | Pham<br>2019 | Shore<br>2014 | Soren<br>sen<br>2017 | Tsai<br>2013 | Yao<br>2016 | Zhou<br>2015 |
| Title and abstract                                                                                                                                                                                                                                                |            |                     | ~                                    |               | ~                 | _                    | ~                   | ~                   | ~                | ~                                                   | ~                                                   | ~                 | ~                     |                                    |                                     |                    |                 | ~                   | ~                   |                |                                                     |                           |                      |                      |                     | ~            |               |                      | ~            |             |              |
| commonly used term in the title or the<br>Stract                                                                                                                                                                                                                  | 1a         | 0                   | 0                                    | 0             | 0                 | 0                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 0                 | 0                     | 1                                  | 1                                   | 1                  | 0               | 0                   | 0                   | 0              | ril 2020.                                           | 1                         | 0                    | 0                    | 0                   | 0            | 1             | 0                    | 0            | 0           | 0            |
| Provide in the abstract an informative<br>and balanced summary of what was done<br>and what was found.<br>Background/rationale: Explain the                                                                                                                       | 1b         | 0                   | 1                                    | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 0                 | 0                     | 0                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              |                                                     |                           | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| scientific background and rationale for<br>the avestigation being reported                                                                                                                                                                                        | 2          | 1                   | 1                                    | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              |                                                     | 1                         | 1                    | 0                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Objective: State specific objectives,<br>including any prespecified hypothesis.                                                                                                                                                                                   | 3          | 1                   | 1                                    | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              |                                                     | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Study design: Present key elements of<br>stude design early in the paper                                                                                                                                                                                          | 4          | 1                   | 1                                    | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              |                                                     | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Setting: Describe the setting, locations,<br>augelevant dates, including periods of<br>recruitment, exposure, follow-up, and<br>dugeoflection.<br>Participanty: Give the aligibility criterie                                                                     | 5          | 1                   | 1                                    | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 0                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | ed froi                                             | 0                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| and ne sources and methods of selection<br>of participants                                                                                                                                                                                                        | 6a         | 1                   | 1                                    | 1             | 1                 | 0                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                                   | 0                  | 0               | 1                   | 1                   | 1              |                                                     | 1                         | 1                    | 1                    | 0                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Ponatched studies, give matching<br>criteria and number of exposed and                                                                                                                                                                                            | 6b         | 1                   | NA                                   | NA            | NA                | NA                   | 1                   | 1                   | NA               | NA                                                  | 1                                                   | NA                | NA                    | NA                                 | NA                                  | NA                 | NA              | NA                  | NA                  | NA             | NA//b                                               | NA                        | NA                   | 1                    | NA                  | NA           | NA            | NA                   | NA           | 1           | NA           |
| unesposed<br>Vanables: Clearly define all outcomes,<br>exposures, predictors, potential<br>enfounders, and effect modifiers. Give<br>disenostic criteria, if applicable.                                                                                          | 7          | 0                   | 1                                    | 0             | 1                 | 0                    | 0                   | 1                   | 1                | 1                                                   | 0                                                   | 1                 | 1                     | 1                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | <sup>1</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup> | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 0            | 1           | 1            |
| disprostic criteria, if applicable.<br>Math sources/measurement: For each<br>which of interest, give sources of data<br>2022 chails of methods of assessment<br>integratement). Describe comparability<br>2023 Sessment methods if there is more<br>than one grou | 8          | 0                   | 1                                    | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | en.bmj.co                                           | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Describe any efforts to address<br>potential sources of bias (e.g. Propensity                                                                                                                                                                                     | 9          | 1                   | 0                                    | 0             | 0                 | 0                    | 1                   | 1                   | 0                | 1                                                   | 1                                                   | 0                 | 0                     | 0                                  | 0                                   | 0                  | 1               | 1                   | 1                   | 1              | 0 ) M                                               |                           | 1                    | 1                    | 0                   | 1            | 1             | 0                    | 0            | 0           | 0            |
| Study size: Explain how the study size                                                                                                                                                                                                                            | 10         | 0                   | 0                                    | 0             | 0                 | 0                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 0                 | 0                     | 0                                  | 0                                   | 0                  | 0               | 0                   | 1                   | 0              | 0 P                                                 | 0                         | 0                    | 0                    | 0                   | 0            | 0             | 0                    | 0            | 0           | 0            |
| Quantitative variables/ statistical analysis:                                                                                                                                                                                                                     |            |                     |                                      |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   |                       |                                    |                                     |                    |                 |                     |                     |                | pri                                                 |                           |                      |                      |                     |              |               |                      |              |             |              |
| Explain how quantitative variables were<br>Defined in the analyses. If applicable,<br>describe which groupings were chosen,<br>apply. (categorizing)                                                                                                              | 11         | 0                   | 1                                    | 1             | 1                 | 1                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 1                 | 1                     | 1                                  | 1                                   | 0                  | 1               | 0                   | 0                   | 1              | 1 <b>1</b> 6, 1                                     |                           | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Describe all statistical methods, including<br>the used to control for confounding                                                                                                                                                                                | 12a        | 1                   | 1                                    | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 102                                                 | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 0                    | 1            | 1           | 1            |
| Describe any methods used to examine<br>sourcoups and interactions<br>Explain how missing data were addressed                                                                                                                                                     | 12b        | 1                   | 0                                    | 1             | 1                 | 0                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 0                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 0                   | 1              | 1 4                                                 | 0                         | 1                    | 1                    | 0                   | 0            | 1             | 0                    | 1            | 1           | 1            |
| Cohort study: If applicable, describe how                                                                                                                                                                                                                         | 12c<br>12d | 0<br>NA             | 0<br>NA                              | 0<br>NA       | 0<br>NA           | 0<br>NA              | 0<br>NA             | 1<br>NA             | 0<br>NA          | 0<br>NA                                             | 0<br>NA                                             | 0<br>NA           | 0<br>NA               | 0<br>NA                            | 0<br>NA                             | 0<br>NA            | 0<br>NA         | 1<br>NA             | 0                   | 0<br>NA        |                                                     | 0<br>NA                   | 0<br>NA              | 0<br>NA              | 0<br>NA             | 0<br>NA      | 1<br>NA       | 0<br>NA              | 0<br>NA      | 0<br>NA     | 0<br>NA      |
| loss totollow-up was addressed.                                                                                                                                                                                                                                   | 12e        | 0                   | 1                                    | 1             | 0                 | 0                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 0                 | 1                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 0                   | 1              | 1 0                                                 | 0                         | 1                    | 1                    | 0                   | 0            | 1             | 1                    | 0            | 1           | 1            |
| Participants:<br>BAr the numbers of individuals at each<br>stage of the study—e.g., numbers<br>Burially eligible, examined for<br>eligibility, confirmed eligible, included in<br>Budy, completing follow-up, and<br>analysed.                                    | 13a        | 0                   | 1                                    | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                                   | 0                  | 1               | 0                   | 0                   | 1              | st. Protect                                         | 0                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 0            | 0           | 1            |
| By reasons for non-participation at each stage                                                                                                                                                                                                                    | 13b        | NA                  | NA                                   | NA            | NA                | NA                   | NA                  | NA                  | NA               | NA                                                  | NA                                                  | NA                | NA                    | NA                                 | NA                                  | NA                 | NA              | NA                  | 0                   | NA             | NAO                                                 | NA                        | NA                   | NA                   | NA                  | NA           | NA            | NA                   | NA           | NA          | NA           |
| Descriptive data:                                                                                                                                                                                                                                                 | 13c        | 0                   | 1                                    | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                                   | 0                  | 0               | 0                   | 0                   | 1              | 1 by co                                             |                           | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 0            | 0           | 1            |
| <b>39</b><br>Give characteristics of study participants<br>(4), demographic, clinical, social) and                                                                                                                                                                | 14a        | 1                   | 1                                    | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              |                                                     | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| 41<br>42                                                                                                                                                                                                                                                          |            |                     |                                      |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   |                       |                                    |                                     |                    | . <u> </u>      |                     |                     | · · · · · ·    | right.                                              |                           |                      |                      |                     |              |               |                      |              | I           |              |

43

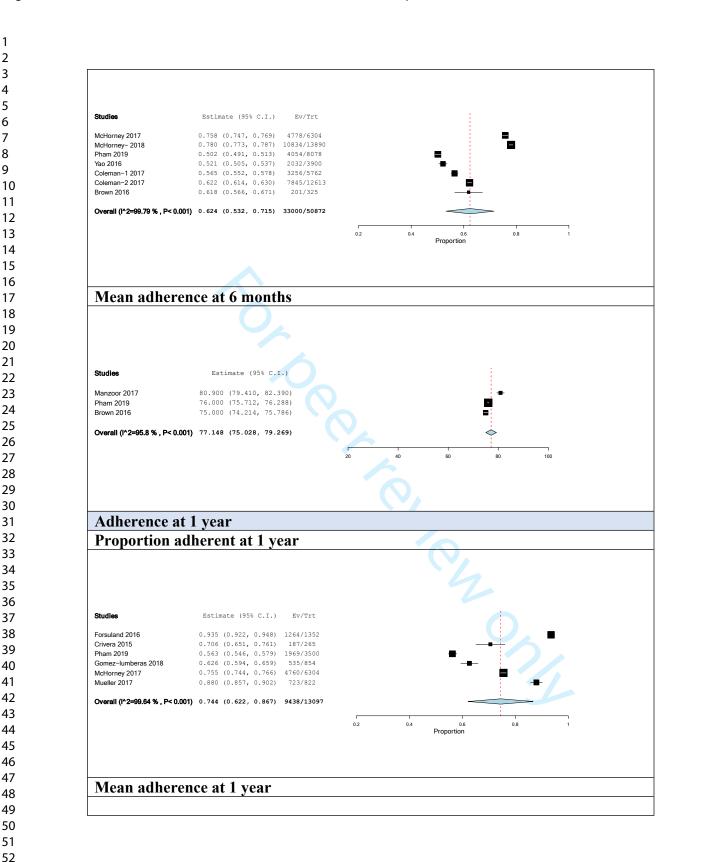
44

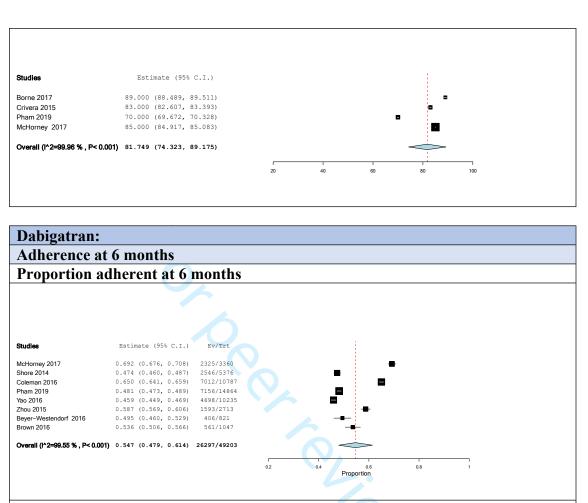
45


46


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| Page 43 of 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |              |                 |        |           |                 |               |                 |        |                 |              |        | BN     | IJ Ope | en  |        |     |     |       |                 | 36/bmjopen-2019-034                    |    |                 |                 |     |              |     |        |     |                 |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|-----------------|--------|-----------|-----------------|---------------|-----------------|--------|-----------------|--------------|--------|--------|--------|-----|--------|-----|-----|-------|-----------------|----------------------------------------|----|-----------------|-----------------|-----|--------------|-----|--------|-----|-----------------|-----|
| 1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 | n-2019                                 |    |                 |                 |     |              |     |        |     |                 |     |
| Gormation on exposures and potential confounders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 | ပ်ံ                                    |    |                 |                 |     |              |     |        |     |                 |     |
| dicate the number of participants with<br>missing data for each variable of interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14b | 0            | 0               | 0      | 0         | 0               | 0             | 0               | 0      | 0               | 1            | 0      | 0      | 1      | 0   | 0      | 0   | 0   | 0     | 0               | 07                                     |    | 0               | 1               | 0   | 1            | 0   | 0      | 0   | 0               | 0   |
| missing data for each variable of interest.<br>Simmarise follow-up time (eg, average<br>and total amount)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14c | 1            | 1               | 1      | 0         | 1               | 1             | 1               | 1      | 0               | 1            | 1      | 0      |        | 0   | 0      | 1   | 0   | 1     | 1               | 00                                     | 0  | 1               | 0               | 1   | 0            | 1   | 0      | 0   | 1               | 0   |
| Gutcome data: Report numbers of<br>outcome events or summary measures<br>offer time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15  | 0            | 1               | 0      | 1         | 0               | 1             | 0               | 0      | 1               | 1            | 1      | 0      | 0      | 0   | 0      | 0   | 1   | 0     | 0               | 00 00 00 00 00 00 00 00 00 00 00 00 00 |    | 1               | 1               | 1   | 1            | 1   | 0      | 0   | 1               | 1   |
| Main results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 | Ą                                      |    |                 |                 |     |              |     |        |     |                 |     |
| Byte unadjusted estimates and, if<br>applicable, confounder-adjusted estimates<br>of their precision (e.g., 95% confidence<br>interva). Make clear which confounders<br>wooddisted for and why they were<br>intervaled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16a | 1            | 0               | 0      | 1         | 0               | 0             | 0               | 1      | 1               | 1            | 1      | 0      | 0      | 1   | 0      | 1   | 0   | 1     | NA              | oril 2020.                             | 1  | 1               | 1               | 0   | 0            | 1   | 1      | 0   | 1               | 1   |
| Report category boundaries when<br>continuous variables were categorized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16b | 1            | 1               | 1      | 1         | 1               | 1             | 1               | 1      | 1               | 1            | NA     | 1      | 1      | 1   | 1      | 1   | 1   | 1     | 1               |                                        | 1  | 1               | 1               | 1   | 1            | 1   | 1      | 1   | 1               | 1   |
| Li relevant, consider translating estimates<br>of relative risk into absolute risk for a<br>meaningful time period<br>Other analysis: Report other analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16c | NA           | NA              | NA     | NA        | NA              | NA            | NA              | NA     | NA              | NA           | NA     | NA     | NA     | NA  | NA     | NA  | NA  | NA    | NA              |                                        | NA | NA              | NA              | NA  | NA           | NA  | NA     | NA  | NA              | NA  |
| done—e.g., analyses of subgroups and<br>interactions, and sensitivity analyses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17  | 1            | 1               | 1      | 1         | 1               | 0             | 1               | 1      | 1               | 1            | 1      | 1      | 0      | 1   | 0      | 1   | 1   | 0     | 1               | <b>.</b>                               |    | 1               | 1               | 1   | 1            | 1   | 0      | 1   | 1               | 1   |
| Key results: Summarize key results with<br>reference to study objectives.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18  | 1            | 1               | 1      | 1         | 1               | 1             | 1               | 1      | -1              | 1            | 1      | 1      | 1      | 1   | 1      | 1   | 1   | 1     | 1               | 1 <u>1</u> 0                           | 1  | 1               | 1               | 1   | 1            | 1   | 1      | 1   | 1               | 1   |
| Limitations: Discuss limitations of the<br>sub, taking into account sources of<br>potential bias or imprecision. Discuss<br>but direction and magnitude of any<br>potential bias.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19  | 1            | 1               | 1      | 1         | 1               | 1             | 1               | 1      | 1               | 1            | 1      | 1      | 1      | 1   | 1      | 1   | 1   | 1     | 1               | from htt                               |    | 1               | 1               | 1   | 1            | 1   | 1      | 1   | 1               | 1   |
| potential bias.<br>Herefore the search of the | 20  | 1            | 1               | 1      | 1         | 1               | 1             | 1               | 1      | 1               | 1            | 1      | 1      | 1      | 1   | 1      | 1   | 1   | 1     | 1               | p://bmj                                | 1  | 1               | 1               | 1   | 1            | 1   | 1      | 1   | 1               | 1   |
| gongralizability (external validity) of the<br>study results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21  | 1            | 0               | 1      | 1         | 1               | 1             | 1               | 1      | 1               | 1            | 1      | 1      | 1      | 1   | 1      | 1   | 1   | 1     | 1               |                                        | 0  | 1               | 1               | 1   | 1            | 1   | 1      | 1   | 1               | 1   |
| Fyrnging: Give the source of funding and<br>incrole of the funders for the present<br>study and, if applicable, for the original<br>study on which the present article is<br>based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22  | 1            | 1               | 1      | 1         | 1               | 1             | 1               | 1      | 1               | 1            | 1      | 1      | 1      | 1   |        | 1   | 0   | 1     | 0               | .bmj.co                                | 1  | 1               | 1               | 1   | 1            |     | 1      | 1   | 1               | 1   |
| based<br>Suff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 19           | 22              | 22     | 23        | 19              | 17            | 24              | 22     | 23              | 25           | 22     | 19     | 15     | 24  | 14     | 24  | 21  | 20    | 23              | 26                                     |    | 26              | 26              | 21  | 23           | 27  | 20     | 18  | 24              | 24  |
| Total applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 31           | 30              | 30     | 30        | 30              | 31            | 31              | 30     | 30              | 31           | 29     | 30     | 30     | 30  | 30     | 30  | 30  | 32    | 29              | 30 <b>O</b>                            | 30 | 30              | 31              | 30  | 30           | 30  | 30     | 30  | 31              | 30  |
| 25<br>Total applicable<br>26<br>Score<br>27<br>Percent<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 0.6129<br>03 | 0.7333<br>33333 | 0.7333 | 0.7666 67 | 0.6333<br>33333 | 0.5483<br>871 | 0.7741<br>93548 | 0.7333 | 0.7666<br>66667 | 0.8064 51613 | 0.7586 | 0.6333 | 0.5    | 0.8 | 0.4666 | 0.8 | 0.7 | 0.625 | 0.7931<br>03448 | 0.866 <b>4</b><br>66667                |    | 0.8666<br>66667 | 0.8387<br>09677 | 0.7 | 0.7666 66667 | 0.9 | 0.6666 | 0.6 | 0.7741<br>93548 | 0.8 |
| Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 61           | 73              | 73     | 77        | 63              | 55            | 93548           | 73     | 77              | 81           | 76     | 63     | 50     | 80  | 47     | 80  | 70  | 63    | 79              | 87                                     |    | 87              | 84              | 70  | 77           | 90  | 67     | 60  | 93548           | 80  |
| 29<br>30<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       | 1               | <b>6</b> , 2024                        |    |                 |                 |     |              |     |        |     |                 |     |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 | by c                                   |    |                 |                 |     |              |     |        |     |                 | l   |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 | guest                                  |    |                 |                 |     |              |     |        |     |                 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 | st.                                    |    |                 |                 |     |              |     |        |     |                 |     |
| 34<br>35<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 | Pro                                    |    |                 |                 |     |              |     |        |     |                 |     |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 | tec                                    |    |                 |                 |     |              |     |        |     |                 |     |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 | . Protected by copyright.              |    |                 |                 |     |              |     |        |     |                 |     |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 | by                                     |    |                 |                 |     |              |     |        |     |                 |     |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 | 8                                      |    |                 |                 |     |              |     |        |     |                 |     |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 | руг                                    |    |                 |                 |     |              |     |        |     |                 |     |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 | igh                                    |    |                 |                 |     |              |     |        |     |                 |     |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                 |        |           |                 |               |                 |        |                 |              |        |        |        |     |        |     |     |       |                 |                                        |    |                 |                 |     |              |     |        |     |                 |     |

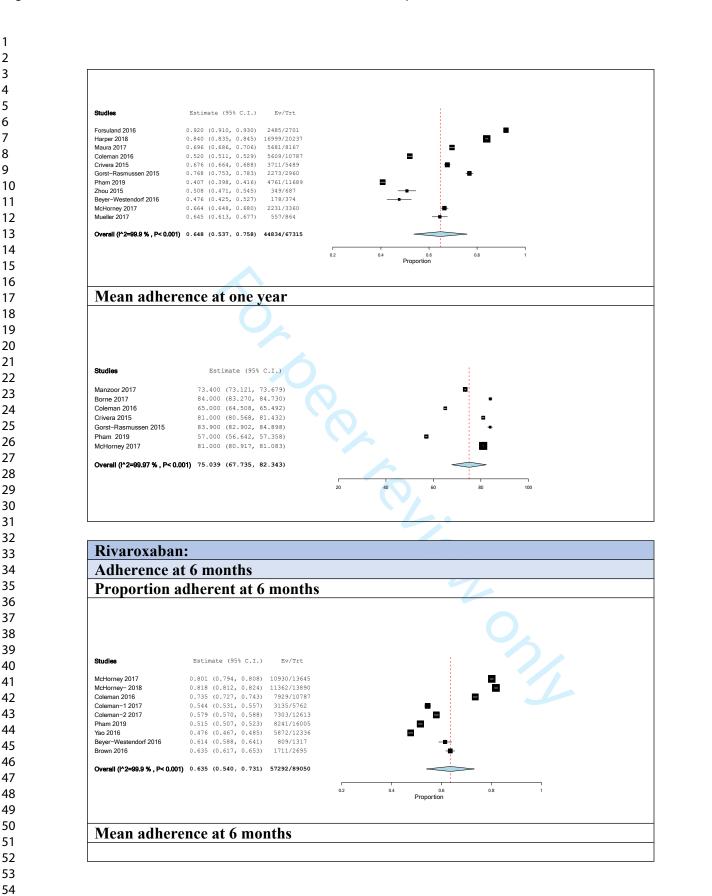

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


| 1<br>2                                      |                                                                                                                          |                  |                                 |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       | BMJ C                              | )pen                                |                    |                 |                     |                     |                |                       | 36/bmjopen-2019-         |                      |                      |                     |                   |               |                      | Ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | age 4       | 4 of 75      |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------|---------------|----------------|----------------------|---------------------|---------------------|------------------|----------------------------------------------------|----------------------------------------------------|----------------|-----------------------|------------------------------------|-------------------------------------|--------------------|-----------------|---------------------|---------------------|----------------|-----------------------|--------------------------|----------------------|----------------------|---------------------|-------------------|---------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|
| 3 Item<br>No<br>5                           | ISPOR                                                                                                                    | Albert<br>s 2016 | Beyer<br>Weste<br>ndorf<br>2016 | Borne<br>2017 | Brow<br>n 2016 | Casci<br>ano<br>2013 | Cole<br>man<br>2016 | Cole<br>man<br>2017 | Criver<br>a 2015 | Desh<br>pande<br>2018<br>PMI<br>D:<br>29694<br>285 | Desh<br>pande<br>2018<br>PMI<br>D:<br>29334<br>815 | Eape<br>n 2014 | Forsu<br>land<br>2016 | Gome<br>z-<br>Lumb<br>eras<br>2018 | Gorst<br>-<br>Rasm<br>ussen<br>2015 | Harp<br>er<br>2018 | Jacob<br>s 2018 | Manz<br>oor<br>2017 | Marq<br>uez<br>2006 | Maur<br>a 2017 | McAli<br>ster<br>2018 | 034778 01                | McH<br>orney<br>2017 | McH<br>orney<br>2018 | Muell<br>er<br>2017 | Phar<br>m<br>2019 | Shore<br>2014 | Soren<br>son<br>2017 | Tsai<br>2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yao<br>2016 | Zhou<br>2015 |
|                                             | Title / Abstract<br>Title is descriptive and reflective                                                                  |                  |                                 |               |                |                      |                     |                     |                  |                                                    | 815                                                |                |                       |                                    |                                     |                    |                 |                     |                     |                |                       | 0                        |                      |                      |                     |                   |               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |              |
|                                             | of study purpose                                                                                                         | 0                | 0                               | 0             | 0              | 0                    | 0                   | 0                   | 0                | 0                                                  | 0                                                  | 0              | 0                     | 1                                  | 1                                   | 1                  | 0               | 0                   | 0                   | 1              | 1                     | $\mathbf{P}_0$           | 1                    | 1                    | 0                   | 0                 | 1             | 0                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0           | 0            |
| <b>8</b> <sup>2</sup>                       | Abstract is a concise and<br>accurate, reflecting contents of<br>the study                                               | 0                | 1                               | 1             | 1              | 1                    | 0                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 0                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     | pril 2                   | 1                    | 1                    | 1                   | 1                 | 1             | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
| 9                                           | Introduction<br>Clear review of fundamental                                                                              |                  |                                 |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       |                                    |                                     |                    |                 |                     |                     |                |                       | 0                        |                      |                      |                     |                   |               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |              |
| 10                                          | literature related to topic                                                                                              | 1                | 1                               | 1             | 1              | 1                    | 0                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     | 20.1                     | 1                    | 1                    | 1                   | 1                 | 1             | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
| 13                                          | Objectives and Definitions<br>Objective(s) stated?                                                                       | 1                | 1                               | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     |                          | 1                    | 1                    | 1                   | 1                 | 1             | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
| 12                                          | Design and Methods                                                                                                       |                  |                                 |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       | ·                                  |                                     |                    |                 |                     |                     |                |                       | n l                      |                      |                      |                     |                   |               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |              |
| 13                                          | Study design appropriate for<br>objectives                                                                               | 1                | 1                               | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     |                          | 1                    | 1                    | 1                   | 1                 | 1             | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
| 14                                          | Data sources adequately<br>described<br>Evidence provided for reliability                                                | 1                | 1                               | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     |                          | 1                    | 1                    | 1                   | 1                 | 0             | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
| 15                                          | / acuracy of data<br>Sampling methods described                                                                          | 0<br>NA          | 0<br>NA                         | 0<br>NA       | 0<br>NA        | 0<br>NA              | 0<br>NA             | 1<br>NA             | 0<br>NA          | 0<br>NA                                            | 0<br>NA                                            | 0<br>NA        | 0<br>NA               | 0<br>NA                            | 1<br>NA                             | 0<br>NA            | 1<br>NA         | 1                   | 1<br>NA             | 1<br>NA        | 1<br>NA               |                          | 1<br>NA              | 1<br>NA              | 1<br>NA             | 1<br>NA           | 1<br>NA       | 0<br>NA              | 1<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>NA     | 0<br>NA      |
| 16                                          | Well describe patient population<br>and Subject inclusion / exclusion                                                    | 1                | 1                               | 1             | 1              | 0                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     | 3                        | 1                    | 1                    | 0                   | 1                 | 1             | 1                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
| 1/                                          | criteria stated<br>Sufficient data to make valid                                                                         |                  |                                 |               |                | Ŭ                    |                     |                     |                  |                                                    |                                                    |                |                       |                                    |                                     | Ŭ                  |                 |                     |                     |                |                       |                          |                      |                      |                     | •                 |               |                      | , in the second |             |              |
| 18ຶ<br>19                                   | estimate of compliance (i.e.<br>Continuous eligibility for drug<br>during study period verified)                         | 0                | 1                               | 1             | 1              | 1                    | 1                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 1                                  | 1                                   | 0                  | 1               | 0                   | 1                   | 1              | 1                     | p://br                   | 1                    | 1                    | 0                   | 1                 | 1             | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
| 20 <sup>1</sup>                             | Sufficient pre-enrollment period<br>to ensure drug naivety? (If<br>applicable)                                           | NA               | 1                               | NA            | 1              | 1                    | NA                  | 1                   | NA               | NA                                                 | NA                                                 | 1              | NA                    | NA                                 | NA                                  | 0                  | NA              | 1                   | NA                  | 1              | 1                     | njop                     | 1                    | 1                    | 0                   | 1                 | NA            | 1                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1           | 1            |
| 21₂<br>22                                   | Explanation of how patients who<br>switched drugs within or<br>between therapeutic classes were                          | 0                | 0                               | 0             | 1              | 0                    | 0                   | 1                   | 1                | 0                                                  | 0                                                  | 0              | 1                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 0                   | 1              | NA                    | DNA                      | 0                    | 1                    | 0                   | 1                 | 1             | 0                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
| 23 <sup>3</sup>                             | handled<br>Explicit definition of<br>compliance/persistence based on                                                     | 1                | 1                               | 1             | 1              | 1                    | 0                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 1                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 0                     | <u>, 0</u>               | 1                    | 1                    | 0                   | 1                 | 1             | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
| 2 <u>4</u><br>25                            | published, accepted definition?<br>Methods for calculating<br>compliance / persistence clearly<br>described (and matches | 1                | 1                               | 1             | 0              | 1                    | 0                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     | <b>1</b><br>0 1          | 1                    | 1                    | 0                   | 1                 | 1             | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
| 26<br>15                                    | operational definition)<br>Was handling of medication gaps<br>described                                                  | 0                | 0                               | 0             | 1              | 1                    | 0                   | 0                   | 0                | 1                                                  | 1                                                  | 0              | 0                     | 0                                  | 1                                   | 1                  | 0               | 0                   | 1                   | 1              | 1                     | n<br>Ap₀                 | 0                    | 1                    | 0                   | 1                 | 1             | 0                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0           | 0            |
| 27<br>16                                    | Follow-up period specified<br>Statistics appropriate to design                                                           | 1                | 1                               | 1             | 1              | 1                    | 1                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 0                                  | 1                                   | 0                  | 0               | 1                   | 1                   | 1              | 1                     | <u>⊒</u> :1              | 1                    | 1                    | 1                   | 0                 | 1             | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 0            |
| 287<br>299                                  | and data<br>Test statistics are reported                                                                                 | 1                | 1                               | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     | <u>ີ</u> ດ1              | 1                    | 1                    | 1                   | 1                 | 1             | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
|                                             | appropriately (i.e. CIs, p-values<br>reported)                                                                           | 1                | 1                               | 1             | 1              | 1                    | 0                   | 0                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     | 202                      | 1                    | 1                    | 0                   | 1                 | 1             | 1                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
| 80,<br>81                                   | Appropriate descriptive data on<br>study sample are presented                                                            | 1                | 1                               | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     | <b>2</b> 41              | 1                    | 1                    | 1                   | 1                 | 1             | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
| 8 <u>1</u><br>32                            | Distribution of<br>compliance/persistence variable<br>is presented (i.e. proportion of                                   | 1                | 0                               | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 0              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 0                   | 1              | 1                     | by gu                    | 1                    | 1                    | 1                   | 1                 | 1             | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | 1            |
| 3.3 <sub>µm</sub><br>3.4                    | discontinuers)                                                                                                           | 12               | 14                              | 14            | 16             | 15                   | 9                   | 16                  | 11               | 15                                                 | 15                                                 | 14             | 11                    | 12                                 | 18                                  | 10                 | 15              | 17                  | 15                  | 19             | 17                    | <b>est</b> <sub>14</sub> | 17                   | 19                   | 10                  | 17                | 17            | 15                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16          | 15           |
| B 5 Total<br>B 5 Spplica                    |                                                                                                                          | 18               | 19                              | 18            | 19             | 19                   | 18                  | 19                  | 18               | 18                                                 | 18                                                 | 19             | 18                    | 18                                 | 18                                  | 19                 | 18              | 20                  | 18                  | 19             | 18                    |                          | 19                   | 19                   | 19                  | 19                | 18            | 19                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19          | 19           |
| Bocore<br>B7                                |                                                                                                                          | 0.6666<br>67     | 0.7368<br>4211                  | 0.7777<br>778 | 0.8421<br>053  | 0.7894<br>7368       | 0.5                 | 0.8421<br>0526      | 0.6111<br>1111   | 0.8333<br>333                                      | 0.8333<br>33333                                    | 0.7368<br>4211 | 0.6111<br>1111        | 0.6666<br>6667                     | 1                                   | 0.5263             | 0.833           | 0.85                | 0.8333<br>333       | 1              | 0.9444<br>444         | 0<br>8235<br>0<br>2941   | 0.8947<br>368        | 1                    | 0.5263<br>158       | 0.895             | 0.944         | 0.7894<br>73684      | 0.778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.842       | 0.789        |
| 34<br>35pplica<br>ble<br>36core<br>37<br>98 |                                                                                                                          | 67               | 74                              | 78            | 84             | 79                   | 50                  | 84                  | 61               | 83                                                 | 83                                                 | 74             | 61                    | 67                                 | 100                                 | 53                 | 83              | 85                  | 83                  | 100            | 94                    | <b>b</b> <sub>82</sub>   | 89                   | 100                  | 53                  | 89                | 94            | 79                   | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84          | 79           |
| 39<br>40<br>41<br>42                        |                                                                                                                          |                  |                                 |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       |                                    |                                     |                    |                 |                     |                     |                |                       | copyright.               |                      |                      |                     |                   |               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |              |

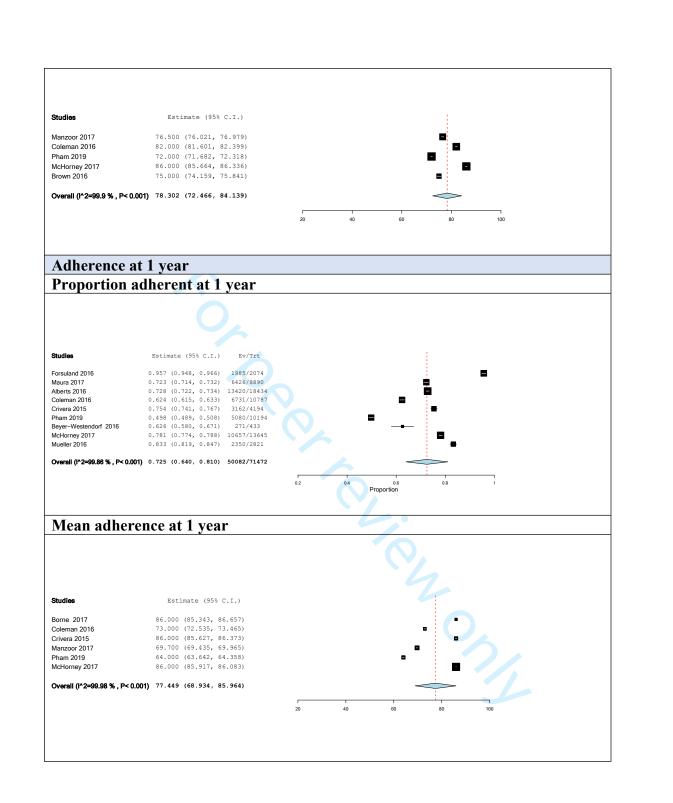




| Apixaban                        |  |
|---------------------------------|--|
| Adherence at 6 months           |  |
| Proportion adherent at 6 months |  |
|                                 |  |







Mean adherence at 6 months

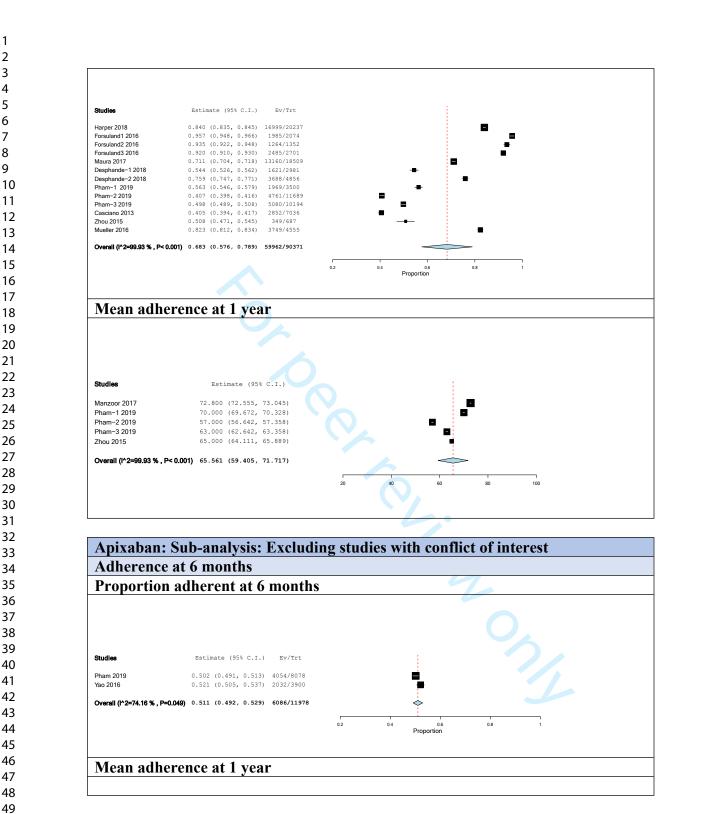
| Studies                          | Est    | imate (95 | % C.I.) |
|----------------------------------|--------|-----------|---------|
| Manzoor 2017                     | 78.600 | (78.355,  | 78.845) |
| Coleman 2016                     | 77.000 | (76.575,  | 77.425) |
| Pham 2019                        | 67.000 | (66.672,  | 67.328) |
| McHorney 2017                    | 81.000 | (80.324,  | 81.676) |
| Zhou 2015                        | 73.000 | (72.238,  | 73.762) |
| Brown 2016                       | 67.000 | (66.105,  | 67.895) |
|                                  |        |           |         |
| Overall (I^2=99.87 % , P< 0.001) | 73.936 | (68.938,  | 78.934) |

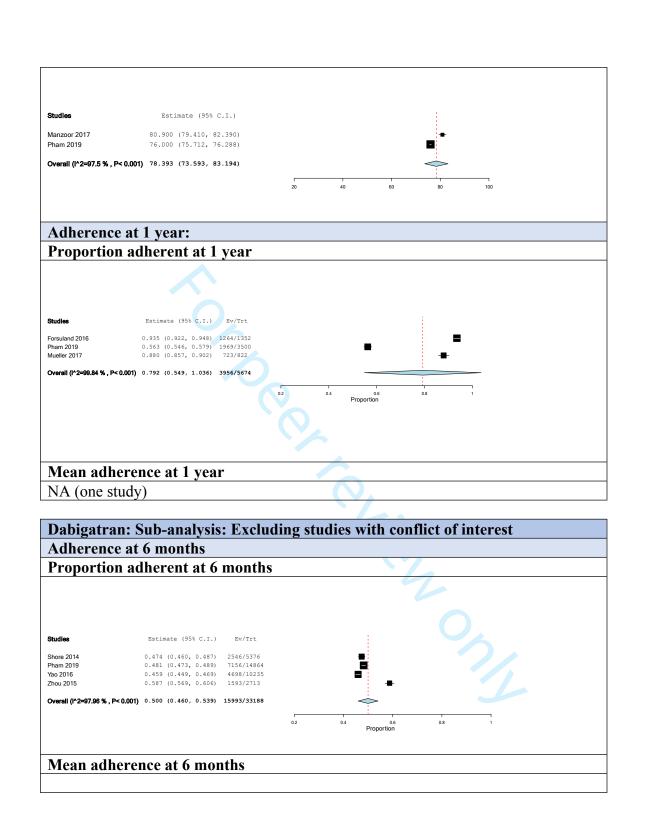
Adherence at 1 year Proportion adherent at 1 year

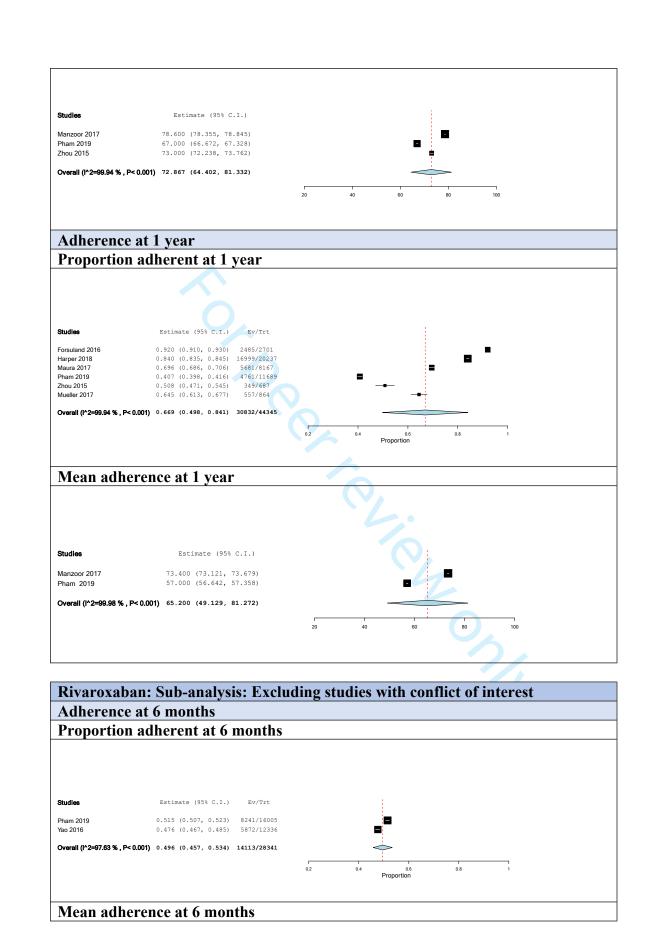


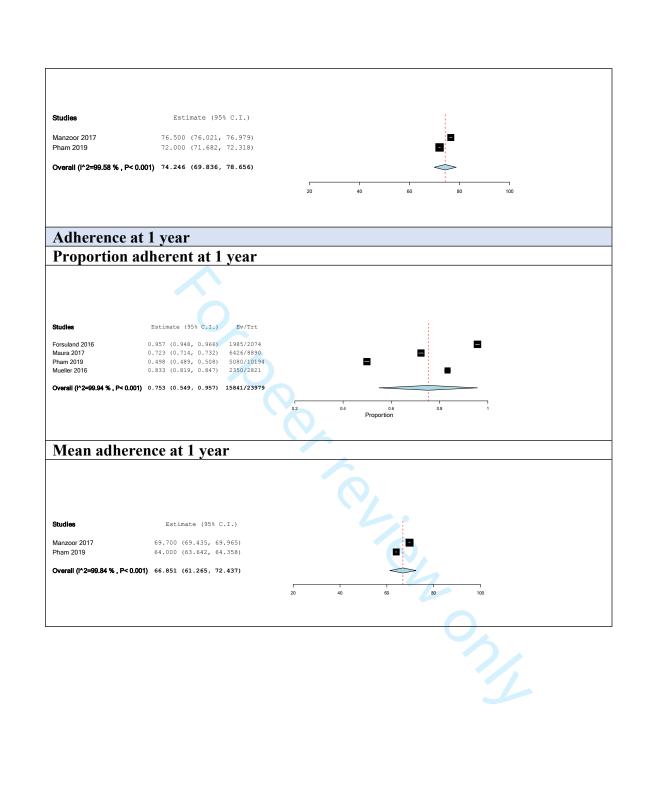
BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright.



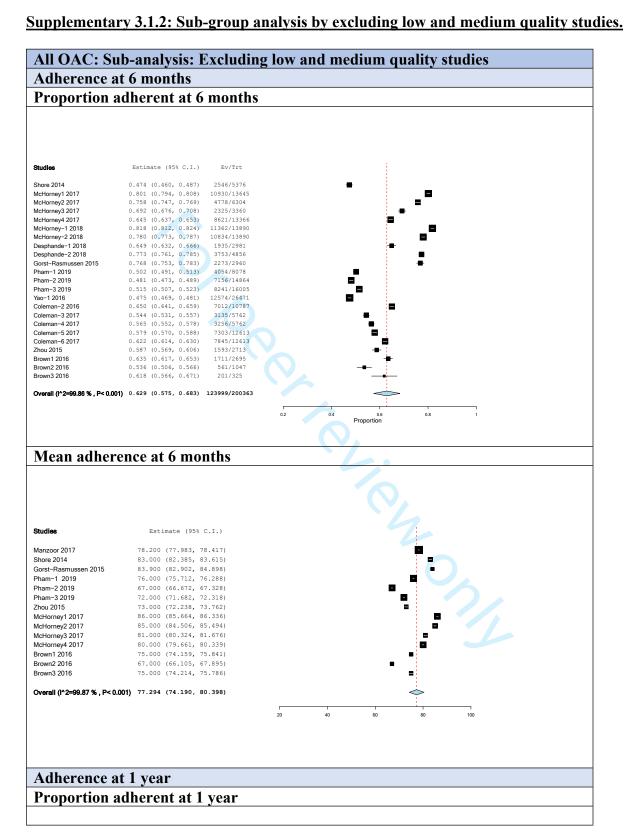

| Warfarin:                      | e at 6 months                                                       |
|--------------------------------|---------------------------------------------------------------------|
|                                |                                                                     |
| Proportion                     | adherent at 6 months                                                |
|                                |                                                                     |
| Studies                        | Estimate (95% C.I.) Ev/Trt                                          |
| McHorney 2017<br>Yao 2016      | 0.645 (0.637, 0.653) 8621/13366<br>0.387 (0.382, 0.392) 14780/38190 |
| Overall (I^2=99.96 % , P<      | <b>0,001)</b> 0.516 (0.263, 0.769) 23401/51556                      |
|                                |                                                                     |
|                                | Proportion                                                          |
| Mean adh                       | erence at 6 months                                                  |
| NA                             |                                                                     |
| Adherence                      | e at 1 year                                                         |
|                                | 1 adherent at 1 year                                                |
| <b>4</b>                       |                                                                     |
|                                |                                                                     |
| Studies                        | Estimate (95% C.I.) Ev/Trt                                          |
| Casciano 2013<br>McHorney 2017 | 0.405 (0.394, 0.417) 2852/7036                                      |
| Overall (l^2=99.85 % , P<      | 0.001) 0.498 (0.317, 0.679) 10738/20402                             |
|                                | 0.2 0.4 0.6 0.8 1<br>Proportion                                     |
|                                |                                                                     |
| Mean adh                       | erence at 1 year                                                    |
| NA                             |                                                                     |
|                                |                                                                     |
|                                |                                                                     |
|                                |                                                                     |
|                                |                                                                     |
|                                |                                                                     |
|                                |                                                                     |
|                                |                                                                     |
|                                |                                                                     |
|                                |                                                                     |
|                                |                                                                     |


BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright.

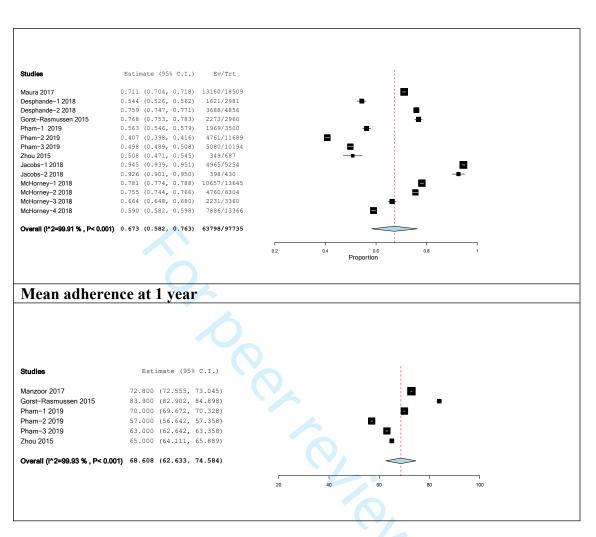

## Supplementary 3.1: Sub-group analysis

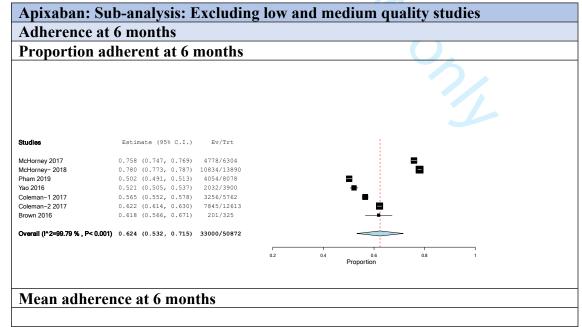

## **Supplementary 3.1.1: Sub-group analysis by excluding studies with conflict of interest:**

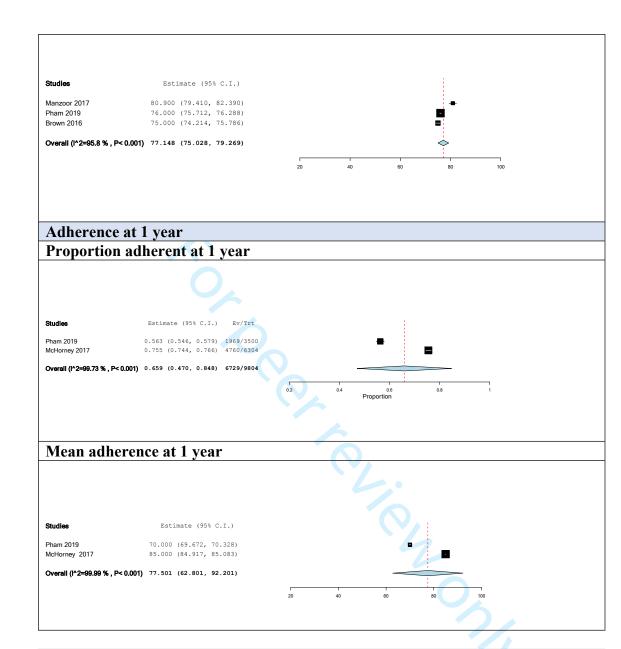
| Proportion                                                                                                                    | at 6 months<br>adherent at 6 mo                                                                                                                                                                                                                        | onthe                                                                                      |                                        |            |     |       |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------|------------|-----|-------|
|                                                                                                                               | aunerent at 0 mg                                                                                                                                                                                                                                       | JIILIIS                                                                                    |                                        |            |     |       |
|                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                            |                                        |            |     |       |
|                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                            |                                        |            |     |       |
| Studies                                                                                                                       | Estimate (95% C.I.)                                                                                                                                                                                                                                    | Ev/Trt                                                                                     |                                        |            |     |       |
| Shore 2014                                                                                                                    | 0.474 (0.460, 0.487)                                                                                                                                                                                                                                   | 2546/5376                                                                                  |                                        | -          |     |       |
| Desphande-1 2018                                                                                                              | 0.649 (0.632, 0.666)                                                                                                                                                                                                                                   | 1935/2981                                                                                  |                                        | -          |     |       |
| Desphande-2 2018                                                                                                              | 0.773 (0.761, 0.785)                                                                                                                                                                                                                                   | 3753/4856                                                                                  |                                        |            | =   |       |
| Pham-1 2019                                                                                                                   | 0.502 (0.491, 0.513)                                                                                                                                                                                                                                   |                                                                                            |                                        |            |     |       |
| Pham-2 2019                                                                                                                   | 0.481 (0.473, 0.489)                                                                                                                                                                                                                                   |                                                                                            |                                        |            |     |       |
| Pham-3 2019                                                                                                                   | 0.515 (0.507, 0.523)                                                                                                                                                                                                                                   |                                                                                            |                                        | _ 🖬        |     |       |
| Yao-1 2016                                                                                                                    | 0.475 (0.469, 0.481) 1                                                                                                                                                                                                                                 |                                                                                            |                                        |            |     |       |
| Zhou 2015                                                                                                                     | 0.587 (0.569, 0.606)                                                                                                                                                                                                                                   | 1593/2713                                                                                  |                                        |            |     |       |
| Overall (I^2=99.71 % , P<                                                                                                     | <b>0.001)</b> 0.557 (0.492, 0.622) 4                                                                                                                                                                                                                   | 1852/81344                                                                                 |                                        | $\sim$     |     |       |
|                                                                                                                               |                                                                                                                                                                                                                                                        | 1                                                                                          | 2 04                                   | 06         | 0.8 | 1     |
|                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                            |                                        | Proportion |     |       |
|                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                            |                                        |            |     |       |
|                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                            |                                        |            |     |       |
| Maan adha                                                                                                                     | ionas at (month                                                                                                                                                                                                                                        |                                                                                            |                                        |            |     |       |
| Mean adhei                                                                                                                    | rence at 6 month                                                                                                                                                                                                                                       | s                                                                                          | 4                                      |            |     |       |
| Mean adhei                                                                                                                    | rence at 6 months                                                                                                                                                                                                                                      | <u>s</u>                                                                                   | 4                                      |            |     |       |
| Mean adhei                                                                                                                    | rence at 6 months                                                                                                                                                                                                                                      | s                                                                                          | 5                                      |            |     |       |
| Mean adhei                                                                                                                    | rence at 6 month                                                                                                                                                                                                                                       | s                                                                                          | 4                                      |            |     |       |
| Mean adhei                                                                                                                    | rence at 6 months                                                                                                                                                                                                                                      | s                                                                                          |                                        |            |     |       |
| Mean adhei                                                                                                                    | rence at 6 month                                                                                                                                                                                                                                       | s                                                                                          | ~<br>~<br>()                           |            |     |       |
|                                                                                                                               | cence at 6 months                                                                                                                                                                                                                                      |                                                                                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |            | 1   |       |
| Studies                                                                                                                       | Estimate (95% C.:                                                                                                                                                                                                                                      | I.)                                                                                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |            |     |       |
| Studies<br>Manzoor 2017                                                                                                       | Estimate (95% C.:<br>78.200 (77.983, 78.4                                                                                                                                                                                                              | I.)<br>417)                                                                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |            |     |       |
| <b>Studies</b><br>Manzoor 2017<br>Shore 2014                                                                                  | Estimate (95% C.:<br>78.200 (77.983, 78.<br>83.000 (82.385, 83.0                                                                                                                                                                                       | I.)<br>417)<br>615)                                                                        | 62                                     |            |     |       |
| Studies<br>Manzoor 2017<br>Shore 2014<br>Tsai-1 2013                                                                          | Estimate (95% C.<br>78.200 (77.983, 78.<br>83.000 (82.385, 83.<br>67.000 (66.464, 67.5                                                                                                                                                                 | I.)<br>417)<br>615)<br>536)                                                                |                                        |            | •   |       |
| Studies<br>Manzoor 2017<br>Shore 2014<br>Tsai-1 2013<br>Tsai-2 2013                                                           | Estimate (95% C.<br>78.200 (77.983, 78.4<br>83.000 (82.385, 83.4<br>67.000 (66.464, 67.4<br>71.000 (70.478, 71.5)                                                                                                                                      | I.)<br>417)<br>615)<br>536)<br>522)                                                        |                                        |            |     |       |
| Studies<br>Manzoor 2017<br>Shore 2014<br>Tsai-1 2013<br>Tsai-2 2013<br>Pham-1 2019                                            | Estimate (95% C.<br>78.200 (77.983, 78.4<br>83.000 (82.385, 83.4<br>67.000 (66.464, 67.5<br>71.000 (70.478, 71.4<br>76.000 (75.712, 76.5)                                                                                                              | I.)<br>417)<br>615)<br>536)<br>522)<br>288)                                                |                                        |            |     |       |
| Studies<br>Manzoor 2017<br>Shore 2014<br>Tsai-1 2013<br>Tsai-2 2013<br>Pham-1 2019<br>Pham-2 2019                             | Estimate (95% C.<br>78.200 (77.983, 78.<br>83.000 (82.385, 83.<br>67.000 (66.464, 67.<br>71.000 (70.478, 71.<br>76.000 (75.712, 76.<br>67.000 (66.672, 67.3                                                                                            | I.)<br>417)<br>615)<br>536)<br>522)<br>288)<br>328)                                        |                                        |            |     |       |
| Studies<br>Manzoor 2017<br>Shore 2014<br>Tsai-1 2013<br>Tsai-2 2013<br>Pham-2 2019<br>Pham-2 2019<br>Pham-3 2019              | Estimate (95% C.<br>78.200 (77.983, 78.4<br>83.000 (82.385, 83.4<br>67.000 (66.464, 67.9<br>71.000 (70.478, 71.4<br>76.000 (75.712, 76.2<br>67.000 (66.672, 67.4<br>72.000 (71.682, 72.4)                                                              | I.)<br>417)<br>615)<br>536)<br>522)<br>288)<br>328)<br>318)                                |                                        |            |     |       |
| Studies<br>Manzoor 2017<br>Shore 2014<br>Tsai-1 2013<br>Tsai-2 2013<br>Pham-1 2019<br>Pham-2 2019<br>Pham-3 2019              | Estimate (95% C.<br>78.200 (77.983, 78.<br>83.000 (82.385, 83.<br>67.000 (66.464, 67.<br>71.000 (70.478, 71.<br>76.000 (75.712, 76.<br>67.000 (66.672, 67.3                                                                                            | I.)<br>417)<br>615)<br>536)<br>522)<br>288)<br>328)<br>318)                                |                                        |            |     |       |
| Studies<br>Manzoor 2017<br>Shore 2014<br>Tsai-1 2013<br>Tsai-2 2013<br>Pham-1 2019<br>Pham-2 2019<br>Pham-3 2019<br>Zhou 2015 | Estimate (95% C.<br>78.200 (77.983, 78.4<br>83.000 (82.385, 83.4<br>67.000 (66.464, 67.9<br>71.000 (70.478, 71.4<br>76.000 (75.712, 76.2<br>67.000 (66.672, 67.4<br>72.000 (71.682, 72.4)                                                              | I.)<br>417)<br>615)<br>536)<br>522)<br>288)<br>328)<br>328)<br>318)<br>762)                |                                        |            |     |       |
| Studies<br>Manzoor 2017<br>Shore 2014<br>Tsai-1 2013<br>Pham-1 2019<br>Pham-2 2019<br>Pham-3 2019<br>Zhou 2015                | Estimate (95% C.<br>78.200 (77.983, 78.4<br>83.000 (82.385, 83.4<br>67.000 (66.464, 67.5<br>71.000 (70.478, 71.1<br>76.000 (75.712, 76.5<br>67.000 (66.672, 67.5<br>72.000 (71.682, 72.5<br>73.000 (72.238, 73.5                                       | I.)<br>417)<br>615)<br>536)<br>522)<br>288)<br>328)<br>328)<br>318)<br>762)                |                                        | 60         |     |       |
| Studies<br>Manzoor 2017<br>Shore 2014<br>Tsai-1 2013<br>Pham-1 2019<br>Pham-2 2019<br>Pham-3 2019<br>Zhou 2015                | Estimate (95% C.<br>78.200 (77.983, 78.4<br>83.000 (82.385, 83.4<br>67.000 (66.464, 67.5<br>71.000 (70.478, 71.1<br>76.000 (75.712, 76.5<br>67.000 (66.672, 67.5<br>72.000 (71.682, 72.5<br>73.000 (72.238, 73.5                                       | I.)<br>417)<br>615)<br>526)<br>522)<br>288)<br>328)<br>328)<br>318)<br>762)<br><b>937)</b> |                                        | 60         |     | 7.00  |
| Studies<br>Manzoor 2017<br>Shore 2014<br>Tsai-1 2013<br>Pham-1 2019<br>Pham-2 2019<br>Pham-3 2019<br>Zhou 2015                | Estimate (95% C.<br>78.200 (77.983, 78.4<br>83.000 (82.385, 83.4<br>67.000 (66.464, 67.5<br>71.000 (70.478, 71.1<br>76.000 (75.712, 76.5<br>67.000 (66.672, 67.5<br>72.000 (71.682, 72.5<br>73.000 (72.238, 73.5                                       | I.)<br>417)<br>615)<br>526)<br>522)<br>288)<br>328)<br>328)<br>318)<br>762)<br><b>937)</b> |                                        | 60         |     |       |
| Studies<br>Manzoor 2017<br>Shore 2014<br>Tsai-1 2013<br>Tsai-2 2013<br>Pham-1 2019<br>Pham-2 2019<br>Pham-3 2019<br>Zhou 2015 | Estimate (95% C.<br>78.200 (77.983, 78.4<br>83.000 (82.385, 83.4<br>67.000 (66.464, 67.5<br>71.000 (70.478, 71.1<br>76.000 (75.712, 76.5<br>67.000 (66.672, 67.5<br>72.000 (71.682, 72.5<br>73.000 (72.238, 73.5                                       | I.)<br>417)<br>615)<br>526)<br>522)<br>288)<br>328)<br>328)<br>318)<br>762)<br><b>937)</b> |                                        | 60         |     | 7     |
| Studies<br>Manzoor 2017<br>Shore 2014<br>Tsai-1 2013<br>Tsai-2 2013<br>Pham-1 2019<br>Pham-2 2019<br>Pham-3 2019<br>Zhou 2015 | Estimate (95% C.:<br>78.200 (77.983, 78.4<br>83.000 (82.385, 83.4<br>67.000 (66.464, 67.5<br>71.000 (70.478, 71.1)<br>76.000 (75.712, 76.2<br>67.000 (66.672, 67.1)<br>72.000 (71.682, 72.1)<br>73.000 (72.238, 73.1)<br><0.001) 73.399 (69.862, 76.5) | I.)<br>417)<br>615)<br>526)<br>522)<br>288)<br>328)<br>328)<br>318)<br>762)<br><b>937)</b> |                                        | 60         |     | 7.000 |



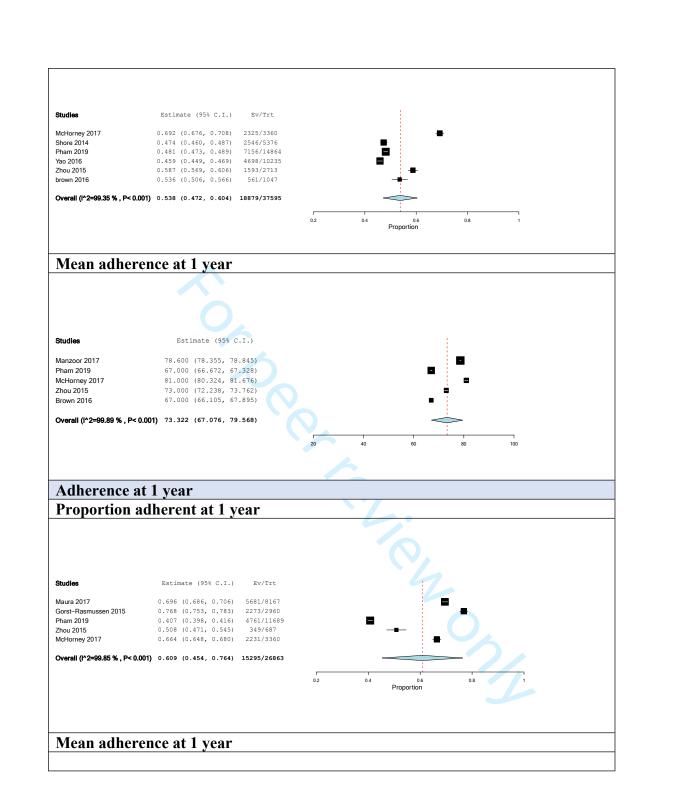


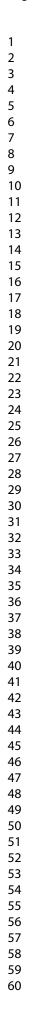



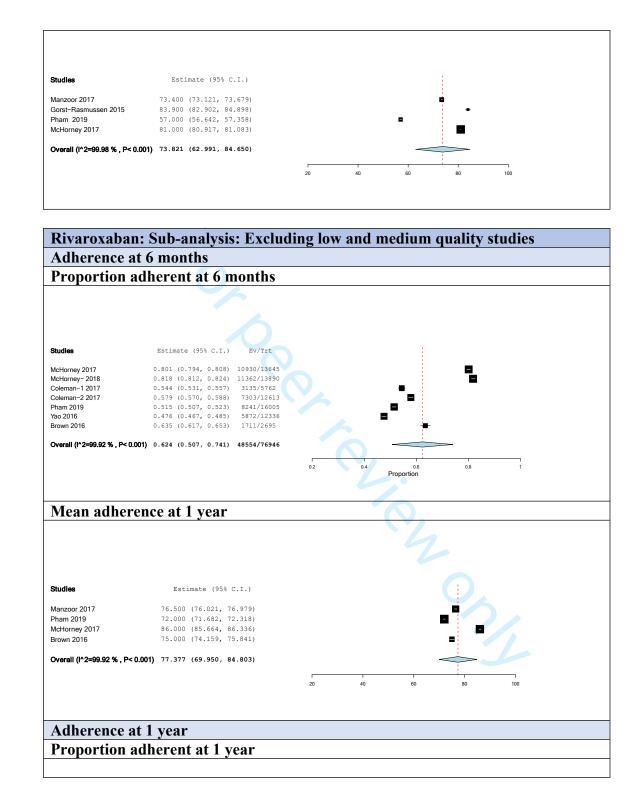


#### **BMJ** Open

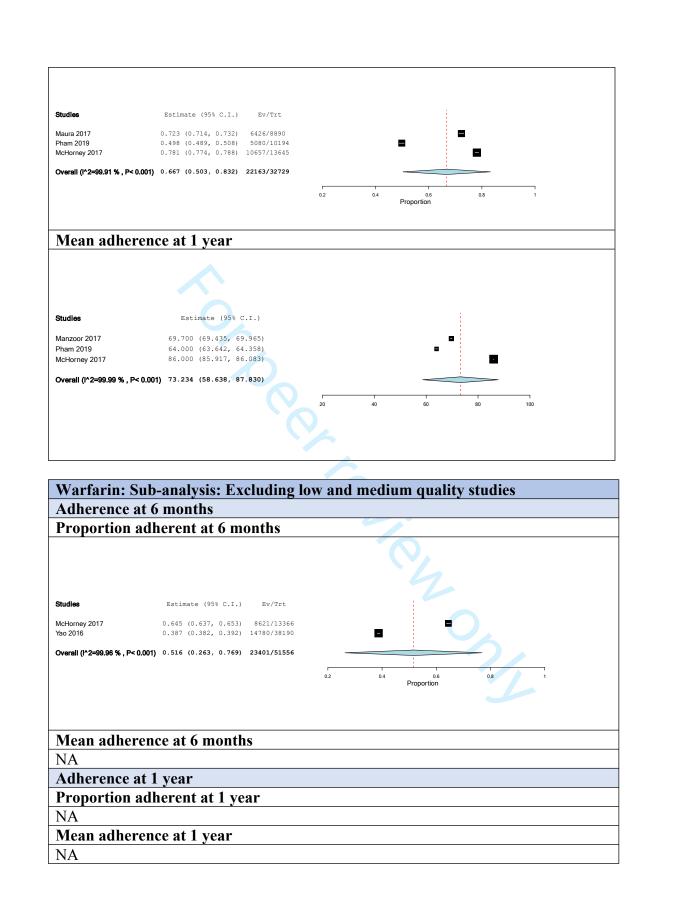


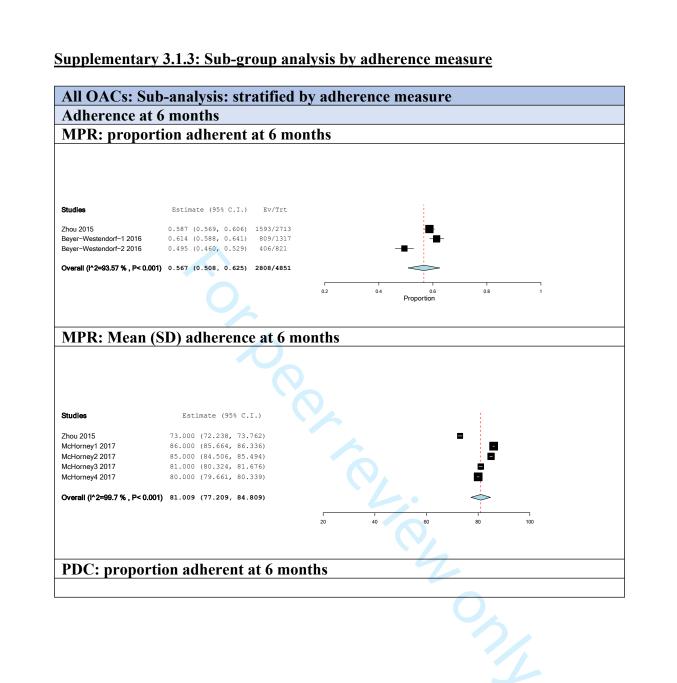


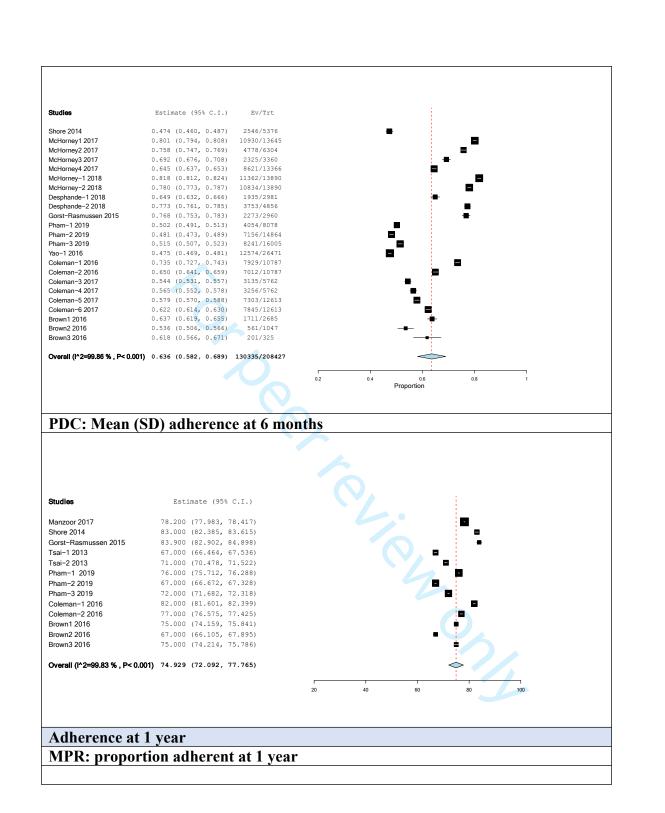


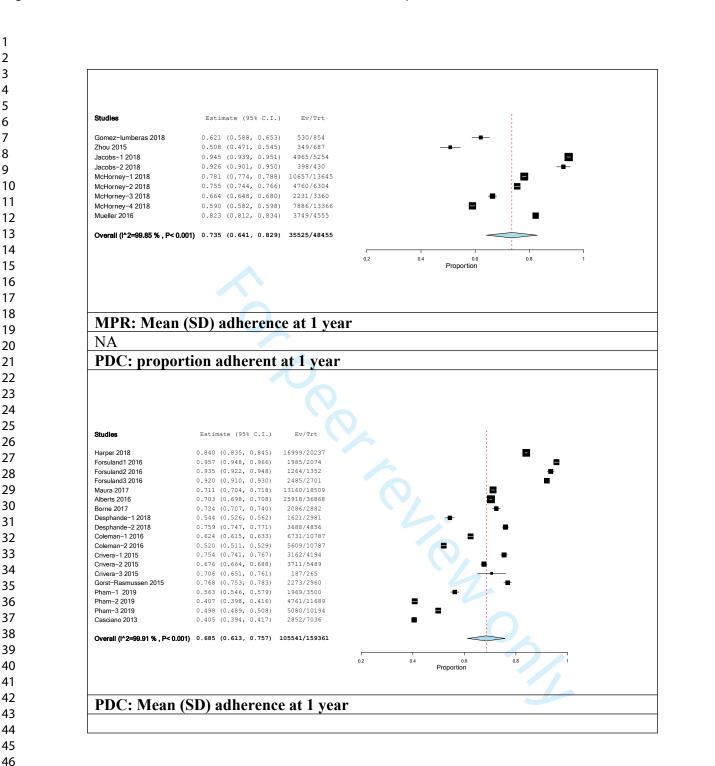



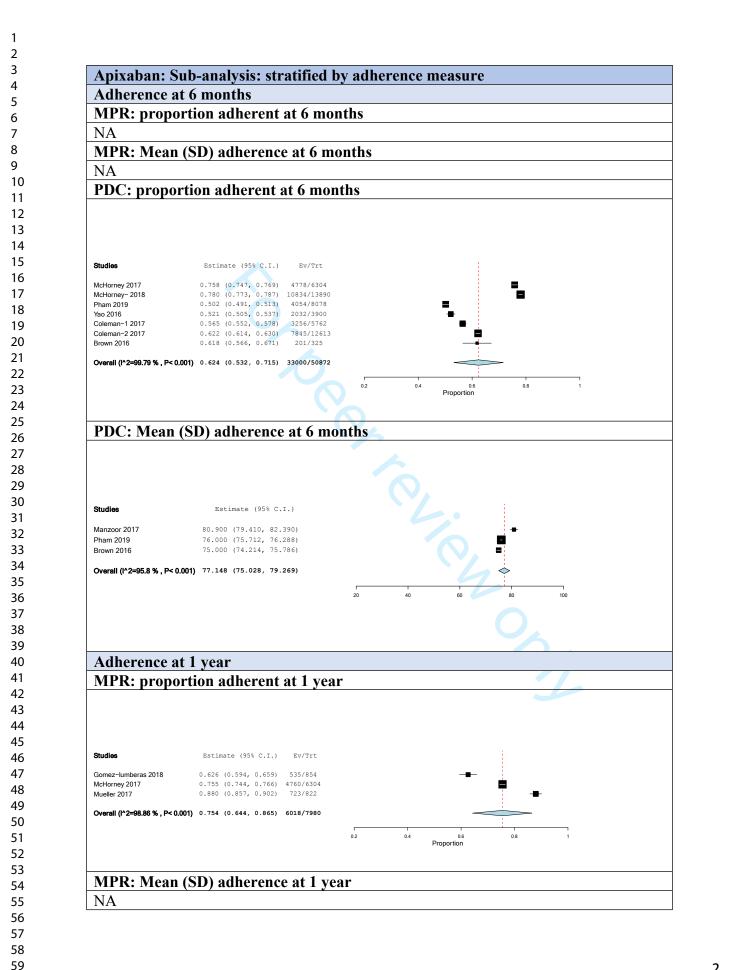


## Dabigatran: Sub-analysis: Excluding low and medium quality studies Adherence at 6 months Proportion adherent at 6 months

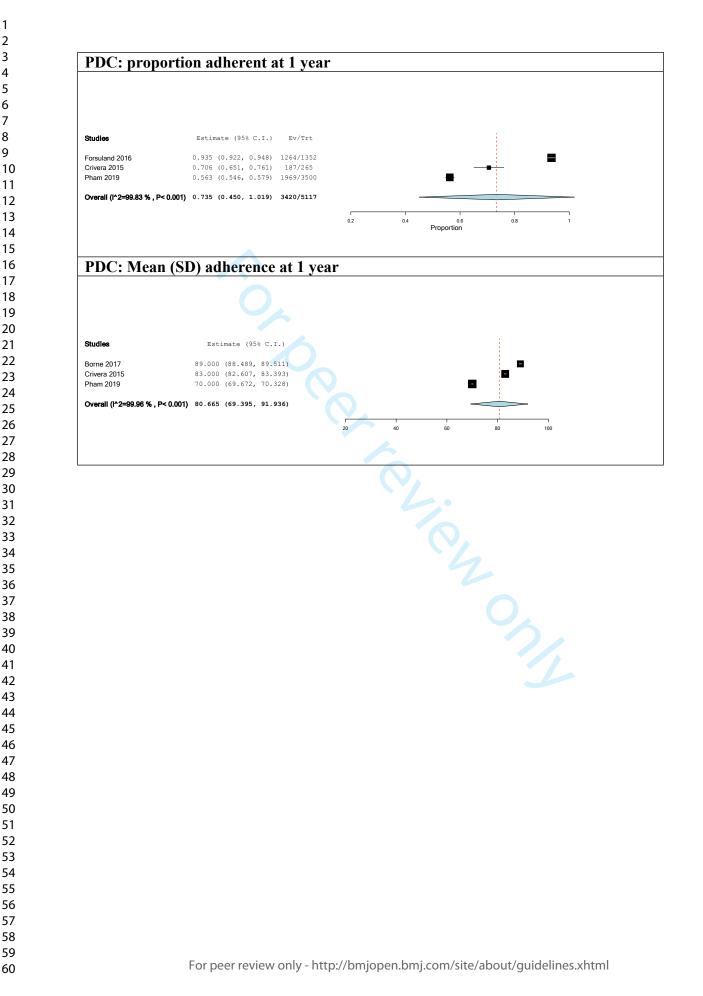


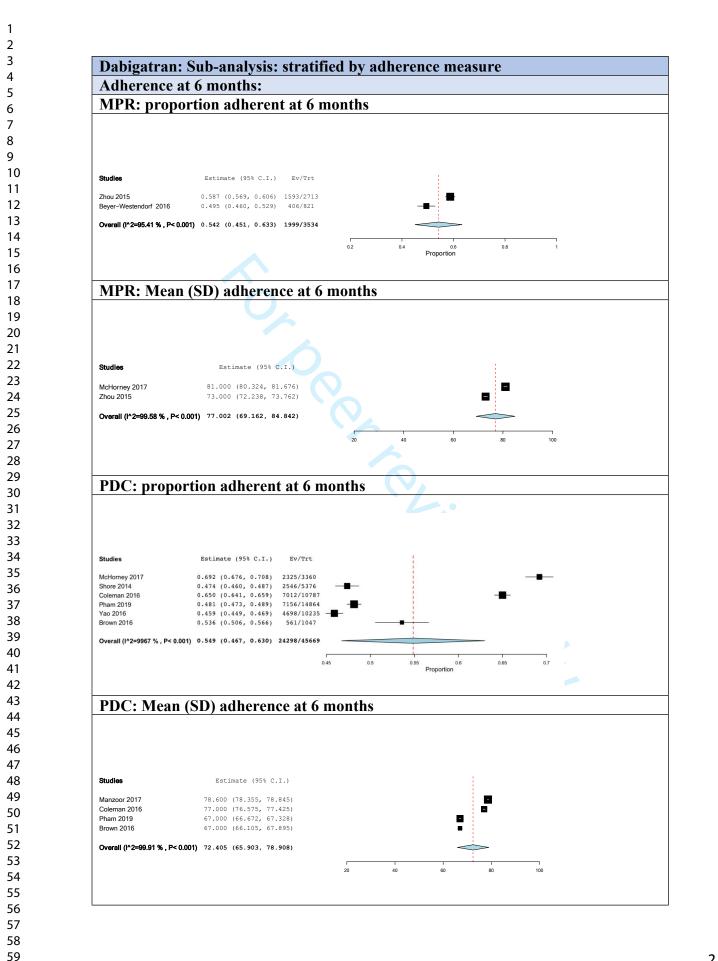



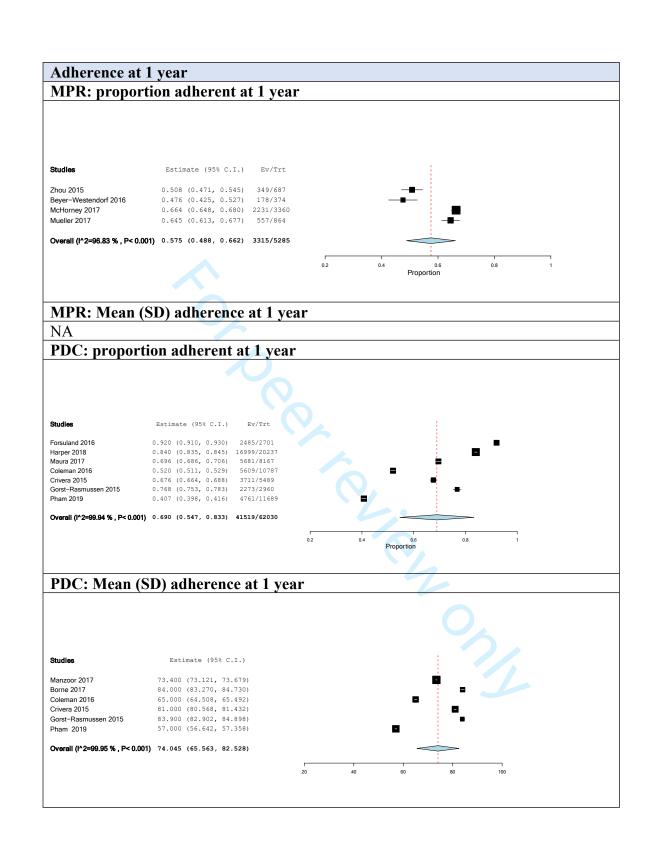



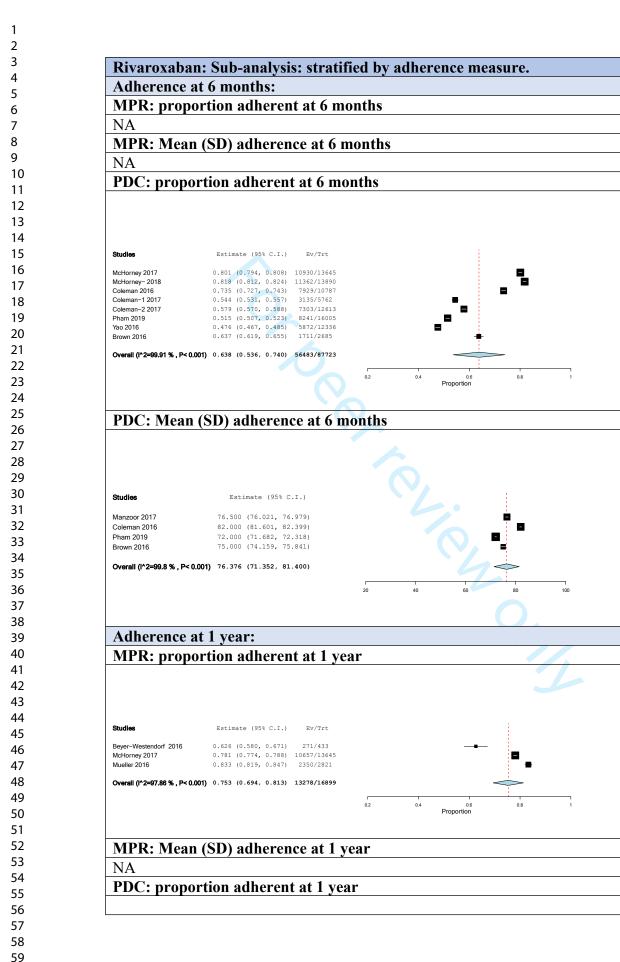


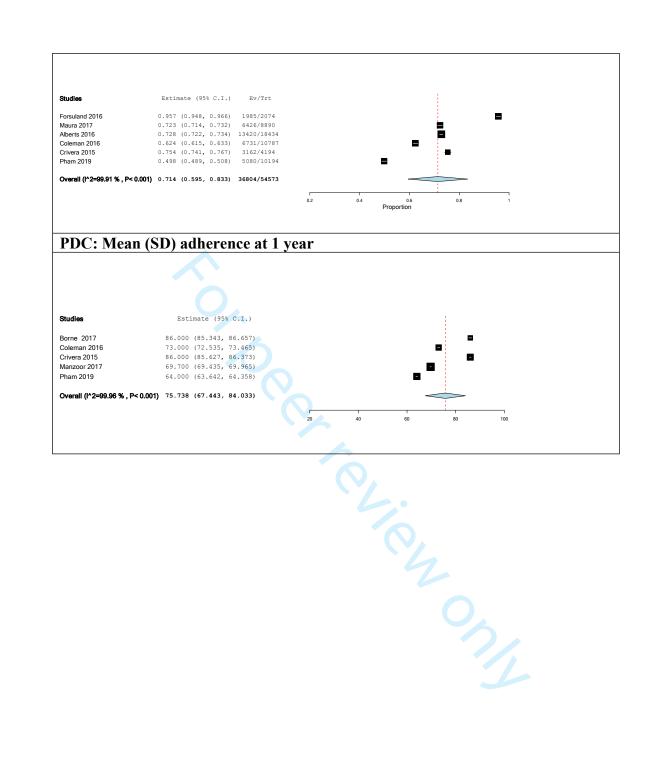





| Studies                                                                                                                                                  | Estimate (95% C.I.)                                                                                                                                                                                                                                                        |       |       |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------|
| Manzoor 2017<br>Borne 2017<br>Coleman-1 2016<br>Coleman-2 2016<br>Crivera-1 2015<br>Crivera-2 2015<br>Grost-Rasmussen 2015<br>Pham-1 2019<br>Pham-2 2019 | 72.800 (72.555, 73.045)<br>85.000 (84.306, 85.694)<br>73.000 (72.535, 73.465)<br>65.000 (64.508, 65.492)<br>86.000 (85.627, 86.373)<br>81.000 (80.568, 81.432)<br>83.000 (82.607, 83.393)<br>83.900 (82.902, 84.898)<br>70.000 (69.672, 70.328)<br>57.000 (56.642, 57.558) |       |       |          |
| Pham-3 2019<br>Overall (I^2=99.95 % , P< 0.001                                                                                                           | 63.000 (62.642, 63.358)<br>) 74.515 (68.891, 80.139)                                                                                                                                                                                                                       |       |       |          |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            | 20 40 | 60 80 | П<br>000 |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            |       |       |          |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            |       |       |          |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            |       |       |          |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            |       |       |          |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            |       |       |          |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            |       |       |          |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            |       |       |          |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            |       |       |          |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            |       |       |          |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            |       |       |          |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            |       |       |          |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            |       |       |          |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                            |       |       |          |







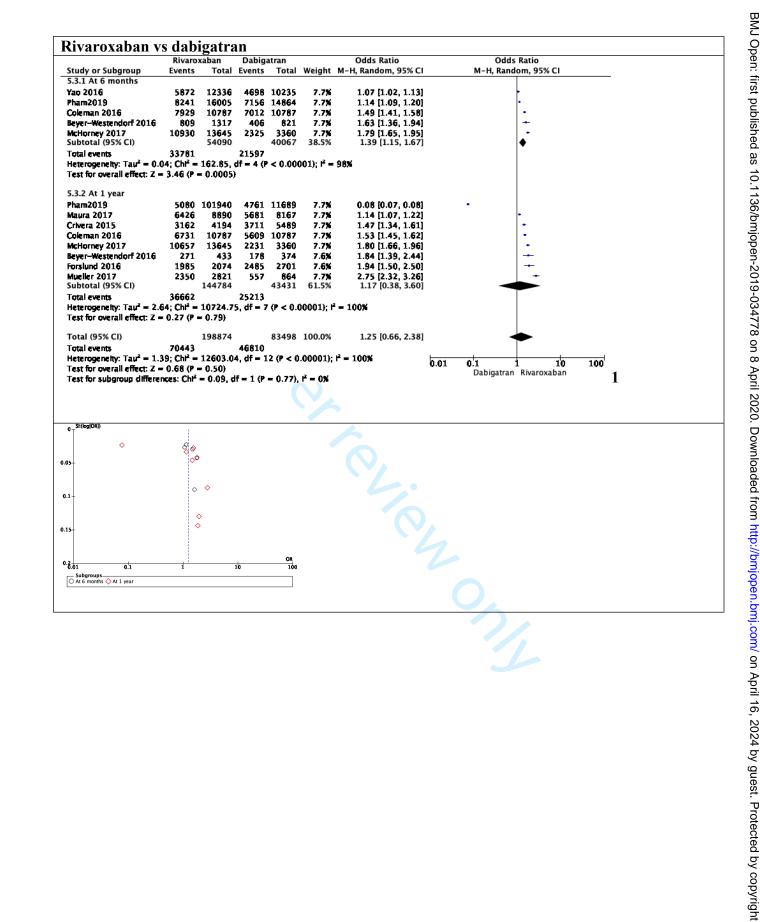







0.8

| War         | farin• Sul            | b-analysis: s       | stratified b   | v adher   | nce meas     |
|-------------|-----------------------|---------------------|----------------|-----------|--------------|
|             |                       | 6 months:           |                | y autor   | nee meas     |
|             |                       |                     | nt at 6 ma     | nthe      |              |
|             | . propor              | tion adhere         | nt at o mo     | nuns      |              |
| NA          |                       |                     |                |           |              |
| MPI         | R: Mean (             | SD) adhere          | nce at 6 m     | onths     |              |
| NA          |                       |                     |                |           |              |
| PDC         | : proport             | ion adherer         | nt at 6 mor    | nths      |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
| Studies     |                       | Estimate (95% C.I.  | ) Ev/Trt       |           | 1            |
| McHorney    | 2017                  | 0.645 (0.637, 0.653 |                |           |              |
| Yao 2016    | 2017                  | 0.387 (0.382, 0.392 |                |           |              |
| Overali (l' | 2=99.96 % , P< 0.001) | 0.516 (0.263, 0.769 | ) 23401/51556  |           |              |
|             |                       |                     |                | 0.2       | 0.4 0.6      |
|             |                       |                     |                | 0.2       | Proportion   |
|             |                       |                     |                |           |              |
| PDC         | : Mean (S             | SD) adherer         | nce at 6 mo    | onths     |              |
| NA          |                       |                     |                |           |              |
|             | erence at             | 1 vear              |                |           |              |
|             |                       | tion adhere         | nt at 1 voo    | r         |              |
|             | v. hrohor             | uon auffere         | ni at 1 yea    | 1         |              |
| NA          |                       |                     |                |           |              |
|             | k: Mean (             | SD) adhere          | nce at 1 ye    | ar        |              |
| NA          |                       |                     |                |           |              |
| PDC         | : proport             | ion adherer         | nt at 1 year   | r         |              |
| NA          |                       |                     | <b>*</b>       |           |              |
| PDC         | : Mean (S             | SD) adherer         | nce at 1 ve    | ar        |              |
| NA          |                       |                     | <u> </u>       |           |              |
| 1 1/ 1      |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             |                       |                     |                |           |              |
|             | _                     | -                   | 1 1 12         |           |              |
|             | For                   | peer review o       | nly - http://b | mjopen.br | nj.com/site/ |


| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>22<br>33<br>34<br>35<br>36<br>37<br>8<br>9<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>8<br>9<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>8<br>9<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>8<br>9<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>8<br>9<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>8<br>9<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>8<br>9<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>8<br>37<br>8<br>9<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>8<br>9<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>8<br>9<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>9<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>37<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 52<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

1

## Supplementary 3.2: studies reporting adherence to different medications in the same cohort.

|                                                                                                                                                                                                                   | Apixa                                                                        | ban                                                                                                | Dabig                                                         | atran                         |                                | Odds Ratio                                                          | Odds Ratio                      |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|--------------------------------|---------------------------------------------------------------------|---------------------------------|------|
| Study or Subgroup                                                                                                                                                                                                 | Events                                                                       |                                                                                                    | Events                                                        |                               | Weight                         | M-H, Random, 95% CI                                                 | M-H, Random, 95% CI             |      |
| 3.3.1 At 6 months                                                                                                                                                                                                 |                                                                              |                                                                                                    |                                                               |                               |                                |                                                                     |                                 |      |
| McHorney 2017                                                                                                                                                                                                     | 4778                                                                         | 6304                                                                                               | 2325                                                          | 3360                          | 13.3%                          | 1.39 [1.27, 1.53]                                                   | -                               |      |
| Pham2019                                                                                                                                                                                                          | 4054                                                                         | 8078                                                                                               | 7156                                                          | 14864                         | 13.5%                          | 1.09 [1.03, 1.15]                                                   |                                 |      |
| Yao 2016                                                                                                                                                                                                          | 2032                                                                         | 3900                                                                                               | 4698                                                          | 10235                         | 13.4%                          | 1.28 [1.19, 1.38]                                                   | -                               |      |
| Subtotal (95% CI)                                                                                                                                                                                                 |                                                                              | 18282                                                                                              |                                                               | 28459                         | 40.3%                          | 1.24 [1.07, 1.45]                                                   | ◆                               |      |
| Total events                                                                                                                                                                                                      | 10864                                                                        |                                                                                                    | 14179                                                         |                               |                                |                                                                     |                                 |      |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                 |                                                                              |                                                                                                    |                                                               | 2 (P < 0                      | .00001);                       | r <sup>2</sup> = 92%                                                |                                 |      |
| Test for overall effect:                                                                                                                                                                                          | : Z = 2.82                                                                   | $(\mathbf{P}=0)$                                                                                   | 005)                                                          |                               |                                |                                                                     |                                 |      |
| 3.3.2 At 1 year                                                                                                                                                                                                   |                                                                              |                                                                                                    |                                                               |                               |                                |                                                                     |                                 |      |
| Crivera 2015                                                                                                                                                                                                      | 187                                                                          | 265                                                                                                | 3711                                                          | 5489                          | 10.6%                          | 1.15 [0.88, 1.50]                                                   | <b>-</b>                        |      |
| Forslund 2016                                                                                                                                                                                                     | 1264                                                                         |                                                                                                    |                                                               | 2701                          | 11.1%                          | 1.25 [0.97, 1.61]                                                   |                                 |      |
| McHorney 2017                                                                                                                                                                                                     | 4760                                                                         | 6304                                                                                               | 2231                                                          | 3360                          | 13.3%                          | 1.56 [1.42, 1.71]                                                   | •                               |      |
| Mueller 2017                                                                                                                                                                                                      | 723                                                                          | 822                                                                                                | 557                                                           | 864                           | 11.1%                          | 4.03 [3.13, 5.18]                                                   |                                 |      |
| Pham2019                                                                                                                                                                                                          | 1969                                                                         | 3500                                                                                               | 4761                                                          | 11689                         | 13.4%                          | 1.87 [1.73, 2.02]                                                   | •                               |      |
|                                                                                                                                                                                                                   |                                                                              |                                                                                                    |                                                               | A 4 4 A A                     | EO 70/                         | 1 70 11 25 2 201                                                    |                                 |      |
| Subtotal (95% CI)                                                                                                                                                                                                 |                                                                              | 12243                                                                                              |                                                               | 24103                         | 59.7%                          | 1.76 [1.35, 2.29]                                                   | •                               |      |
| Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                            |                                                                              | r <sup>2</sup> = 66.                                                                               |                                                               |                               |                                |                                                                     | •                               |      |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                     | • 0.08; Ch                                                                   | l <sup>2</sup> = 66.<br>(P < 0.)                                                                   | 93, df =                                                      | 4 (P < 0                      | .00001);                       | i <sup>2</sup> = 94%                                                |                                 |      |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)                                                                                                                   | = 0.08; Ch<br>: Z = 4.18                                                     | r <sup>2</sup> = 66.                                                                               | 93, df =<br>0001)                                             | 4 (P < 0                      |                                |                                                                     |                                 |      |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events                                                                                                   | = 0.06; Ch<br>: Z = 4.16<br>19767                                            | 1 <sup>2</sup> = 66.<br>(P < 0.)<br>30525                                                          | 93, df =<br>0001)<br>27924                                    | 4 (P < 0<br>52562             | .00001);<br>100.0%             | <b>ř = 94%</b><br>1.53 [1.26, 1.86]                                 | ↓                               |      |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                              | = 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch                              | l <sup>2</sup> = 66.<br>(P < 0.)<br>30525<br>l <sup>2</sup> = 21(                                  | 93, df =<br>0001}<br>27924<br>3.35, df                        | 4 (P < 0<br>52562             | .00001);<br>100.0%             | <b>ř = 94%</b><br>1.53 [1.26, 1.86]                                 | ♦<br>0.01 0 <sup>1</sup> 1 1 10 | ) 1( |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Test for subgroup diff        | = 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29                | l <sup>2</sup> = 66.<br>(P < 0.)<br>30525<br>l <sup>2</sup> = 21(<br>(P < 0.)                      | 93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)             | 4 (P < 0<br>52562<br>= 7 (P < | .00001);<br>100.0%<br>0.00001) | i <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]<br>; i <sup>2</sup> = 97% | ↓                               | ) 1( |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                              | = 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29                | l <sup>2</sup> = 66.<br>(P < 0.)<br>30525<br>l <sup>2</sup> = 21(<br>(P < 0.)                      | 93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)             | 4 (P < 0<br>52562<br>= 7 (P < | .00001);<br>100.0%<br>0.00001) | i <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]<br>; i <sup>2</sup> = 97% | ♦<br>0.01 0 <sup>1</sup> 1 1 10 | ) 1( |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Test for subgroup diff        | = 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: 6 | l <sup>2</sup> = 66.<br>(P < 0.)<br>30525<br>l <sup>2</sup> = 21(<br>(P < 0.)                      | 93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)             | 4 (P < 0<br>52562<br>= 7 (P < | .00001);<br>100.0%<br>0.00001) | i <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]<br>; i <sup>2</sup> = 97% | ♦<br>0.01 0 <sup>1</sup> 1 1 10 | ) 10 |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Test for subgroup diff        | = 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | l <sup>2</sup> = 66.<br>(P < 0.)<br>30525<br>l <sup>2</sup> = 21(<br>(P < 0.)                      | 93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)             | 4 (P < 0<br>52562<br>= 7 (P < | .00001);<br>100.0%<br>0.00001) | i <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]<br>; i <sup>2</sup> = 97% | ♦<br>0.01 0 <sup>1</sup> 1 1 10 | ) 1( |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Test for subgroup diff        | = 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | l <sup>2</sup> = 66.<br>(P < 0.)<br>30525<br>l <sup>2</sup> = 21(<br>(P < 0.)                      | 93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)             | 4 (P < 0<br>52562<br>= 7 (P < | .00001);<br>100.0%<br>0.00001) | i <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]<br>; i <sup>2</sup> = 97% | ♦<br>0.01 0 <sup>1</sup> 1 1 10 | ) 1( |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Test for subgroup diff        | = 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | l <sup>2</sup> = 66.<br>(P < 0.)<br>30525<br>l <sup>2</sup> = 21(<br>(P < 0.)                      | 93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)             | 4 (P < 0<br>52562<br>= 7 (P < | .00001);<br>100.0%<br>0.00001) | i <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]<br>; i <sup>2</sup> = 97% | ♦<br>0.01 0 <sup>1</sup> 1 1 10 | ) 1( |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Test for subgroup diff        | = 0.06; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | l <sup>2</sup> = 66.<br>(P < 0.)<br>30525<br>l <sup>2</sup> = 21(<br>(P < 0.)                      | 93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)             | 4 (P < 0<br>52562<br>= 7 (P < | .00001);<br>100.0%<br>0.00001) | i <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]<br>; i <sup>2</sup> = 97% | ♦<br>0.01 0 <sup>1</sup> 1 1 10 | ) 1( |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Test for subgroup diff        | = 0.06; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Ferences: 6 | l <sup>2</sup> = 66.<br>(P < 0.)<br>30525<br>l <sup>2</sup> = 21(<br>(P < 0.)                      | 93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)             | 4 (P < 0<br>52562<br>= 7 (P < | .00001);<br>100.0%<br>0.00001) | i <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]<br>; i <sup>2</sup> = 97% | ♦<br>0.01 0 <sup>1</sup> 1 1 10 | ) 10 |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Test for subgroup diff        | = 0.06; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | l <sup>2</sup> = 66.<br>(P < 0.)<br>30525<br>l <sup>2</sup> = 21(<br>(P < 0.)                      | 93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)<br>01, df = | 4 (P < 0<br>52562<br>= 7 (P < | .00001);<br>100.0%<br>0.00001) | i <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]<br>; i <sup>2</sup> = 97% | ♦<br>0.01 0 <sup>1</sup> 1 1 10 | ) 1( |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><u>Test for subgroup diff</u> | = 0.06; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: 6 | I <sup>2</sup> = 66.<br>(P < 0.<br>30525<br>I <sup>2</sup> = 21(<br>(P < 0.<br>Ch <sup>2</sup> = 5 | 93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)<br>01, df = | 4 (P < 0<br>52562<br>= 7 (P < | .00001);<br>100.0%<br>0.00001) | i <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]<br>; i <sup>2</sup> = 97% | ♦<br>0.01 0 <sup>1</sup> 1 1 10 | ) 10 |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Test for subgroup diff        | = 0.06; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: 6 | l <sup>2</sup> = 66.<br>(P < 0.)<br>30525<br>l <sup>2</sup> = 21(<br>(P < 0.)                      | 93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)             | 4 (P < 0<br>52562<br>= 7 (P < | .00001);<br>100.0%<br>0.00001) | i <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]<br>; i <sup>2</sup> = 97% | ♦<br>0.01 0 <sup>1</sup> 1 1 10 | ) 10 |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br><u>Test for subgroup diff</u> | = 0.06; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: 6 | I <sup>2</sup> = 66.<br>(P < 0.<br>30525<br>I <sup>2</sup> = 21(<br>(P < 0.<br>Ch <sup>2</sup> = 5 | 93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)<br>01, df = | 4 (P < 0<br>52562<br>= 7 (P < | .00001);<br>100.0%<br>0.00001) | i <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]<br>; i <sup>2</sup> = 97% | ♦<br>0.01 0 <sup>1</sup> 1 1 10 | ) 1( |

| 1      |   |
|--------|---|
| 2      |   |
| _      |   |
| 3      |   |
| 4      |   |
| 5      |   |
|        |   |
| 6      |   |
| 7      |   |
| 7<br>8 |   |
|        |   |
| 9      |   |
|        |   |
| 1      |   |
| 1      | 1 |
|        | 2 |
|        |   |
| 1      | 3 |
| 1      | 4 |
|        |   |
| 1      |   |
| 1      | 6 |
|        |   |
| 1<br>1 | / |
| 1      | 8 |
| 1      | 9 |
| 2      | ~ |
|        |   |
| 2      | 1 |
| 2      |   |
|        |   |
| 2      | 3 |
| 2      | 4 |
|        |   |
| 2      |   |
| 2      | 6 |
| 2      |   |
|        |   |
| 2      |   |
| 2      | a |
|        |   |
|        | 0 |
| 3      | 1 |
| 3      |   |
|        |   |
| 3      | 3 |
| 3      | 4 |
|        |   |
| 3      | 5 |
| 3      | 6 |
|        |   |
| 3      |   |
| 3      | 8 |
|        | 9 |
|        |   |
| 4      | 0 |
| 4      | 1 |
|        |   |
| 4      | 2 |
| 4      | 3 |
| 4      | Δ |
|        |   |
| 4      | 5 |
| 4      | 6 |
| 4      |   |
|        |   |
| 4      | 8 |
| 4      |   |
|        |   |
| 5      |   |
| 5      | 1 |
| 5      |   |
|        |   |
| 5      | 3 |
| 5      |   |
|        |   |
| 5      |   |
| 5      | 6 |
| 5      | ~ |
|        |   |
| 5      | 8 |
| 5      |   |
| J      | 2 |



| Rivaroxaban v                                                                                                                                                                                                          | Rivaro                                                          |                                                                                                  | Apixa                                         | ban                           |                                                                | Odds Ratio              | Odds Ratio                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------|----------------------------------------------------------------|-------------------------|-------------------------------------------|
| Study or Subgroup<br>4.3.1 At 6 months                                                                                                                                                                                 | Events                                                          |                                                                                                  | Events                                        |                               | Weight                                                         | M-H, Random, 95% CI     | M-H, Random, 95% CI                       |
| Coleman 2017                                                                                                                                                                                                           | 7303                                                            | 12613                                                                                            | 7845                                          | 12613                         | 10.3%                                                          | 0.84 [0.79, 0.88]       |                                           |
| Coleman 2017                                                                                                                                                                                                           | 3135                                                            | 5762                                                                                             |                                               |                               | 10.2%                                                          | 0.92 [0.85, 0.99]       |                                           |
| McHorney 2017                                                                                                                                                                                                          | 10930                                                           | 13645                                                                                            | 4778                                          | 6304                          | 10.2%                                                          | 1.29 [1.20, 1.38]       | •                                         |
| Pham2019                                                                                                                                                                                                               | 8241                                                            | 16005                                                                                            | 4054                                          |                               | 10.3%                                                          | 1.05 [1.00, 1.11]       |                                           |
| Yao 2016                                                                                                                                                                                                               | 5872                                                            | 23361                                                                                            | 2032                                          |                               | 10.3%                                                          | 0.31 [0.29, 0.33]       | •                                         |
| Subtotal (95% CI)                                                                                                                                                                                                      |                                                                 | 71386                                                                                            |                                               | 36657                         |                                                                | 0.80 [0.51, 1.24]       | •                                         |
| Total events                                                                                                                                                                                                           | 35481                                                           |                                                                                                  | 21965                                         |                               |                                                                |                         | -                                         |
| Heterogeneity: Tau <sup>2</sup> -                                                                                                                                                                                      |                                                                 | r <sup>2</sup> = 1007                                                                            |                                               | - 4 (P <                      | 0.00001)                                                       | );                      |                                           |
| Test for overall effect                                                                                                                                                                                                |                                                                 |                                                                                                  |                                               | •                             |                                                                |                         |                                           |
| 4.3.2 At 1 year                                                                                                                                                                                                        |                                                                 |                                                                                                  |                                               |                               |                                                                |                         |                                           |
| Crivera 2015                                                                                                                                                                                                           | 3162                                                            | 4194                                                                                             | 167                                           | 265                           | 9.4%                                                           | 1.28 [0.97, 1.68]       | <b>+-</b>                                 |
| Forslund 2016                                                                                                                                                                                                          | 1985                                                            | 2074                                                                                             | -                                             | 1352                          | 9.2%                                                           | 1.55 [1.15, 2.10]       |                                           |
| McHorney 2017                                                                                                                                                                                                          | 10657                                                           | 13645                                                                                            | 4760                                          | 6304                          | 10.3%                                                          | 1.16 [1.08, 1.24]       | •                                         |
| Mueller 2017                                                                                                                                                                                                           | 2350                                                            | 2821                                                                                             | 723                                           | 622                           | 9.6X                                                           | 0.68 [0.54, 0.86]       | -                                         |
| Pham2019                                                                                                                                                                                                               | 5080                                                            | 10194                                                                                            | 1969                                          |                               | 10.2%                                                          | 0.77 [0.71, 0.83]       | *                                         |
| Subtotal (95% CI)                                                                                                                                                                                                      |                                                                 | 32928                                                                                            |                                               | 12243                         | 48.7%                                                          | 1.02 [0.79, 1.33]       | •                                         |
| Total events                                                                                                                                                                                                           | 23234                                                           |                                                                                                  | 6903                                          |                               |                                                                |                         |                                           |
| Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)                                                                                                                                         | : Z = 0.17                                                      |                                                                                                  |                                               | 48900                         | 100.0%                                                         | 0.90 [0.68, 1.19]       | •                                         |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -                                                                                                                         | : Z = 0.17<br>58715<br>= 0.20; Ch                               | (P = 0.8<br>104314<br>P = 1120                                                                   | 30868<br>).53, df •                           |                               |                                                                |                         | 0.01 0.1 1 10 100                         |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup><br>Test for overall effect                                                                                                | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71                 | (P = 0.8)<br>104314<br>P = 1120<br>(P = 0.4)                                                     | 30868<br>).53, df -<br>8)                     | = 9 (P <                      | 0.00001)                                                       | ); I <sup>2</sup> = 99% | 0.01 0.1 1 10 100<br>Apixaban Rivaroxaban |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -                                                                                                                         | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71                 | (P = 0.8)<br>104314<br>P = 1120<br>(P = 0.4)                                                     | 30868<br>).53, df -<br>8)                     | = 9 (P <                      | 0.00001)                                                       | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif                                                                     | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>fierences: ( | (P = 0.8)<br>104314<br>$I^2 = 112($<br>(P = 0.4)<br>$ChI^2 = 0.9$                                | 30868<br>).53, df -<br>8)                     | = 9 (P <                      | 0.00001)                                                       | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif                                                                     | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71                 | (P = 0.8)<br>104314<br>$I^2 = 112(0)$<br>(P = 0.4)<br>$ChI^2 = 0.9$                              | 30868<br>).53, df -<br>8)                     | = 9 (P <                      | 0.00001)                                                       | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif                                                                     | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | (P = 0.8)<br>104314<br>$I^2 = 112(0)$<br>(P = 0.4)<br>$ChI^2 = 0.9$                              | 30868<br>).53, df -<br>8)                     | = 9 (P <                      | 0.00001)                                                       | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif                                                                     | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | (P = 0.8)<br>104314<br>$I^2 = 112(0)$<br>(P = 0.4)<br>$ChI^2 = 0.9$                              | 30868<br>).53, df -<br>8)                     | = 9 (P <                      | 0.00001)                                                       | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif                                                                     | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | (P = 0.8)<br>104314<br>$I^2 = 112(0)$<br>(P = 0.4)<br>$ChI^2 = 0.9$                              | 30868<br>).53, df -<br>8)                     | = 9 (P <                      | 0.00001)                                                       | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif                                                                     | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | (P = 0.8)<br>104314<br>$I^2 = 112(0)$<br>(P = 0.4)<br>$ChI^2 = 0.9$                              | 30868<br>).53, df -<br>8)                     | = 9 (P <                      | 0.00001)                                                       | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif                                                                     | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | (P = 0.8)<br>104314<br>$I^2 = 112(0)$<br>(P = 0.4)<br>$ChI^2 = 0.9$                              | 30868<br>).53, df -<br>8)                     | = 9 (P <                      | 0.00001)                                                       | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif                                                                     | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | $\langle P = 0.8 \rangle$<br>104314<br>P = 112(<br>$\langle P = 0.4$<br>$Ch^2 = 0.5$<br>$\infty$ | 30868<br>).53, df -<br>8)                     | = 9 (P <                      | 0.00001)                                                       | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif<br>0 _ SE(logIOR))<br>.05-                                          | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | (P = 0.8)<br>104314<br>$I^2 = 112(0)$<br>(P = 0.4)<br>$ChI^2 = 0.9$                              | 30868<br>).53, df -<br>8)                     | = 9 (P <                      | 0.00001)                                                       | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif<br>0 _ SE(logIOR))<br>.05-                                          | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | $\langle P = 0.8 \rangle$<br>104314<br>P = 112(<br>$\langle P = 0.4$<br>$Ch^2 = 0.5$<br>$\odot$  | 30868<br>).53, df -<br>8)                     | = 9 (P <                      | 0.00001)                                                       | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u><br>0<br>SE(logIOR))                                          | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | $\langle P = 0.8 \rangle$<br>104314<br>P = 112(<br>$\langle P = 0.4$<br>$Ch^2 = 0.5$<br>$\odot$  | 30868<br>).53, df -<br>8)                     | = 9 (P <<br><u>1 (P = 0</u> . | 0.00001)<br><u>34), ř –                                   </u> | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u><br>0                                                         | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | $\langle P = 0.8 \rangle$<br>104314<br>P = 112(<br>$\langle P = 0.4$<br>$Ch^2 = 0.5$<br>$\odot$  | 30868<br>).53, df -<br>8)                     | = 9 (P <<br><u>1 (P = 0</u> . | 0.00001)                                                       | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif<br>0-SE(bogIORI)<br>0.1-<br>0.1-<br>0.1-<br>0.1<br>Subgroups        | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | $\langle P = 0.8 \rangle$<br>104314<br>P = 112(<br>$\langle P = 0.4$<br>$Ch^2 = 0.5$<br>$\odot$  | 30868<br>).53, df (<br>8)<br><u>1, df = 1</u> | = 9 (P <<br><u>1 (P = 0</u> . | 0.00001)<br><u>34), ř –                                   </u> | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u><br>0<br>SE(logIORI)<br>0.1-                                  | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | $\langle P = 0.8 \rangle$<br>104314<br>P = 112(<br>$\langle P = 0.4$<br>$Ch^2 = 0.5$<br>$\odot$  | 30868<br>).53, df (<br>8)<br><u>1, df = 1</u> | = 9 (P <<br><u>1 (P = 0</u> . | 0.00001)<br><u>34), ř –                                   </u> | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif<br>0-SE(bogIORI)<br>0.1-<br>0.1-<br>0.1-<br>0.1<br>Subgroups        | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | $\langle P = 0.8 \rangle$<br>104314<br>P = 112(<br>$\langle P = 0.4$<br>$Ch^2 = 0.5$<br>$\odot$  | 30868<br>).53, df (<br>8)<br><u>1, df = 1</u> | = 9 (P <<br><u>1 (P = 0</u> . | 0.00001)<br><u>34), ř –                                   </u> | ); I <sup>2</sup> = 99% |                                           |
| Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif<br>0-<br>St(fogIORI)<br>0.1-<br>0.1-<br>0.1-<br>0.1-<br>0.1-<br>0.1 | : Z = 0.17<br>58715<br>= 0.20; Ch<br>: Z = 0.71<br>ferences: (  | $\langle P = 0.8 \rangle$<br>104314<br>P = 112(<br>$\langle P = 0.4$<br>$Ch^2 = 0.5$<br>$\odot$  | 30868<br>).53, df (<br>8)<br><u>1, df = 1</u> | = 9 (P <<br><u>1 (P = 0</u> . | 0.00001)<br><u>34), ř –                                   </u> | ); I <sup>2</sup> = 99% |                                           |



## **BMJ Open**

# Adherence to oral anticoagulants among patients with atrial fibrillation: A systematic review and meta-analysis of observational studies

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2019-034778.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date Submitted by the Author:        | 20-Dec-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Complete List of Authors:            | Salmasi, Shahrzad; Collaboration for Outcomes Research and Evaluation<br>(CORE), The University of British Columbia; University of British<br>Columbia Faculty of Pharmaceutical Sciences<br>Loewen, Peter; University of British Columbia Faculty of Pharmaceutical<br>Sciences; Collaboration for Outcomes Research and Evaluation (CORE),<br>The University of British Columbia<br>Tandun, Rachel; University of British Columbia Faculty of Pharmaceutical<br>Sciences<br>Andrade, Jason; University of British Columbia, Faculty of Medicine;<br>Institut De Cardiologie de Montreal<br>De Vera, MA; University of British Columbia, Faculty of Pharmaceutical<br>Sciences; Collaboration for Outcomes Research and Evaluation (CORE),<br>The University of British Columbia, Faculty of Pharmaceutical<br>Sciences; Collaboration for Outcomes Research and Evaluation (CORE),<br>The University of British Columbia |
| <b>Primary Subject<br/>Heading</b> : | Cardiovascular medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Secondary Subject Heading:           | Cardiovascular medicine, Public health, Epidemiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Keywords:                            | Stroke medicine < INTERNAL MEDICINE, Thromboembolism < CARDIOLOGY, Anticoagulation < HAEMATOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

# A systematic review and meta-analysis of observational studies

Shahrzad Salmasi<sup>1</sup>, Peter Loewen<sup>1</sup>, Rachel Tandun<sup>1</sup>, Jason G Andrade<sup>2,3</sup>, Mary A. De Vera<sup>1</sup>

<sup>1</sup>Collaboration for Outcomes Research & Evaluation (CORE), Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada.

<sup>2</sup>Atrial Fibrillation Clinic, Vancouver General Hospital, Vancouver, Canada.

<sup>3</sup> Faculty of Medicine, The University of British Columbia, Vancouver, Canada.

Word count: 3584

Tables: 4; Figures: 2; Supplementary files: 4

Short title: Adherence to anticoagulants in patients with AF.

**Corresponding author:** 

Shahrzad Salmasi B.Pharmacy (Hons), MSc

Faculty of Pharmaceutical Sciences, The University of British Columbia

2405 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3

Tel: 604-726-9970; Email: shahrzad.salmasi@ubc.ca

## ABSTRACT

## **INTRODCUTION**

Medications cannot exert their effect if not taken as prescribed by patients. Our objective was to summarize the evidence on atrial fibrillation (AF) patients' observational adherence to oral anticoagulants (OACs).

## **METHODS**

We systematically searched for observational studies measuring adherence, its determinants and impacts in patients with AF. Mean adherence measures and corresponding proportions of adherent patients were pooled using random effects models. Factors shown to be independently associated with adherence were extracted as well as the clinical and economic outcomes of adherence.

## RESULTS

We included 30 studies. Pooled mean adherence scores of over half a million patients with AF six months and one year after therapy initiation were 77 (95% CI: 74-79) and 74 (68-79) out of 100, respectively. Drug-specific pooled mean adherence score at six months and one year were as follows: rivaroxaban: 78 (73-84) and 77 (69-86); apixaban: 77 (75-79) and 82 (74, 89); dabigatran: 74 (69-79) and 75 (68-82), respectively. There was inadequate information on warfarin for inclusion in meta-analysis.

Factors associated with increased adherence included: older age, higher stroke risk, once-daily regimen, history of hypertension, diabetes, or stroke, concomitant cardiovascular medications, living in rural areas, and being an experienced OAC user. Non-adherent patients were more likely to experience stroke and death, and incurred higher medical costs compared to patients with poor adherence.

## CONCLUSIONS

Our findings show that up to 30% of patients with AF are non-adherent, suggesting an important therapeutic challenge in this patient population.

Keywords: Atrial fibrillation, anticoagulants, medication adherence, stroke.

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

#### 

## Strengths and limitations of this study

- This is a timely systematic review that synthesizes the evidence on extent of poor adherence to oral anticoagulants, its determinants and clinical and economic outcomes, among patients with atrial fibrillation.
- We focused on observational studies (retrospective and prospective) to synthesize the evidence on patients' real-world medication taking behaviour.
- We considered all oral anticoagulants, including the newer drugs (apixaban, rivaroxaban, dabigatran, and edoxaban) and aimed to generate pooled adherence at the individual drug level.
- Drug utilisation consists of three interconnected but distinct phases (initiation, implementation, and discontinuation) and the focus of this study was confined to the implementation phase.

## INTRODUCTION

Atrial fibrillation (AF) - the most common chronic arrhythmia - is an epidemic affecting more than 33 million people worldwide.<sup>1</sup> AF increases stroke risk by up to five-fold, and is responsible for a third of strokes in people over 60.<sup>2-5</sup> Strokes secondary to AF are far more debilitating and carry three times the risk of death than strokes due to other causes.<sup>6-8</sup>

Oral anticoagulants (OACs), which include vitamin K antagonists (VKA) and direct oral anticoagulants (DOACs), are the only effective agents thus far in preventing stroke in patient with AF, showing approximately 66% relative risk reduction in clinical trials.<sup>9-13</sup> When used outside the controlled environment of clinical trials, however, the effectiveness of these drugs is impacted by patients' adherence.<sup>14,15</sup> The clinical consequences of non-adherence can potentially be more significant for DOACs, given their short half-lives.<sup>14-18</sup>

Studies have previously attempted to summarize the medication taking behavior of AF patients. These reviews, however, focus on discontinuation of therapy (not implementation or execution of dosing), or when looking at implementation, only focus on DOACs, summarize evidence from randomized controlled trials (which do not reflect the day to day behaviors of patients), and provide a narrative summary of results with no meta-analysis.<sup>19-21</sup> Further, no studies have summarized the evidence on determinants of adherence in this patient population and the association between adherence and outcomes (clinical or economical). The objective of this systematic review and meta-analysis was to summarize the evidence from observational studies on the extent, determinants, and impacts of adherence to all OACs among patients with AF.

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

## **METHODS**

We conducted a systematic review and meta-analysis following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) and the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines (Supplementary file 1).<sup>22,23</sup>

## Search strategy

In March 2019 we systematically searched PubMed/Medline, Embase, CINAHL and PsycINFO (from inception) using the relevant keywords and MeSH terms (Supplementary 2). The search strategy was designed with the help of a medical librarian and aimed to identify peer-reviewed published manuscripts that reported on extent, determinants, and impacts of non-adherence to any OAC. A manual search was also performed on Google Scholar and the bibliography of included studies.

## Inclusion criteria and study selection

Studies were included if they utilized a prospective or retrospective observational study design, and quantitatively measured secondary adherence, (also known as the "implementation" phase) which looks at medication dose omissions, additions, or delays and does not involve those who did not initiate their therapy.<sup>15</sup> Studies published in English, French, Spanish, Persian, Finnish, Cantonese or Korean were included.<sup>24</sup> No limitations were imposed on setting, country, publication date, or quality.

While we were primarily interested in OAC adherence in non-valvular AF (NVAF) patients, we included studies that did not specifically restrict inclusion to this population, with notation in quality assessment. Studies of self-reported adherence were excluded (including those using validated scales such as MMAS) as they are prone to overestimation of adherence (social desirability bias).<sup>24</sup> Cross-sectional and interventional studies, editorials, conference proceedings, and studies that evaluated or validated adherence measurement methods were also excluded.

Two authors independently screened titles and abstracts of the retrieved studies followed by full text review of candidate studies. Disagreements about inclusion were resolved by discussion with a third author.

## Data extraction and synthesis

The primary adherence measure extracted was the mean and standard deviation (SD) of patients' adherence over six- or twelve- months post index date (after therapy initiation). Secondary adherence measure included proportions of adherent patients, that is proportion of patients reported in each study to have mean adherence score more than 80 (this could be > or  $\ge$ depending on how the study defined "adherent"). The 80% adherence is the conventional threshold for "good adherence".<sup>25,26</sup> Six or twelve months were chosen as these were the most common follow-up times. If a study had variable follow-up time (e.g. from initiation to permanent discontinuation or death) the median follow-up time was used. For studies that reported the proportion of *non*-adherent participants, data were transformed to proportion adherent to allow pooling. When both unadjusted and adjusted outcomes were reported we extracted and analysed the adjusted results. When unmatched and propensity score matched results were reported, we extracted the matched results as they were expected to be more accurate estimates. When a study reported adherence to both index OAC and current OAC (allowing for switching), adherence to index OAC was analyzed to minimize heterogeneity since studies defined switching differently. Adherence results with switching allowed were still reported.

We extracted information on the determinants or factors shown in the included studies to be independently associated with adherence in multivariable regression analyses. We classified the identified determinants under the World Health Organization's (WHO) five dimensions of medication adherence to identify areas in need of more research.<sup>27</sup> Finally, we extracted information on the clinical and economic consequences of poor adherence.

## <u>Data analysis</u>

Meta-analyses were carried out using Der Simonian & Laird random-effects models to determine the pooled mean adherence and the corresponding pooled proportion of adherent patients over six months and one year of observation. If a study reported adherence scores for multiple cohorts, all were included in the meta-analysis (multiple entries per study). In anticipation of heterogeneity subgroup analysis was performed for each adherence measure, and by presence of potential conflict of interest, and study quality. Additional meta-analyses were also performed BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

focusing only on studies that reported comparative adherence between different OACs in the same cohort, to calculate the pooled odds ratio (OR) of adherence for each comparison.

I<sup>2</sup> statistics was used to quantify heterogeneity between studies.<sup>28</sup> Leave-one-out analysis was also performed for outliers to explore and potentially reduce heterogeneity.<sup>29</sup> Forest plots and funnel plots were constructed using OpenMeta-Analyst (Microsoft Corporation, Redmond, WA) or RevMan5 (version 5.3, Copenhagen, Denmark) software to illustrate the results and assess publication bias using funnel plots where relevant, that is, where studies reported measures of association (e.g. OR).<sup>30,31</sup> Clinical and economic impacts of poor adherence were summarized narratively as meta-analysis was not possible.

## **Quality assessment**

We critically appraised the quality of adherence measurement in the included studies by adapting a condensed version of the checklist designed by the International Society of Pharmacoeconomics and Outcomes Research (ISPOR) Group, designed specifically for medication adherence studies, to establish standards for data sources, operational definitions, measurement of medication adherence, and reporting of results, previously used in a systematic reviews of adherence to gout medication.<sup>32</sup> We also critically appraised individual study reporting quality using STROBE.<sup>33</sup> Studies received a point for each checklist item they met and a zero score if not met. A quality score was computed for each study (number of items satisfactorily met / the total number of applicable items) and reported as a percentage. Items deemed not applicable were excluded from the denominator of the study's score. Studies were categorized as low, moderate or high quality if they scored  $\leq$ 50%, 51-80%, or >80%, respectively (arbitrary thresholds defined by authors).

Following Cochrane's commercial sponsorship policy as a guide, potential conflicts of interest were deemed present if any of the following were met: 1) provision of study funding by the forprofit manufacturer or marketer of any of the OACs included in the corresponding study, or 2) disclosure of potential conflict of interest with a for-profit manufacturer or marketer of any of the OACs included in the corresponding study.<sup>34</sup>

## Patient and Public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination of our research.

## Ethical approval

Ethical approval for this study was not required per our institution's policies.

to beet eviewony

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

#### 

RESULTS

Initial search led to 1,122 studies, all of which were in English (Figure 1.0). A total of 30 studies were included in this systematic review<sup>35-64</sup> involving 593,683 participants (DOAC: 437,610, VKA: 156,073). Most studies were published after 2015 (n=22, 73% of total included), conducted in North America (n=19, 63%), and retrospective (n=29, 97%), (Table 1). Adherence measurement was assessed to be of high quality in 59% of the included studies and moderate in 38%, according to the ISPOR checklist (Supplementary 3). The most frequently reported adherence measures were proportion days covered (PDC) (n=21, 70% of the included studies), and medication possession ratio (MPR) (n=9, 20%) over six-month or one-year post index date (Table 2). Majority of the included studies focused on adherence to DOACs with only 4 observational studies measuring and reporting adherence to warfarin. There were no data on phenproco adherence to edoxaban, betrixaban, phenprocoumon, acenocoumarol, or fluindione.

#### BMJ Open

## **Adherence**

The range of reported adherence results was quite wide. Reported mean adherence ranged between 67 (out of 100)<sup>58,61,64</sup> to 86<sup>55</sup> over six months and 57<sup>58</sup> to 86<sup>41</sup> over one-year post index date, with corresponding reported proportion of adherent patients ranging between 47%<sup>59</sup> to 82%<sup>56</sup> over six months and 41%<sup>58</sup> to 95%<sup>45</sup> over one year. Wide range of adherence results were observed even at the individual OAC level (Table 2).

Pooled mean adherence scores over six-month and one-year post medication initiation were 77 (95% CI: 74-79) and 74 (68-79), with the corresponding pooled proportion of adherent patients as 63% (58%-68%) and 70% (65%-76%), respectively. Adherence was similar between DOACs, although adherence to apixaban and rivaroxaban was slightly higher than dabigatran (Table 3). No meta-analysis could be conducted for mean adherence to warfarin since this was not reported by the included studies. Pooled estimates of proportion of adherent patients for warfarin were resulted from meta-analysis of 2 studies only (as illustrated in tables 2 and 3). Due to the limited data in warfarin, no drug class comparison could be made. Figure 2.0 illustrates the forest plots for patients' mean adherence score over six months and one year. The remaining forests plots, including forest plots of proportion adherent, adherence to individual OACs, subgroup analyses [by adherence measure (PDC and MPR), study quality and potential for conflict of interest] can be found in supplementary 4.

Between-study variance (represented as I<sup>2</sup>) was high and not reduced by the leave-one out analysis or subgroup analysis. Exclusion of studies with potential conflicts of interest led to lower adherence scores for all OACs but did not change the rank-order of OACs (adherence to dabigatran remained lower than the others). Excluding studies of low and moderate quality or stratifying the analysis by adherence measure (PDC versus MPR), or country (USA versus others) had only minor impacts on pooled adherence results and the detected heterogeneity (Supplementary 4).

## Studies comparing adherence between different OACs in the same cohort

Nineteen studies reported comparative adherence between different OACs in the same cohort (Table 4).<sup>35-37,39-45,49,50,52,55-58,60,62</sup> Odds of being adherent was significantly higher for apixaban compared to dabigatran over both six months (Odds Ratio (OR):1.24, 95% CI: 1.07-1.45) and one-year post index date (OR:1.76, 95% CI: 1.35-2.29). Odds of adherence was significantly

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

higher for rivaroxaban compared to dabigatran over six months (OR:1.39, 95% CI: 1.15-1.67), but not one year (OR:1.17, 95% CI: 0.38-3.60). Odds of adherence did not differ between apixaban and rivaroxaban over six months (OR:0.80, 95% CI: 0.51-1.24) or one year (OR:1.02, 95% CI: 0.79-1.33).

#### Studies reporting adherence among several cohorts with different characteristics

Three studies compared adherence between new versus experienced users.<sup>37,50,56</sup> McHorney et al. reported greater mean PDC score for both rivaroxaban and apixaban (0.90 and 0.88, respectively) among prior OAC users compared to naïve users (0.87 and 0.86, respectively).<sup>56</sup> Borne et al. reported a higher mean PDC score for apixaban users with prior warfarin experience compared to naïve users (0.89±0.14 vs naïve: 0.87±0.15, P < 0.01).<sup>37</sup> Confirming these results, Manzoor et al. reported higher mean PDC for experienced users compared to naïve users over six months (83.3±24.6 vs 72.3±31.3; p< 0.05), nine months (81.2±26.4 vs 67.3±33.8); p< 0.05) and one year (79.9±27.6 vs 63.7±35.2; p <0.05).<sup>50</sup>

One study, Eapen et al., compared adherence among those prescribed OAC at discharge versus after discharge and reported that patients prescribed warfarin at discharge had significantly higher prescription fill rates compared to those prescribed after discharge at three months (84.5% vs 12.3%; P<0.001) and one year (91.6% vs 16.8%; P<0.001).<sup>44</sup>

## **Determinants of adherence**

Many factors were identified by the included studies as significant determinants of adherence. Summarizing these under WHO's classification, the factors identified in the included studies to be significantly and positively associated with adherence were: **Patient factors:** history of hypertension<sup>43,49</sup>, diabetes<sup>37</sup> stroke<sup>37,52</sup>; **Regimen factors:** once daily dosing<sup>35,49</sup>, concomitant use of statin<sup>43,52</sup>, angiotensin converting enzyme inhibitor or angiotensin II receptor blockers<sup>43,52</sup>, higher risk of bleeding<sup>43</sup>; and **Social/economic factors:** living in rural or deprived areas.<sup>52,53</sup> Factors found to be significantly and negatively associated with adherence to OAC were: being a naïve OAC user<sup>50,56</sup>, twice daily dosing<sup>35,49</sup> and impaired cognitive or functional ability.<sup>56</sup> No **healthcare system** and **condition factors** related predictors of adherence were identified.

#### **BMJ** Open

Conflicting results were reported for female sex<sup>47,48,53</sup>, age<sup>37,43,47-50,52,53</sup>, risk of stroke<sup>43,47,53</sup>, presence of multiple comorbidities<sup>43,50,51,56</sup>, and higher number of concomitant medications.<sup>50,51</sup> These factors were found to be predictors of high *and* low OAC adherence in different studies

### **Impacts of adherence**

Four studies assessed the clinical impact of adherence.<sup>35,37,42,59</sup> Alberts et al. reported 50% increased hazard of ischemic stroke with DOAC non-adherence (aHR:1.50, 95% CI:1.30-1.73).<sup>35</sup> Deshpande et al. reported non-adherent patients to be 1.82 times (aHR:1.82, 95% CI: 1.24- 2.67; p=0.002) and 2.08 times (aHR:2.08, 95% CI: 1.11- 3.89; p=0.02) more likely to experience an ischemic stroke compared to adherent patients, over six and 12 months, respectively.<sup>42</sup> Similarly, Borne et al. reported a higher risk of death or stroke per 0.1 drop in the PDC among dabigatran users (HR:1.07, 95% CI: 1.03- 1.12; p<0.01).<sup>37</sup> Shore et al. reported a 13% increase in risk of combined all-cause mortality and stroke with lower adherence (aHR:1.13, 95%CI: 1.07-1.19 per 10% decrease in PDC) but found no association between adherence and non-fatal bleeding events (aHR:1.04 per 10% increase in PDC, 95% CI: 0.94-1.14) or myocardial infarction (aHR:0.97 per 10% increase in PDC, 95% CI: 0.78-1.21).<sup>59</sup>

Two studies measured the economic impacts of adherence.<sup>38,43</sup> Casciano et al. reported significantly more inpatient and emergency room encounters and longer length of stay for non-adherent patients compare to adherent patients and Deshpande et al. reported significantly higher annual adjusted per-patient medical cost (inpatient and outpatient) for non-adherent users compared to adherent ones (\$30,485 versus \$23,544; p≤0.001).<sup>38,43</sup>

## DISCUSSION

In this systematic review, we synthesized observational data of over half a million patients with AF to reveal that up to 30% are non-adherent to OACs, and that nonadherent patients are more likely to experience stroke, death and incur higher medical costs compared to adherent patients. We also found that older age, higher stroke risk, once-daily regimen, history of hypertension, diabetes, or stroke, concomitant cardiovascular medications, living in rural areas, and being an experienced OAC user could be associated with better adherence.

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

AF patients' adherence to their OACs has been thoroughly studied in developed countries. Pooled proportion of adherent patients at six months and one year was 63% and 70%, respectively, which is higher than other chronic cardiovascular medications such as statins (54%) and antihypertensives (59%).<sup>65</sup> However, our finding that up to 37% of patients with AF do not adhere to OACs is concerning considering the detrimental consequences of nonadherence in this particular clinical context. We were unable to ascertain whether the conveniences of DOACs translates into better adherence compared to warfarin due to lack of adherence data on warfarin, a likely result of warfarin dose variations complicating MPR and PDC ascertainment from administrative data. Between DOACs, however, adherence was found to be similar, although dabigatran appeared to have slightly lower adherence than apixaban and rivaroxaban.

Many patient-, regimen- and social/economic-related factors were identified by the included studies as significant determinants of adherence. It should be noted that each of these factors were reported to have a significant impact on adherence by one or two studies. The limited number of prospective observational studies on the topic restricted our ability to identify important psychosocial determinants as administrative data fall short in recording patients' knowledge gaps, misconceptions, and varying values and preferences, all of which have frequently been reported in patients with AF.<sup>66-71</sup> Further, questions remain about the role of sex, age, risk of stroke, presence of multiple comorbidities, and number of concomitant medications on adherence. One explanation for the inconsistencies we observed could be differences in how these factors were defined in our included studies. A 2019 systematic review of 34 systematic reviews on determinants of adherence to cardiovascular medications (beta blockers, calcium channel blockers, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers, and diuretics) also reported inconsistent results for the role of gender in adherence.<sup>72</sup> These authors also found that the effects of concomitant medications and comorbidities seem to be drugspecific and condition-specific, which could explain some of the inter-study variability with this factor.<sup>72</sup> A multivariate patient-level meta-regression analysis could provide more clarity to these issues with OACs in patients with AF. Nevertheless, our findings indicate potential opportunities for interventions such as education and counselling for younger or newly diagnosed patients (naïve users) and adherence support for those on twice daily dosed OACs.

Lastly, we looked at outcomes of poor adherence. Our review found evidence of association between lower adherence and strokes, mortality, healthcare utilization and costs. Our findings

confirm the results of a 2017 systematic review of 79 studies across 14 disease groups which reported that \$3,347-19,472 are attributed to nonadherence per patient per year among those with cardiovascular conditions (hypertension, hypercholesterolaemia, and chronic heart failure).<sup>73</sup> As for clinical outcomes, our findings are in line with results of meta-analyses of a large body of research showing that poor adherence across a range of conditions was associated with a 26% increased risk of poor treatment outcomes.<sup>74</sup> The adherence-outcome relationship is, however, very complex, and dependant on many factors, including the nature of the disease.<sup>74</sup> This is why it was important to summarize the strength of this relationship specifically in AF. Our findings, while based on only four studies, reveal the relationship between lower adherence and poor clinical outcomes in patients with AF, and support the potential of interventions aimed at increasing adherence in patients with AF.<sup>73-79</sup>

## **Limitations**

This review was primarily limited by gaps in the available evidence. Given our interest in observational data, our evidence was narrowed to developed countries where the technology and infrastructure for systematic collection of such data is available. The high number of studies from a few developed countries introduced the possibility of duplicate patients in the analysis since many of the included studies used the same database with overlapping periods.<sup>35,38-40,50,64</sup> Furthermore, there may be potential for publication bias or under-representation from studies from developing countries. As described in the methods, we attempted to assess publication bias using funnel plots but were limited with few studies reporting measures of association. Nonetheless, for these meta-analyses, findings do not suggest presence of publication bias (Supplementary 3).

Another limitation of our analysis was the high heterogeneity (I<sup>2</sup>>80%) among the studies. Possible sources of heterogeneity include differences in patient inclusion criteria (e.g. OAC naïve versus experienced); methods for handling and defining medication switches, stockpiling, refill gaps, and hospitalization dates; fixed versus variable observational periods and adherence measure used (PDC versus MPR). Subgroup analyses did not affect the amount of statistical heterogeneity detected. Nonetheless, in addition to the summary measures derived from meta-analysis, we were able to detect the range of adherence measures from the included studies. Finally, drug utilisation consists of initiation, implementation, and discontinuation,<sup>15,80</sup> and the BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

focus of this study was confined to the implementation phase. Systematic reviews of OAC initiation and discontinuation are needed to provide a complete picture of medication taking behaviour in patients with AF.

## **FUTURE DIRECTIONS**

Our understanding of the comparative adherence between warfarin and DOACs among patients with AF is currently impeded by lack of observational data on warfarin. Sophisticated statistical models are needed to calculate days' supply of warfarin, despite its varying dose, to allow measurement of MPR or PDC for this drug using administrative data. Furthermore, we lack information on patterns of nonadherence to OACs. All of the current studies have treated adherence as a static behavior, calculating and reporting it using a single summary measure. This methodological approach does not provide a complete picture of adherence, which is a dynamic behavior that changes over time.<sup>25,81</sup> Characterization of adherence patterns over time is vital in understanding the problem of poor adherence and targeting the right patients at the right time with the right interventions.<sup>82-86</sup>

There is a need for more research investigating the clinical and economic consequences of poor adherence as the current evidence is limited to findings of four studies. Moreover, a clinically meaningful OAC adherence threshold has yet to be determined in AF.<sup>35,37,42,59</sup> While the association between taking more than 80% of medications and improved clinical outcomes has been shown in four AF studies, it remains unclear if this is the optimal threshold for AF.<sup>35,37,42,59</sup> Clinically relevant adherence cut-off values have been shown to differ widely (from 58% to 85%) in different diseases, and even among drug classes.<sup>14,87</sup> As with antiretroviral medications, given the detrimental consequences of OAC nonadherence, the clinically meaningful threshold for "good adherence" to OACs may need to be much higher than 80%.<sup>87</sup>

## CONCLUSION

Synthesis of observational data suggests that overall OAC adherence in patients with AF is below the conventional threshold of "adherent" (80%). These findings, combined with evidence that lower adherence is associated with poor clinical outcomes and higher costs, suggest an important therapeutic challenge in this patient population. Our study also highlights the need for more consistent measures of adherence, and more research to characterize patterns of OAC non-

### **BMJ** Open

adherence, identifying determinants of poor OAC adherence, and investigate the clinical and economic consequences of OAC non-adherence.

## FUNDING

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. Dr. Loewen's research is partially supported by the UBC David H MacDonald Professorship in Clinical Pharmacy. Dr. De Vera holds a Canada Research Chair in Medication Adherence, Utilization, and Outcomes and is a Michael Smith Foundation for Health Research Scholar.

## **COMPETING INTERESTS**

Authors have no competing interests to declare.

## **CONTRIBUTIONS**

Conceived the study: SS, PL, MDV; Designed the search strategy: SS, MDV, PL; Conducted the literature search: SS; Screened titles and abstracts: SS, RT; Screened full texts: SS, RT; Extracted data: SS, RT; Made methodological decisions (data synthesis and analysis): MDV, SS; Analyzed the data: SS; Conducted quality assessment; SS, RT; Interpreted the results: SS, PL, JGA, MDV; Prepared the manuscript first draft: SS, MDV, PL, RT; Reviewed the manuscript and provided critical feedback: JGA, MDV, PL; Revised the manuscript: SS, PL, RT, MDV.

## DATA AVAILABILITY STATEMENT

No additional data available.

## FIGURE LEGENDS

Figure 1.0: PRISMA flow diagram that details the number of studies identified by our search strategy, screened, and included in the final analysis.

Figure 2.0: Forest plots illustrating patients' mean adherence scores over six-month and one-year post index date. See Supplementary 4 for additional forest plots for each OAC and subgroup analyses.

to peer teries only

#### **BMJ** Open

| 2                                            |  |
|----------------------------------------------|--|
| 3                                            |  |
| 4                                            |  |
| 5                                            |  |
|                                              |  |
| 6<br>7                                       |  |
| /<br>0                                       |  |
| 8<br>9<br>10                                 |  |
| 9                                            |  |
| 10                                           |  |
| 11                                           |  |
| 12                                           |  |
| 13                                           |  |
| 14                                           |  |
| 15                                           |  |
| 16                                           |  |
| 17                                           |  |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 |  |
| 19                                           |  |
| 20                                           |  |
| 21                                           |  |
| 22                                           |  |
| 23                                           |  |
| 24                                           |  |
| 25                                           |  |
| 25<br>26                                     |  |
| 20                                           |  |
| 27                                           |  |
| 28                                           |  |
| 29                                           |  |
| 30                                           |  |
| 31                                           |  |
| 32                                           |  |
| 33                                           |  |
| 34                                           |  |
| 35                                           |  |
| 36                                           |  |
| 37                                           |  |
| 38                                           |  |
| 39                                           |  |
| 40                                           |  |
| 41                                           |  |
| 42                                           |  |
| 43                                           |  |
| 44                                           |  |
| 45                                           |  |
| 46                                           |  |
| 47                                           |  |
| 48                                           |  |
| 49                                           |  |
| 49<br>50                                     |  |
| 50<br>51                                     |  |
| 51<br>52                                     |  |
|                                              |  |
| 53                                           |  |
| 54                                           |  |
| 55                                           |  |
| 56                                           |  |
| 57                                           |  |
| 58                                           |  |
| 59                                           |  |

60

## REFERENCES

- 1. Morillo CA, Banerjee A, Perel P, et al. Atrial fibrillation: The current epidemic. *J Geriatr Cardiol* 2017;14(3):195-203. doi: 10.11909/j.issn.1671-5411.2017.03.011
- Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: The framingham study. *Stroke* 1991;22(8):983-88. doi: 10.1161/01.str.22.8.983
- 3. Hart RG, Pearce LA, McBride R, et al. Factors associated with ischemic stroke during aspirin therapy in atrial fibrillation: Analysis of 2012 participants in the spaf i-iii clinical trials. The stroke prevention in atrial fibrillation (spaf) investigators. *Stroke* 1999;30(6):1223-9. [published Online First: 1999/06/04]
- 4. World Health Organization. The top 10 causes of death 2018 [Available from: <u>https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death</u> accessed 2.05.2019 2019.
- Wolf PA, Dawber TR, Thomas HE, Jr., et al. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: The framingham study. *Neurology* 1978;28(10):973-7. doi: 10.1212/wnl.28.10.973 [published Online First: 1978/10/01]
- 6. Marini C, De Santis F, Sacco S, et al. Contribution of atrial fibrillation to incidence and outcome of ischemic stroke: Results from a population-based study. *Stroke* 2005;36(6):1115-9. doi: 10.1161/01.STR.0000166053.83476.4a [published Online First: 2005/05/10]
- McGrath ER, Kapral MK, Fang J, et al. Association of atrial fibrillation with mortality and disability after ischemic stroke. *Neurology* 2013;81(9):825-32. doi: 10.1212/WNL.0b013e3182a2cc15 [published Online First: 2013/08/02]

10.1093/eurheartj/ehw210 14. Karve S, Cleves MA, Helm M, et al. Good and poor adherence: Optimal cut-point for adherence measures using administrative claims data. Curr Med Res Opin, 2009;25(9):2303-10. doi: 10.1185/03007990903126833 [published Online First: 2009/07/29] 

15. De Geest S, Zullig LL, Dunbar-Jacob J, et al. Espacomp medication adherence reporting guideline (emerge). Ann Intern Med 2018;169(1):30-35. doi: 10.7326/m18-0543 [published Online First: 2018/06/28]

- 8. Fang MC, Go AS, Chang Y, et al. Long-term survival after ischemic stroke in patients with atrial fibrillation. Neurology 2014;82(12):1033-37. doi: 10.1212/WNL.00000000000248
- 9. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. NEJM 2009;361(12):1139-51. doi: 10.1056/NEJMoa0905561
- 10. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. NEJM 2013;369(22):2093-104. doi: 10.1056/NEJMoa1310907
- 11. Hart RG, Pearce LA, Aguilar MI. Meta-analysis: Antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med 2007;146(12):857-67. doi: 10.7326/0003-4819-146-12-200706190-00007 [published Online First: 2007/06/20]
- 12. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. *NEJM*, 2011;365(10):883-91. doi: 10.1056/NEJMoa1009638
- 13. European Society of Cardiology. Esc guidelines for the management of atrial fibrillation developed in collaboration with eacts. Eur Heart J 2016;20(1) doi:

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ** Open

| 2                                                                                  |  |
|------------------------------------------------------------------------------------|--|
| 3                                                                                  |  |
| 4                                                                                  |  |
| 5                                                                                  |  |
| 6                                                                                  |  |
| 7                                                                                  |  |
| 8                                                                                  |  |
| 9                                                                                  |  |
| 10                                                                                 |  |
| 11                                                                                 |  |
| 12                                                                                 |  |
| 13                                                                                 |  |
| 14                                                                                 |  |
| 15                                                                                 |  |
| 16                                                                                 |  |
| 17                                                                                 |  |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 |  |
| 10                                                                                 |  |
| 20                                                                                 |  |
| 20<br>21                                                                           |  |
| 21<br>22                                                                           |  |
| 22                                                                                 |  |
| 25                                                                                 |  |
| 22<br>23<br>24<br>25                                                               |  |
| 25                                                                                 |  |
| 26                                                                                 |  |
| 27                                                                                 |  |
| 28                                                                                 |  |
| 29                                                                                 |  |
| 30                                                                                 |  |
| 31<br>32<br>33                                                                     |  |
| 32                                                                                 |  |
| 33                                                                                 |  |
| 34                                                                                 |  |
| 35                                                                                 |  |
| 36                                                                                 |  |
| 37                                                                                 |  |
| 38                                                                                 |  |
| 39                                                                                 |  |
| 40                                                                                 |  |
| 41                                                                                 |  |
| 42                                                                                 |  |
| 43                                                                                 |  |
| 44                                                                                 |  |
| 45                                                                                 |  |
| 46                                                                                 |  |
| 47                                                                                 |  |
| 48                                                                                 |  |
| 49                                                                                 |  |
| 50                                                                                 |  |
| 51                                                                                 |  |
| 52                                                                                 |  |
| 53                                                                                 |  |
| 54                                                                                 |  |
| 55                                                                                 |  |
| 56                                                                                 |  |
| 57                                                                                 |  |
| 58                                                                                 |  |
| 50                                                                                 |  |

60

16. Aronis KN, Hylek EM. Evidence gaps in the era of non-vitamin k oral anticoagulants. *JAHA* 2018;7(3):e007338. doi: 10.1161/JAHA.117.007338

- 17. Chin PK, Doogue MP. Long-term prescribing of new oral anticoagulants. *Aust Prescr* 2016;39(6):200-04. doi: 10.18773/austprescr.2016.068 [published Online First: 2016/12/05]
- 18. Mekaj YH, Mekaj AY, Duci SB, et al. New oral anticoagulants: Their advantages and disadvantages compared with vitamin k antagonists in the prevention and treatment of patients with thromboembolic events. *Ther clin risk manag*, 2015;11:967-77. doi: 10.2147/TCRM.S84210
- Obamiro K, Chalmers L, Bereznicki L. A summary of the literature evaluating adherence and persistence with oral anticoagulants in atrial fibrillation. *Am J Cardiovasc Drugs*, 2016;16(5):349-63. doi: 10.1007/s40256-016-0171-6
- 20. Chatterjee S, Sardar P, Giri JS, et al. Treatment discontinuations with new oral agents for long-term anticoagulation: Insights from a meta-analysis of 18 randomized trials including 101,801 patients. *Mayo Clin Proc*, 2014;89(7):896-907. doi: 10.1016/j.mayocp.2014.01.030 [published Online First: 2014/07/06]
- 21. Shehab A, Bhagavathula AS, Abebe TB, et al. Patient adherence to novel oral anticoagulants (noacs) for the treatment of atrial fibrillation and occurrence of associated bleeding events: A systematic review and meta-analysis. *Curr Vasc Pharmacol*, 2018 doi: 10.2174/1570161116666180123111949 [published Online First: 2018/01/24]
- 22. Liberati A, Altman DG, Tetzlaff J, et al. The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

and elaboration. PLoS medicine 2009;6(7):e1000100. doi:

10.1371/journal.pmed.1000100

## 23. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of observational studies in epidemiology (moose) group. JAMA 2000;283(15):2008-12. doi:

10.1001/jama.283.15.2008 [published Online First: 2000/05/02]

- 24. Osterberg L, Blaschke T. Adherence to medication. *NEJM* 2005;353(5):487-97. doi: 10.1056/NEJMra050100
- 25. Andrade SE, Kahler KH, Frech F, et al. Methods for evaluation of medication adherence and persistence using automated databases. *Pharmacoepidemiol Drug Saf*, 2006;15(8):565-74; discussion 75-7. doi: 10.1002/pds.1230 [published Online First: 2006/03/04]
- 26. Baumgartner PC, Haynes RB, Hersberger KE, et al. A systematic review of medication adherence thresholds dependent of clinical outcomes. *Front Pharmacol* 2018;9(1290) doi: 10.3389/fphar.2018.01290
- 27. World Health Organisation. Adherence to long-term therapies: Evidence to action. Towards the solution: five interacting dimensions affect adherence. Switzerland, 2003.
- Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ* 2003;327(7414):557-60. doi: 10.1136/bmj.327.7414.557 %J BMJ

Willis BH, Riley RD. Measuring the statistical validity of summary meta-analysis and meta-regression results for use in clinical practice. *Stat Med*, 2017;36(21):3283-301. doi: 10.1002/sim.7372 [published Online First: 2017/06/18]

#### **BMJ** Open

| 30. W | Vallace BC, Dahabreh IJ, Trikalinos TA, et al. Closing the gap between methodologists ar  |
|-------|-------------------------------------------------------------------------------------------|
|       | end-users: R as a computational back-end. J Stat Softw 2012;49(5):15. doi:                |
|       | 10.18637/jss.v049.i05 [published Online First: 2012-06-30]                                |
| 31. P | eters JL, Sutton AJ, Jones DR, et al. Comparison of two methods to detect publication bia |
|       | in meta-analysis. JAMA 2006;295(6):676-80. doi: 10.1001/jama.295.6.676 %J JAMA            |
| 32. P | eterson AM, Nau DP, Cramer JA, et al. A checklist for medication compliance and           |
|       | persistence studies using retrospective databases. Value Health, 2007;10(1):3-12. doi:    |
|       | 10.1111/j.1524-4733.2006.00139.x [published Online First: 2007/01/31]                     |
| 33. V | on Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational     |
|       | studies in epidemiology (strobe) statement: Guidelines for reporting observational        |
|       | studies. Int J Surg 2014;12(12):1495-99. doi: https://doi.org/10.1016/j.ijsu.2014.07.013  |
| 34. C | ochrane community. Editorial and publishing policy resource conflicts of interest and     |
|       | cochrane reviews 2014 [Available from: https://community.cochrane.org/editorial-and-      |
|       | publishing-policy-resource/ethical-considerations/conflicts-interest-and-cochrane-revie   |
|       | accessed July 10 2019.                                                                    |
| 35. A | lberts MJ, Peacock WF, Fields LE, et al. Association between once- and twice-daily dire   |
|       | oral anticoagulant adherence in nonvalvular atrial fibrillation patients and rates of     |
|       | ischemic stroke. Int J Cardiol, 2016;215:11-3. doi: 10.1016/j.ijcard.2016.03.212          |
|       | [published Online First: 2016/04/23]                                                      |
| 36. B | eyer-Westendorf J, Ehlken B, Evers T. Real-world persistence and adherence to oral        |
|       | anticoagulation for stroke risk reduction in patients with atrial fibrillation. Europace, |
|       | 2016;18(8):1150-7. doi: 10.1093/europace/euv421 [published Online First: 2016/02/03       |

37. Borne RT, O'Donnell C, Turakhia MP, et al. Adherence and outcomes to direct oral anticoagulants among patients with atrial fibrillation: Findings from the veterans health administration. *BMC Cardiovasc Disord*, 2017;17(1):236. doi: 10.1186/s12872-017-0671-6 [published Online First: 2017/09/04]

- 38. Casciano JP, Dotiwala ZJ, Martin BC, et al. The costs of warfarin underuse and nonadherence in patients with atrial fibrillation: A commercial insurer perspective. J Manag Care Pharm, 2013;19(4):302-16. doi: 10.18553/jmcp.2013.19.4.302 [published Online First: 2013/05/01]
- 39. Coleman C, Yuan Z, Schein J, et al. Importance of balancing follow-up time and impact of oral-anticoagulant users' selection when evaluating medication adherence in atrial fibrillation patients treated with rivaroxaban and apixaban. *Curr Med Res Opin* 2017;33(6):1033-43. doi: 10.1080/03007995.2017.1297932 [published Online First: 2017/04/04]
- 40. Coleman CI, Tangirala M, Evers T. Medication adherence to rivaroxaban and dabigatran for stroke prevention in patients with non-valvular atrial fibrillation in the united states. *Int J Cardio* 2016;212:171-3. doi: 10.1016/j.ijcard.2016.03.051 [published Online First: 2016/04/04]
- 41. Crivera C, Nelson WW, Bookhart B, et al. Pharmacy quality alliance measure: Adherence to non-warfarin oral anticoagulant medications. *Curr Med Res Opin* 2015;31(10):1889-95. doi: 10.1185/03007995.2015.1077213 [published Online First: 2015/07/28]
- 42. Deshpande CG, Kogut S, Laforge R, et al. Impact of medication adherence on risk of ischemic stroke, major bleeding and deep vein thrombosis in atrial fibrillation patients

| using novel oral anticoagulants. Curr Med Res Opin 2018;34(7):1285-92. doi:                |
|--------------------------------------------------------------------------------------------|
| 10.1080/03007995.2018.1428543                                                              |
| hpande CG, Kogut S, Willey C. Real-world health care costs based on medication             |
| adherence and risk of stroke and bleeding in patients treated with novel anticoagulant     |
| therapy. J Manag Care Spec Pharm, 2018;24(5):430-39. doi:                                  |
| 10.18553/jmcp.2018.24.5.430 [published Online First: 2018/04/26]                           |
| en ZJ, Mi X, Qualls LG, et al. Adherence and persistence in the use of warfarin after      |
| hospital discharge among patients with heart failure and atrial fibrillation. J Card Fail, |
| 2014;20(1):23-30. doi: 10.1016/j.cardfail.2013.11.006 [published Online First:             |
| 2013/11/28]                                                                                |
| slund T, Wettermark B, Hjemdahl P. Comparison of treatment persistence with different      |
| oral anticoagulants in patients with atrial fibrillation. Eur J Clin Pharmacol,            |
| 2016;72(3):329-38. doi: 10.1007/s00228-015-1983-z [published Online First:                 |
| 2015/11/29]                                                                                |
| nez-Lumbreras A, Cortes J, Morros R, et al. Characteristics of apixaban-treated patients,  |
| evaluation of the dose prescribed, and the persistence of treatment: A cohort study in     |
| catalonia. J Cardiovasc Pharmacol Ther 2018;23(6):494-501. doi:                            |
| 10.1177/1074248418778544                                                                   |
| st-Rasmussen A, Skjoth F, Larsen TB, et al. Dabigatran adherence in atrial fibrillation    |
| patients during the first year after diagnosis: A nationwide cohort study. J Thromb        |
| Haemost, 2015;13(4):495-504. doi: 10.1111/jth.12845 [published Online First:               |
| 2015/01/17]                                                                                |
|                                                                                            |
|                                                                                            |
|                                                                                            |

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

10.1080/03007995.2018.1428543 43. Deshpande CG, Kogut S, Willey C. Real-world health care costs based on adherence and risk of stroke and bleeding in patients treated with nove therapy. J Manag Care Spec Pharm, 2018;24(5):430-39. doi: 10.18553/jmcp.2018.24.5.430 [published Online First: 2018/04/26] 44. Eapen ZJ, Mi X, Qualls LG, et al. Adherence and persistence in the use of hospital discharge among patients with heart failure and atrial fibrillati 2014;20(1):23-30. doi: 10.1016/j.cardfail.2013.11.006 [published Onli 2013/11/28] 45. Forslund T, Wettermark B, Hjemdahl P. Comparison of treatment persister oral anticoagulants in patients with atrial fibrillation. Eur J Clin Pharm 2016;72(3):329-38. doi: 10.1007/s00228-015-1983-z [published Onlin 2015/11/29] 46. Gomez-Lumbreras A, Cortes J, Morros R, et al. Characteristics of apixaba evaluation of the dose prescribed, and the persistence of treatment: A c catalonia. J Cardiovasc Pharmacol Ther 2018;23(6):494-501. doi:

47. Gorst-Rasmussen A, Skjoth F, Larsen TB, et al. Dabigatran adherence in a patients during the first year after diagnosis: A nationwide cohort study Haemost, 2015;13(4):495-504. doi: 10.1111/jth.12845 [published Onli 2015/01/17]

48. Harper P, Pollock D, Stephens M. Dabigatran persistence and adherence in new zealand: A nationwide retrospective observational study. *BMJ open* 2018;8(4):e020212. doi: 10.1136/bmjopen-2017-020212 [published Online First: 2018/04/08]

- 49. Jacobs MS, Schouten JF, de Boer PT, et al. Secondary adherence to non-vitamin-k antagonist oral anticoagulants in patients with atrial fibrillation in sweden and the netherlands. *Curr Med Res Opin* 2018;34(10):1839-47. doi: 10.1080/03007995.2018.1459528
- 50. Manzoor BS, Lee TA, Sharp LK, et al. Real-world adherence and persistence with direct oral anticoagulants in adults with atrial fibrillation. *Pharmacotherapy* 2017;37(10):1221-30. doi: 10.1002/phar.1989 [published Online First: 2017/07/22]
- 51. Marquez-Contreras E, Martell-Carlos N, Gil-Guillen V, et al. Therapeutic compliance with rivaroxaban in preventing stroke in patients with non-valvular atrial fibrillation: Cumrivafa study. *Curr Med Res Opin* 2016;32(12):2013-20. doi: 10.1080/03007995.2016.1227311 [published Online First: 2016/08/23]
  - Jours C. Deriante A. Alle E. et al. Adherence with direct and enticed gulants in r
- 52. Maura G, Pariente A, Alla F, et al. Adherence with direct oral anticoagulants in nonvalvular atrial fibrillation new users and associated factors: A french nationwide cohort study. *Pharmacoepidemiol Drug Saf* 2017;26(11):1367-77. doi: 10.1002/pds.4268 [published Online First: 2017/07/29]
- 53. McAlister FA, Wiebe N, Hemmelgarn BR. Time in therapeutic range and stability over time for warfarin users in clinical practice: A retrospective cohort study using linked routinely collected health data in alberta, canada. *BMJ open* 2018;8(1):e016980. doi:

10.1136/bmjopen-2017-016980 [published Online First: 2018/02/01]

#### **BMJ** Open

54. McCormick D, Gurwitz JH, Goldberg RJ, et al. Prevalence and quality of warfarin use for patients with atrial fibrillation in the long-term care setting. *Arch Intern Med* 2001;161(20):2458-63. [published Online First: 2001/12/01]

- 55. McHorney CA, Ashton V, Laliberte F, et al. Adherence to rivaroxaban compared with other oral anticoagulant agents among patients with nonvalvular atrial fibrillation. *J Manag Care Spec Pharm*, 2017;23(9):980-88. doi: 10.18553/jmcp.2017.23.9.980 [published Online First: 2017/08/31]
- 56. McHorney CA, Crivera C, Laliberte F, et al. Adherence to rivaroxaban versus apixaban among patients with non-valvular atrial fibrillation: Analysis of overall population and subgroups of prior oral anticoagulant users. *PloS one* 2018;13(4):e0194099. doi: 10.1371/journal.pone.0194099 [published Online First: 2018/04/06]
- 57. Mueller T, Alvarez-Madrazo S, Robertson C, et al. Use of direct oral anticoagulants in patients with atrial fibrillation in scotland: Applying a coherent framework to drug utilisation studies. *Pharmacoepidemiol Drug Saf* 2017;26(11):1378-86. doi: 10.1002/pds.4272 [published Online First: 2017/07/29]
- 58. Pham PN, Brown JDJBCD. Real-world adherence for direct oral anticoagulants in a newly diagnosed atrial fibrillation cohort: Does the dosing interval matter? *BMC Cardiovasc Disord* 2019;19(1):64. doi: 10.1186/s12872-019-1033-3

59. Shore S, Carey EP, Turakhia MP, et al. Adherence to dabigatran therapy and longitudinal patient outcomes: Insights from the veterans health administration. *Am Heart J*, 2014;167(6):810-7. doi: 10.1016/j.ahj.2014.03.023 [published Online First: 2014/06/04]

60. Sorensen R, Jamie Nielsen B, Langtved Pallisgaard J, et al. Adherence with oral anticoagulation in non-valvular atrial fibrillation: A comparison of vitamin k antagonists

and non-vitamin k antagonists. *Eur Heart J Cardiovasc Pharmacother*, 2017;3(3):151-56. doi: 10.1093/ehjcvp/pvw048 [published Online First: 2017/02/06]

- Tsai K, Erickson SC, Yang J, et al. Adherence, persistence, and switching patterns of dabigatran etexilate. *Am J Manag Care*, 2013;19(9):e325-32. [published Online First: 2014/01/24]
- 62. Yao X, Abraham NS, Alexander GC, et al. Effect of adherence to oral anticoagulants on risk of stroke and major bleeding among patients with atrial fibrillation. *J Am Heart Assoc*, 2016;5(2) doi: 10.1161/jaha.115.003074 [published Online First: 2016/02/26]
- 63. Zhou M, Chang HY, Segal JB, et al. Adherence to a novel oral anticoagulant among patients with atrial fibrillation. *J Manag Care Spec Pharm*, 2015;21(11):1054-62. doi: 10.18553/jmcp.2015.21.11.1054 [published Online First: 2015/11/02]
- 64. Brown JD, Shewale AR, Talbert JC. Adherence to rivaroxaban, dabigatran, and apixaban for stroke prevention in incident, treatment-naive nonvalvular atrial fibrillation. *J Manag Care Spec Pharm*, 2016;22(11):1319-29. doi: 10.18553/jmcp.2016.22.11.1319 [published Online First: 2016/10/27]
- 65. Chowdhury R, Khan H, Heydon E, et al. Adherence to cardiovascular therapy: A metaanalysis of prevalence and clinical consequences. *European heart journal* 2013;34(38):2940-8. doi: 10.1093/eurheartj/eht295 [published Online First: 2013/08/03]
- 66. Salmasi S, De Vera MA, Barry A, et al. Assessment of condition and medication knowledge gaps among atrial fibrillation patients: A systematic review and meta-analysis. *Ann Pharmacother*, 2019;0(0):1060028019835845. doi:

https://doi.org/10.1177/1060028019835845

#### **BMJ** Open

| 67. Salmasi S, Kwan L, MacGillivray J, et al. Assessment of atrial fibrillation patients' education |
|-----------------------------------------------------------------------------------------------------|
| needs from patient and clinician perspectives: A qualitative descriptive study. Thromb              |
| Res, 2018 doi: https://doi.org/10.1016/j.thromres.2018.11.015                                       |
| 68. Lee VWY, Tam CS, Yan BP, et al. Barriers to warfarin use for stroke prevention in patients      |
| with atrial fibrillation in hong kong. Clin Cardiol 2013;36(3):166-71. doi:                         |
| 10.1002/clc.22077                                                                                   |
| 69. McCabe PJ, Barnason SA, Houfek J. Illness beliefs in patients with recurrent symptomatic        |
| atrial fibrillation. Pacing Clin Electrophysiol, 2011;34(7):810-20. doi: 10.1111/j.1540-            |
| 8159.2011.03105.x                                                                                   |
| 70. McCabe PJ, Rhudy LM, DeVon HA. Patients' experiences from symptom onset to initial              |
| treatment for atrial fibrillation. J Clin Nurs 2015;24(5-6):786-96. doi:                            |
| 10.1111/jocn.12708                                                                                  |
| 71. Loewen PS, Ji AT, Kapanen A. Patient values and preferences for antithrombotic therapy in       |
| atrial fibrillation. <i>Thromb Haemost</i> , 2017                                                   |
| 72. Leslie KH, McCowan C, Pell JP. Adherence to cardiovascular medication: A review of              |
| systematic reviews. J Public Health (Oxf) 2019;41(1):e84-e94. doi:                                  |
| 10.1093/pubmed/fdy088                                                                               |
| 73. Cutler RL, Fernandez-Llimos F, Frommer M, et al. Economic impact of medication non-             |
| adherence by disease groups: A systematic review. BMJ Open 2018;8(1):e016982. doi:                  |
| 10.1136/bmjopen-2017-016982 %J BMJ Open                                                             |
| 74. DiMatteo MR, Giordani PJ, Lepper HS, et al. Patient adherence and medical treatment             |
| outcomes: A meta-analysis. Med Care, 2002;40(9):794-811. doi: 10.1097/00005650-                     |
| 200209000-00009 [published Online First: 2002/09/10]                                                |
|                                                                                                     |
| 28<br>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                     |
| T OF PEET EVIEW ONLY - Http://DHJOPEN.DHJ.COM/SILE/dDOut/Quidennes.XHtml                            |

75. Bramley TJ, Nightengale BS, Frech-Tamas F, et al. Relationship of blood pressure control to adherence with antihypertensive monotherapy in 13 managed care organizations. J
 Manag Care Pharm 2006;12(3):239-45. doi: 10.18553/jmcp.2006.12.3.239

- 76. Ho PM, Rumsfeld JS, Masoudi FA, et al. Effect of medication nonadherence on hospitalization and mortality among patients with diabetes mellitus. *Arch Intern Med*, 2006;166(17):1836-41. doi: 10.1001/archinte.166.17.1836 %J Archives of Internal Medicine
- 77. Kennedy-Martin T, Boye KS, Peng X. Cost of medication adherence and persistence in type
  2 diabetes mellitus: A literature review. *Patient Prefer Adherence* 2017;11:1103-17. doi: 10.2147/PPA.S136639
- 78. Rasmussen JN, Chong A, Alter DA. Relationship between adherence to evidence-based pharmacotherapy and long-term mortality after acute myocardial infarction. *JAMA* 2007;297(2):177-86. doi: 10.1001/jama.297.2.177 %J JAMA
- 79. Tangkiatkumjai M, Walker D-M, Praditpornsilpa K, et al. Association between medication adherence and clinical outcomes in patients with chronic kidney disease: A prospective cohort study. *Clin Exp Nephrol* 2017;21(3):504-12. doi: 10.1007/s10157-016-1312-6
- 80. Vrijens B, De Geest S, Hughes DA, et al. A new taxonomy for describing and defining adherence to medications. *Br J Clin Pharmacol*, 2012;73(5):691-705. doi:

10.1111/j.1365-2125.2012.04167.x [published Online First: 2012/04/11]

81. Gellad WF, Thorpe CT, Steiner JF, et al. The myths of medication adherence.

*Pharmacoepidemiol Drug Saf* 2017;26(12):1437-41. doi: 10.1002/pds.4334 [published Online First: 2017/10/11]

#### **BMJ** Open

| 82. Fi | ranklin JM, Krumme AA, Tong AY, et al. Association between trajectories of statin      |
|--------|----------------------------------------------------------------------------------------|
|        | adherence and subsequent cardiovascular events. Pharmacoepidemiol Drug Saf,            |
|        | 2015;24(10):1105-13. doi: 10.1002/pds.3787 [published Online First: 2015/04/24]        |
| 83. Fi | anklin JM, Shrank WH, Pakes J, et al. Group-based trajectory models: A new approac     |
|        | classifying and predicting long-term medication adherence. Medical care                |
|        | 2013;51(9):789-96. doi: 10.1097/MLR.0b013e3182984c1f [published Online First:          |
|        | 2013/05/21]                                                                            |
| 84. L  | o-Ciganic WH, Donohue JM, Jones BL, et al. Trajectories of diabetes medication adhe    |
|        | and hospitalization risk: A retrospective cohort study in a large state medicaid progr |
|        | Gen Intern Med, 2016;31(9):1052-60. doi: 10.1007/s11606-016-3747-6 [published          |
|        | Online First: 2016/05/28]                                                              |
| 85. L  | o-Ciganic WH, Gellad WF, Gordon AJ, et al. Association between trajectories of         |
|        | buprenorphine treatment and emergency department and in-patient utilization. Addic     |
|        | 2016;111(5):892-902. doi: 10.1111/add.13270 [published Online First: 2015/12/15]       |
| 86. M  | odi AC, Rausch JR, Glauser TA. Patterns of nonadherence to antiepileptic drug therap   |
|        | children with newly diagnosed epilepsy. JAMA 2011;305(16):1669-76. doi:                |
|        | 10.1001/jama.2011.506 [published Online First: 2011/04/28]                             |
| 87. V  | iswanathan S, Justice AC, Alexander GC, et al. Adherence and hiv rna suppression in    |
|        | current era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr,      |
|        | 2015;69(4):493-8. doi: 10.1097/qai.000000000000643 [published Online First:            |
|        | 2015/04/19]                                                                            |

### Page 32 of 80

**BMJ Open: first** 

## TABLES

1

2 3 4

5 6

### Table 1: Characteristics of the included studies

| Author<br>)<br>1                             | Year | Design        | Country                 | Total N;<br>(%Male)       | Age<br>Mean (SD)<br>Unless<br>otherwise<br>stated | Indication<br>for OAC | Adherence<br>reported to<br>index OAC<br>or current<br>OAC | Population<br>OAC Naïve<br>vs<br>Experienced | Potential<br>conflict<br>of<br>interest | Quality<br>Score:<br>STROBE | Qualit<br>score:<br>ISPOI |
|----------------------------------------------|------|---------------|-------------------------|---------------------------|---------------------------------------------------|-----------------------|------------------------------------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------|---------------------------|
| Alberts<br>2                                 | 2016 | Retrospective | USA                     | 36,868<br>(55%)           | 76%>65<br>years                                   | NVAF                  | NA                                                         | Both                                         | Yes                                     | 61%                         | 67%                       |
| eyer-<br>Vestendorf                          | 2016 | Retrospective | Germany                 | 7,265<br>(52%)            | NA                                                | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 73%                         | 74%                       |
| orne                                         | 2017 | Retrospective | USA                     | 2,882<br>(97%)            | 67.4 (9.5)                                        | NVAF                  | NA                                                         | Naïve to<br>DOACs <sup>‡</sup>               | Yes                                     | 73%                         | 78%                       |
| Brown<br>7                                   | 2016 | Retrospective | USA                     | 5,223<br>(40%)            | 59%≥65<br>years                                   | NVAF                  | Both                                                       | Naïve                                        | Yes                                     | 77%                         | 84%                       |
| Sasciano                                     | 2013 | Retrospective | USA                     | 13,289<br>(47%)           | $78\% \ge 75$ years                               | AF                    | NA                                                         | Naïve                                        | Yes                                     | 63%                         | 79%                       |
| Coleman<br>)                                 | 2016 | Retrospective | USA                     | 21,756<br>(54%)           | 66.5 (12.2)                                       | NVAF                  | NA                                                         | Naïve                                        | Yes                                     | 55%                         | 50%                       |
| Coleman                                      | 2017 | Retrospective | USA                     | 106,227<br>(63%)          | 71.1 (11.0)                                       | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 77%                         | 84%                       |
| )<br>Crivera<br>S                            | 2015 | Retrospective | USA                     | 9,948<br>(53%)            | 75.5 (8.3)                                        | NVAF                  | Both                                                       | Naïve                                        | Yes                                     | 73%                         | 61%                       |
| eshpande<br>MID:<br>29694285                 | 2018 | Retrospective | USA                     | 2,981<br>(70%)            | 64.4 (10.7)                                       | AF                    | NA                                                         | Naïve to<br>DOACs <sup>‡</sup>               | No                                      | 77%                         | 83%                       |
| <b>Peshpande</b><br>MID:<br><b>3</b> 9334815 | 2018 | Retrospective | USA                     | 4,856<br>(52%)            | 65.0 (10.5)                                       | AF                    | NA                                                         | Naïve                                        | No                                      | 81%                         | 83%                       |
| Sapen                                        | 2014 | Retrospective | USA                     | 2,691<br>(43%)            | 100%>65<br>years                                  | AF                    | NA                                                         | Both                                         | No                                      | 76%                         | 74%                       |
| orsuland                                     | 2016 | Retrospective | Sweden                  | 16,096<br>(52%)           | 75.45<br>(SD not<br>reported)                     | NVAF                  | Current OAC                                                | Both                                         | No                                      | 63%                         | 61%                       |
| omez-<br>Jomez-<br>Jumberas                  | 2018 | Retrospective | Spain                   | 854<br>(NA%)              | 73.2 (11.0)                                       | NVAF                  | NA                                                         | Both                                         | Yes                                     | 50%                         | 67%                       |
| Gorst-<br>Rasmussen                          | 2015 | Retrospective | Denmark                 | 2,960<br>(54%)            | 72.1 (10.8)                                       | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 80%                         | 100%                      |
| larper                                       | 2018 | Retrospective | New<br>Zealand          | 20,237<br>(NA%)           | 83%>60                                            | NVAF                  | NA                                                         | NA                                           | No                                      | 47%                         | 53%                       |
| /<br>acobs<br>}                              | 2018 | Retrospective | Sweden &<br>Netherlands | 5,684<br>(60%)            | 78%≥65<br>years                                   | AF                    | Current OAC                                                | Both                                         | Yes                                     | 80%                         | 83%                       |
| Manzoor                                      | 2017 | Retrospective | USA                     | 66,090<br>(62%)           | 68.7 (12.1)                                       | AF                    | Index OAC                                                  | Both                                         | Missing                                 | 70%                         | 85%                       |
| )<br>Márquez-<br>Contrera                    | 2016 | Prospective   | Spain                   | 412<br>(42%)              | 75.2 (7.5)                                        | NVAF                  | NA                                                         | Experienced                                  | Yes                                     | 63%                         | 83%                       |
| Maura                                        | 2017 | Retrospective | France                  | 22,267<br>(53%)           | 74.0 (10.8)                                       | NVAF                  | Index                                                      | Naïve                                        | No                                      | 79%                         | 100%                      |
| <u>}</u><br>AcAlister                        | 2018 | Retrospective | Canada                  | (55%)<br>57,669<br>(56%)  | 100%>65                                           | NVAF                  | Current OAC                                                | Naïve                                        | No                                      | 87%                         | 94%                       |
| NcCormick                                    | 2001 | Retrospective | USA                     | (30%)<br>429<br>(22%)     | years<br>87 (7.1)                                 | AF                    | Current OAC                                                | Experienced                                  | No                                      | 60%                         | 82%                       |
| /<br>/IcHorney<br>}                          | 2017 | Retrospective | USA                     | 36,675<br>(67%)           | 63.1<br>(SD not<br>reported)                      | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 87%                         | 89%                       |
| AcHorney                                     | 2018 | Retrospective | USA                     | 41,201<br>(58%)           | NA                                                | NVAF                  | Index OAC                                                  | Both                                         | Yes                                     | 84%                         | 100%                      |
| Iueller                                      | 2017 | Retrospective | Scotland                | (38%)<br>5,398<br>(54%)   | 74.4 (11.3)                                       | AF                    | NA                                                         | NA                                           | No                                      | 70%                         | 53%                       |
| ham                                          | 2019 | Retrospective | USA                     | (5476)<br>38,947<br>(60%) | 100%>65                                           | NVAF                  | Index OAC & any OAC                                        | Naïve                                        | No                                      | 77%                         | 89%                       |
| hore                                         | 2014 | Retrospective | USA                     | (80%)<br>5,376<br>(98%)   | years<br>71.3 (9.7)                               | NVAF                  | Index OAC                                                  | NA                                           | No                                      | 90%                         | 94%                       |
| ørensen                                      | 2017 | Retrospective | Denmark                 | (98%)<br>46,675<br>(58%)  | 79%>65<br>years                                   | NVAF                  | Current OAC                                                | Naïve                                        | Yes                                     | 67%                         | 79%                       |

59

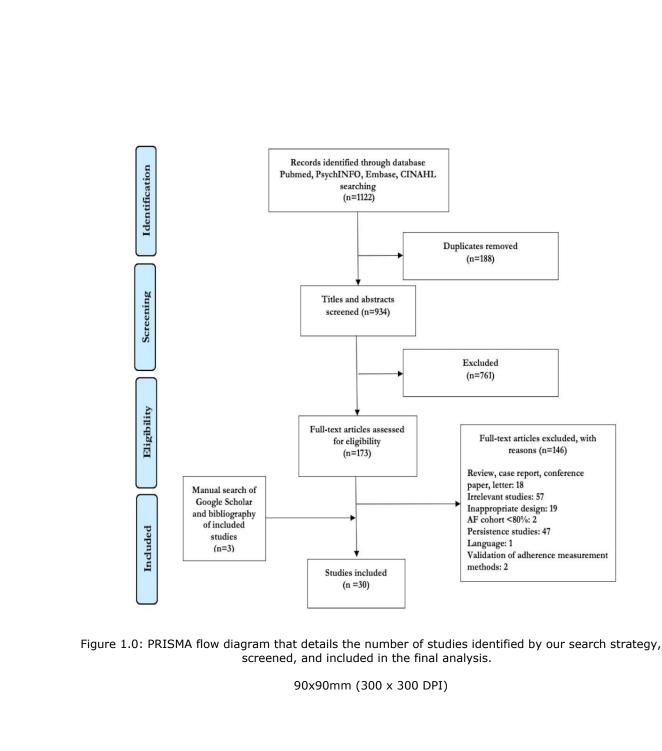
|      | 2013 | Retrospective | USA | 17,691<br>(49%) | 76.4 (8.7) | NA | Current OAC | Warfarin<br>Naïve and<br>warfarin<br>experienced | No | 60% | 789 |
|------|------|---------------|-----|-----------------|------------|----|-------------|--------------------------------------------------|----|-----|-----|
|      | 2016 | Retrospective | USA | 64,661<br>(56%) | 75% >65    | AF | Index OAC   | Naïve                                            | No | 77% | 849 |
| ote: | 2015 | Retrospective | USA | 5,951<br>(34%)  | 36.1%>65   | AF | Index OAC   | Naïve                                            | No | 80% | 799 |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright.

| Study (year)                       | Adherence<br>measure | Adherence<br>Over 6 m                                                               |                                                                                                                          | Adherence results<br>Over 1 year                                                                                                          |                                                                                |  |
|------------------------------------|----------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
|                                    | (Threshold)          | Mean adherence score<br>± SD                                                        | Proportion<br>adherent                                                                                                   | Mean adherence<br>score ± SD                                                                                                              | Proportion adheren                                                             |  |
| <b>Proportion Days Cove</b>        | red (PDC)            |                                                                                     |                                                                                                                          |                                                                                                                                           |                                                                                |  |
| Alberts<br>(2016)                  | PDC (>80%)           | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | Overall: 0.70<br>A and D: 0.68<br>R: 0.73                                      |  |
| Borne<br>(2017)                    | PDC (>80%)           | NA                                                                                  | NA                                                                                                                       | Overall: $0.85 \pm 0.19$<br>A: $0.89 \pm 0.14$<br>D: $0.84 \pm 0.20$<br>R: $0.86 \pm 0.18$                                                | Overall: 0.72<br>A: 0.77<br>D: 0.71<br>R: 0.75                                 |  |
| Brown (2016)                       | PDC (≥80%)           | A: $0.75 \pm 0.29$<br>D: $0.67 \pm 0.33$<br>R: $0.75 \pm 0.31$                      | A: 0.62<br>D: 0.54<br>R: 0.64                                                                                            | NA                                                                                                                                        | NA                                                                             |  |
| Casciano<br>(2013)                 | PDC (>80%)           | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | W: 0.41                                                                        |  |
| Coleman<br>(2016)                  | PDC (>80%)           | D: 0.77 ± 0.32                                                                      | D: 0.65<br>R: 0.74                                                                                                       | D: $0.65 \pm 0.37$                                                                                                                        | D: 0.52<br>R: 0.62                                                             |  |
| (2016)<br>Coleman                  | PDC                  | R: 0.82 ± 0.30<br>NA                                                                | A: 0.57 and 0.62                                                                                                         | R: 0.73 ± 0.35<br>NA                                                                                                                      | NA                                                                             |  |
| (2017)                             | (≥80%)               |                                                                                     | R: 0.54 and 0.58<br>(Two different<br>databases were used<br>for this study hence<br>two adherence<br>results per drug.) |                                                                                                                                           |                                                                                |  |
| Crivera<br>(2015)                  | PDC (>80%)           | NA                                                                                  | NA                                                                                                                       | Index DOAC:<br>A: $0.83 \pm 0.20$<br>D: $0.81 \pm 0.22$<br>R: $0.86 \pm 0.19$<br>Any OAC:<br>A: $0.84 \pm 0.18$ ;<br>D: $0.85 \pm 0.18$ ; | Index DOAC:<br>A: 0.71<br>D: 0.68<br>R: 0.75<br>Any OAC:<br>A: 0.71<br>D: 0.73 |  |
|                                    |                      |                                                                                     |                                                                                                                          | $R: 0.87 \pm 0.17;$                                                                                                                       | R: 0.77                                                                        |  |
| Deshpande (2018)<br>PMID: 29694285 | PDC<br>(≥80%)        | NA                                                                                  | R and D: 0.65                                                                                                            | NA NA                                                                                                                                     | R and D: 0.54                                                                  |  |
| Deshpande (2018)<br>PMID: 29334815 | PDC (≥80%)           | R and D:<br>0.86 ± SD missing                                                       | R and D: 0.77                                                                                                            | R and D:<br>0.85 ± SD missing                                                                                                             | R and D: 0.76                                                                  |  |
| Forsuland (2016)                   | PDC (>80%)           | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | A: 0.93<br>D: 0.92<br>R: 0.96                                                  |  |
| Gorst-Rasmussen<br>(2015)          | PDC<br>(>80%)        | $0.84 \pm 0.28$                                                                     | NA                                                                                                                       | NA                                                                                                                                        | D: 0.77                                                                        |  |
| Harper<br>(2018)                   | PDC<br>(>80%)        | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | D: 0.84                                                                        |  |
| Manzoor<br>(2017)                  | PDC high (≥<br>90%)  | Overall:<br>0.78 ± 28.40<br>A: 80.90 ± 24.9<br>D: 78.60 ± 27.70<br>R: 76.50 ± 30.70 | <b>PDC90</b><br>0.55                                                                                                     | Overall:<br>72.80 ± 32.20<br>A: No users of A at 12<br>months<br>D: 73.4± 31.6;<br>R: 69.7± 34.8                                          | <b>PDC90</b> 0.34                                                              |  |
| Maura<br>(2017)                    | PDC>80               | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | Index OAC:<br>Overall: 0.71<br>D: 0.70                                         |  |

|                                           |                           |                                                  |                               |                                                  | R: 0.72           |
|-------------------------------------------|---------------------------|--------------------------------------------------|-------------------------------|--------------------------------------------------|-------------------|
| McHorney (2017)                           | PDC<br>(>80% &<br>>90%)   | NA                                               | PDC 80:<br>A: 0.76<br>D: 0.69 | NA                                               | NA                |
|                                           | > )0/0)                   |                                                  | R: 0.80                       |                                                  |                   |
|                                           |                           |                                                  | W: 0.65                       |                                                  |                   |
|                                           |                           |                                                  | PDC90:                        |                                                  |                   |
|                                           |                           |                                                  | A: 0.57                       |                                                  |                   |
|                                           |                           |                                                  | D: 0.51                       |                                                  |                   |
|                                           |                           |                                                  | R: 0.64                       |                                                  |                   |
|                                           |                           |                                                  | W: 0.47                       |                                                  |                   |
| McHorney                                  | PDC                       | NA                                               | PDC80:                        | NA                                               | NA                |
| (2018)                                    | (>80% &                   |                                                  | A:0.78                        |                                                  |                   |
|                                           | >90%)                     |                                                  | R: 0.82                       |                                                  |                   |
|                                           |                           |                                                  | PDC90:                        |                                                  |                   |
|                                           |                           |                                                  | A: 0.60                       |                                                  |                   |
| ~ 1                                       |                           | <b>X X A I A</b>                                 | R: 0.67                       |                                                  |                   |
| Pham                                      | PDC                       | Index OAC:                                       | Index OAC:                    | Index OAC:                                       | Index OAC:        |
| (2019)                                    | (>80%)                    | A: 0.76 ± 0.29                                   | A: 0.63                       | A: $0.70 \pm 0.33$                               | A: 0.56.          |
|                                           |                           | D: 0.67± 0.33                                    | D: 0.53                       | D: $0.57 \pm 0.36$                               | D: 0.41           |
|                                           |                           | R: $0.72 \pm 0.32$                               | R: 0.58                       | R: $0.64 \pm 0.36$                               | R: 0.50           |
|                                           |                           |                                                  |                               |                                                  |                   |
|                                           |                           |                                                  |                               | Any OAC:                                         |                   |
|                                           |                           |                                                  |                               | A: $0.73 \pm 0.31$                               |                   |
|                                           |                           |                                                  |                               | D: $0.64 \pm 0.34$                               |                   |
| 01                                        |                           |                                                  | D 0 20                        | $R: 0.68 \pm 0.34$                               |                   |
| Shore<br>(2014)                           | PDC<br>(>80%)             | NA                                               | D: 0.28                       | NA                                               | NA                |
| (2014)                                    | (~80%)                    |                                                  |                               |                                                  |                   |
| Sørensen (2017)                           | PDC                       | NA                                               | Odds of being                 | NA                                               | NA                |
|                                           | (>80%)                    |                                                  | adherent                      |                                                  |                   |
|                                           |                           |                                                  | R: reference;                 |                                                  |                   |
|                                           |                           |                                                  | A: 0.79 (0.69 - 0.92)         |                                                  |                   |
|                                           |                           |                                                  | D: 0.72 (0.66 - 0.80)         |                                                  |                   |
|                                           |                           |                                                  | VKA: 0.76 (0.69 -             |                                                  |                   |
| Tsai                                      | PDC                       | D:                                               | 0.83)<br>NA                   | NA                                               | NA                |
| (2013)                                    | (no threshold)            | D:<br>warfarin-naïve: 0.67 ±                     | NA                            | NA                                               | INA               |
| (2013)                                    | (no uneshold)             | 0.36                                             |                               |                                                  |                   |
|                                           |                           | warfarin-experienced:                            |                               |                                                  |                   |
|                                           |                           | $0.71 \pm 0.35$                                  |                               |                                                  |                   |
| Yao (2016)                                | PDC                       | NA                                               | Overall: 47.5%                | NA                                               | NA                |
| 100 (2010)                                | (>80%)                    | 141                                              | A: 0.52                       |                                                  | 1111              |
|                                           | ( 00,0)                   |                                                  | D: 0.46                       |                                                  |                   |
|                                           |                           |                                                  | R: 0.48                       |                                                  |                   |
|                                           |                           |                                                  | W: 0.39                       |                                                  |                   |
| Medication Possession<br>Beyer-Westendorf | Ratio (MPR)<br>MPR (>0.8) | D: 0.67 ± SD missing                             | D: 0.50                       | D: 0.64 ± SD missing                             | D: 0.48           |
| (2016)                                    | IVII IX (~0.0)            | $D: 0.67 \pm SD$ missing<br>R: 0.76 ± SD missing | R: 0.61                       | $D: 0.64 \pm SD$ missing<br>R: 0.75 ± SD missing | R: 0.63           |
| (-010)                                    |                           | $1.0.70 \pm 5D$ missing                          | 1. 0.01                       | $1.0.75 \pm 5D$ missing                          | 1. 0.05           |
| Eapen                                     | MPR                       | NA                                               | NA                            | Median (IQR):                                    | NA                |
| (2014)                                    | (no threshold)            |                                                  |                               | 0.77 (0.51- 0.98)                                |                   |
| Gomez-lumberas                            | MPR                       | NA                                               | NA                            | NA                                               | A: 0.62           |
| (2018)                                    | (>0.8)                    |                                                  |                               |                                                  |                   |
| Jacobs                                    | MPR                       | NA                                               | NA                            | NA                                               | Sweden: 0.95      |
| (2018)                                    | (≥0.8)                    |                                                  |                               |                                                  | Netherlands: 0.93 |
|                                           |                           |                                                  |                               |                                                  |                   |
| McHorney (2017)                           | MPR                       | NA                                               | NA                            | A: $0.85 \pm 0.2$                                | A: 0.76           |
|                                           | (>0.8)                    |                                                  |                               | D: $0.81 \pm 0.2$                                | D: 0.66           |
|                                           |                           |                                                  |                               | $R: 0.86 \pm 0.2$                                | R: 0.78           |
| 71                                        | ) (DD                     |                                                  | D 0.50                        | W: 0.80 ± 0.2                                    | W: 0.59           |
| Zhou<br>(2015)                            | MPR<br>(>0.8)             | D: 0.73 ± 0.30                                   | D: 0.59                       | D: 0.65 ± 0.35                                   | D: 0.51           |
| Mueller                                   | MPR>80*                   | NA                                               | NA                            | NA                                               | DOACs: 0.82       |
| (2017)                                    |                           |                                                  |                               |                                                  | A: 0.88           |
|                                           |                           |                                                  |                               |                                                  | D: 0.65           |
|                                           |                           |                                                  |                               |                                                  | R: 0.83           |

| Márquez-Contrera | CP>80%   | NA  | R: Global                           | NA  | R: Global comp          |
|------------------|----------|-----|-------------------------------------|-----|-------------------------|
| (2016)           |          |     | compliance: 0.84                    |     | 0.80                    |
|                  |          |     | Daily compliance: 0.84              |     | Daily compliand<br>0.80 |
|                  |          |     | %therapeutic cover:                 |     | % therapeutic co        |
| McAlister        | TTR>65%  | NA  | 90.04%<br>W: Percent patients       | NA  | 89.25%<br>NA            |
| (2018)           | (INR2-3) | INA | with time in                        | INA | INA                     |
|                  |          |     | therapeutic range: 4.11%            |     |                         |
| Footnote:        |          |     |                                     |     |                         |
|                  |          |     | lays' supply / total days in study) |     |                         |
|                  |          |     |                                     |     |                         |


| Table 3: Pooled a | dherence results |
|-------------------|------------------|
|-------------------|------------------|

|                       | Adherence over                  |                       |                        | over 1 year          |
|-----------------------|---------------------------------|-----------------------|------------------------|----------------------|
|                       | post index o                    |                       |                        | lex date             |
|                       | Mean                            | Proportion            | Mean                   | Proportion adherent  |
|                       | (95% CI)                        | adherent<br>(95% CI)  | (95% CI)               | (95% CI)             |
| Apixaban              | 77.15 (75.03, 79.27)            | 0.62 (0.53, 0.72)     | 81.75 (74.32, 89.18)   | 0.74 (0.62, 0.87)    |
| Dabigatran            | 73.94 (68.94, 78.93)            | 0.55 (0.48, 0.61)     | 75.04 (67.74, 82.34)   | 0.65 (0.54, 0.76)    |
| Rivaroxaban           | 78.30 (72.47, 84.14)            | 0.64 (0.54, 0.73)     | 77.45 (68.9, 85.96)    | 0.73 (0.64, 0.81)    |
| Warfarin              | No data available               | 0.52 (0.26, 0.77)++   | No data available      | 0.50 (0.32, 0.68) ++ |
| All OACs              | 76.62 (73.91, 79.33)            | 0.63 (0.58, 0.68)     | 73.72 (68.36, 79.08)   | 0.70 (0.65, 0.76)    |
| Sub-analysis: Exclu   | ding studies with conflict of i | nterest               |                        |                      |
| Apixaban              | 78.39 (73.59, 83.19)++          | 0.51 (0.49, 0.53) ++  | One study              | 0.79 (0.55, 1.04)    |
| Dabigatran            | 72.87 (64.40, 81.33)            | 0.50 (0.46, 0.54)+    | 65.20 (49.13, 81.27)++ | 0.67 (0.50, 0.84)    |
| Rivaroxaban           | 74.25 (69.84, 78.66)++          | 0.50 (0.46, 0.53) ++  | 66.85 (61.27, 72.44)++ | 0.75 (0.55, 0.96)    |
| Warfarin              | No data available               | 0.39 (0.38-0.39)      | No data available      | No data available    |
| All OACs              | 73.40 (69.86, 76.94)            | 0.56 (0.49, 0.62)     | 65.56 (59.41, 71.72)   | 0.68 (0.58, 0.79)    |
| Sub-analysis: Exclu   | ding studies with low and me    | dium quality (assesse | d by ISPOR)            | X X                  |
| Apixaban              | 77.15 (75.03, 79.27) ++         | 0.62 (0.53, 0.72) ++  | 77.50 (62.80, 92.20)   | 0.66 (0.47, 0.85)    |
| Dabigatran            | 73.32 (67.08, 79.57)            | 0.54 (0.47, 0.60)     | 73.83 (62.99, 84.65)   | 0.61 (0.45, 0.76)    |
| Rivaroxaban           | 77.38 (69.95, 84.80)            | 0.62 (0.51, 0.74)     | 72.23 (58.64, 87.83)   | 0.67 (0.5, 0.83)     |
| Warfarin              | No data available 📏             | 0.52 (0.26, 0.77) ++  | No data available      | No data available    |
| All OACs              | 77.29 (74.19, 80.40)            | 0.63 (0.58, 0.68)     | 68.61 (62.63, 74.58)   | 0.67 (0.58, 0.76)    |
| Sub-analysis: By ad   | lherence measure                |                       | · · ·                  |                      |
|                       |                                 | MPR                   |                        |                      |
| Apixaban              | No data available               | No data available     | No data available      | 0.75 (0.64, 0.87)    |
| Dabigatran            | 77.00 (69.16, 81.84) ++         | 0.54 (0.45, 0.63) ++  | No data available      | 0.58 (0.49, 0.66)    |
| Rivaroxaban           | No data available               | No data available     | No data available      | 0.75 (0.69, 0.81)    |
| Warfarin              | No data available               | No data available     | No data available      | 0.59+                |
| All OACs              | 81.01 (77.21, 84.81)            | 0.57 (0.51, 0.63)     | No data available      | 0.74 (0.64, 0.83)    |
|                       |                                 | PDC                   |                        |                      |
| Apixaban              | 77.15 (75.03, 79.27)            | 0.62 (0.53, 0.72) 🦉   | 80.67 (69.40, 91.94)   | 0.74 (0.45, 1.02)    |
| Dabigatran            | 72.41 (65.90, 78.91)            | 0.55 (0.47, 0.63)     | 74.05 (65.56, 82.53)   | 0.67 (0.52, 0.82)    |
| Rivaroxaban           | 76.38 (71.35, 81.40)            | 0.64 (0.54, 0.74)     | 75.74 (67.44, 84.03)   | 0.69 (0.57, 0.82)    |
| Warfarin              | No data available               | 0.52 (0.26, 0.77)++   | No data available      | 0.41+                |
| All OACs              | 74.93 (72.09, 77.77)            | 0.64 (0.58, 0.69)     | 74.5 (68.89, 80.14)    | 0.70 (0.62, 0.77)    |
| *I <sup>2</sup> <80%. |                                 |                       |                        |                      |
| + Not pooled. Based   | v                               |                       |                        |                      |
| ++ Pooled results of  | only two studies                |                       |                        |                      |

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

Table 4: Pooled adherence results from studies reporting adherence to more than one drug in the same cohort

|                                                          |                             | e at 6 months<br>dex date | Adherence at 1 year<br>post index date |                        |  |  |
|----------------------------------------------------------|-----------------------------|---------------------------|----------------------------------------|------------------------|--|--|
|                                                          | Number of unique<br>studies | Odds ratio<br>(95% CI)    | Number of unique<br>studies            | Odds ratio<br>(95% CI) |  |  |
| Apixaban vs dabigatran                                   | 3                           | 1.24 (1.07, 1.45)         | 5                                      | 1.76 (1.35, 2.29)      |  |  |
| Rivaroxaban vs dabigatran                                | 5                           | 1.39 (1.15, 1.67)         | 8                                      | 1.17 (0.38, 3.60)      |  |  |
| Rivaroxaban vs apixaban                                  | 4                           | 0.80 (0.51, 1.24)         | 5                                      | 1.02 (0.79, 1.33)      |  |  |
|                                                          | Sub-an:                     | alysis: By adherence me   | etric                                  |                        |  |  |
|                                                          |                             | MPR                       |                                        |                        |  |  |
| Apixaban vs dabigatran                                   | NA                          | NA                        | 2                                      | 2.49 (0.98, 6.30)      |  |  |
| Rivaroxaban vs dabigatran                                | 1                           | 1.63 (1.36, 1.94)         | 3                                      | 2.10 (1.56, 2.81)      |  |  |
| Rivaroxaban vs apixaban                                  | NA                          | NA                        | 2                                      | 0.90 (0.54,1.17)       |  |  |
|                                                          |                             | PDC                       | 1 1                                    |                        |  |  |
| Apixaban vs dabigatran                                   | 3                           | 1.24 (1.07, 1.45)         | 3                                      | 1.41 (0.99, 2.01)      |  |  |
| Rivaroxaban vs dabigatran                                | 4                           | 1.34 (1.09, 1.65)         | 5                                      | 0.82 (0.18, 3.69)      |  |  |
| Rivaroxaban vs apixaban                                  | 4                           | 0.80 (0.51, 1.24)         | 3                                      | 1.13 (0.71, 1.82)      |  |  |
| *I <sup>2</sup> <80%.<br>+ Not pooled. Based on one stud |                             | 4                         |                                        |                        |  |  |
|                                                          |                             |                           |                                        |                        |  |  |
|                                                          |                             |                           |                                        |                        |  |  |





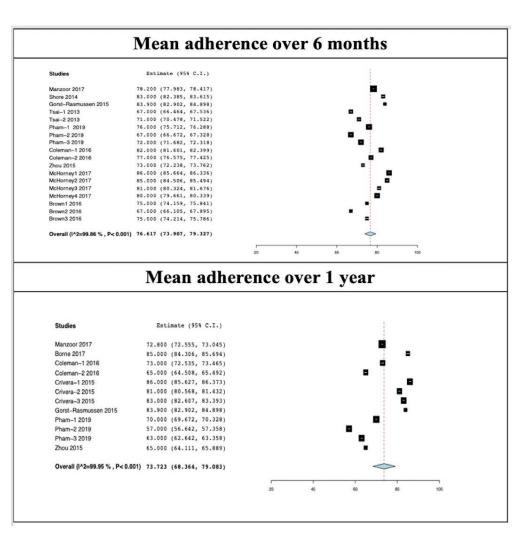



Figure 2.0: Forest plots illustrating patients' mean adherence scores over six-month and one-year post index date. See Supplementary 4 for additional forest plots for each OAC and subgroup analyses.

90x90mm (300 x 300 DPI)



# PRISMA 2009 Checklist (Supplementary 1a)

| age 41 of 80              |          | BMJ Open                                                                                                                                                                                                                                                                                                    |                                                                                     |
|---------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| PRISMA                    | 2009     | Checklist (Supplementary 1a)                                                                                                                                                                                                                                                                                |                                                                                     |
| Section/topic             | #        | Checklist item                                                                                                                                                                                                                                                                                              | Reported on page #                                                                  |
| TITLE                     | <u>.</u> | 7000<br>8000<br>0                                                                                                                                                                                                                                                                                           |                                                                                     |
| Title                     | 1        | Identify the report as a systematic review, meta-analysis, or both.     ∞       ⊘     ⊘                                                                                                                                                                                                                     | Cover page<br>1                                                                     |
| ABSTRACT                  |          | ii 20                                                                                                                                                                                                                                                                                                       |                                                                                     |
| Structured summary        | 2        | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. | Abstract<br>2                                                                       |
| INTRODUCTION              |          | a<br>de                                                                                                                                                                                                                                                                                                     |                                                                                     |
| Rationale                 | 3        | Describe the rationale for the review in the context of what is already known.                                                                                                                                                                                                                              | Introduction<br>4                                                                   |
| Objectives                | 4        | Provide an explicit statement of questions being addressed with reference to participants, interventions comparisons, outcomes, and study design (PICOS).                                                                                                                                                   | s, Introduction<br>4                                                                |
| METHODS                   |          |                                                                                                                                                                                                                                                                                                             |                                                                                     |
| Protocol and registration | 5        | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if availab provide registration information including registration number.                                                                                                                                  | le, NA                                                                              |
| 5 Eligibility criteria    | 6        | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g. years considered, language, publication status) used as criteria for eligibility, giving rationale.                                                                                                       | Inclusion criteria and<br>study selection<br>5                                      |
| Information sources       | 7        | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.                                                                                                                                  | Search strategy<br>5                                                                |
| Search                    | 8        | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.                                                                                                                                                                               | Supplementary<br>File 2                                                             |
| Study selection           | 9        | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                                                                                                                   | Inclusion criteria and<br>study selection, Data<br>extraction and synthesis<br>5, 6 |
| Data collection process   | 10       | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and<br>any processes for obtaining and confirming data from investigators.                                                                                                                               | Inclusion criteria and<br>study selection, Data<br>extraction and synthesis<br>5, 6 |
| Data items                | 11       | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.                                                                                                                                                                       | Inclusion criteria and<br>study selection, Data                                     |
| 4<br>5                    |          | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                   | extraction and synthesis 5, 6                                                       |



# PRISMA 2009 Checklist (Supplementary 1a)

|                                    |     | BMJ Open 36/6                                                                                                                                                                                                          | Page 42 of                                                            |
|------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| PRISMA 2                           | 009 | Checklist (Supplementary 1a)                                                                                                                                                                                           |                                                                       |
| Risk of bias in individual studies | 12  | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. | Supplementary File 3,<br>Quality assessment, Data<br>analysis<br>6, 7 |
| Summary measures                   | 13  | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                          | Data analysis<br>6, 7                                                 |
| Synthesis of results               | 14  | Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I <sup>2</sup> ) for each meta-analysis.                                                     | Data analysis<br>6, 7                                                 |
| Risk of bias across studies        | 15  | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).                                                                           | Supplementary File 3,<br>Quality assessment, Data<br>analysis<br>7    |
| Additional analyses                | 16  | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.                                                                       | Data analysis<br>6, 7                                                 |
| RESULTS                            | -   | Ť<br>Ţ                                                                                                                                                                                                                 |                                                                       |
| Study selection                    | 17  | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.                                                        | Results<br>9                                                          |
| Study characteristics              | 18  | For each study, present characteristics for which data were extracted (e.g., study size, PICOS follow-up period) and provide the citations.                                                                            | Table 1<br>31, 32                                                     |
| Risk of bias within studies        | 19  | Present data on risk of bias of each study and, if available, any outcome level assessment (segitem 12).                                                                                                               | Supplementary File 3,<br>Quality assessment<br>7                      |
| Results of individual studies      | 20  | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary=data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.               | Table 2<br>33, 34                                                     |
| Synthesis of results               | 21  | Present results of each meta-analysis done, including confidence intervals and measures of $c \partial \sigma$ is sistency.                                                                                            | Table 3,4<br>37, 37                                                   |
| Risk of bias across studies        | 22  | Present results of any assessment of risk of bias across studies (see Item 15).                                                                                                                                        | Supplementary File 4.                                                 |
| Additional analysis                | 23  | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).                                                                                                  | Table 3<br>36                                                         |
| DISCUSSION                         |     | otec                                                                                                                                                                                                                   |                                                                       |
| Summary of evidence                | 24  | Summarize the main findings including the strength of evidence for each main outcome; con det their relevance to key groups (e.g., healthcare providers, users, and policy makers).                                    | Discussion<br>12                                                      |
| Limitations                        | 25  | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).                                                          | Limitations<br>14                                                     |
| Conclusions                        | 26  | Provide a general interpretation of the results in the context of other evidence, and implications for future research peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                           | Discussion, Future<br>directions                                      |

| Page 43 of 80                                                                                                                                                                                                                                | 1                                               |         | BMJ Open                                                                                                                         | .1136/               |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|
| 1<br>2                                                                                                                                                                                                                                       | PRISMA 20                                       | 09 (    | Checklist (Supplementary 1a)                                                                                                     | bmiopen-2            |                         |
| 3                                                                                                                                                                                                                                            |                                                 |         |                                                                                                                                  | 019                  | 12, 13, 14, 15          |
| 4<br>5 <b>EUNIDIN</b>                                                                                                                                                                                                                        |                                                 |         |                                                                                                                                  |                      |                         |
| 6 FUNDIN                                                                                                                                                                                                                                     | G                                               |         |                                                                                                                                  | 7                    |                         |
| 7 Funding                                                                                                                                                                                                                                    |                                                 | 27      | Describe sources of funding for the systematic review and other support (e.g., supply of data funders for the systematic review. | bg role of<br>∞<br>≽ | Funding<br>16           |
| 9<br>10 <i>From:</i> M<br>11 Statement<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44 | Ioher D, Liberati A, T<br>t. PLoS Med 6(6): e10 | °etzlai | Cerreview only                                                                                                                   | 20.                  | ta-Analyses: The PRISMA |
| 45<br>46<br>47                                                                                                                                                                                                                               |                                                 |         | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                        |                      |                         |

# **MOOSE** Guidelines (Supplementary 1b)

| BMJ Open                                                                                                                                                    | .1136/                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| MOOSE Guidelines (Supp                                                                                                                                      | plementary 1b)                                                                                                                                        |
| MOOSE Guidelines for Meta-Analyses and Systematic Reviews of Observational St                                                                               |                                                                                                                                                       |
| Background                                                                                                                                                  | 7778                                                                                                                                                  |
| Problem definition                                                                                                                                          | Introduction <sup>9</sup><br>4 <sup>20</sup>                                                                                                          |
| Hypothesis statement                                                                                                                                        | NA- The study is mostly descriptive                                                                                                                   |
| Description of study outcomes                                                                                                                               | Introduction, Data extraction and synthesis<br>4, 6                                                                                                   |
| Type of exposure or intervention used                                                                                                                       | Introduction, Inclusion criteria and study selection<br>4, 5                                                                                          |
| Type of study design used                                                                                                                                   | Inclusion criteria and study selection<br>5                                                                                                           |
| Study population                                                                                                                                            | Inclusion criteria and study selection<br>5 ₽                                                                                                         |
| Search Strategy                                                                                                                                             | ф://                                                                                                                                                  |
| Qualification of searchers                                                                                                                                  | Search strategy 5                                                                                                                                     |
| Search strategy including time periods included in the synthesis and keywords                                                                               | Supplementary File 2, Search strategy                                                                                                                 |
| Effort to include all available studies, including contact with authors                                                                                     | Inclusion criteria and study selection<br>5, Authors were not contacted                                                                               |
| Databases and registries searched                                                                                                                           | Search strategy 5                                                                                                                                     |
| Search software used, name and version, including special features used                                                                                     | NA 5                                                                                                                                                  |
| Use of hand searching                                                                                                                                       | Search strategy 5                                                                                                                                     |
| List of citations located and those excluded                                                                                                                | Figure 1.0: PRISMA flow charge                                                                                                                        |
| Method of addressing articles published in languages other than English                                                                                     | Inclusion criteria and study selection                                                                                                                |
| Method of handling abstracts and unpublished studies                                                                                                        | Inclusion criteria and study selection                                                                                                                |
| Description of any contact with authors                                                                                                                     | All relevant information for this systematic review<br>could be found in the published reports. There was no<br>need to contact the respective athors |
| Methods                                                                                                                                                     |                                                                                                                                                       |
| Description of relevance or appropriateness of studies assembled for assessing the<br>hypothesis to be tested For peer review only - http://bmjopen.bmj.com | Introduction, Supplementary File 3<br>/site/apout/guidelines.xhtml                                                                                    |

# **MOOSE** Guidelines (Supplementary 1b)

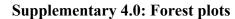
| 45 of 80                                                                                  | BMJ Open                                                                                                                                            | 1136/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                           | <b>MOOSE</b> Guidelines (Supple                                                                                                                     | mentary 1b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Rationale for the selection and coding of d                                               | ata (eg, sound clinical principles or convenience)                                                                                                  | Introduction, Inclusion criteria and study selection,<br>Data extraction and synthesis, Bata analysis<br>4, 5, 6, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Documentation of how data were classified interrater reliability)                         | d and coded (eg, multiple raters, blinding, and                                                                                                     | Inclusion criteria and study selection, Data extraction and synthesis, Data analysis $\int_{\infty}^{\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Assessment of confounding (eg, comparab<br>appropriate)                                   | ility of cases and controls in studies where                                                                                                        | NA <sup>n</sup><br>202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Assessment of study quality, including blir<br>regression on possible predictors of study |                                                                                                                                                     | Data analysis. Quality assessment<br>6, 7 §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Assessment of heterogeneity                                                               | Vr.                                                                                                                                                 | Data analysis 7<br>7 Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| models, justification of whether the chosen                                               | plete description of fixed or random effects<br>models account for predictors of study results,<br>-analysis) in sufficient detail to be replicated | Data analysis<br>6, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Provision of appropriate tables and graphic                                               | 2S                                                                                                                                                  | Figure 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Results                                                                                   |                                                                                                                                                     | öp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Graphic summarizing individual study esti                                                 | mates and overall estimate                                                                                                                          | Figures 2 and 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table giving descriptive information for ea                                               | ch study included                                                                                                                                   | Tables 1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Results of sensitivity testing (eg, subgroup                                              | analysis)                                                                                                                                           | Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Indication of statistical uncertainty of find                                             | ngs                                                                                                                                                 | Results 2<br>10 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Discussion                                                                                |                                                                                                                                                     | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Quantitative assessment of bias (eg, public                                               | ation bias)                                                                                                                                         | Supplementary File 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Justification for exclusion (eg, exclusion o                                              |                                                                                                                                                     | Inclusion criteria and study selection. Limitations 5, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Assessment of quality of included studies                                                 |                                                                                                                                                     | Supplementary File 3, Results, Fable 1<br>9, 31, 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Conclusion                                                                                |                                                                                                                                                     | est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Consideration of alternative explanations f                                               |                                                                                                                                                     | Discussion<br>12, 13, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Generalization of the conclusions (ie, appr<br>domain of the literature review)           | opriate for the data presented and within the                                                                                                       | Discussion P<br>12, 13, 14 D<br>Limitations D<br>14 D<br>Limitations D<br>Li |
| Guidelines for future research                                                            |                                                                                                                                                     | 15 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Disclosure of funding sources                                                             |                                                                                                                                                     | Funding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

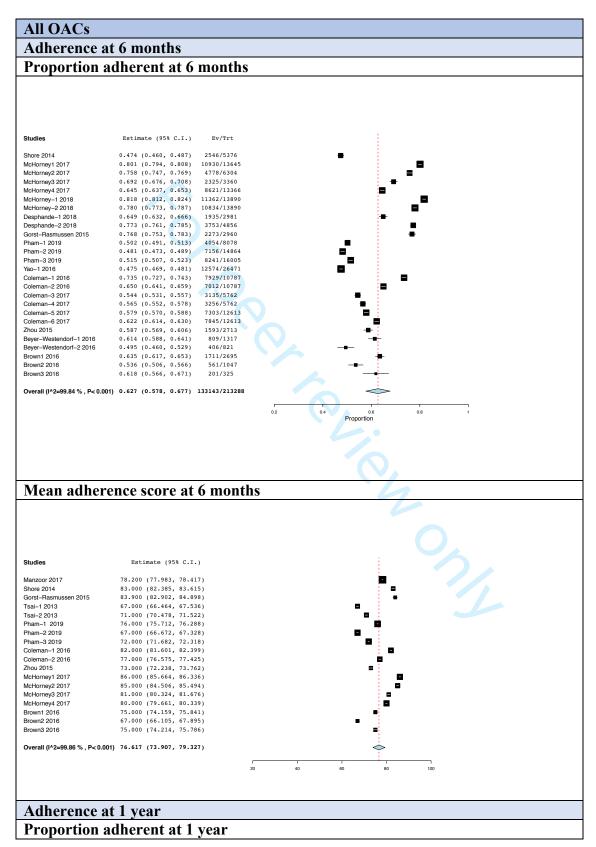
| 2        |
|----------|
|          |
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| /        |
| 8        |
| 9        |
| 10       |
| 11       |
|          |
|          |
| 13       |
| 14       |
| 15       |
| 16       |
| 16<br>17 |
| 1/       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| 22       |
| 23       |
| 24       |
| 25       |
| 26       |
| 27       |
|          |
| 28       |
| 29       |
| 30       |
| 31       |
| 32       |
| 22       |
| 33       |
| 34       |
| 35       |
| 36       |
| 37       |
|          |
| 38       |
| 39       |
| 40       |
| 41       |
| 42       |
|          |
| 43       |
| 44       |
| 45       |
| 46       |
| 47       |
|          |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
|          |
| 53       |
| 54       |
| 55       |
| 56       |
| 57       |
| 58       |
| 20       |

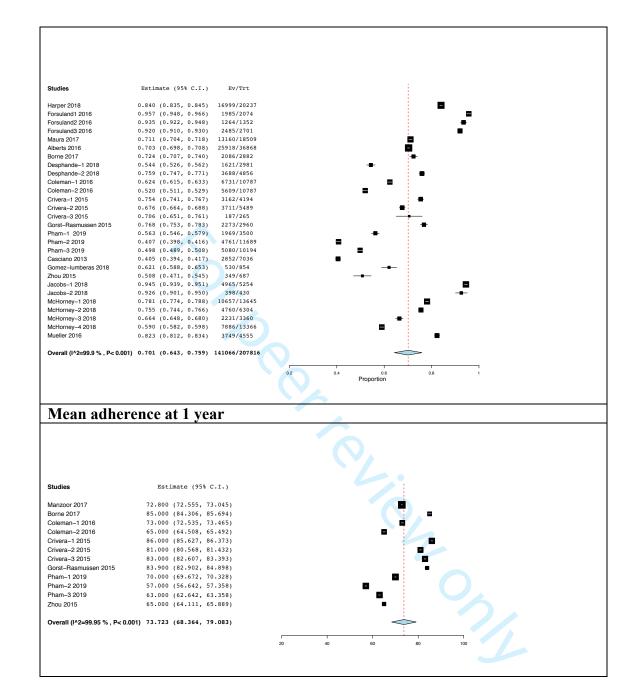
1

## Supplementary file 1: Literature search

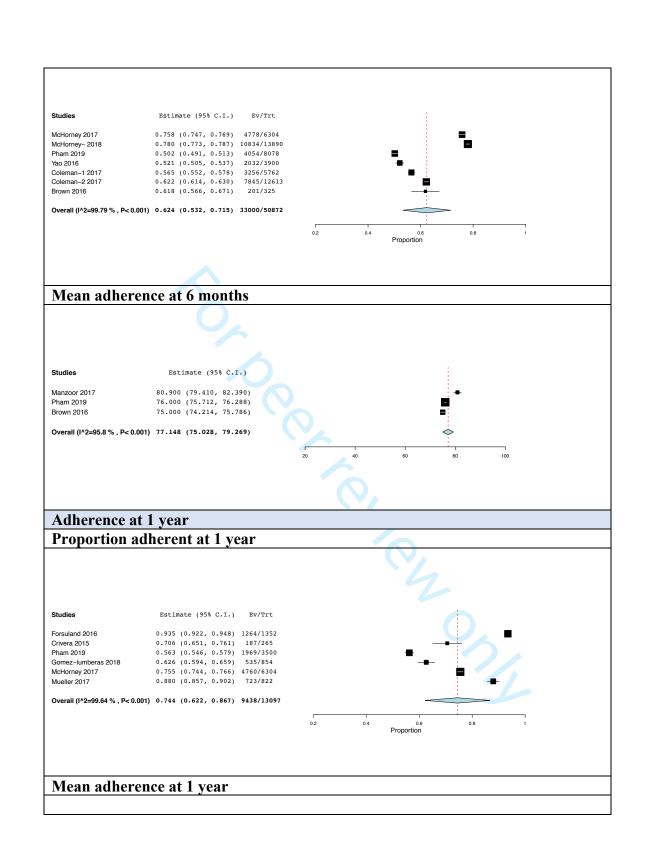
| Concept             | Keywords                                                                                                                                                                                                                                                                                                                                                                        | MeSH terms (Pubmed)                                     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Medications         | Anticoagulant* OR "blood thinner" OR<br>"Vitamin K antagonists"OR "new oral<br>anticoagulants" OR VKA OR NOAC OR<br>DOAC OR Apixaban OR Eliquis OR<br>dabigatran OR "dabigatran etexilate" mesylate<br>OR pradaxa OR edoxaban OR lixiana OR<br>rivaroxaban OR xarelto OR warfarin OR<br>coumadin OR betrixaban OR bevyxxa OR<br>acenocoumarol OR phenprocoumon OR<br>fluindione | Warfarin<br>Anticoagulants<br>Dabigatran<br>Rivaroxaban |
| Adherence           | Adherence OR persistence OR compliance<br>"Medication taking" OR "discontinuation"<br>OR "nonpersistence" OR "nonadherence"<br>OR "noncompliance"                                                                                                                                                                                                                               | Treatment Adherence and Compliance"[Mesh])              |
| Atrial fibrillation | "atrial fibrillation" OR NVAF OR "non-<br>valvular atrial fibrillation"                                                                                                                                                                                                                                                                                                         | atrial fibrillation                                     |


### Complete search example for Pubmed:


| Page 47 of 80                                                                                                                                                                                                                                                                                  |            |                     |                                 |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   | BM                    | IJ Ope                             | 'n                             |                    |                 |                     |                     |                | 36/bmjopen-2019  |                           |                      |                      |                     |              |               |                      |              |             |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|---------------------------------|---------------|-------------------|----------------------|---------------------|---------------------|------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------|-----------------------|------------------------------------|--------------------------------|--------------------|-----------------|---------------------|---------------------|----------------|------------------|---------------------------|----------------------|----------------------|---------------------|--------------|---------------|----------------------|--------------|-------------|--------------|
| 1<br>2                                                                                                                                                                                                                                                                                         |            |                     |                                 |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   |                       |                                    |                                |                    |                 |                     |                     |                | <u>1</u>         |                           |                      |                      |                     |              |               |                      |              |             |              |
| 3<br>4<br>5 <b>STROBE</b><br>6<br>7                                                                                                                                                                                                                                                            | CODE       | Alber<br>ts<br>2016 | Beyer<br>Weste<br>ndorf<br>2016 | Borne<br>2017 | Brow<br>n<br>2016 | Casci<br>ano<br>2013 | Cole<br>man<br>2016 | Cole<br>man<br>2017 | Criver<br>a 2015 | Desh<br>pand<br>e 2018<br>PMI<br>D:<br>29694<br>285 | Desh<br>pand<br>e 2018<br>PMI<br>D:<br>29334<br>815 | Eape<br>n<br>2014 | Forsu<br>land<br>2016 | Gome<br>z-<br>Lum<br>beras<br>2018 | Gorst<br>Rasm<br>ussen<br>2015 | Harp<br>er<br>2018 | Jacob<br>s 2018 | Manz<br>oor<br>2017 | Marq<br>uez<br>2016 | Maur<br>a 2017 | 034778 on 8 A    | McC<br>ormic<br>k<br>2001 | McH<br>orney<br>2017 | McH<br>orney<br>2018 | Muell<br>er<br>2017 | Pham<br>2019 | Shore<br>2014 | Soren<br>sen<br>2017 | Tsai<br>2013 | Yao<br>2016 | Zhou<br>2015 |
| Title and abstract<br>Edicate the study's design with a<br>commonly used term in the title or the<br>abstract                                                                                                                                                                                  | 1a         | 0                   | 0                               | 0             | 0                 | 0                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 0                 | 0                     | 1                                  | 1                              | 1                  | 0               | 0                   | 0                   | 0              | 1 2              | 1                         | 0                    | 0                    | 0                   | 0            | 1             | 0                    | 0            | 0           | 0            |
| apstract<br>Provide in the abstract an informative<br>and alanced summary of what was done<br>and what was found.                                                                                                                                                                              | 1b         | 0                   | 1                               | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 0                 | 0                     | 0                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              | 1 020.           | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Biclground/rationale: Explain the<br>scientific background and rationale for<br>tile westigation being reported                                                                                                                                                                                | 2          | 1                   | 1                               | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              |                  | 1                         | 1                    | 0                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Objective: State specific objectives,<br>inclding any prespecified hypothesis.                                                                                                                                                                                                                 | 3          | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              |                  | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Study design: Present key elements of<br>study design early in the paper                                                                                                                                                                                                                       | 4          | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              |                  | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Setting: Describe the setting, locations,<br>add gelevant dates, including periods of<br>recruitment exposure follow-up and                                                                                                                                                                    | 5          | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 0                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              | ed fro           | 0                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| duccollection.<br>Participants: Give the eligibility criteria,<br>apd ne sources and methods of selection<br>of participants                                                                                                                                                                   | 6a         | 1                   | 1                               | 1             | 1                 | 0                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 0                  | 0               | 1                   | 1                   | 1              |                  |                           | 1                    | 1                    | 0                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Progratched studies, give matching<br>chiefia and number of exposed and<br>upprocessed                                                                                                                                                                                                         | 6b         | 1                   | NA                              | NA            | NA                | NA                   | 1                   | 1                   | NA               | NA                                                  | 1                                                   | NA                | NA                    | NA                                 | NA                             | NA                 | NA              | NA                  | NA                  | NA             | NA               | NA                        | NA                   | 1                    | NA                  | NA           | NA            | NA                   | NA           | 1           | NA           |
| Variables: Clearly define all outcomes,<br>Surgers, predictors, potential<br>Counders, and effect modifiers. Give                                                                                                                                                                              | 7          | 0                   | 1                               | 0             | 1                 | 0                    | 0                   | 1                   | 1                | 1                                                   | 0                                                   | 1                 | 1                     | 1                                  | 1                              | 0                  | 1               | 1                   | 1                   | 1              | 1 O              | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 0            | 1           | 1            |
| degnostic criteria, if applicable.<br>Math sources/measurement: For each<br>wrighle of interest, give sources of data<br>actification of the sources of data<br>actification of the sources of the sources<br>(mesurement). Describe comparability<br>of the sessment methods if there is more | 8          | 0                   | 1                               | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              | pen.bmj.co       |                           | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| than one grou<br>224Describe any efforts to address potential sources of bias (e.g. Propensity<br>3055)                                                                                                                                                                                        | 9          | 1                   | 0                               | 0             | 0                 | 0                    | 1                   | 1                   | 0                | 1                                                   | 1                                                   | 0                 | 0                     | 0                                  | 0                              | 0                  | 1               | 1                   | 1                   | 1              | 0 <b>/ WC</b>    | 1                         | 1                    | 1                    | 0                   | 1            | 1             | 0                    | 0            | 0           | 0            |
| Study size: Explain how the study size                                                                                                                                                                                                                                                         | 10         | 0                   | 0                               | 0             | 0                 | 0                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 0                 | 0                     | 0                                  | 0                              | 0                  | 0               | 0                   | 1                   | 0              | 0 0              | 0                         | 0                    | 0                    | 0                   | 0            | 0             | 0                    | 0            | 0           | 0            |
| Quantitative variables/ statistical<br>analysis:                                                                                                                                                                                                                                               |            |                     |                                 |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   |                       |                                    |                                |                    |                 |                     |                     |                |                  |                           |                      |                      |                     |              |               |                      |              |             |              |
| Explain how quantitative variables were<br><b>D22</b> of in the analyses. If applicable,<br>describe which groupings were chosen,<br><b>apQ</b> -hy. (categorizing)                                                                                                                            | 11         | 0                   | 1                               | 1             | 1                 | 1                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 1                 | 1                     | 1                                  | 1                              | 0                  | 1               | 0                   | 0                   | 1              | <sup>1</sup> 16, | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Describe all statistical methods, including<br>the used to control for confounding                                                                                                                                                                                                             | 12a        | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 0                  | 1               | 1                   | 1                   | 1              | 102              | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 0                    | 1            | 1           | 1            |
| Describe any methods used to examine<br>says roups and interactions                                                                                                                                                                                                                            | 12b        | 1                   | 0                               | 1             | 1                 | 0                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 0                     | 0                                  | 1                              | 0                  | 1               | 1                   | 0                   | 1              | 14               |                           | 1                    | 1                    | 0                   | 0            | 1             | 0                    | 1            | 1           | 1            |
| Explain how missing data were addressed<br>Trt study: If applicable, describe how<br>loss tofollow-up was addressed.                                                                                                                                                                           | 12c<br>12d | 0<br>NA             | 0<br>NA                         | 0<br>NA       | 0<br>NA           | 0<br>NA              | 0<br>NA             | 1<br>NA             | 0<br>NA          | 0<br>NA                                             | 0<br>NA                                             | 0<br>NA           | 0<br>NA               | 0<br>NA                            | 0<br>NA                        | 0<br>NA            | 0<br>NA         | 1<br>NA             | 0                   | 0<br>NA        |                  | 0<br>NA                   | 0<br>NA              | 0<br>NA              | 0<br>NA             | 0<br>NA      | 1<br>NA       | 0<br>NA              | 0<br>NA      | 0<br>NA     | 0<br>NA      |
| Describe any sensitivity analyses                                                                                                                                                                                                                                                              | 12u<br>12e | 0                   | 1                               | 1             | 0                 | 0                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 0                 | 1                     | 0                                  | 1                              | 0                  | 1               | 1                   | 0                   | 1              |                  |                           | 1                    | 1                    | 0                   | 0            | 1             | 1                    | 0            | 1           | 1            |
| Participants:<br>B44t the numbers of individuals at each<br>stage of the study—e.g., numbers<br>B45tally eligible, examined for<br>eligibility, confirmed eligible, included in<br>B40dy, completing follow-up, and<br>analysed.                                                               | 13a        | 0                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 0                  | 1               | 0                   | 0                   | 1              | st. Protect      | 0                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 0            | 0           | 1            |
| Syreasons for non-participation at each stage                                                                                                                                                                                                                                                  | 13b        | NA                  | NA                              | NA            | NA                | NA                   | NA                  | NA                  | NA               | NA                                                  | NA                                                  | NA                | NA                    | NA                                 | NA                             | NA                 | NA              | NA                  | 0                   | NA             | NA O             |                           | NA                   | NA                   | NA                  | NA           | NA            | NA                   | NA           | NA          | NA           |
| Descriptive data:                                                                                                                                                                                                                                                                              | 13c        | 0                   | 1                               | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 0                  | 0               | 0                   | 0                   | 1              |                  |                           | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 0            | 0           | 1            |
| <b>39</b><br>Give characteristics of study participants<br>(A.O.demographic, clinical, social) and                                                                                                                                                                                             | 14a        | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              | 1 py             |                           | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| 41<br>42                                                                                                                                                                                                                                                                                       |            |                     |                                 |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   |                       |                                    |                                |                    |                 |                     |                     |                | /right.          |                           |                      |                      |                     |              |               |                      |              |             | J            |

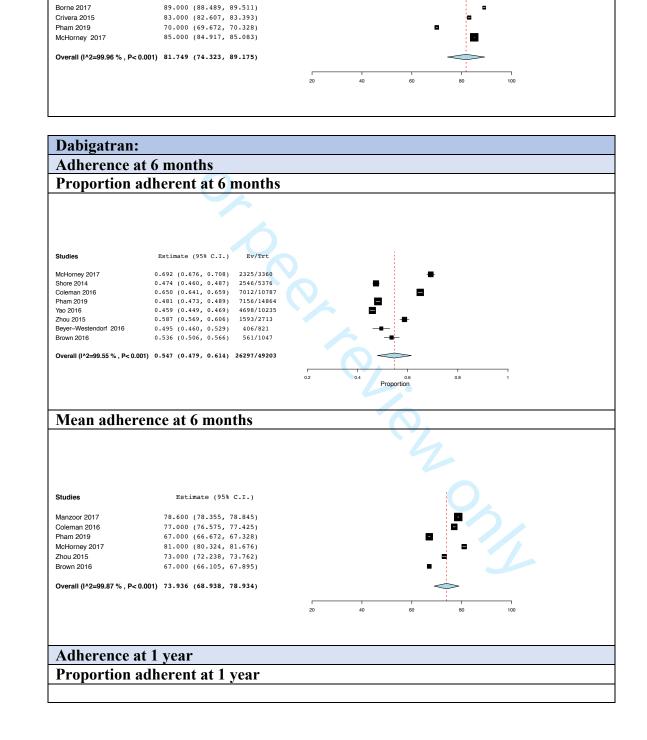

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

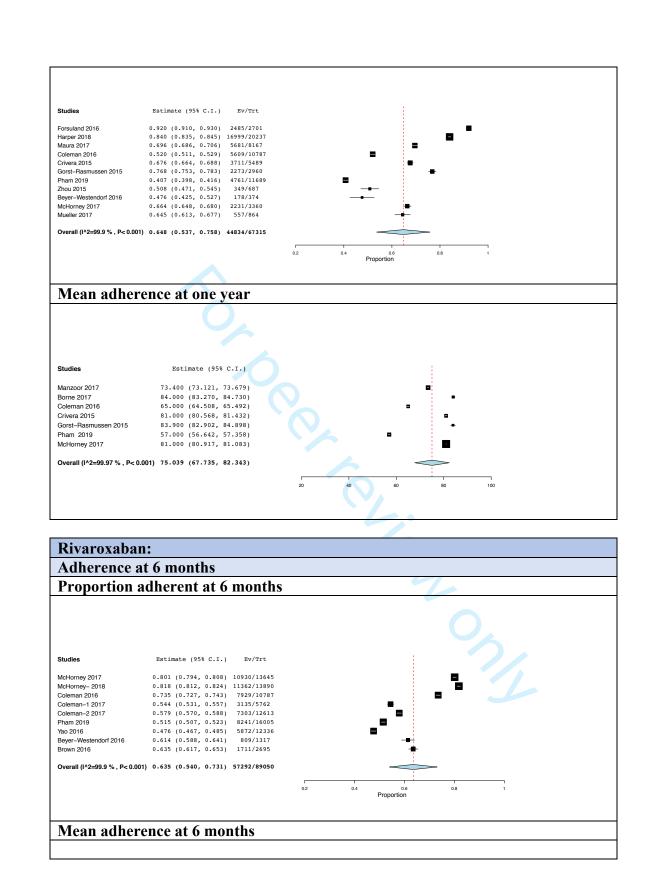
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |              |                 |        |                |        |               |                 |              |        |                 |             | BN              | 1) Ope | en  |              |                |     |       |                 | 36/bmjopen-2019-03           | -        |                 |                 |     |                 |     |                 | Pag | ge 48 c         | of 80            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-----------------|--------|----------------|--------|---------------|-----------------|--------------|--------|-----------------|-------------|-----------------|--------|-----|--------------|----------------|-----|-------|-----------------|------------------------------|----------|-----------------|-----------------|-----|-----------------|-----|-----------------|-----|-----------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | ∍n-2                         | <b>`</b> |                 |                 |     |                 |     |                 |     |                 |                  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | 019                          |          |                 |                 |     |                 |     |                 |     |                 | , I              |
| Z<br>Sormation on exposures and potential<br>confounders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I          | I            | I               | I      | 1              | I      | I             | I               | I            | 1      | I               | I.          | I.              | I      | I   | I            | I <sup>1</sup> | I ' | I     | I               | -03                          | J        | I               | 1 '             | 1   | I               | 1   | I ]             | . 1 | , i             | <sup>ا</sup> ر ر |
| confounders<br>Calciate the number of participants with<br>missing data for each variable of interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14b        | 0            | 0               | 0      | 0              | 0      | 0             | 0               | 0            | 0      | 1               | 0           | 0               | 1      | 0   | 0            | 0              | 0   | 0     | 0               | <u> </u>                     |          | 0               | 1               | 0   | 1               | 0   | 0               | 0   | 0               | 0                |
| missing data for each variable of interest.<br>Symmarise follow-up time (eg, average<br>and total amount)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14b<br>14c | 1            | 1               | 1      | 0              | 1      | 1             | 1               | 1            | 0      | 1               | 1           | 0               | -      | 0   | 0            | 1              | 0   | 1     | 1               | 0 78                         |          | 1               | 0               | 1   | 0               | 1   | 0               | 0   | 1               | 0                |
| and total amount)<br>Gitcome data: Report numbers of<br>outcome events or summary measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15         | 0            | +               | 0      |                | 0      |               | 0               | 0            |        |                 | 1           | 0               | 0      | 0   | 0            | 0              |     | 0     | 0               | 3                            |          |                 | 1               | 1   |                 |     | 0               | 0   |                 |                  |
| outcome events or summary measures<br>oyer time<br>Main results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15         |              | <u> </u>        | U U    | 1              |        | 1             | v               | U U          | 1      | 1               | 1           | U               | U      | U   | v            | 0              | 1   | U     | v               | <sup>1</sup> Ø               | U        | 1               | 1               | 1   | 1               | 1   |                 | 0   | 1               | 1                |
| Gre unadjusted estimates and, if<br>applicable, confounder-adjusted estimates<br>of their precision (e.g., 95% confidence<br>interval). Make clear which confounders<br>were adjusted for and why they were<br>included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16a        | 1            | 0               | 0      | 1              | 0      | 0             | 0               | 1            | 1      | 1               | 1           | 0               | 0      | 1   | 0            | 1              | 0   | 1     | NA              | vpril 2020.                  |          | 1               | 1               | 0   | 0               | 1   | 1               | 0   | 1               | 1                |
| Report category boundaries when<br>continuous variables were categorized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16b        | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1      | 1               | NA          | 1               | 1      | 1   | 1            | 1              | 1   | 1     | 1               | 1 Do                         |          | 1               | 1               | 1   | 1               | 1   | 1               | 1   | 1               | 1                |
| If relevant, consider translating estimates<br>of relative risk into absolute risk for a<br>meaningful time period<br>Other analysis: Report other analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16c        | NA           | NA              | NA     | NA             | NA     | NA            | NA              | NA           | NA     | NA              | NA          | NA              | NA     | NA  | NA           | NA             | NA  | NA    | NA              | NANIC                        |          | NA              | NA              | NA  | NA              | NA  | NA              | NA  | NA              | NA               |
| done—e.g., analyses of subgroups and<br>interactions and sensitivity analyses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17         | 1            | 1               | 1      | 1              | 1      | 0             | 1               | 1            | 1      | 1               | 1           | 1               | 0      | 1   | 0            | 1              | 1   | 0     | 1               | 1<br>1                       |          | 1               | 1               | 1   | 1               | 1   | 0               | 1   | 1               | 1                |
| Key results: Summarize key results with<br>reference to study objectives.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18         | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1      | 1               | 1           | 1               | 1      | 1   | 1            | 1              | 1   | 1     | 1               | ₁ fi                         | 1        | 1               | 1               | 1   | 1               | 1   | 1               | 1   | 1               | 1                |
| Limitations: Discuss limitations of the<br>sub, taking into account sources of<br>potential bias or imprecision. Discuss<br>but direction and magnitude of any<br>constraint bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19         | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1      |                 | 1           | 1               | 1      | 1   | 1            | 1              | 1   | 1     | 1               | rom ht                       |          | 1               | 1               | 1   | 1               | 1   | 1               | 1   | 1               | 1                |
| potential bias.<br>How the statistic of the second se | 20         | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1      | 1               | 1           | 1               | 1      | 1   | 1            | 1              | 1   | 1     | 1               | ttp://bmjo                   | 1        | 1               | 1               | 1   | 1               | 1   | 1               | 1   | 1               | 1                |
| gongralizability (external validity) of the<br>study results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21         | 1            | 0               | 1      | 1              | 1      | 1             | 1               | 1            | 1      | 1               | 1           | 1               | 1      | 1   | 1            | 1              | 1   | 1     | 1               | <sup>1</sup><br><sup>1</sup> | 0        | 1               | 1               | 1   | 1               | 1   | 1               | 1   | 1               | 1                |
| Funding: Give the source of funding and<br>the role of the funders for the present<br>syndy and, if applicable, for the original<br>study on which the present article is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22         | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1      | 1               | 1           | 1               | 1      | 1   |              | 1              | 0   | 1     | 0               | 1.bmj.cc                     | 1        | 1               | 1               | 1   | 1               |     | 1               | 1   | 1               | 1                |
| based<br>Suffi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 19           | 22              | 22     | 23             | 19     | 17            | 24              | 22           | 23     | 25              | 22          | 19              | 15     | 24  | 14           | 24             | 21  | 20    | 23              | 26                           | 18       | 26              | 26              | 21  | 23              | 27  | 20              | 18  | 24              | 24               |
| 25<br>Total applicable<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 31           | 30              | 30     | 30             | 30     | 31            | 31              | 30           | 30     | 31              | 29          | 30              | 30     | 30  | 30           | 30             | 30  | 32    | 29              | 30 <b>D</b>                  | 30       | 30              | 31              | 30  | 30              | 30  | 30              | 30  | 31              | 30               |
| 26<br>Soure<br>27<br>Percent<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 0.6129<br>03 | 0.7333<br>33333 | 0.7333 | 3 0.7666<br>67 | 0.6333 | 0.5483<br>871 | 0.7741<br>93548 | 0.7333<br>33 | 0.7666 | 0.8064<br>51613 | 0.7586<br>2 | 0.6333<br>33333 | 0.5    | 0.8 | 0.4666<br>67 | 0.8            | 0.7 | 0.625 | 0.7931<br>03448 | 0.866 <b>6</b><br>66667      | 0.6      | 0.8666<br>66667 | 0.8387<br>09677 | 0.7 | 0.7666<br>66667 | 0.9 | 0.6666<br>66667 | 0.6 | 0.7741<br>93548 | 0.8              |
| Percent<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 61           | 73              | 73     |                | 63     | 55            | 77              | 73           | 77     | 81              | 76          | 63              | 50     | 80  | 47           | 80             | 70  | 63    | 79              | 87                           |          | 87              | 84              | 70  | 77              | 90  | 67              | 60  | 77              | 80               |
| 29<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | 6, 2024                      | ×        |                 |                 |     |                 |     |                 |     |                 |                  |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | 4 by                         | -        |                 |                 |     |                 |     |                 |     |                 | I                |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | ,<br>gu                      |          |                 |                 |     |                 |     |                 |     |                 |                  |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | guest.                       | 1        |                 |                 |     |                 |     |                 |     |                 |                  |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | יין דיין<br>דיי              | J        |                 |                 |     |                 |     |                 |     |                 |                  |
| 34<br>35<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | ote                          | •        |                 |                 |     |                 |     |                 |     |                 |                  |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | ;cte                         | ,        |                 |                 |     |                 |     |                 |     |                 |                  |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | ä<br>o                       | 2        |                 |                 |     |                 |     |                 |     |                 |                  |
| 38<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | Protected by copyright.      |          |                 |                 |     |                 |     |                 |     |                 |                  |
| 39<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | opy                          |          |                 |                 |     |                 |     |                 |     |                 |                  |
| 40<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | /rig                         | -        |                 |                 |     |                 |     |                 |     |                 |                  |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | nt.                          | *        |                 |                 |     |                 |     |                 |     |                 |                  |

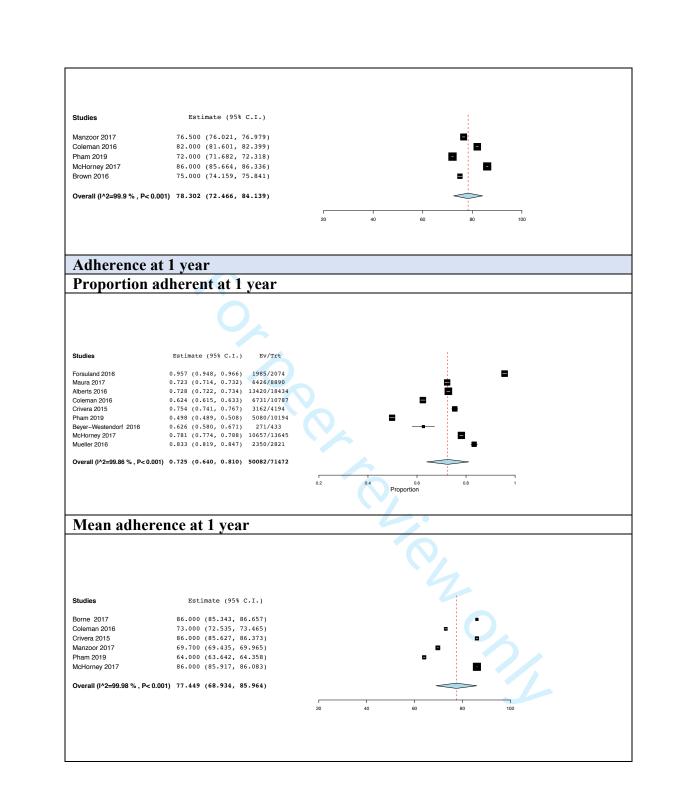

| Page 49                                           | 9 of 80                                                                                                          |                  |                                      |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       | BMJ C                              | )pen                                |                    |                 |                     |                     |                |                       | 36/bmjopen-2019           |                     |                      |                     |                   |               |                      |              |             |              |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|---------------|----------------|----------------------|---------------------|---------------------|------------------|----------------------------------------------------|----------------------------------------------------|----------------|-----------------------|------------------------------------|-------------------------------------|--------------------|-----------------|---------------------|---------------------|----------------|-----------------------|---------------------------|---------------------|----------------------|---------------------|-------------------|---------------|----------------------|--------------|-------------|--------------|
| 2<br>B Item<br>4<br>5                             | ISPOR                                                                                                            | Albert<br>s 2016 | Beyer<br>-<br>Weste<br>ndorf<br>2016 | Borne<br>2017 | Brow<br>n 2016 | Casci<br>ano<br>2013 | Cole<br>man<br>2016 | Cole<br>man<br>2017 | Criver<br>a 2015 | Desh<br>pande<br>2018<br>PMI<br>D:<br>29694<br>285 | Desh<br>pande<br>2018<br>PMI<br>D:<br>29334<br>815 | Eape<br>n 2014 | Forsu<br>land<br>2016 | Gome<br>z-<br>Lumb<br>eras<br>2018 | Gorst<br>-<br>Rasm<br>ussen<br>2015 | Harp<br>er<br>2018 | Jacob<br>s 2018 | Manz<br>oor<br>2017 | Marq<br>uez<br>2006 | Maur<br>a 2017 | McAli<br>ster<br>2018 | 19-0334778 on             | McH<br>omey<br>2017 | McH<br>orney<br>2018 | Muell<br>er<br>2017 | Phar<br>m<br>2019 | Shore<br>2014 | Soren<br>son<br>2017 | Tsai<br>2013 | Yao<br>2016 | Zhou<br>2015 |
| 7 1                                               | Title / Abstract<br>Title is descriptive and reflective                                                          | 0                | 0                                    | 0             | 0              | 0                    | 0                   | 0                   | 0                | 0                                                  | 0                                                  | 0              | 0                     | 1                                  | 1                                   | 1                  | 0               | 0                   | 0                   | 1              | 1                     | $\mathbf{D}_0$            | 1                   | 1                    | 0                   | 0                 | 1             | 0                    | 0            | 0           | 0            |
| <b>8</b> <sup>2</sup>                             | of study purpose<br>Abstract is a concise and<br>accurate, reflecting contents of                                | 0                | 1                                    | 1             | 1              | 1                    | 0                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 0                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     | р<br>гіі                  | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 9                                                 | the study Introduction Classer of feedbacetel                                                                    |                  |                                      |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       |                                    |                                     |                    |                 |                     |                     |                |                       | 202                       |                     |                      |                     |                   |               |                      |              |             |              |
| 10                                                | Clear review of fundamental<br>literature related to topic                                                       | 1                | 1                                    | 1             | 1              | 1                    | 0                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     | 20 <sub>1</sub>           | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 13                                                | Objectives and Definitions<br>Objective(s) stated?                                                               | 1                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     |                           | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 13                                                | Design and Methods<br>Study design appropriate for                                                               |                  |                                      | 4             | 1              |                      |                     | 1                   | 1                | 1                                                  |                                                    | 1              |                       | 1                                  | 4                                   |                    |                 | 4                   | 1                   | 4              | 4                     |                           | 1                   | 4                    | 1                   | 4                 | 1             | 1                    | 4            | 4           |              |
| 14                                                | objectives<br>Data sources adequately                                                                            | 1                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     |                           | 1                   | 1                    | 1                   | 1                 | 0             | 1                    | 1            | 1           | 1            |
| 15                                                | described<br>Evidence provided for reliability                                                                   | 0                | 0                                    | 0             | 0              | 0                    | 0                   | 1                   | 0                | 0                                                  | 0                                                  | 0              | 0                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     |                           | 1                   | 1                    | 1                   | 1                 | 1             | 0                    | 1            | 0           | 0            |
| 16                                                | / acuracy of data<br>Sampling methods described                                                                  | NA               | NA                                   | NA            | NA             | NA                   | NA                  | NA                  | NA               | NA                                                 | NA                                                 | NA             | NA                    | NA                                 | NA                                  | NA                 | NA              | 1                   | NA                  | NA             | NA                    | ONA                       | NA                  | NA                   | NA                  | NA                | NA NA         | NA                   | NA           | NA          | NA           |
| 17                                                | Well describe patient population<br>and Subject inclusion / exclusion<br>criteria stated                         | 1                | 1                                    | 1             | 1              | 0                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     |                           | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 0            | 1           | 1            |
| 18<br>10                                          | Sufficient data to make valid<br>estimate of compliance (i.e.<br>Continuous eligibility for drug                 | 0                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 1                                  | 1                                   | 0                  | 1               | 0                   | 1                   | 1              | 1                     | tp://bi                   | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 19<br>20                                          | during study period verified)<br>Sufficient pre-enrollment period<br>to ensure drug naivety? (If                 | NA               | 1                                    | NA            | 1              | 1                    | NA                  | 1                   | NA               | NA                                                 | NA                                                 | 1              | NA                    | NA                                 | NA                                  | 0                  | NA              | 1                   | NA                  | 1              | 1                     | ONA                       | 1                   | 1                    | 0                   | 1                 | NA            | 1                    | NA           | 1           | 1            |
| 212                                               | applicable)<br>Explanation of how patients who                                                                   |                  |                                      |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       |                                    |                                     |                    |                 |                     |                     | •              |                       | pen                       |                     | *                    | 0                   |                   |               |                      |              |             |              |
| 22<br>235                                         | switched drugs within or<br>between therapeutic classes were<br>handled<br>Explicit definition of                | 0                | 0                                    | 0             | 1              | 0                    | 0                   | 1                   | 1                | 0                                                  | 0                                                  | 0              | 1                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 0                   | 1              | NA                    | <b>D</b> NA               | 0                   | 1                    | 0                   | 1                 | 1             | 0                    | 1            | 1           | 1            |
| 24                                                | compliance/persistence based on<br>published, accepted definition?                                               | 1                | 1                                    | 1             | 1              | 1                    | 0                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 1                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 0                     |                           | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 25 <sup>14</sup>                                  | Methods for calculating<br>compliance / persistence clearly<br>described (and matches<br>operational definition) | 1                | 1                                    | 1             | 0              | 1                    | 0                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     | n/ on                     | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 26<br>27                                          | Was handling of medication gaps<br>described                                                                     | 0                | 0                                    | 0             | 1              | 1                    | 0                   | 0                   | 0                | 1                                                  | 1                                                  | 0              | 0                     | 0                                  | 1                                   | 1                  | 0               | 0                   | 1                   | 1              | 1                     | Apr<br>Ppr                | 0                   | 1                    | 0                   | 1                 | 1             | 0                    | 0            | 0           | 0            |
| 28                                                | Follow-up period specified<br>Statistics appropriate to design                                                   | 1                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 0                                  | 1                                   | 0                  | 0               | 1                   | 1                   | 1              | 1                     | <u>-i</u> 1<br><u>1</u> 1 | 1                   | 1                    | 1                   | 0                 | 1             | 1                    | 1            | 1           | 0            |
| 29                                                | and data<br>Test statistics are reported<br>appropriately (i.e. CIs, p-values                                    | 1                | 1                                    | 1             | 1              | 1                    | 0                   | 0                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     | 6, 2 <sup>1</sup>         | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 0            | 1           | 1            |
| <u>во</u>                                         | reported)<br>Appropriate descriptive data on<br>study sample are presented                                       | 1                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     | <b>2</b> 41               | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 81<br>32<br>32                                    | Distribution of<br>compliance/persistence variable<br>is presented (i.e. proportion of                           | 1                | 0                                    | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 0              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 0                   | 1              | 1                     | by g                      | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 33<br>Jaum                                        | discontinuers)                                                                                                   | 12               | 14                                   | 14            | 16             | 15                   | 9                   | 16                  | 11               | 15                                                 | 15                                                 | 14             | 11                    | 12                                 | 18                                  | 10                 | 15              | 17                  | 15                  | 19             | 17                    | uest <sub>14</sub>        | 17                  | 19                   | 10                  | 17                | 17            | 15                   | 14           | 16          | 15           |
| 84<br>B <sup>Total</sup>                          |                                                                                                                  | 18               | 19                                   | 18            | 10             | 19                   | 18                  | 19                  | 18               | 18                                                 | 18                                                 | 19             | 18                    | 18                                 | 18                                  | 19                 | 18              | 20                  | 18                  | 19             | 18                    | <b>P</b><br><b>O</b> 17   | 19                  | 19                   | 19                  | 19                | 18            | 19                   | 18           | 19          | 19           |
| ble<br>B <b>O</b> core                            |                                                                                                                  | 0.6666           | 0.7368                               | 0.7777        | 0.8421         | 0.7894               | 0.5                 | 0.8421              | 0.6111           | 0.8333                                             | 0.8333                                             | 0.7368         | 0.6111                | 0.6666                             | 18                                  | 0.5263             | 0.833           | 0.85                | 0.8333              | 19             |                       | Ote<br>Cte<br>2941        | 0.8947              | 19                   | 0.5263              | 0.895             | 0.944         | 0.7894<br>73684      | 0.778        | 0.842       | 0.789        |
| 34<br>35pplica<br>ble<br>36core<br>37<br>98<br>88 |                                                                                                                  | 67<br>67         | 4211                                 | 778<br>78     | 053<br>84      | 7368                 | 50                  | 0526<br>84          | 61               | 333<br>83                                          | 33333<br>83                                        | 4211<br>74     | 61                    | 6667<br>67                         | 100                                 | 53                 | 83              | 85                  | 333<br>83           | 1              |                       | 02941<br>0<br>0<br>82     | 368<br>89           | 1 100                | 158<br>53           | 89                | 94            | 73684<br>79          | 78           | 84          | 79           |
| 39                                                |                                                                                                                  | 07               | /4                                   | 70            | - 04           | 19                   | 50                  | 04                  | 01               |                                                    | 0.5                                                | .4             | 01                    | 07                                 | 100                                 |                    |                 | 00                  | 0.5                 | 100            |                       |                           |                     | 100                  | 33                  | 09                | 74            |                      |              |             |              |
| 40<br>41<br>42                                    |                                                                                                                  |                  |                                      |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       |                                    |                                     |                    |                 |                     |                     |                |                       | copyright.                |                     |                      |                     |                   |               |                      |              |             |              |

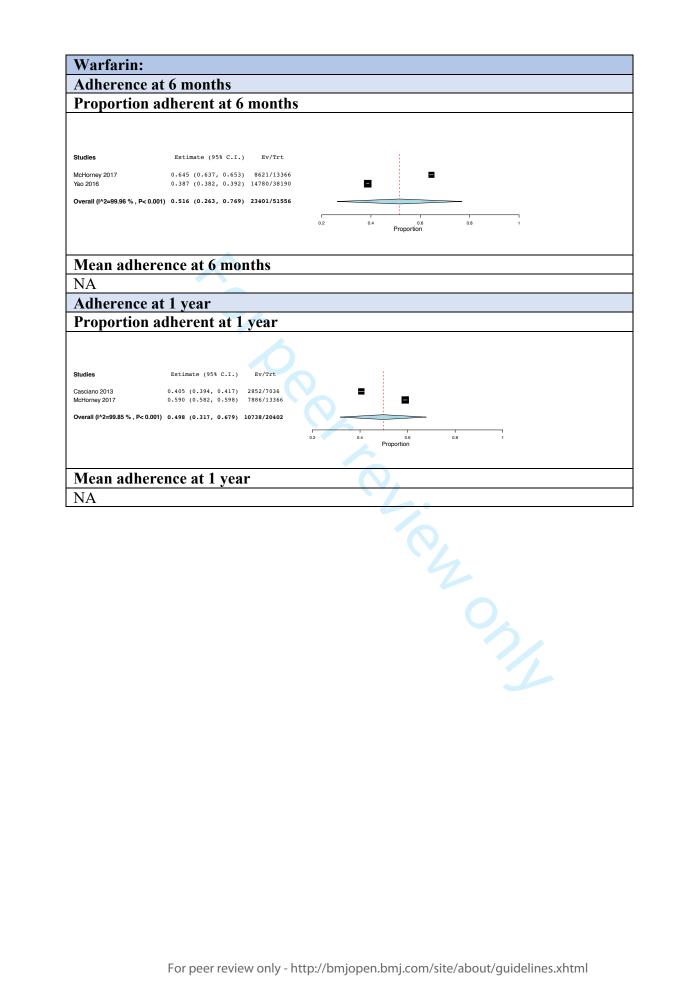


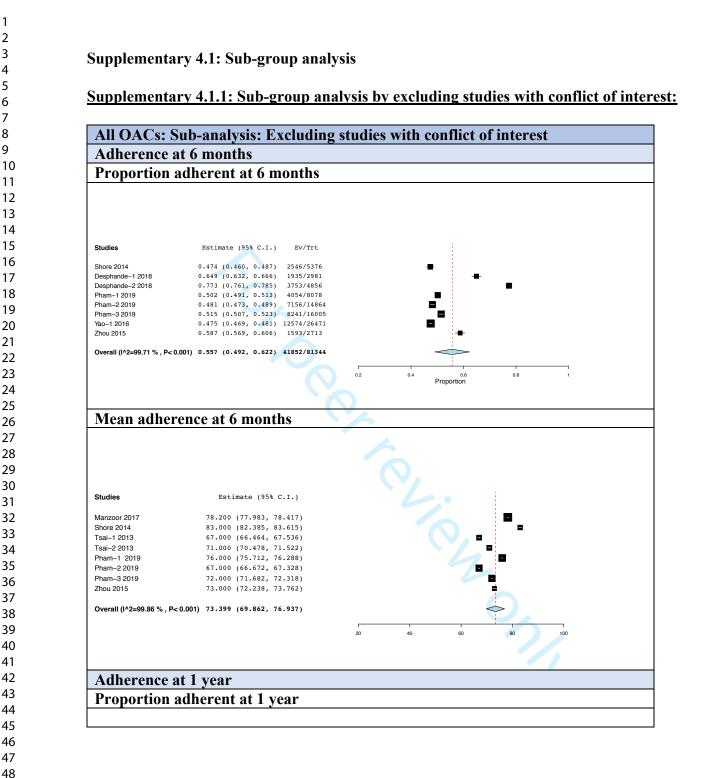


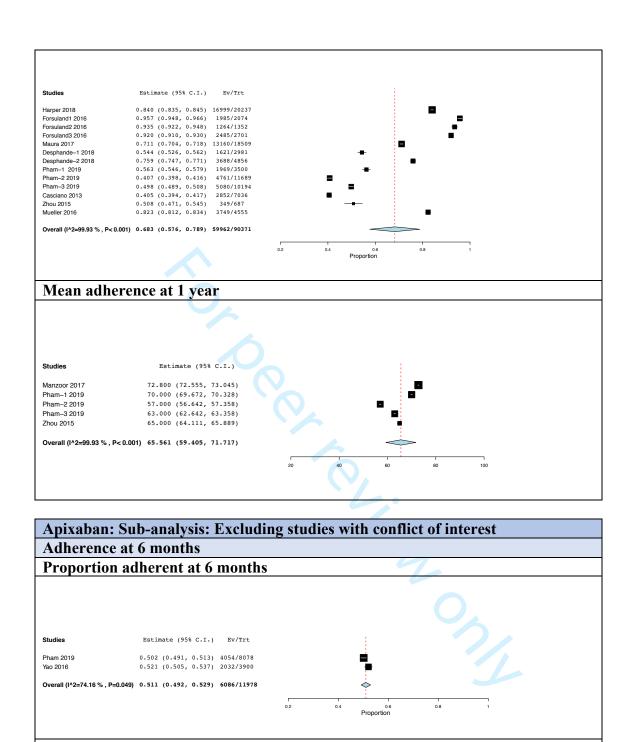




| Apixaban                        |
|---------------------------------|
| Adherence at 6 months           |
| Proportion adherent at 6 months |
|                                 |



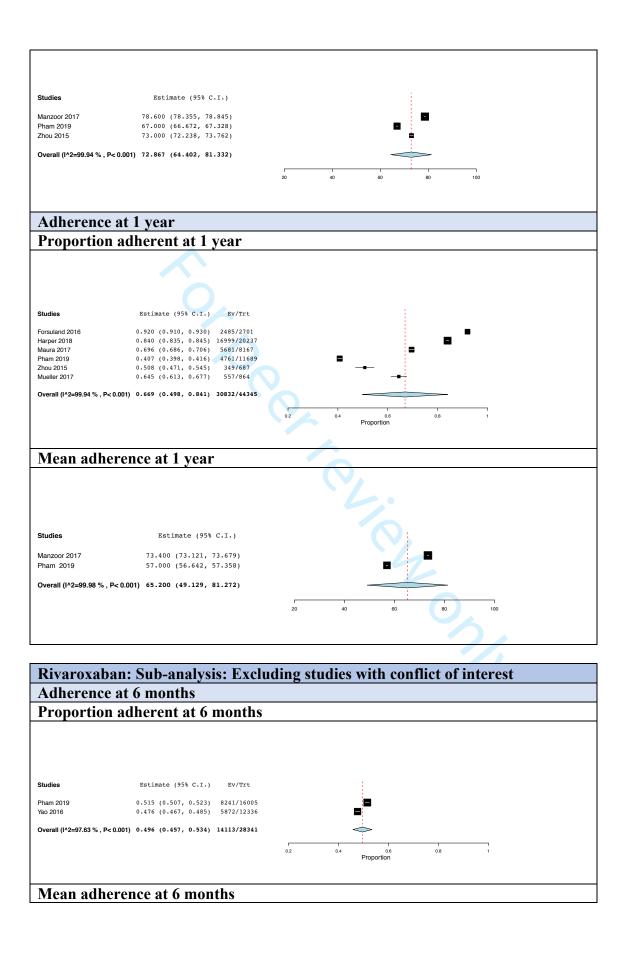


Studies

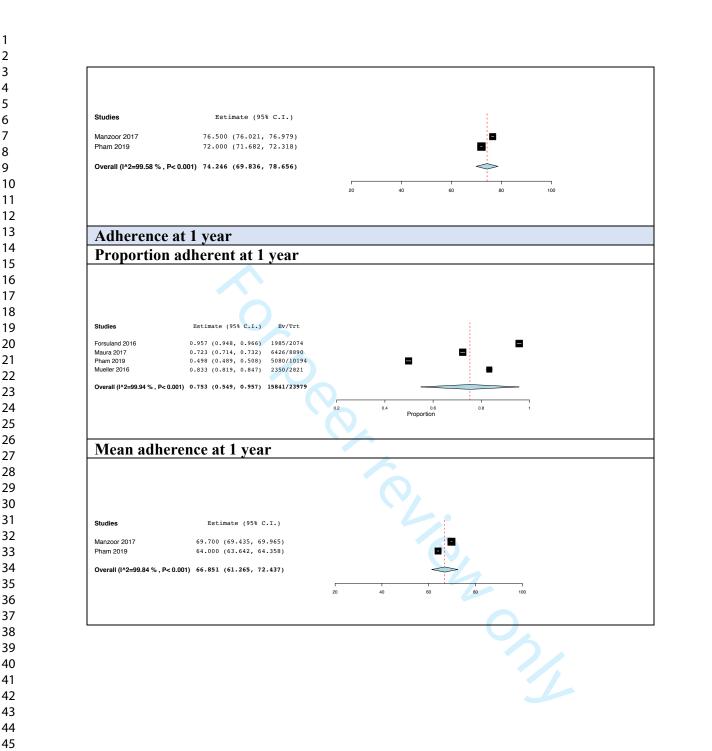

Estimate (95% C.I.)



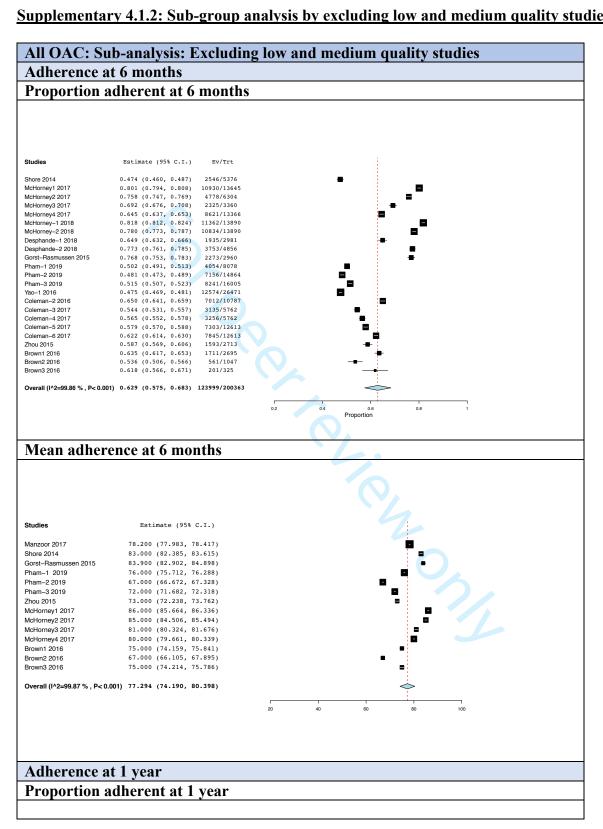




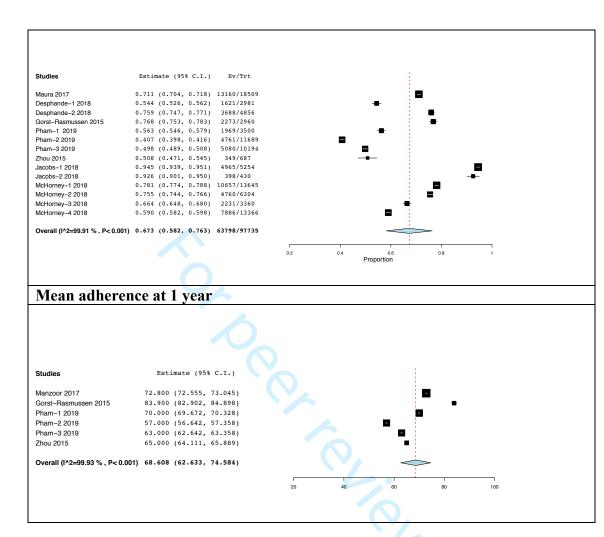





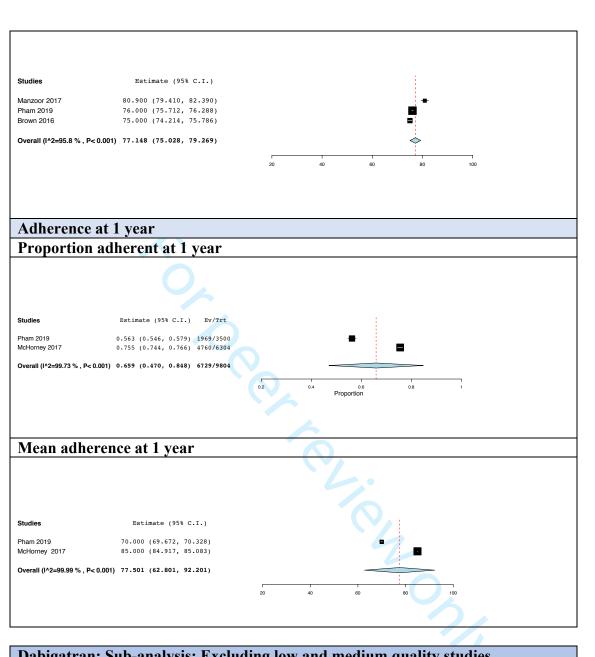


### Mean adherence at 1 year

| Studies                                                        | Estimate (95% C.I.)                                                                              |                          | 1     |         |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------|-------|---------|--|
| Manzoor 2017<br>Pham 2019                                      | 80.900 (79.410, 82.390)<br>76.000 (75.712, 76.288)                                               |                          | -     |         |  |
|                                                                | P<0.001) 78.393 (73.593, 83.194)                                                                 |                          |       |         |  |
|                                                                |                                                                                                  | 20 40                    | 60 80 | 100     |  |
|                                                                | e at 1 year:                                                                                     |                          |       |         |  |
| Proportion                                                     | n adherent at 1 year                                                                             |                          |       |         |  |
|                                                                |                                                                                                  |                          |       |         |  |
| Studies                                                        | Estimate (95% C.I.) Ev/Trt                                                                       |                          |       |         |  |
| Forsuland 2016<br>Pham 2019<br>Mueller 2017                    | 0.935 (0.922, 0.948) 1264/1352<br>0.563 (0.546, 0.579) 1969/3500<br>0.880 (0.857, 0.902) 723/822 | =                        | =     |         |  |
|                                                                |                                                                                                  |                          | _     |         |  |
| Overall (I^2=99.84 % , P∢                                      | <0.001) 0.792 (0.549, 1.036) 3956/5674                                                           | 0.2 0.4 Proportion       | 0.8   |         |  |
|                                                                |                                                                                                  | 02 0.4 Proportion        | 0.8   | 7       |  |
| Mean adh                                                       | erence at 1 year                                                                                 | 02 0.4 0.6<br>Proportion | 0.8   |         |  |
| Mean adh<br>NA (one st                                         | erence at 1 year<br>tudy)                                                                        | Proportion               |       |         |  |
| Mean adh<br>NA (one st<br>Dabigatra                            | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclue                                             | Proportion               |       | nterest |  |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence               | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclude<br>e at 6 months                           | Proportion               |       | nterest |  |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence               | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclue                                             | Proportion               |       | nterest |  |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence               | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclude<br>e at 6 months                           | Proportion               |       | nterest |  |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence<br>Proportion | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclude<br>e at 6 months<br>n adherent at 6 months | Proportion               |       | nterest |  |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence<br>Proportion | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclude<br>at 6 months<br>n adherent at 6 months   | Proportion               |       | nterest |  |

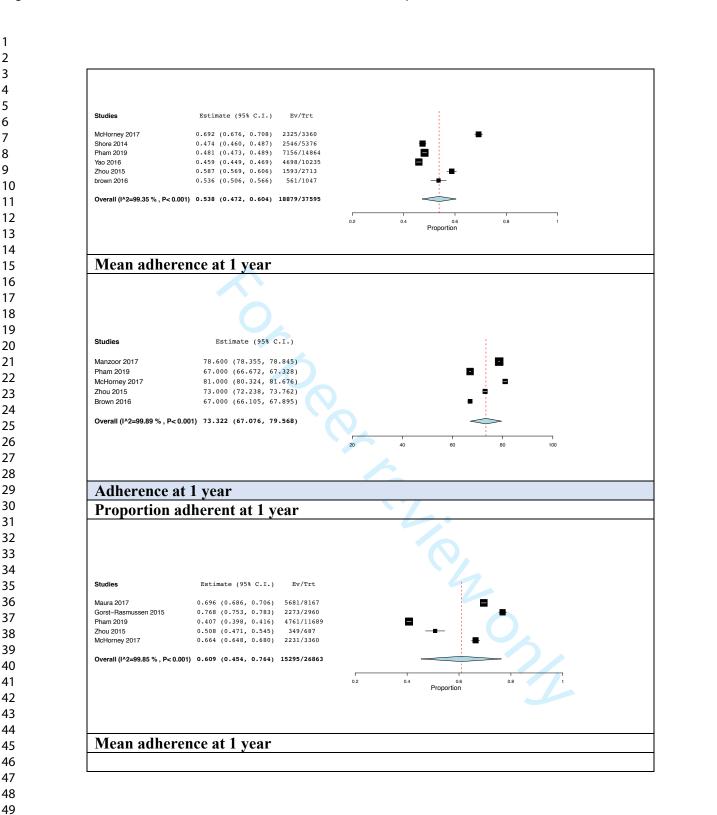




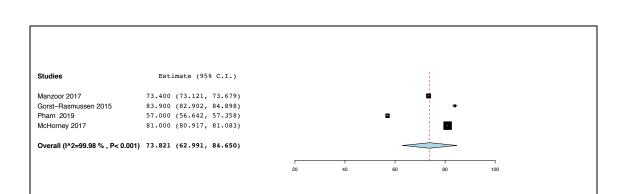


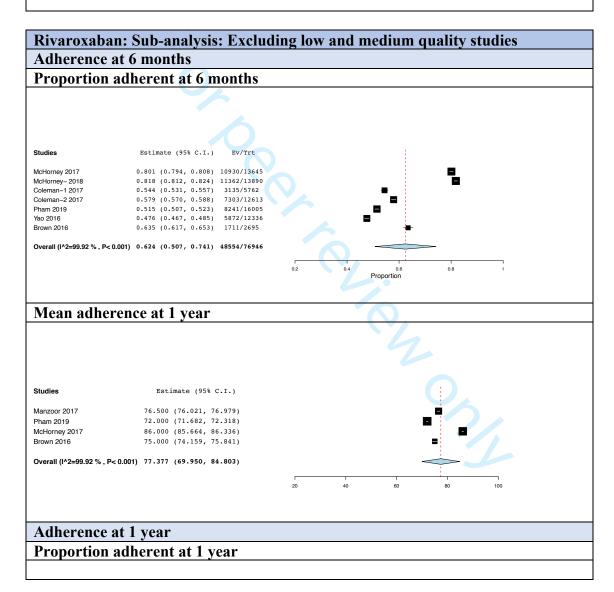

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

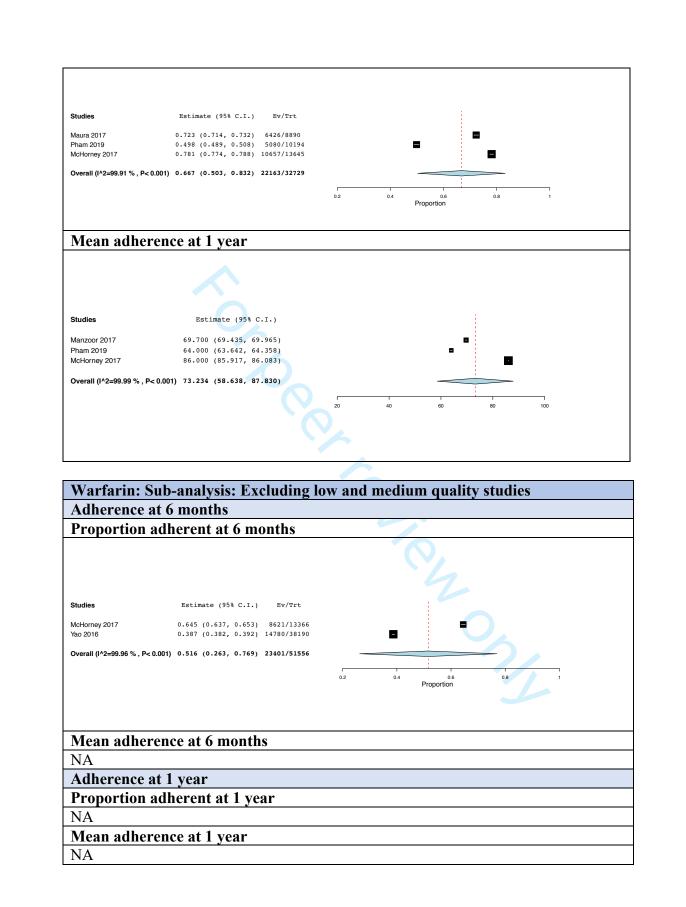



### Supplementary 4.1.2: Sub-group analysis by excluding low and medium quality studies.

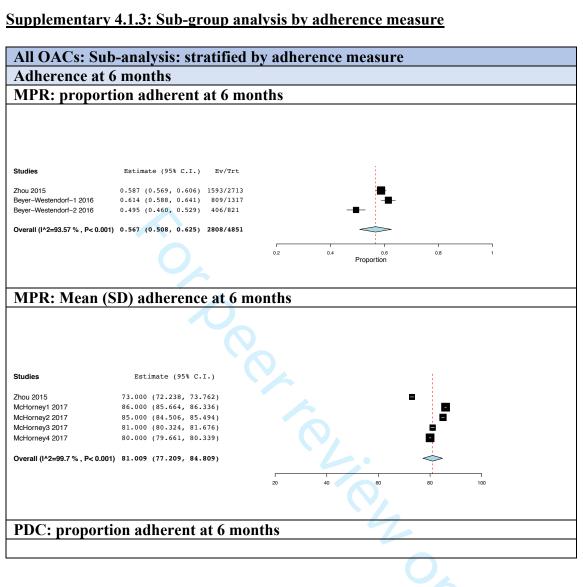


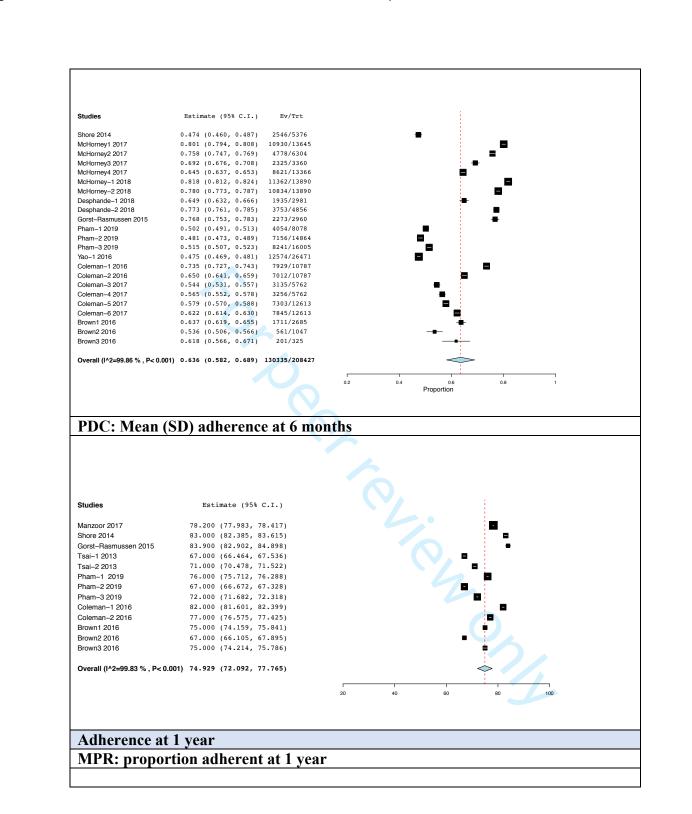


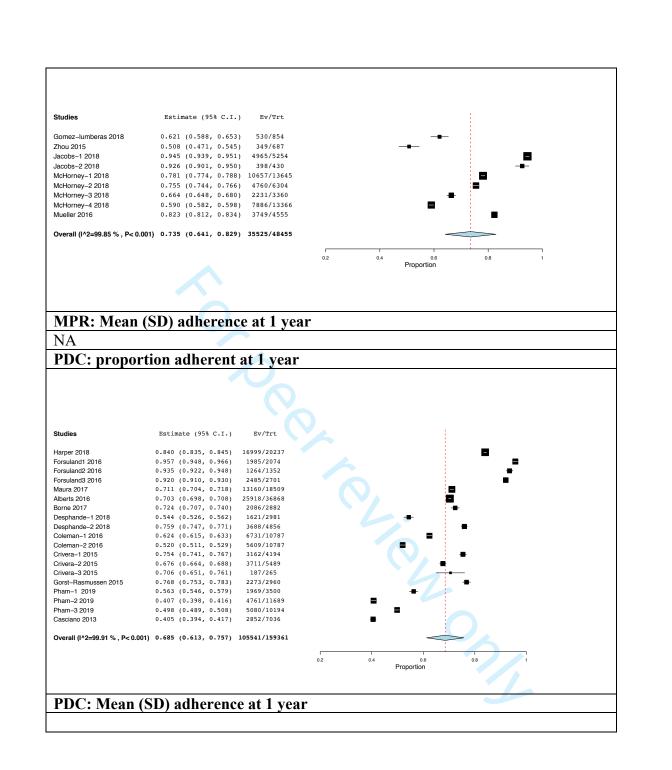


## Dabigatran: Sub-analysis: Excluding low and medium quality studies Adherence at 6 months Proportion adherent at 6 months



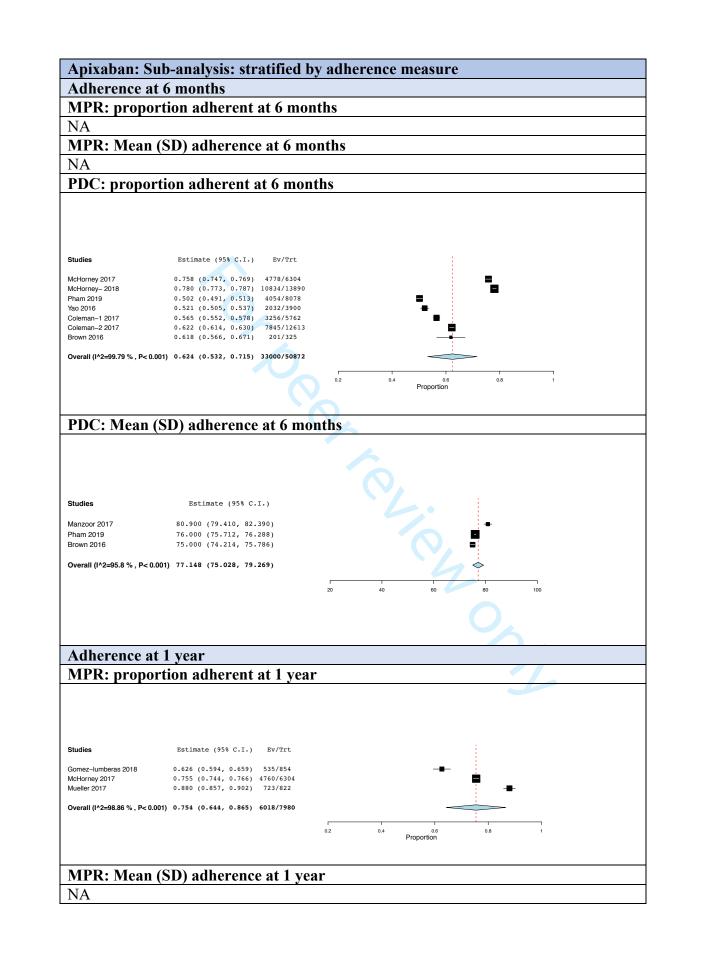

**BMJ** Open



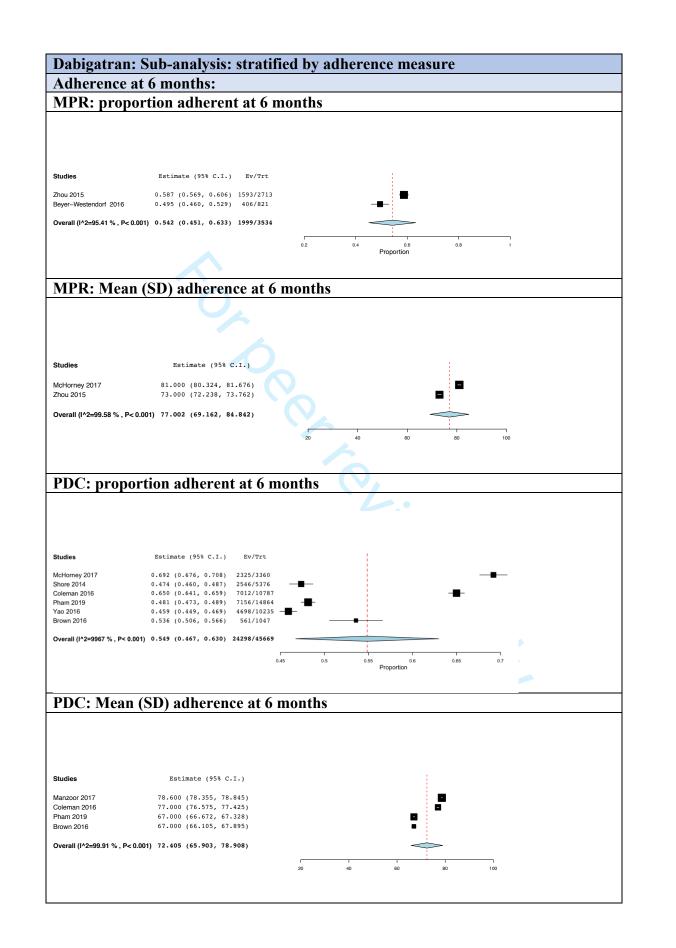


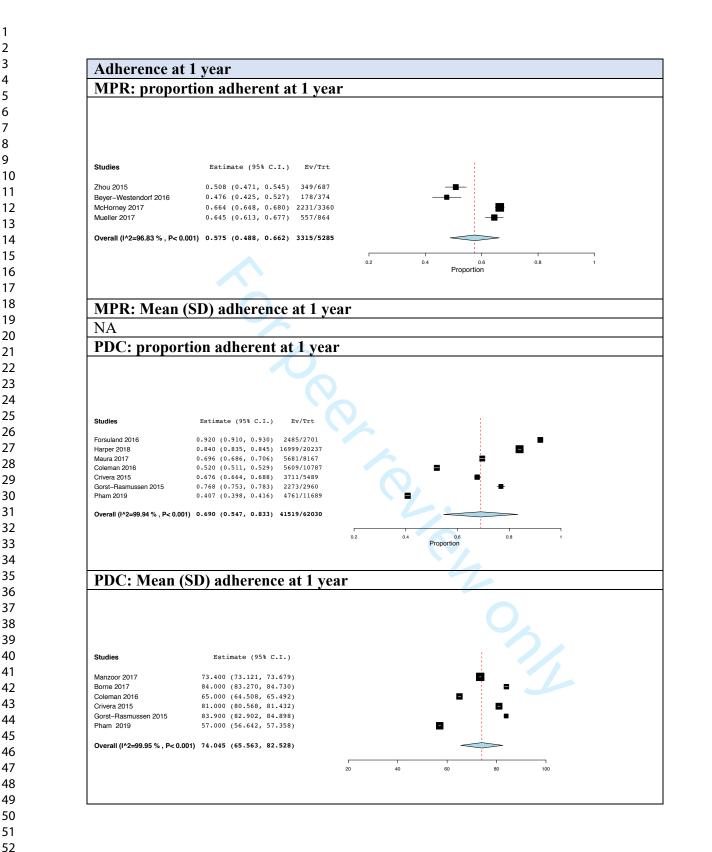



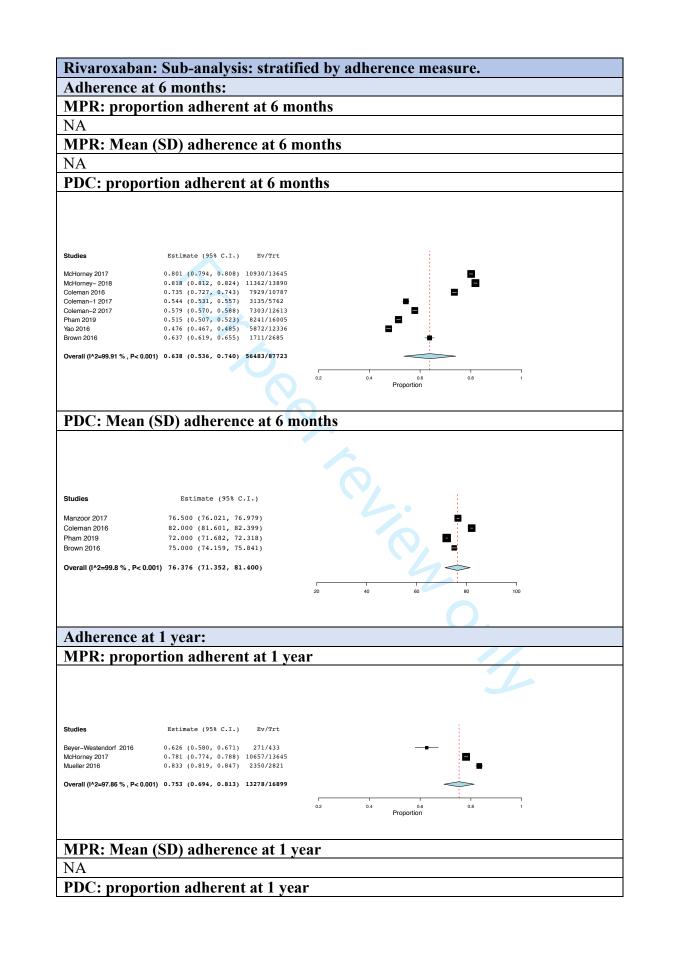

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright.







**BMJ** Open





| 1                                                                          |                                                                               |   |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|---|
| 2<br>3                                                                     |                                                                               | Т |
| 4                                                                          |                                                                               |   |
| 5 Studies                                                                  | Estimate (95% C.I.)                                                           |   |
| 7 Manzoor 2017<br>Borne 2017<br>3 Coleman-1 2016                           | 72.800 (72.555, 73.045)<br>85.000 (84.306, 85.694)<br>73.000 (72.535, 73.465) |   |
| Coleman-2 2016<br>Crivera-1 2015<br>Crivera-2 2015                         | 65.000 (64.508, 65.492)                                                       |   |
| 10 Crivera-2 2015<br>Crivera-3 2015<br>Gorst-Rasmussen 2015<br>Pham-1 2019 | 83.000 (82.607, 83.393)<br>83.900 (82.902, 84.898)<br>70.000 (69.672, 70.328) |   |
| 12 Pham-2 2019<br>Pham-3 2019                                              | 55.000 (56.642, 57.358)<br>63.000 (62.642, 63.358)                            |   |
| 14 Overall (I^2=99.95 % , P< 0.1                                           | 1.001) 74.515 (68.891, 80.139)                                                |   |
| 15<br>16                                                                   |                                                                               |   |
| 17<br>18<br>19                                                             |                                                                               |   |
| 20<br>21                                                                   |                                                                               |   |
| 22<br>23                                                                   |                                                                               |   |
| 24                                                                         |                                                                               |   |
| 25<br>26                                                                   |                                                                               |   |
| 27                                                                         |                                                                               |   |
| 28<br>29                                                                   |                                                                               |   |
| 30<br>31                                                                   |                                                                               |   |
| 32                                                                         |                                                                               |   |
| 33<br>34                                                                   |                                                                               |   |
| 35<br>36                                                                   |                                                                               |   |
| 7<br>3                                                                     |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml     |   |

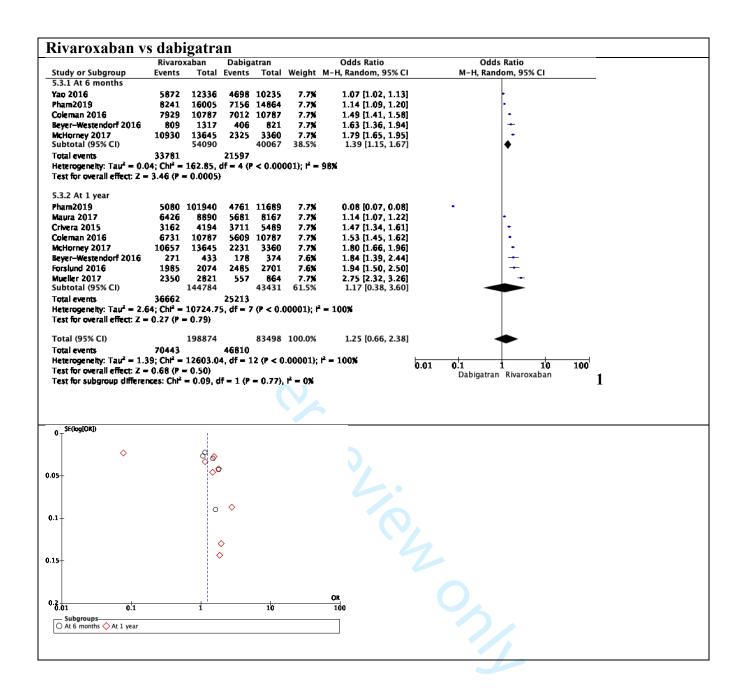













| Warfar                   | in: Sub-analysis: stratified by adherence measure |
|--------------------------|---------------------------------------------------|
|                          | nce at 6 months:                                  |
| MPR: p                   | roportion adherent at 6 months                    |
| NA                       |                                                   |
| MPR: N                   | Aean (SD) adherence at 6 months                   |
| NA                       |                                                   |
| PDC: p                   | roportion adherent at 6 months                    |
| •                        | •                                                 |
|                          |                                                   |
| Studies                  | Estimate (95% C.I.) Ev/Trt                        |
| McHorney 2017            | 0.645 (0.637, 0.653) 8621/13366                   |
| Yao 2016                 | 0.387 (0.382, 0.392) 14780/38190                  |
| Uverall (I^2=99.96 % , P | <0.001) 0.516 (0.263, 0.769) 23401/51556          |
|                          | Proportion US 1                                   |
| PDC · M                  | Iean (SD) adherence at 6 months                   |
| NA                       | tean (SD) adherence at 6 months                   |
|                          | nce at 1 year                                     |
|                          | proportion adherent at 1 year                     |
| NA NA                    |                                                   |
|                          | Aean (SD) adherence at 1 year                     |
| NA                       |                                                   |
|                          | roportion adherent at 1 year                      |
| NA                       |                                                   |
|                          | Iean (SD) adherence at 1 year                     |
| NA                       |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |

| Apixaban vs da                                                                                                                                                                                                                                  | bigatra                                                                                      | an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                 |                                                   |                                                                                        |      |                          |                             |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|------|--------------------------|-----------------------------|----------------|
| •                                                                                                                                                                                                                                               | Apixa                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dabig                                                                          | atran                                           |                                                   | Odds Ratio                                                                             |      |                          | s Ratio                     |                |
| Study or Subgroup                                                                                                                                                                                                                               | Events                                                                                       | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Events                                                                         | Total                                           | Weight                                            | M-H, Random, 95% CI                                                                    |      | M-H, Ranc                | dom, 95%                    | CI             |
| 3.3.1 At 6 months                                                                                                                                                                                                                               |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 |                                                   |                                                                                        |      |                          |                             |                |
| McHorney 2017                                                                                                                                                                                                                                   | 4778                                                                                         | 6304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2325                                                                           |                                                 |                                                   | 1.39 [1.27, 1.53]                                                                      |      |                          | +                           |                |
| Pham2019                                                                                                                                                                                                                                        | 4054                                                                                         | 8078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7156                                                                           | 14864                                           | 13.5%                                             | 1.09 [1.03, 1.15]                                                                      |      |                          | •                           |                |
| Yao 2016                                                                                                                                                                                                                                        | 2032                                                                                         | 3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4698                                                                           | 10235                                           | -                                                 | 1.26 [1.19, 1.36]                                                                      |      |                          |                             |                |
| Subtotal (95% CI)                                                                                                                                                                                                                               |                                                                                              | 18282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                | 28459                                           | 40.3%                                             | 1.24 [1.07, 1.45]                                                                      |      |                          | •                           |                |
| Total events                                                                                                                                                                                                                                    | 10864                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14179                                                                          |                                                 |                                                   |                                                                                        |      |                          |                             |                |
| Heterogeneity: Tau <sup>2</sup> -                                                                                                                                                                                                               |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                | 2 (P < 0                                        | .00001);                                          | r = 92%                                                                                |      |                          |                             |                |
| Test for overall effect                                                                                                                                                                                                                         | : Z = 2.82                                                                                   | $(\mathbf{P}=0.)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 005)                                                                           |                                                 |                                                   |                                                                                        |      |                          |                             |                |
| 3.3.2 At 1 year                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 |                                                   |                                                                                        |      |                          |                             |                |
| ,                                                                                                                                                                                                                                               | 107                                                                                          | 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                | C 4 8 6                                         | 10.00                                             | 1 10 10 00 1 001                                                                       |      |                          |                             |                |
| Crivera 2015<br>Forslund 2016                                                                                                                                                                                                                   | 187<br>1264                                                                                  | 265<br>1352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3711<br>2485                                                                   |                                                 |                                                   | 1.15 [0.88, 1.50]<br>1.25 [0.97, 1.61]                                                 |      |                          |                             |                |
| McHorney 2017                                                                                                                                                                                                                                   | 4760                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 | -                                                 | 1.56 [1.42, 1.71]                                                                      |      |                          | <b>1</b> .                  |                |
| Mueller 2017                                                                                                                                                                                                                                    | 723                                                                                          | 822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 557                                                                            |                                                 |                                                   | 4.03 [3.13, 5.18]                                                                      |      |                          | <b>-</b>                    |                |
|                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 |                                                   |                                                                                        |      |                          |                             |                |
|                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 |                                                   |                                                                                        |      |                          | •                           |                |
| Pham2019                                                                                                                                                                                                                                        | 1969                                                                                         | 3500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                | 11689                                           | 13.4%                                             | 1.87 [1.73, 2.02]                                                                      |      |                          | •                           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -                                                                                                                                                              | 1969<br>8903<br>= 0.08; Ch                                                                   | 3500<br>12243<br>1 <sup>2</sup> = 66.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4761<br>13745<br>93, df =                                                      | 11689<br>24103                                  | 13.4%<br>59.7%                                    | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]                                                 |      |                          | •                           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events                                                                                                                                                                                                   | 1969<br>8903<br>= 0.08; Ch                                                                   | 3500<br>12243<br>1 <sup>2</sup> = 66.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4761<br>13745<br>93, df =                                                      | 11689<br>24103<br>4 (P < 0                      | 13.4%<br>59.7%                                    | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]                                                 |      |                          | •                           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events                                                                                                 | 1969<br>8903<br>= 0.08; Ch<br>; Z = 4.18<br>19767                                            | 3500<br>12243<br>I <sup>2</sup> = 66.<br>(P < 0.0<br>30525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4761<br>13745<br>93, df =<br>0001}<br>27924                                    | 11689<br>24103<br>4 (P < 0<br>52562             | 13.4%<br>59.7%<br>.00001);<br>100.0%              | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1 <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]    |      |                          | •                           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)                                                                                                                 | 1969<br>8903<br>= 0.08; Ch<br>; Z = 4.18<br>19767<br>= 0.07; Ch<br>; Z = 4.29                | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 | <b>0.1</b><br>Dabigatran | <ul> <li>Apixaba</li> </ul> | <b>10</b><br>n |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif        | 1969<br>6903<br>= 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>Apixaba                |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif        | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>•<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif        | 1969<br>6903<br>= 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>•<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif        | 1969<br>6903<br>= 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>•<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>1<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>6903<br>= 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>1<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>1<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\ I^2 = 66. \\ (P < 0.0 \\ 30525 \\ I^2 = 218 \\ (P < 0.0 \\ Chl^2 = 5. \\ (P < 0.0 \\ Chl^2 =$ | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)<br>01, df = | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>1<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>1<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\ I^2 = 66. \\ (P < 0.0 \\ 30525 \\ I^2 = 218 \\ (P < 0.0 \\ Chl^2 = 5. \\ (P < 0.0 \\ Chl^2 =$ | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)<br>01, df = | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>Apixaba                |                |

### Supplementary 4.2: studies reporting adherence to different medications in the same

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright.



| Rivaroxaban v                                                                 | s Apixa              | ıban                  |                    |               |                   |                          |      |                     |                        |   |
|-------------------------------------------------------------------------------|----------------------|-----------------------|--------------------|---------------|-------------------|--------------------------|------|---------------------|------------------------|---|
| Study or Subgroup                                                             | Rivarox              |                       | Apixa              |               | Weight            | Odds Ratio               |      | Odds R              |                        |   |
| Study or Subgroup<br>4.3.1 At 6 months                                        | Events               | Iotai                 | Events             | Iotai         | weight            | M-H, Random, 95% (       | .1   | M-H, Randor         | n, 95% CI              | _ |
| Coleman 2017                                                                  | 7303                 | 12613                 |                    | 12613         |                   |                          |      | •                   |                        |   |
| Coleman 2017<br>McHorney 2017                                                 | 3135<br>10930        | 5762<br>13645         | 3256<br>4778       | 5762<br>6304  | 10.2%<br>10.2%    |                          |      | 1.                  |                        |   |
| Pham2019                                                                      | 8241                 | 16005                 | 4054               | 6078          | 10.3%             | 1.05 [1.00, 1.1]         | ]    |                     |                        |   |
| <b>Yao 2016</b><br>Subtotal (95% CI)                                          | 5872                 | 23361<br>71386        | 2032               | 3900<br>36657 | 10.3×<br>51.3%    |                          |      | •                   |                        |   |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: |                      |                       |                    | = 4 (P <      | 0.00001)          | ); i <sup>2</sup> = 100% |      |                     |                        |   |
| 4.3.2 At 1 year                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
| 4.3.2 At 1 year<br>Crivera 2015                                               | 3162                 | 4194                  | 167                | 265           | 9.4%              | 1.28 [0.97, 1.66         | i]   |                     | -                      |   |
| Forslund 2016                                                                 | 1985                 | 2074                  | 1264               | 1352          | 9.2%              | 1.55 [1.15, 2.10         | )]   | _                   | -                      |   |
| McHorney 2017<br>Mueller 2017                                                 | 10657<br>2350        | 13645<br>2821         | 4760<br>723        | 822           | 10.3X<br>9.6X     | 0.68 [0.54, 0.86         | ij   | <sup>*</sup>        |                        |   |
| Pham2019<br>Subtotal (95% CI)                                                 | 5080                 | 10194<br>32928        | 1969               | 3500<br>12243 | 10.2%<br>48.7%    |                          |      | •                   |                        |   |
| Total events                                                                  | 23234                |                       | 8903               |               |                   |                          | .,   | Ť                   |                        |   |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                 |                      |                       |                    | (P < 0.(      | 00001); P         | * = 95%                  |      |                     |                        |   |
| Total (95% CI)                                                                |                      | 104314                |                    | 48900         | 100.0%            | 0.90 [0.68, 1.19         | 9]   | •                   |                        |   |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =                             | 58715<br>• 0.20; Chi | <sup>2</sup> = 1120   | 30868<br>.53, df • | = 9 (P <      | 0.00001)          | ); I <sup>2</sup> = 99%  |      | _ <u>_</u>          |                        | 1 |
| Test for overall effect:                                                      | : Z = 0.71           | (P = 0.4)             | 3)                 |               |                   |                          | 0.01 | 0.1 1<br>Apixaban R | 1'0 100<br>Livaroxaban |   |
| Test for subgroup diff<br>0                                                   | ierences: C          | .m <sup>-</sup> = 0.9 | ı, <b>q</b> ⊺ = )  | ι (r = Q.     | <u>34), F = (</u> | V/4                      |      |                     |                        |   |
|                                                                               | 00                   |                       |                    |               |                   |                          |      |                     |                        |   |
| .05-                                                                          | ° 💊                  | ø                     |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
| 0.1+                                                                          |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               | \$                   |                       |                    |               |                   |                          |      |                     |                        |   |
| .15+                                                                          |                      | <b>\$</b>             |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      | <b>\$</b>             |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               | OR                |                          |      |                     |                        |   |
| 0.2 0.01 0.1                                                                  | 4                    |                       | 10                 |               | OR<br>100         |                          |      |                     |                        |   |
| ○ At 6 months ◇ At 1 year                                                     |                      |                       |                    |               |                   | C                        |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |

BMJ Open

### **BMJ Open**

# Adherence to oral anticoagulants among patients with atrial fibrillation: A systematic review and meta-analysis of observational studies

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2019-034778.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date Submitted by the Author:        | 13-Feb-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Complete List of Authors:            | Salmasi, Shahrzad; Collaboration for Outcomes Research and Evaluation<br>(CORE), The University of British Columbia; University of British<br>Columbia Faculty of Pharmaceutical Sciences<br>Loewen, Peter; University of British Columbia Faculty of Pharmaceutical<br>Sciences; Collaboration for Outcomes Research and Evaluation (CORE),<br>The University of British Columbia<br>Tandun, Rachel; University of British Columbia Faculty of Pharmaceutical<br>Sciences<br>Andrade, Jason; University of British Columbia, Faculty of Medicine;<br>Institut De Cardiologie de Montreal<br>De Vera, MA; University of British Columbia, Faculty of Pharmaceutical<br>Sciences; Collaboration for Outcomes Research and Evaluation (CORE),<br>The University of British Columbia, Faculty of Pharmaceutical<br>Sciences; Collaboration for Outcomes Research and Evaluation (CORE),<br>The University of British Columbia |
| <b>Primary Subject<br/>Heading</b> : | Cardiovascular medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Secondary Subject Heading:           | Cardiovascular medicine, Public health, Epidemiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Keywords:                            | Stroke medicine < INTERNAL MEDICINE, Thromboembolism < CARDIOLOGY, Anticoagulation < HAEMATOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

## A systematic review and meta-analysis of observational studies

Shahrzad Salmasi<sup>1</sup>, Peter Loewen<sup>1</sup>, Rachel Tandun<sup>1</sup>, Jason G Andrade<sup>2,3</sup>, Mary A. De Vera<sup>1</sup>

<sup>1</sup>Collaboration for Outcomes Research & Evaluation (CORE), Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada.

<sup>2</sup>Atrial Fibrillation Clinic, Vancouver General Hospital, Vancouver, Canada.

<sup>3</sup> Faculty of Medicine, The University of British Columbia, Vancouver, Canada.

Word count: 3584

Tables: 4; Figures: 2; Supplementary files: 4

Short title: Adherence to anticoagulants in patients with AF.

**Corresponding author:** 

Shahrzad Salmasi B.Pharmacy (Hons), MSc

Faculty of Pharmaceutical Sciences, The University of British Columbia

2405 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3

Tel: 604-726-9970; Email: shahrzad.salmasi@ubc.ca

#### ABSTRACT

#### INTRODUCTION

Medications cannot exert their effect if not taken as prescribed by patients. Our objective was to summarize the observational evidence on adherence to oral anticoagulants (OACs) among patients with atrial fibrillation (AF).

#### **METHODS**

We systematically searched for observational studies measuring adherence, its determinants and impacts in patients with AF. Mean adherence measures and corresponding proportions of adherent patients were pooled using random effects models. Factors shown to be independently associated with adherence were extracted as well as the clinical and economic outcomes of adherence.

#### RESULTS

We included 30 studies. Pooled mean adherence scores of over half a million patients with AF six months and one year after therapy initiation were 77 (95% CI: 74-79) and 74 (68-79) out of 100, respectively. Drug-specific pooled mean adherence score at six months and one year were as follows: rivaroxaban: 78 (73-84) and 77 (69-86); apixaban: 77 (75-79) and 82 (74-89); dabigatran: 74 (69-79) and 75 (68-82), respectively. There was inadequate information on warfarin for inclusion in meta-analysis.

Factors associated with increased adherence included: older age, higher stroke risk, once-daily regimen, history of hypertension, diabetes, or stroke, concomitant cardiovascular medications, living in rural areas, and being an experienced OAC user. Non-adherent patients were more likely to experience stroke and death, and incurred higher medical costs compared to patients with poor adherence.

#### CONCLUSIONS

Our findings show that up to 30% of patients with AF are non-adherent, suggesting an important therapeutic challenge in this patient population.

Keywords: Atrial fibrillation, anticoagulants, medication adherence, stroke.

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

#### 

#### Strengths and limitations of this study

- This is a timely systematic review that synthesizes the evidence on extent of poor adherence to oral anticoagulants, its determinants and clinical and economic outcomes, among patients with atrial fibrillation.
- We focused on observational studies (retrospective and prospective) to synthesize the evidence on patients' real-world medication taking behaviour.
- We considered all oral anticoagulants, including the newer drugs (apixaban, rivaroxaban, dabigatran, and edoxaban) and aimed to generate pooled adherence at the individual drug level.
- Drug utilisation consists of three interconnected but distinct phases (initiation, implementation, and discontinuation) and the focus of this study was confined to the implementation phase.

#### INTRODUCTION

Atrial fibrillation (AF) - the most common chronic arrhythmia - is an epidemic affecting more than 33 million people worldwide.<sup>1</sup> AF increases stroke risk by up to five-fold, and is responsible for a third of strokes in people over 60.<sup>2-5</sup> Strokes secondary to AF are far more debilitating and carry three times the risk of death than strokes due to other causes.<sup>6-8</sup>

Oral anticoagulants (OACs), which include vitamin K antagonists (VKA) and direct oral anticoagulants (DOACs), are the only effective agents thus far in preventing stroke in patient with AF, showing approximately 66% relative risk reduction in clinical trials.<sup>9-13</sup> When used outside the controlled environment of clinical trials, however, the effectiveness of these drugs is impacted by patients' adherence.<sup>14,15</sup> The clinical consequences of non-adherence can potentially be more significant for DOACs, given their short half-lives.<sup>14-18</sup>

Studies have previously attempted to summarize the medication taking behavior of patients with AF. These reviews, however, focus on discontinuation of therapy (not implementation or execution of dosing), or when looking at implementation, only focus on DOACs, summarize evidence from randomized controlled trials (which do not reflect the day to day behaviors of patients), and provide a narrative summary of results with no meta-analysis.<sup>19-21</sup> Further, no studies have summarized the evidence on determinants of adherence in this patient population and the association between adherence and outcomes (clinical or economical). The objective of this systematic review and meta-analysis was to summarize the evidence from observational studies on the extent, determinants, and impacts of adherence to all OACs among patients with AF.

#### **METHODS**

We conducted a systematic review and meta-analysis following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) and the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines (Supplementary file 1).<sup>22,23</sup>

#### Search strategy

In March 2019 we systematically searched PubMed/Medline, Embase, CINAHL and PsycINFO (from inception) using the relevant keywords and MeSH terms (Supplementary 2). The search strategy was designed with the help of a medical librarian and aimed to identify peer-reviewed published manuscripts that reported on extent, determinants, and impacts of non-adherence to any OAC. A manual search was also performed on Google Scholar and the bibliography of included studies.

#### Inclusion criteria and study selection

Studies were included if they utilized a prospective or retrospective observational study design, and quantitatively measured secondary adherence, (also known as the "implementation" phase) which looks at medication dose omissions, additions, or delays and does not involve those who did not initiate their therapy.<sup>15</sup> Studies published in English, French, Spanish, Persian, Finnish, Cantonese or Korean were included.<sup>24</sup> No limitations were imposed on setting, country, publication date, or quality.

While we were primarily interested in OAC adherence in patients with non-valvular AF (NVAF), we included studies that did not specifically restrict inclusion to this population, with notation in quality assessment. Studies of self-reported adherence were excluded (including those using validated scales such as Morisky Medication Adherence Scale<sup>®</sup>) as they are prone to overestimation of adherence (social desirability bias).<sup>24</sup> Cross-sectional and interventional studies, editorials, conference proceedings, and studies that evaluated or validated adherence measurement methods were also excluded.

Two authors independently screened titles and abstracts of the retrieved studies followed by full text review of candidate studies. Disagreements about inclusion were resolved by discussion with a third author.

#### Data extraction and synthesis

The primary adherence measure extracted was the mean and standard deviation (SD) of patients' adherence over six- or twelve- months post index date (after therapy initiation). The secondary adherence measure was proportions of adherent patients, that is proportion of patients reported in each study to have mean adherence score more than 80 (this could be > or  $\geq$  depending on how the study defined "adherent"). The 80% adherence is the conventional threshold for "good adherence".<sup>25,26</sup> Six or twelve months were chosen as these were the most common follow-up times. If a study had variable follow-up time (e.g. from initiation to permanent discontinuation or death) the median follow-up time was used. For studies that reported the proportion of *non*-adherent participants, data were transformed to proportion *adherent* to allow pooling. When both unadjusted and adjusted outcomes were reported we extracted and analysed the adjusted results. When unmatched and propensity score matched results were reported, we extracted the matched results as they were expected to be more accurate estimates. When a study reported adherence to both index OAC and current OAC (allowing for switching), adherence to index OAC was analyzed to minimize heterogeneity since studies defined switching differently. Adherence results with switching allowed were still reported.

We extracted information on the determinants or factors shown in the included studies to be independently associated with adherence in multivariable regression analyses. We classified the identified determinants under the World Health Organization's (WHO) five dimensions of medication adherence to identify areas in need of more research.<sup>27</sup> Finally, we extracted information on the clinical and economic consequences of poor adherence.

#### <u>Data analysis</u>

Meta-analyses were carried out using Der Simonian & Laird random-effects models to determine the pooled mean adherence and the corresponding pooled proportion of adherent patients over six months and one year of observation. If a study reported adherence scores for multiple cohorts, all were included in the meta-analysis (multiple entries per study). In anticipation of heterogeneity subgroup analysis was performed for each adherence measure, and by presence of potential conflict of interest, and study quality. Additional meta-analyses were also performed BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

#### **BMJ** Open

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

focusing only on studies that reported comparative adherence between different OACs in the same cohort, to calculate the pooled odds ratio (OR) of adherence for each comparison.

I<sup>2</sup> statistics was used to quantify heterogeneity between studies.<sup>28</sup> Leave-one-out analysis was also performed for outliers to explore and potentially reduce heterogeneity.<sup>29</sup> Forest plots and funnel plots were constructed using OpenMeta-Analyst (Microsoft Corporation, Redmond, WA) or RevMan5 (version 5.3, Copenhagen, Denmark) software to illustrate the results and assess publication bias using funnel plots where relevant, that is, where studies reported measures of association (e.g. OR).<sup>30,31</sup> Clinical and economic impacts of poor adherence were summarized narratively as meta-analysis was not possible.

#### **Quality assessment**

We critically appraised the quality of adherence measurement in the included studies by adapting a condensed version of the checklist designed by the International Society of Pharmacoeconomics and Outcomes Research (ISPOR) Group, designed specifically for medication adherence studies, to establish standards for data sources, operational definitions, measurement of medication adherence, and reporting of results, previously used in a systematic reviews of adherence to gout medication.<sup>32</sup> We also critically appraised individual study reporting quality using STROBE.<sup>33</sup> Studies received a point for each checklist item they met and a zero score if not met. A quality score was computed for each study (number of items satisfactorily met / the total number of applicable items) and reported as a percentage. Items deemed not applicable were excluded from the denominator of the study's score. Studies were categorized as low, moderate or high quality if they scored  $\leq$ 50%, 51-80%, or >80%, respectively (arbitrary thresholds defined by authors).

Following Cochrane's commercial sponsorship policy as a guide, potential conflicts of interest were deemed present if any of the following were met: 1) provision of study funding by the forprofit manufacturer or marketer of any of the OACs included in the corresponding study, or 2) disclosure of potential conflict of interest with a for-profit manufacturer or marketer of any of the OACs included in the corresponding study.<sup>34</sup>

#### Patient and Public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination of our research.

#### Ethical approval

Ethical approval for this study was not required per our institution's policies.

to beet eviewony

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

#### RESULTS

Initial search led to 1,122 studies, all of which were in English (Figure 1.0). A total of 30 studies were included in this systematic review<sup>35-64</sup> involving 593,683 participants (DOAC: 437,610, VKA: 156,073). Most studies were published after 2015 (n=22, 73% of total included), conducted in North America (n=19, 63%), and retrospective (n=29, 97%), (Table 1). Adherence measurement was assessed to be of high quality in 59% of the included studies and moderate in 38%, according to the ISPOR checklist (Supplementary 3). The most frequently reported adherence measures were proportion days covered (PDC) (n=21, 70% of the included studies), and medication possession ratio (MPR) (n=9, 20%) over six months or one year post index date (Table 2). The majority of the included studies focused on adherence to DOACs with only 4 observational studies measuring and reporting adherence to warfarin. There were no data on phenproc. adherence to edoxaban, betrixaban, phenprocoumon, acenocoumarol, or fluindione.

#### BMJ Open

#### Adherence

The range of reported adherence results was quite wide. Reported mean adherence ranged between 67 (out of 100)<sup>58,61,64</sup> to 86<sup>55</sup> over six months and 57<sup>58</sup> to 86<sup>41</sup> over one year post index date, with corresponding reported proportion of adherent patients ranging between 47%<sup>59</sup> to 82%<sup>56</sup> over six months and 41%<sup>58</sup> to 95%<sup>45</sup> over one year. A wide range of adherence results were observed even at the individual OAC level (Table 2).

Pooled mean adherence scores over six month and one year post medication initiation were 77 (95% CI: 74-79) and 74 (68-79), with the corresponding pooled proportion of adherent patients as 63% (58%-68%) and 70% (65%-76%), respectively. Adherence was similar between DOACs, although adherence to apixaban and rivaroxaban was slightly higher than dabigatran (Table 3). No meta-analysis could be conducted for mean adherence to warfarin since this was not reported by the included studies. Pooled estimates of proportion of adherent patients for warfarin resulted from meta-analysis of 2 studies only (as illustrated in tables 2 and 3). Due to the limited data in warfarin, no drug class comparison could be made. Figure 2.0 illustrates the forest plots for patients' mean adherence score over six months and one year. The remaining forests plots, including forest plots of proportion adherent, adherence to individual OACs, subgroup analyses [by adherence measure (PDC and MPR), study quality and potential for conflict of interest] can be found in supplementary 4.

Between-study variance (represented as I<sup>2</sup>) was high and not reduced by the leave-one out analysis or subgroup analysis. Exclusion of studies with potential conflicts of interest led to lower adherence scores for all OACs but did not change the rank-order of OACs (adherence to dabigatran remained lower than the others). Excluding studies of low and moderate quality or stratifying the analysis by adherence measure (PDC versus MPR), or country (USA versus others) had only minor impacts on pooled adherence results and the detected heterogeneity (Supplementary 4).

#### Studies comparing adherence between different OACs in the same cohort

Nineteen studies reported comparative adherence between different OACs in the same cohort (Table 4).<sup>35-37,39-45,49,50,52,55-58,60,62</sup> Odds of being adherent was significantly higher for apixaban compared to dabigatran over both six months (Odds Ratio (OR):1.24, 95% CI: 1.07-1.45) and one year post index date (OR:1.76, 95% CI: 1.35-2.29). Odds of adherence was significantly

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

higher for rivaroxaban compared to dabigatran over six months (OR:1.39, 95% CI: 1.15-1.67), but not one year (OR:1.17, 95% CI: 0.38-3.60). Odds of adherence did not differ between apixaban and rivaroxaban over six months (OR:0.80, 95% CI: 0.51-1.24) or one year (OR:1.02, 95% CI: 0.79-1.33).

#### Studies reporting adherence among several cohorts with different characteristics

Three studies compared adherence between new versus experienced users.<sup>37,50,56</sup> McHorney et al. reported greater mean PDC score for both rivaroxaban and apixaban (0.90 and 0.88, respectively) among prior OAC users compared to naïve users (0.87 and 0.86, respectively).<sup>56</sup> Borne et al. reported a higher mean PDC score for apixaban users with prior warfarin experience compared to naïve users (0.89±0.14 vs naïve: 0.87±0.15, P < 0.01).<sup>37</sup> Confirming these results, Manzoor et al. reported higher mean PDC for experienced users compared to naïve users over six months (83.3±24.6 vs 72.3±31.3; p< 0.05), nine months (81.2±26.4 vs 67.3±33.8); p< 0.05) and one year (79.9±27.6 vs 63.7±35.2; p <0.05).<sup>50</sup>

One study, Eapen et al., compared adherence among those prescribed OAC at discharge versus after discharge and reported that patients prescribed warfarin at discharge had significantly higher prescription fill rates compared to those prescribed after discharge at three months (84.5% vs 12.3%; P<0.001) and one year (91.6% vs 16.8%; P<0.001).<sup>44</sup>

#### **Determinants of adherence**

Many factors were identified by the included studies as significant determinants of adherence. Summarizing these under WHO's classification, the factors identified in the included studies to be significantly and positively associated with adherence were: **Patient factors:** history of hypertension<sup>43,49</sup>, diabetes<sup>37</sup> stroke<sup>37,52</sup>; **Regimen factors:** once daily dosing<sup>35,49</sup>, concomitant use of statin<sup>43,52</sup>, angiotensin converting enzyme inhibitor or angiotensin II receptor blockers<sup>43,52</sup>, higher risk of bleeding<sup>43</sup>; and **Social/economic factors:** living in rural or deprived areas.<sup>52,53</sup> Factors found to be significantly and negatively associated with adherence to OAC were: being a naïve OAC user<sup>50,56</sup>, twice daily dosing<sup>35,49</sup> and impaired cognitive or functional ability.<sup>56</sup> No **healthcare system** and **condition factors** related predictors of adherence were identified.

#### **BMJ** Open

Conflicting results were reported for female sex<sup>47,48,53</sup>, age<sup>37,43,47-50,52,53</sup>, risk of stroke<sup>43,47,53</sup>, presence of multiple comorbidities<sup>43,50,51,56</sup>, and higher number of concomitant medications.<sup>50,51</sup> These factors were found to be predictors of high *and* low OAC adherence in different studies

#### **Impacts of adherence**

Four studies assessed the clinical impact of adherence.<sup>35,37,42,59</sup> Alberts et al. reported 50% increased hazard of ischemic stroke with DOAC non-adherence (aHR:1.50, 95% CI:1.30-1.73).<sup>35</sup> Deshpande et al. reported non-adherent patients to be 1.82 times (aHR:1.82, 95% CI: 1.24- 2.67; p=0.002) and 2.08 times (aHR:2.08, 95% CI: 1.11- 3.89; p=0.02) more likely to experience an ischemic stroke compared to adherent patients, over six and 12 months, respectively.<sup>42</sup> Similarly, Borne et al. reported a higher risk of death or stroke per 0.1 drop in the PDC among dabigatran users (HR:1.07, 95% CI: 1.03- 1.12; p<0.01).<sup>37</sup> Shore et al. reported a 13% increase in risk of combined all-cause mortality and stroke with lower adherence (aHR:1.13, 95%CI: 1.07-1.19 per 10% decrease in PDC) but found no association between adherence and non-fatal bleeding events (aHR:1.04 per 10% increase in PDC, 95% CI: 0.94-1.14) or myocardial infarction (aHR:0.97 per 10% increase in PDC, 95% CI: 0.78-1.21).<sup>59</sup>

Two studies measured the economic impacts of adherence.<sup>38,43</sup> Casciano et al. reported significantly more inpatient and emergency room encounters and longer length of stay for non-adherent patients compare to adherent patients and Deshpande et al. reported significantly higher annual adjusted per-patient medical cost (inpatient and outpatient) for non-adherent users compared to adherent ones (\$30,485 versus \$23,544; p≤0.001).<sup>38,43</sup>

#### DISCUSSION

In this systematic review, we synthesized observational data of over half a million patients with AF to reveal that up to 30% are non-adherent to OACs, and that non-adherent patients are more likely to experience stroke, death and incur higher medical costs compared to adherent patients. We also found that older age, higher stroke risk, once-daily regimen, history of hypertension, diabetes, or stroke, concomitant cardiovascular medications, living in rural areas, and being an experienced OAC user could be associated with better adherence.

#### **BMJ** Open

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

Adherence to OACs among patients with AF has been thoroughly studied in developed countries. In our study, pooled proportion of adherent patients at six months and one year were 63% and 70%, respectively, which are higher than those found for other chronic cardiovascular medications such as statins (54%) and antihypertensives (59%).<sup>65</sup> However, our finding that up to 37% of patients with AF do not adhere to OACs is concerning considering the detrimental consequences of non-adherence in this particular clinical context. We were unable to ascertain whether the conveniences of DOACs translates into better adherence compared to warfarin due to lack of adherence data on warfarin, a likely result of warfarin dose variations complicating MPR and PDC ascertainment from administrative data. Between DOACs, however, adherence was found to be similar, although dabigatran appeared to have slightly lower adherence than apixaban and rivaroxaban.

Many patient-, regimen- and social/economic-related factors were identified by the included studies as significant determinants of adherence. It should be noted that each of these factors were reported to have a significant impact on adherence by one or two studies. The limited number of prospective observational studies on the topic restricted our ability to identify important psychosocial determinants as administrative data fall short in recording patients' knowledge gaps, misconceptions, and varying values and preferences, all of which have frequently been reported in patients with AF.<sup>66-71</sup> Further, questions remain about the role of sex, age, risk of stroke, presence of multiple comorbidities, and number of concomitant medications on adherence. One explanation for the inconsistencies we observed could be differences in how these factors were defined in our included studies. A 2019 systematic review of 34 systematic reviews on determinants of adherence to cardiovascular medications (beta blockers, calcium channel blockers, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers, and diuretics) also reported inconsistent results for the role of gender in adherence.<sup>72</sup> These authors also found that the effects of concomitant medications and comorbidities seem to be drugspecific and condition-specific, which could explain some of the inter-study variability with this factor.<sup>72</sup> A multivariate patient-level meta-regression analysis could provide more clarity to these issues with OACs in patients with AF. Nevertheless, our findings indicate potential opportunities for interventions such as education and counselling for younger or newly diagnosed patients (naïve users) and adherence support for those on twice daily dosed OACs.

Page 15 of 80

#### **BMJ** Open

Lastly, we looked at outcomes of poor adherence. Our review found evidence of association between lower adherence and strokes, mortality, healthcare utilization and costs. Our findings confirm the results of a 2017 systematic review of 79 studies across 14 disease groups which reported that \$3,347-19,472 are attributed to non-adherence per patient per year among those with cardiovascular conditions (hypertension, hypercholesterolaemia, and chronic heart failure).<sup>73</sup> Our findings in relation to clinical outcomes are in line with results of meta-analyses of a large body of research showing that poor adherence across a range of conditions was associated with a 26% increased risk of poor treatment outcomes.<sup>74</sup> The adherence-outcome relationship is, however, very complex, and dependant on many factors, including the nature of the disease.<sup>74</sup> This is why it was important to summarize the strength of this relationship specifically in AF. Our findings, while based on only four studies, reveal the relationship between lower adherence and poor clinical outcomes in patients with AF, and support the potential of interventions aimed at increasing adherence in patients with AF.<sup>73-79</sup>

#### **Limitations**

This review was primarily limited by gaps in the available evidence. Given our interest in observational data, our evidence was narrowed to developed countries where the technology and infrastructure for systematic collection of such data is available. The high number of studies from a few developed countries introduced the possibility of duplicate patients in the analysis since many of the included studies used the same database with overlapping periods.<sup>35,38-40,50,64</sup> Furthermore, there may be potential for publication bias or under-representation from studies from developing countries. As described in the methods, we attempted to assess publication bias using funnel plots but were limited with few studies reporting measures of association. Nonetheless, for these meta-analyses, findings do not suggest presence of publication bias (Supplementary 3).

Another limitation of our analysis was the high heterogeneity (I<sup>2</sup>>80%) among the studies. Possible sources of heterogeneity include differences in patient inclusion criteria (e.g. OAC naïve versus experienced); methods for handling and defining medication switches, stockpiling, refill gaps, and hospitalization dates; fixed versus variable observational periods and adherence measure used (PDC versus MPR). Subgroup analyses did not affect the amount of statistical heterogeneity detected. Nonetheless, in addition to the summary measures derived from metaBMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

analysis, we were able to detect the range of adherence measures from the included studies. Finally, drug utilisation consists of initiation, implementation, and discontinuation,<sup>15,80</sup> and the focus of this study was confined to the implementation phase. Systematic reviews of OAC initiation and discontinuation are needed to provide a complete picture of medication taking behaviour in patients with AF.

#### **FUTURE DIRECTIONS**

Our understanding of the comparative adherence between warfarin and DOACs among patients with AF is currently impeded by lack of observational data on warfarin. Sophisticated statistical models are needed to calculate days' supply of warfarin, despite its varying dose, to allow measurement of MPR or PDC for this drug using administrative data. Furthermore, we lack information on patterns of non-adherence to OACs. All of the current studies have treated adherence as a static behavior, calculating and reporting it using a single summary measure. This methodological approach does not provide a complete picture of adherence, which is a dynamic behavior that changes over time.<sup>25,81</sup> Characterization of adherence patterns over time is vital in understanding the problem of poor adherence and targeting the right patients at the right time with the right interventions.<sup>82-86</sup>

There is a need for more research investigating the clinical and economic consequences of poor adherence as the current evidence is limited to findings of four studies. Moreover, a clinically meaningful OAC adherence threshold has yet to be determined in AF.<sup>35,37,42,59</sup> While the association between taking more than 80% of medications and improved clinical outcomes has been shown in four AF studies, it remains unclear if this is the optimal threshold for AF.<sup>35,37,42,59</sup> Clinically relevant adherence cut-off values have been shown to differ widely (from 58% to 85%) in different diseases, and even among drug classes.<sup>14,87</sup> As with antiretroviral medications, given the detrimental consequences of OAC non-adherence, the clinically meaningful threshold for "good adherence" to OACs may need to be much higher than 80%.<sup>87</sup>

#### CONCLUSION

Synthesis of observational data suggests that overall OAC adherence in patients with AF is below the conventional threshold of "adherent" (80%). These findings, combined with evidence that lower adherence is associated with poor clinical outcomes and higher costs, suggest an important therapeutic challenge in this patient population. Our study also highlights the need for

#### **BMJ** Open

more consistent measures of adherence, and more research to characterize patterns of OAC nonadherence, identifying determinants of poor OAC adherence, and investigate the clinical and economic consequences of OAC non-adherence.

#### FUNDING

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. Dr. Loewen's research is partially supported by the UBC David H MacDonald Professorship in Clinical Pharmacy. Dr. De Vera holds a Canada Research Chair in Medication Adherence, Utilization, and Outcomes and is a Michael Smith Foundation for Health Research Scholar.

#### **COMPETING INTERESTS**

Authors have no competing interests to declare.

#### **CONTRIBUTIONS**

Conceived the study: SS, PL, MDV; Designed the search strategy: SS, MDV, PL; Conducted the literature search: SS; Screened titles and abstracts: SS, RT; Screened full texts: SS, RT; Extracted data: SS, RT; Made methodological decisions (data synthesis and analysis): MDV, SS; Analyzed the data: SS; Conducted quality assessment; SS, RT; Interpreted the results: SS, PL, JGA, MDV; Prepared the manuscript first draft: SS, MDV, PL, RT; Reviewed the manuscript and provided critical feedback: JGA, MDV, PL; Revised the manuscript: SS, PL, RT, MDV.

#### DATA AVAILABILITY STATEMENT

No additional data available.

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

#### 

### FIGURE LEGENDS

Figure 1.0: PRISMA flow diagram that details the number of studies identified by our search strategy, screened, and included in the final analysis.

Figure 2.0: Forest plots illustrating patients' mean adherence scores over six months and one year post index date. See Supplementary 4 for additional forest plots for each OAC and subgroup analyses.

to beet terien only

2

#### **BMJ** Open

| 3                    |  |
|----------------------|--|
| 4                    |  |
| 5                    |  |
| 5<br>6<br>7          |  |
| 0                    |  |
| /                    |  |
| 8                    |  |
| 9                    |  |
| 10                   |  |
| 11                   |  |
| 12                   |  |
| 13                   |  |
| 14                   |  |
| 14<br>15<br>16<br>17 |  |
| 16                   |  |
| 17                   |  |
| 18                   |  |
| 19                   |  |
| 20                   |  |
|                      |  |
| 21                   |  |
| 22                   |  |
| 23                   |  |
| 24                   |  |
| 25                   |  |
| 26                   |  |
| 27                   |  |
| 28                   |  |
| 29                   |  |
| 30                   |  |
| 31                   |  |
| 32                   |  |
| 33                   |  |
| 34                   |  |
| 35                   |  |
|                      |  |
| 36                   |  |
| 37                   |  |
| 38                   |  |
| 39                   |  |
| 40                   |  |
| 41                   |  |
| 42                   |  |
| 43                   |  |
| 44                   |  |
| 45                   |  |
| 46                   |  |
| 47                   |  |
| 48                   |  |
| 49                   |  |
| 50                   |  |
| 50<br>51             |  |
|                      |  |
| 52                   |  |
| 53                   |  |
| 54                   |  |
| 55                   |  |
| 56                   |  |
| 57                   |  |
| 58                   |  |
| 59                   |  |
| 60                   |  |

#### REFERENCES

- 1. Morillo CA, Banerjee A, Perel P, et al. Atrial fibrillation: The current epidemic. *J Geriatr Cardiol* 2017;14(3):195-203. doi: 10.11909/j.issn.1671-5411.2017.03.011
- Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: The Framingham study. *Stroke* 1991;22(8):983-88. doi: 10.1161/01.str.22.8.983
- 3. Hart RG, Pearce LA, McBride R, et al. Factors associated with ischemic stroke during aspirin therapy in atrial fibrillation: Analysis of 2012 participants in the SPAF i-iii clinical trials. The stroke prevention in atrial fibrillation (SPAF) investigators. *Stroke* 1999;30(6):1223-9. doi: 10.1161/01.str.30.6.1223 [published Online First: 1999/06/04]
- 4. World Health Organization. The top 10 causes of death 2018 [Available from: <u>https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death</u> accessed 2.05.2019 2019.
- Wolf PA, Dawber TR, Thomas HE, Jr., et al. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: The Framingham study. *Neurology* 1978;28(10):973-7. doi: 10.1212/wnl.28.10.973 [published Online First: 1978/10/01]
- 6. Marini C, De Santis F, Sacco S, et al. Contribution of atrial fibrillation to incidence and outcome of ischemic stroke: Results from a population-based study. *Stroke* 2005;36(6):1115-9. doi: 10.1161/01.STR.0000166053.83476.4a [published Online First: 2005/05/10]
- McGrath ER, Kapral MK, Fang J, et al. Association of atrial fibrillation with mortality and disability after ischemic stroke. *Neurology* 2013;81(9):825-32. doi: 10.1212/WNL.0b013e3182a2cc15 [published Online First: 2013/08/02]

- 8. Fang MC, Go AS, Chang Y, et al. Long-term survival after ischemic stroke in patients with atrial fibrillation. *Neurology* 2014;82(12):1033-37. doi:
- 9. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. *NEJM* 2009;361(12):1139-51. doi: 10.1056/NEJMoa0905561
- Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. *NEJM* 2013;369(22):2093-104. doi: 10.1056/NEJMoa1310907
- 11. Hart RG, Pearce LA, Aguilar MI. Meta-analysis: Antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. *Ann Intern Med* 2007;146(12):857-67. doi: 10.7326/0003-4819-146-12-200706190-00007 [published Online First: 2007/06/20]
- 12. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. *NEJM*, 2011;365(10):883-91. doi: 10.1056/NEJMoa1009638
- 13. European Society of Cardiology. ESC guidelines for the management of atrial fibrillation developed in collaboration with eacts. *Eur Heart J* 2016;20(1) doi:
   10.1093/eurhearti/ebw210
- 14. Karve S, Cleves MA, Helm M, et al. Good and poor adherence: Optimal cut-point for adherence measures using administrative claims data. *Curr Med Res Opin,* 2009;25(9):2303-10. doi: 10.1185/03007990903126833 [published Online First: 2009/07/29]
- 15. De Geest S, Zullig LL, Dunbar-Jacob J, et al. Espacomp medication adherence reporting guideline (emerge). *Ann Intern Med* 2018;169(1):30-35. doi: 10.7326/m18-0543
  [published Online First: 2018/06/28]

#### **BMJ** Open

| 2                                                                                  |  |
|------------------------------------------------------------------------------------|--|
| 3                                                                                  |  |
| 4                                                                                  |  |
| 5                                                                                  |  |
| 6                                                                                  |  |
| 7                                                                                  |  |
| 8                                                                                  |  |
| 9                                                                                  |  |
| 10                                                                                 |  |
| 11                                                                                 |  |
| 12                                                                                 |  |
| 13                                                                                 |  |
| 14                                                                                 |  |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 |  |
| 16                                                                                 |  |
| 17                                                                                 |  |
| 18                                                                                 |  |
| 10                                                                                 |  |
| 20                                                                                 |  |
| 20                                                                                 |  |
| 21<br>22                                                                           |  |
| 22                                                                                 |  |
| 25                                                                                 |  |
| 22<br>23<br>24<br>25                                                               |  |
| 25                                                                                 |  |
| 26                                                                                 |  |
| 27                                                                                 |  |
| 28                                                                                 |  |
| 29                                                                                 |  |
| 30                                                                                 |  |
| 31<br>32<br>33                                                                     |  |
| 32                                                                                 |  |
| 33                                                                                 |  |
| 34                                                                                 |  |
| 35                                                                                 |  |
| 36                                                                                 |  |
| 37                                                                                 |  |
| 38                                                                                 |  |
| 39                                                                                 |  |
| 40                                                                                 |  |
| 41                                                                                 |  |
| 42                                                                                 |  |
| 43                                                                                 |  |
| 44                                                                                 |  |
| 45                                                                                 |  |
| 46                                                                                 |  |
| 47                                                                                 |  |
| 48                                                                                 |  |
| 49                                                                                 |  |
| 50                                                                                 |  |
| 51                                                                                 |  |
| 52                                                                                 |  |
| 53                                                                                 |  |
| 54                                                                                 |  |
| 55                                                                                 |  |
| 56                                                                                 |  |
| 57                                                                                 |  |
| 58                                                                                 |  |
| 58                                                                                 |  |
|                                                                                    |  |

60

16. Aronis KN, Hylek EM. Evidence gaps in the era of non-vitamin k oral anticoagulants. *JAHA* 2018;7(3):e007338. doi: 10.1161/JAHA.117.007338

- 17. Chin PK, Doogue MP. Long-term prescribing of new oral anticoagulants. *Aust Prescr* 2016;39(6):200-04. doi: 10.18773/austprescr.2016.068 [published Online First: 2016/12/05]
- 18. Mekaj YH, Mekaj AY, Duci SB, et al. New oral anticoagulants: Their advantages and disadvantages compared with vitamin k antagonists in the prevention and treatment of patients with thromboembolic events. *Ther clin risk manag*, 2015;11:967-77. doi: 10.2147/TCRM.S84210
- Obamiro K, Chalmers L, Bereznicki L. A summary of the literature evaluating adherence and persistence with oral anticoagulants in atrial fibrillation. *Am J Cardiovasc Drugs*, 2016;16(5):349-63. doi: 10.1007/s40256-016-0171-6
- 20. Chatterjee S, Sardar P, Giri JS, et al. Treatment discontinuations with new oral agents for long-term anticoagulation: Insights from a meta-analysis of 18 randomized trials including 101,801 patients. *Mayo Clin Proc*, 2014;89(7):896-907. doi: 10.1016/j.mayocp.2014.01.030 [published Online First: 2014/07/06]
- 21. Shehab A, Bhagavathula AS, Abebe TB, et al. Patient adherence to novel oral anticoagulants (noacs) for the treatment of atrial fibrillation and occurrence of associated bleeding events: A systematic review and meta-analysis. *Curr Vasc Pharmacol*, 2018 doi: 10.2174/1570161116666180123111949 [published Online First: 2018/01/24]
- 22. Liberati A, Altman DG, Tetzlaff J, et al. The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

and elaboration. PLoS medicine 2009;6(7):e1000100. doi:

10.1371/journal.pmed.1000100

# 23. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of observational studies in epidemiology (moose) group. JAMA 2000;283(15):2008-12. doi:

10.1001/jama.283.15.2008 [published Online First: 2000/05/02]

- 24. Osterberg L, Blaschke T. Adherence to medication. *NEJM* 2005;353(5):487-97. doi: 10.1056/NEJMra050100
- 25. Andrade SE, Kahler KH, Frech F, et al. Methods for evaluation of medication adherence and persistence using automated databases. *Pharmacoepidemiol Drug Saf*, 2006;15(8):565-74; discussion 75-7. doi: 10.1002/pds.1230 [published Online First: 2006/03/04]
- 26. Baumgartner PC, Haynes RB, Hersberger KE, et al. A systematic review of medication adherence thresholds dependent of clinical outcomes. *Front Pharmacol* 2018;9(1290) doi: 10.3389/fphar.2018.01290
- 27. World Health Organisation. Adherence to long-term therapies: Evidence to action. Towards the solution: five interacting dimensions affect adherence. Switzerland, 2003.
- Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ* 2003;327(7414):557-60. doi: 10.1136/bmj.327.7414.557 %J BMJ

Willis BH, Riley RD. Measuring the statistical validity of summary meta-analysis and meta-regression results for use in clinical practice. *Stat Med*, 2017;36(21):3283-301. doi: 10.1002/sim.7372 [published Online First: 2017/06/18]

#### **BMJ** Open

| 30. W | Vallace BC, Dahabreh IJ, Trikalinos TA, et al. Closing the gap between methodologists ar  |
|-------|-------------------------------------------------------------------------------------------|
|       | end-users: R as a computational back-end. J Stat Softw 2012;49(5):15. doi:                |
|       | 10.18637/jss.v049.i05 [published Online First: 2012-06-30]                                |
| 31. P | eters JL, Sutton AJ, Jones DR, et al. Comparison of two methods to detect publication bia |
|       | in meta-analysis. JAMA 2006;295(6):676-80. doi: 10.1001/jama.295.6.676 %J JAMA            |
| 32. P | eterson AM, Nau DP, Cramer JA, et al. A checklist for medication compliance and           |
|       | persistence studies using retrospective databases. Value Health, 2007;10(1):3-12. doi:    |
|       | 10.1111/j.1524-4733.2006.00139.x [published Online First: 2007/01/31]                     |
| 33. V | on Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational     |
|       | studies in epidemiology (strobe) statement: Guidelines for reporting observational        |
|       | studies. Int J Surg 2014;12(12):1495-99. doi: https://doi.org/10.1016/j.ijsu.2014.07.013  |
| 34. C | ochrane community. Editorial and publishing policy resource conflicts of interest and     |
|       | cochrane reviews 2014 [Available from: https://community.cochrane.org/editorial-and-      |
|       | publishing-policy-resource/ethical-considerations/conflicts-interest-and-cochrane-revie   |
|       | accessed July 10 2019.                                                                    |
| 35. A | lberts MJ, Peacock WF, Fields LE, et al. Association between once- and twice-daily dire   |
|       | oral anticoagulant adherence in nonvalvular atrial fibrillation patients and rates of     |
|       | ischemic stroke. Int J Cardiol, 2016;215:11-3. doi: 10.1016/j.ijcard.2016.03.212          |
|       | [published Online First: 2016/04/23]                                                      |
| 36. B | eyer-Westendorf J, Ehlken B, Evers T. Real-world persistence and adherence to oral        |
|       | anticoagulation for stroke risk reduction in patients with atrial fibrillation. Europace, |
|       | 2016;18(8):1150-7. doi: 10.1093/europace/euv421 [published Online First: 2016/02/03       |

37. Borne RT, O'Donnell C, Turakhia MP, et al. Adherence and outcomes to direct oral anticoagulants among patients with atrial fibrillation: Findings from the veterans health administration. *BMC Cardiovasc Disord*, 2017;17(1):236. doi: 10.1186/s12872-017-0671-6 [published Online First: 2017/09/04]

- 38. Casciano JP, Dotiwala ZJ, Martin BC, et al. The costs of warfarin underuse and nonadherence in patients with atrial fibrillation: A commercial insurer perspective. J Manag Care Pharm, 2013;19(4):302-16. doi: 10.18553/jmcp.2013.19.4.302 [published Online First: 2013/05/01]
- 39. Coleman C, Yuan Z, Schein J, et al. Importance of balancing follow-up time and impact of oral-anticoagulant users' selection when evaluating medication adherence in atrial fibrillation patients treated with rivaroxaban and apixaban. *Curr Med Res Opin* 2017;33(6):1033-43. doi: 10.1080/03007995.2017.1297932 [published Online First: 2017/04/04]
- 40. Coleman CI, Tangirala M, Evers T. Medication adherence to rivaroxaban and dabigatran for stroke prevention in patients with non-valvular atrial fibrillation in the United States. *Int J Cardio* 2016;212:171-3. doi: 10.1016/j.ijcard.2016.03.051 [published Online First: 2016/04/04]
- 41. Crivera C, Nelson WW, Bookhart B, et al. Pharmacy quality alliance measure: Adherence to non-warfarin oral anticoagulant medications. *Curr Med Res Opin* 2015;31(10):1889-95. doi: 10.1185/03007995.2015.1077213 [published Online First: 2015/07/28]
- 42. Deshpande CG, Kogut S, Laforge R, et al. Impact of medication adherence on risk of ischemic stroke, major bleeding and deep vein thrombosis in atrial fibrillation patients

| using novel oral anticoagulants. Curr Med Res Opin 2018;34(7):1285-92. doi:                |
|--------------------------------------------------------------------------------------------|
| 10.1080/03007995.2018.1428543                                                              |
| hpande CG, Kogut S, Willey C. Real-world health care costs based on medication             |
| adherence and risk of stroke and bleeding in patients treated with novel anticoagulant     |
| therapy. J Manag Care Spec Pharm, 2018;24(5):430-39. doi:                                  |
| 10.18553/jmcp.2018.24.5.430 [published Online First: 2018/04/26]                           |
| en ZJ, Mi X, Qualls LG, et al. Adherence and persistence in the use of warfarin after      |
| hospital discharge among patients with heart failure and atrial fibrillation. J Card Fail, |
| 2014;20(1):23-30. doi: 10.1016/j.cardfail.2013.11.006 [published Online First:             |
| 2013/11/28]                                                                                |
| slund T, Wettermark B, Hjemdahl P. Comparison of treatment persistence with different      |
| oral anticoagulants in patients with atrial fibrillation. Eur J Clin Pharmacol,            |
| 2016;72(3):329-38. doi: 10.1007/s00228-015-1983-z [published Online First:                 |
| 2015/11/29]                                                                                |
| nez-Lumbreras A, Cortes J, Morros R, et al. Characteristics of apixaban-treated patients,  |
| evaluation of the dose prescribed, and the persistence of treatment: A cohort study in     |
| catalonia. J Cardiovasc Pharmacol Ther 2018;23(6):494-501. doi:                            |
| 10.1177/1074248418778544                                                                   |
| st-Rasmussen A, Skjoth F, Larsen TB, et al. Dabigatran adherence in atrial fibrillation    |
| patients during the first year after diagnosis: A nationwide cohort study. J Thromb        |
| Haemost, 2015;13(4):495-504. doi: 10.1111/jth.12845 [published Online First:               |
| 2015/01/17]                                                                                |
|                                                                                            |
|                                                                                            |
|                                                                                            |

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

10.1080/03007995.2018.1428543 43. Deshpande CG, Kogut S, Willey C. Real-world health care costs based on adherence and risk of stroke and bleeding in patients treated with nove therapy. J Manag Care Spec Pharm, 2018;24(5):430-39. doi: 10.18553/jmcp.2018.24.5.430 [published Online First: 2018/04/26] 44. Eapen ZJ, Mi X, Qualls LG, et al. Adherence and persistence in the use of hospital discharge among patients with heart failure and atrial fibrillati 2014;20(1):23-30. doi: 10.1016/j.cardfail.2013.11.006 [published Onli 2013/11/28] 45. Forslund T, Wettermark B, Hjemdahl P. Comparison of treatment persister oral anticoagulants in patients with atrial fibrillation. Eur J Clin Pharm 2016;72(3):329-38. doi: 10.1007/s00228-015-1983-z [published Onlin 2015/11/29] 46. Gomez-Lumbreras A, Cortes J, Morros R, et al. Characteristics of apixaba evaluation of the dose prescribed, and the persistence of treatment: A c catalonia. J Cardiovasc Pharmacol Ther 2018;23(6):494-501. doi:

47. Gorst-Rasmussen A, Skjoth F, Larsen TB, et al. Dabigatran adherence in a patients during the first year after diagnosis: A nationwide cohort study Haemost, 2015;13(4):495-504. doi: 10.1111/jth.12845 [published Onli 2015/01/17]

48. Harper P, Pollock D, Stephens M. Dabigatran persistence and adherence in new zealand: A nationwide retrospective observational study. *BMJ open* 2018;8(4):e020212. doi: 10.1136/bmjopen-2017-020212 [published Online First: 2018/04/08]

- 49. Jacobs MS, Schouten JF, de Boer PT, et al. Secondary adherence to non-vitamin-k antagonist oral anticoagulants in patients with atrial fibrillation in sweden and the netherlands. *Curr Med Res Opin* 2018;34(10):1839-47. doi: 10.1080/03007995.2018.1459528
- 50. Manzoor BS, Lee TA, Sharp LK, et al. Real-world adherence and persistence with direct oral anticoagulants in adults with atrial fibrillation. *Pharmacotherapy* 2017;37(10):1221-30. doi: 10.1002/phar.1989 [published Online First: 2017/07/22]
- 51. Marquez-Contreras E, Martell-Carlos N, Gil-Guillen V, et al. Therapeutic compliance with rivaroxaban in preventing stroke in patients with non-valvular atrial fibrillation: Cumrivafa study. *Curr Med Res Opin* 2016;32(12):2013-20. doi: 10.1080/03007995.2016.1227311 [published Online First: 2016/08/23]
  - Jours C. Deriante A. Alle E. et al. Adherence with direct and enticed gulants in r
- 52. Maura G, Pariente A, Alla F, et al. Adherence with direct oral anticoagulants in nonvalvular atrial fibrillation new users and associated factors: A french nationwide cohort study. *Pharmacoepidemiol Drug Saf* 2017;26(11):1367-77. doi: 10.1002/pds.4268 [published Online First: 2017/07/29]
- 53. McAlister FA, Wiebe N, Hemmelgarn BR. Time in therapeutic range and stability over time for warfarin users in clinical practice: A retrospective cohort study using linked routinely collected health data in alberta, canada. *BMJ open* 2018;8(1):e016980. doi:

10.1136/bmjopen-2017-016980 [published Online First: 2018/02/01]

#### **BMJ** Open

54. McCormick D, Gurwitz JH, Goldberg RJ, et al. Prevalence and quality of warfarin use for patients with atrial fibrillation in the long-term care setting. *Arch Intern Med* 2001;161(20):2458-63. [published Online First: 2001/12/01]

- 55. McHorney CA, Ashton V, Laliberte F, et al. Adherence to rivaroxaban compared with other oral anticoagulant agents among patients with nonvalvular atrial fibrillation. *J Manag Care Spec Pharm*, 2017;23(9):980-88. doi: 10.18553/jmcp.2017.23.9.980 [published Online First: 2017/08/31]
- 56. McHorney CA, Crivera C, Laliberte F, et al. Adherence to rivaroxaban versus apixaban among patients with non-valvular atrial fibrillation: Analysis of overall population and subgroups of prior oral anticoagulant users. *PloS one* 2018;13(4):e0194099. doi: 10.1371/journal.pone.0194099 [published Online First: 2018/04/06]
- 57. Mueller T, Alvarez-Madrazo S, Robertson C, et al. Use of direct oral anticoagulants in patients with atrial fibrillation in scotland: Applying a coherent framework to drug utilisation studies. *Pharmacoepidemiol Drug Saf* 2017;26(11):1378-86. doi: 10.1002/pds.4272 [published Online First: 2017/07/29]
- 58. Pham PN, Brown JDJBCD. Real-world adherence for direct oral anticoagulants in a newly diagnosed atrial fibrillation cohort: Does the dosing interval matter? *BMC Cardiovasc Disord* 2019;19(1):64. doi: 10.1186/s12872-019-1033-3

59. Shore S, Carey EP, Turakhia MP, et al. Adherence to dabigatran therapy and longitudinal patient outcomes: Insights from the veterans health administration. *Am Heart J*, 2014;167(6):810-7. doi: 10.1016/j.ahj.2014.03.023 [published Online First: 2014/06/04]

60. Sorensen R, Jamie Nielsen B, Langtved Pallisgaard J, et al. Adherence with oral anticoagulation in non-valvular atrial fibrillation: A comparison of vitamin k antagonists

and non-vitamin k antagonists. *Eur Heart J Cardiovasc Pharmacother*, 2017;3(3):151-56. doi: 10.1093/ehjcvp/pvw048 [published Online First: 2017/02/06]

- Tsai K, Erickson SC, Yang J, et al. Adherence, persistence, and switching patterns of dabigatran etexilate. *Am J Manag Care*, 2013;19(9):e325-32. [published Online First: 2014/01/24]
- 62. Yao X, Abraham NS, Alexander GC, et al. Effect of adherence to oral anticoagulants on risk of stroke and major bleeding among patients with atrial fibrillation. *J Am Heart Assoc*, 2016;5(2) doi: 10.1161/jaha.115.003074 [published Online First: 2016/02/26]
- 63. Zhou M, Chang HY, Segal JB, et al. Adherence to a novel oral anticoagulant among patients with atrial fibrillation. *J Manag Care Spec Pharm*, 2015;21(11):1054-62. doi: 10.18553/jmcp.2015.21.11.1054 [published Online First: 2015/11/02]
- 64. Brown JD, Shewale AR, Talbert JC. Adherence to rivaroxaban, dabigatran, and apixaban for stroke prevention in incident, treatment-naive nonvalvular atrial fibrillation. *J Manag Care Spec Pharm*, 2016;22(11):1319-29. doi: 10.18553/jmcp.2016.22.11.1319 [published Online First: 2016/10/27]
- 65. Chowdhury R, Khan H, Heydon E, et al. Adherence to cardiovascular therapy: A metaanalysis of prevalence and clinical consequences. *European heart journal* 2013;34(38):2940-8. doi: 10.1093/eurheartj/eht295 [published Online First: 2013/08/03]
- 66. Salmasi S, De Vera MA, Barry A, et al. Assessment of condition and medication knowledge gaps among atrial fibrillation patients: A systematic review and meta-analysis. *Ann Pharmacother*, 2019;0(0):1060028019835845. doi:

https://doi.org/10.1177/1060028019835845

### **BMJ** Open

| 67. Salmasi S, Kwan L, MacGillivray J, et al. Assessment of atrial fibrillation patients' education |
|-----------------------------------------------------------------------------------------------------|
| needs from patient and clinician perspectives: A qualitative descriptive study. Thromb              |
| Res, 2018 doi: https://doi.org/10.1016/j.thromres.2018.11.015                                       |
| 68. Lee VWY, Tam CS, Yan BP, et al. Barriers to warfarin use for stroke prevention in patients      |
| with atrial fibrillation in hong kong. Clin Cardiol 2013;36(3):166-71. doi:                         |
| 10.1002/clc.22077                                                                                   |
| 69. McCabe PJ, Barnason SA, Houfek J. Illness beliefs in patients with recurrent symptomatic        |
| atrial fibrillation. Pacing Clin Electrophysiol, 2011;34(7):810-20. doi: 10.1111/j.1540-            |
| 8159.2011.03105.x                                                                                   |
| 70. McCabe PJ, Rhudy LM, DeVon HA. Patients' experiences from symptom onset to initial              |
| treatment for atrial fibrillation. J Clin Nurs 2015;24(5-6):786-96. doi:                            |
| 10.1111/jocn.12708                                                                                  |
| 71. Loewen PS, Ji AT, Kapanen A. Patient values and preferences for antithrombotic therapy in       |
| atrial fibrillation. <i>Thromb Haemost</i> , 2017                                                   |
| 72. Leslie KH, McCowan C, Pell JP. Adherence to cardiovascular medication: A review of              |
| systematic reviews. J Public Health (Oxf) 2019;41(1):e84-e94. doi:                                  |
| 10.1093/pubmed/fdy088                                                                               |
| 73. Cutler RL, Fernandez-Llimos F, Frommer M, et al. Economic impact of medication non-             |
| adherence by disease groups: A systematic review. BMJ Open 2018;8(1):e016982. doi:                  |
| 10.1136/bmjopen-2017-016982 %J BMJ Open                                                             |
| 74. DiMatteo MR, Giordani PJ, Lepper HS, et al. Patient adherence and medical treatment             |
| outcomes: A meta-analysis. Med Care, 2002;40(9):794-811. doi: 10.1097/00005650-                     |
| 200209000-00009 [published Online First: 2002/09/10]                                                |
|                                                                                                     |
| 28<br>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                     |
| T OF PEET EVIEW ONLY - HLLP.// DHJOPEN.DHJ.COM/ SILE/ dDOUL/ GUIGEIMES.XHLHH                        |

75. Bramley TJ, Nightengale BS, Frech-Tamas F, et al. Relationship of blood pressure control to adherence with antihypertensive monotherapy in 13 managed care organizations. J
 Manag Care Pharm 2006;12(3):239-45. doi: 10.18553/jmcp.2006.12.3.239

- 76. Ho PM, Rumsfeld JS, Masoudi FA, et al. Effect of medication nonadherence on hospitalization and mortality among patients with diabetes mellitus. *Arch Intern Med*, 2006;166(17):1836-41. doi: 10.1001/archinte.166.17.1836 %J Archives of Internal Medicine
- 77. Kennedy-Martin T, Boye KS, Peng X. Cost of medication adherence and persistence in type
  2 diabetes mellitus: A literature review. *Patient Prefer Adherence* 2017;11:1103-17. doi: 10.2147/PPA.S136639
- 78. Rasmussen JN, Chong A, Alter DA. Relationship between adherence to evidence-based pharmacotherapy and long-term mortality after acute myocardial infarction. *JAMA* 2007;297(2):177-86. doi: 10.1001/jama.297.2.177 %J JAMA
- 79. Tangkiatkumjai M, Walker D-M, Praditpornsilpa K, et al. Association between medication adherence and clinical outcomes in patients with chronic kidney disease: A prospective cohort study. *Clin Exp Nephrol* 2017;21(3):504-12. doi: 10.1007/s10157-016-1312-6
- 80. Vrijens B, De Geest S, Hughes DA, et al. A new taxonomy for describing and defining adherence to medications. *Br J Clin Pharmacol*, 2012;73(5):691-705. doi:

10.1111/j.1365-2125.2012.04167.x [published Online First: 2012/04/11]

81. Gellad WF, Thorpe CT, Steiner JF, et al. The myths of medication adherence.

*Pharmacoepidemiol Drug Saf* 2017;26(12):1437-41. doi: 10.1002/pds.4334 [published Online First: 2017/10/11]

#### **BMJ** Open

| 82. Fi | ranklin JM, Krumme AA, Tong AY, et al. Association between trajectories of statin      |
|--------|----------------------------------------------------------------------------------------|
|        | adherence and subsequent cardiovascular events. Pharmacoepidemiol Drug Saf,            |
|        | 2015;24(10):1105-13. doi: 10.1002/pds.3787 [published Online First: 2015/04/24]        |
| 83. Fi | anklin JM, Shrank WH, Pakes J, et al. Group-based trajectory models: A new approac     |
|        | classifying and predicting long-term medication adherence. Medical care                |
|        | 2013;51(9):789-96. doi: 10.1097/MLR.0b013e3182984c1f [published Online First:          |
|        | 2013/05/21]                                                                            |
| 84. L  | o-Ciganic WH, Donohue JM, Jones BL, et al. Trajectories of diabetes medication adhe    |
|        | and hospitalization risk: A retrospective cohort study in a large state medicaid progr |
|        | Gen Intern Med, 2016;31(9):1052-60. doi: 10.1007/s11606-016-3747-6 [published          |
|        | Online First: 2016/05/28]                                                              |
| 85. L  | o-Ciganic WH, Gellad WF, Gordon AJ, et al. Association between trajectories of         |
|        | buprenorphine treatment and emergency department and in-patient utilization. Addic     |
|        | 2016;111(5):892-902. doi: 10.1111/add.13270 [published Online First: 2015/12/15]       |
| 86. M  | odi AC, Rausch JR, Glauser TA. Patterns of nonadherence to antiepileptic drug therap   |
|        | children with newly diagnosed epilepsy. JAMA 2011;305(16):1669-76. doi:                |
|        | 10.1001/jama.2011.506 [published Online First: 2011/04/28]                             |
| 87. V  | iswanathan S, Justice AC, Alexander GC, et al. Adherence and hiv rna suppression in    |
|        | current era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr,      |
|        | 2015;69(4):493-8. doi: 10.1097/qai.000000000000643 [published Online First:            |
|        | 2015/04/19]                                                                            |

### Page 32 of 80

**BMJ Open: first** 

## TABLES

1

2 3 4

5 6

### Table 1: Characteristics of the included studies

| Author<br>)<br>1                             | Year | Design        | Country                 | Total N;<br>(%Male)       | Age<br>Mean (SD)<br>Unless<br>otherwise<br>stated | Indication<br>for OAC | Adherence<br>reported to<br>index OAC<br>or current<br>OAC | Population<br>OAC Naïve<br>vs<br>Experienced | Potential<br>conflict<br>of<br>interest | Quality<br>Score:<br>STROBE | Qualit<br>score:<br>ISPOI |
|----------------------------------------------|------|---------------|-------------------------|---------------------------|---------------------------------------------------|-----------------------|------------------------------------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------|---------------------------|
| Alberts<br>2                                 | 2016 | Retrospective | USA                     | 36,868<br>(55%)           | 76%>65<br>years                                   | NVAF                  | NA                                                         | Both                                         | Yes                                     | 61%                         | 67%                       |
| eyer-<br>Vestendorf                          | 2016 | Retrospective | Germany                 | 7,265<br>(52%)            | NA                                                | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 73%                         | 74%                       |
| orne                                         | 2017 | Retrospective | USA                     | 2,882<br>(97%)            | 67.4 (9.5)                                        | NVAF                  | NA                                                         | Naïve to<br>DOACs <sup>‡</sup>               | Yes                                     | 73%                         | 78%                       |
| Brown<br>7                                   | 2016 | Retrospective | USA                     | 5,223<br>(40%)            | 59%≥65<br>years                                   | NVAF                  | Both                                                       | Naïve                                        | Yes                                     | 77%                         | 84%                       |
| Sasciano                                     | 2013 | Retrospective | USA                     | 13,289<br>(47%)           | $78\% \ge 75$ years                               | AF                    | NA                                                         | Naïve                                        | Yes                                     | 63%                         | 79%                       |
| Coleman<br>)                                 | 2016 | Retrospective | USA                     | 21,756<br>(54%)           | 66.5 (12.2)                                       | NVAF                  | NA                                                         | Naïve                                        | Yes                                     | 55%                         | 50%                       |
| Coleman                                      | 2017 | Retrospective | USA                     | 106,227<br>(63%)          | 71.1 (11.0)                                       | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 77%                         | 84%                       |
| )<br>Crivera<br>S                            | 2015 | Retrospective | USA                     | 9,948<br>(53%)            | 75.5 (8.3)                                        | NVAF                  | Both                                                       | Naïve                                        | Yes                                     | 73%                         | 61%                       |
| eshpande<br>MID:<br>29694285                 | 2018 | Retrospective | USA                     | 2,981<br>(70%)            | 64.4 (10.7)                                       | AF                    | NA                                                         | Naïve to<br>DOACs <sup>‡</sup>               | No                                      | 77%                         | 83%                       |
| <b>Seshpande</b><br>MID:<br><b>3</b> 9334815 | 2018 | Retrospective | USA                     | 4,856<br>(52%)            | 65.0 (10.5)                                       | AF                    | NA                                                         | Naïve                                        | No                                      | 81%                         | 83%                       |
| Sapen                                        | 2014 | Retrospective | USA                     | 2,691<br>(43%)            | 100%>65<br>years                                  | AF                    | NA                                                         | Both                                         | No                                      | 76%                         | 74%                       |
| orsuland                                     | 2016 | Retrospective | Sweden                  | 16,096<br>(52%)           | 75.45<br>(SD not<br>reported)                     | NVAF                  | Current OAC                                                | Both                                         | No                                      | 63%                         | 61%                       |
| omez-<br>Jomez-<br>Jumberas                  | 2018 | Retrospective | Spain                   | 854<br>(NA%)              | 73.2 (11.0)                                       | NVAF                  | NA                                                         | Both                                         | Yes                                     | 50%                         | 67%                       |
| Gorst-<br>Rasmussen                          | 2015 | Retrospective | Denmark                 | 2,960<br>(54%)            | 72.1 (10.8)                                       | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 80%                         | 100%                      |
| larper                                       | 2018 | Retrospective | New<br>Zealand          | 20,237<br>(NA%)           | 83%>60                                            | NVAF                  | NA                                                         | NA                                           | No                                      | 47%                         | 53%                       |
| /<br>acobs<br>}                              | 2018 | Retrospective | Sweden &<br>Netherlands | 5,684<br>(60%)            | 78%≥65<br>years                                   | AF                    | Current OAC                                                | Both                                         | Yes                                     | 80%                         | 83%                       |
| Manzoor                                      | 2017 | Retrospective | USA                     | 66,090<br>(62%)           | 68.7 (12.1)                                       | AF                    | Index OAC                                                  | Both                                         | Missing                                 | 70%                         | 85%                       |
| )<br>Márquez-<br>Contrera                    | 2016 | Prospective   | Spain                   | 412<br>(42%)              | 75.2 (7.5)                                        | NVAF                  | NA                                                         | Experienced                                  | Yes                                     | 63%                         | 83%                       |
| Maura                                        | 2017 | Retrospective | France                  | 22,267<br>(53%)           | 74.0 (10.8)                                       | NVAF                  | Index                                                      | Naïve                                        | No                                      | 79%                         | 100%                      |
| <u>}</u><br>AcAlister                        | 2018 | Retrospective | Canada                  | (55%)<br>57,669<br>(56%)  | 100%>65                                           | NVAF                  | Current OAC                                                | Naïve                                        | No                                      | 87%                         | 94%                       |
| NcCormick                                    | 2001 | Retrospective | USA                     | (30%)<br>429<br>(22%)     | years<br>87 (7.1)                                 | AF                    | Current OAC                                                | Experienced                                  | No                                      | 60%                         | 82%                       |
| /<br>/IcHorney<br>}                          | 2017 | Retrospective | USA                     | 36,675<br>(67%)           | 63.1<br>(SD not<br>reported)                      | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 87%                         | 89%                       |
| AcHorney                                     | 2018 | Retrospective | USA                     | 41,201<br>(58%)           | NA                                                | NVAF                  | Index OAC                                                  | Both                                         | Yes                                     | 84%                         | 100%                      |
| Iueller                                      | 2017 | Retrospective | Scotland                | (38%)<br>5,398<br>(54%)   | 74.4 (11.3)                                       | AF                    | NA                                                         | NA                                           | No                                      | 70%                         | 53%                       |
| ham                                          | 2019 | Retrospective | USA                     | (5476)<br>38,947<br>(60%) | 100%>65                                           | NVAF                  | Index OAC & any OAC                                        | Naïve                                        | No                                      | 77%                         | 89%                       |
| hore                                         | 2014 | Retrospective | USA                     | (80%)<br>5,376<br>(98%)   | years<br>71.3 (9.7)                               | NVAF                  | Index OAC                                                  | NA                                           | No                                      | 90%                         | 94%                       |
| ørensen                                      | 2017 | Retrospective | Denmark                 | (98%)<br>46,675<br>(58%)  | 79%>65<br>years                                   | NVAF                  | Current OAC                                                | Naïve                                        | Yes                                     | 67%                         | 79%                       |

59

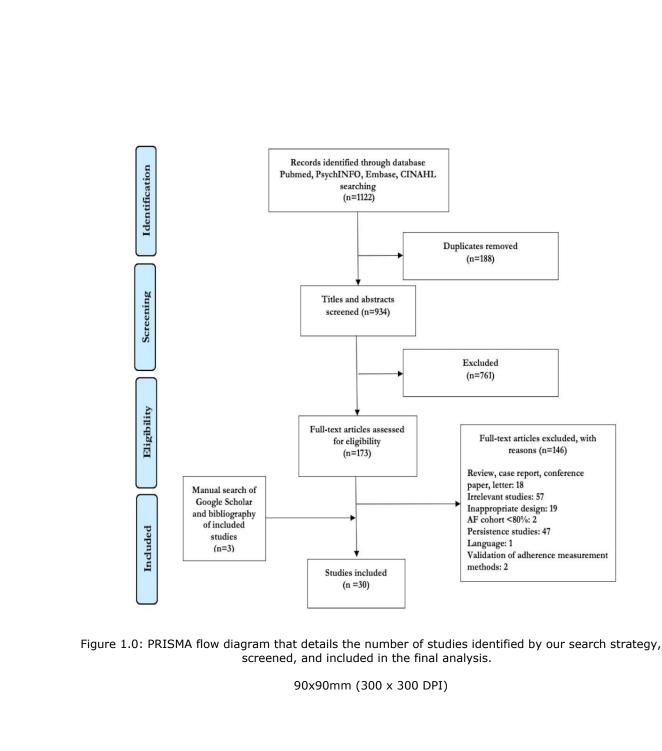
|      | 2013 | Retrospective | USA | 17,691<br>(49%) | 76.4 (8.7) | NA | Current OAC | Warfarin<br>Naïve and<br>warfarin<br>experienced | No | 60% | 789 |
|------|------|---------------|-----|-----------------|------------|----|-------------|--------------------------------------------------|----|-----|-----|
|      | 2016 | Retrospective | USA | 64,661<br>(56%) | 75% >65    | AF | Index OAC   | Naïve                                            | No | 77% | 849 |
| ote: | 2015 | Retrospective | USA | 5,951<br>(34%)  | 36.1%>65   | AF | Index OAC   | Naïve                                            | No | 80% | 799 |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright.

| Study (year) Adherence<br>measure  |                     | Adherence<br>Over 6 m                                                               |                                                                                                                          |                                                                                                                                           | nce results<br>r 1 year                                                        |
|------------------------------------|---------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                    | (Threshold)         | Mean adherence score<br>± SD                                                        | Proportion<br>adherent                                                                                                   | Mean adherence<br>score ± SD                                                                                                              | Proportion adheren                                                             |
| <b>Proportion Days Cove</b>        | red (PDC)           |                                                                                     |                                                                                                                          |                                                                                                                                           |                                                                                |
| Alberts<br>(2016)                  | PDC (>80%)          | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | Overall: 0.70<br>A and D: 0.68<br>R: 0.73                                      |
| Borne<br>(2017)                    | PDC (>80%)          | NA                                                                                  | NA                                                                                                                       | Overall: $0.85 \pm 0.19$<br>A: $0.89 \pm 0.14$<br>D: $0.84 \pm 0.20$<br>R: $0.86 \pm 0.18$                                                | Overall: 0.72<br>A: 0.77<br>D: 0.71<br>R: 0.75                                 |
| Brown (2016)                       | PDC (≥80%)          | A: $0.75 \pm 0.29$<br>D: $0.67 \pm 0.33$<br>R: $0.75 \pm 0.31$                      | A: 0.62<br>D: 0.54<br>R: 0.64                                                                                            | NA                                                                                                                                        | NA                                                                             |
| Casciano<br>(2013)                 | PDC (>80%)          | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | W: 0.41                                                                        |
| Coleman<br>(2016)                  | PDC (>80%)          | D: 0.77 ± 0.32                                                                      | D: 0.65<br>R: 0.74                                                                                                       | D: $0.65 \pm 0.37$                                                                                                                        | D: 0.52<br>R: 0.62                                                             |
| (2016)<br>Coleman                  | PDC                 | R: 0.82 ± 0.30<br>NA                                                                | A: 0.57 and 0.62                                                                                                         | R: 0.73 ± 0.35<br>NA                                                                                                                      | NA                                                                             |
| (2017)                             | (≥80%)              |                                                                                     | R: 0.54 and 0.58<br>(Two different<br>databases were used<br>for this study hence<br>two adherence<br>results per drug.) |                                                                                                                                           |                                                                                |
| Crivera<br>(2015)                  | PDC (>80%)          | NA                                                                                  | NA                                                                                                                       | Index DOAC:<br>A: $0.83 \pm 0.20$<br>D: $0.81 \pm 0.22$<br>R: $0.86 \pm 0.19$<br>Any OAC:<br>A: $0.84 \pm 0.18$ ;<br>D: $0.85 \pm 0.18$ ; | Index DOAC:<br>A: 0.71<br>D: 0.68<br>R: 0.75<br>Any OAC:<br>A: 0.71<br>D: 0.73 |
|                                    |                     |                                                                                     |                                                                                                                          | $R: 0.87 \pm 0.17;$                                                                                                                       | R: 0.77                                                                        |
| Deshpande (2018)<br>PMID: 29694285 | PDC<br>(≥80%)       | NA                                                                                  | R and D: 0.65                                                                                                            | NA NA                                                                                                                                     | R and D: 0.54                                                                  |
| Deshpande (2018)<br>PMID: 29334815 | PDC (≥80%)          | R and D:<br>0.86 ± SD missing                                                       | R and D: 0.77                                                                                                            | R and D:<br>0.85 ± SD missing                                                                                                             | R and D: 0.76                                                                  |
| Forsuland (2016)                   | PDC (>80%)          | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | A: 0.93<br>D: 0.92<br>R: 0.96                                                  |
| Gorst-Rasmussen<br>(2015)          | PDC<br>(>80%)       | $0.84 \pm 0.28$                                                                     | NA                                                                                                                       | NA                                                                                                                                        | D: 0.77                                                                        |
| Harper<br>(2018)                   | PDC<br>(>80%)       | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | D: 0.84                                                                        |
| Manzoor<br>(2017)                  | PDC high (≥<br>90%) | Overall:<br>0.78 ± 28.40<br>A: 80.90 ± 24.9<br>D: 78.60 ± 27.70<br>R: 76.50 ± 30.70 | <b>PDC90</b><br>0.55                                                                                                     | Overall:<br>72.80 ± 32.20<br>A: No users of A at 12<br>months<br>D: 73.4± 31.6;<br>R: 69.7± 34.8                                          | <b>PDC90</b> 0.34                                                              |
| Maura<br>(2017)                    | PDC>80              | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | Index OAC:<br>Overall: 0.71<br>D: 0.70                                         |

|                                           |                           |                                                  |                               |                                                  | R: 0.72           |
|-------------------------------------------|---------------------------|--------------------------------------------------|-------------------------------|--------------------------------------------------|-------------------|
| McHorney (2017)                           | PDC<br>(>80% &<br>>90%)   | NA                                               | PDC 80:<br>A: 0.76<br>D: 0.69 | NA                                               | NA                |
|                                           | > )0/0)                   |                                                  | R: 0.80                       |                                                  |                   |
|                                           |                           |                                                  | W: 0.65                       |                                                  |                   |
|                                           |                           |                                                  | PDC90:                        |                                                  |                   |
|                                           |                           |                                                  | A: 0.57                       |                                                  |                   |
|                                           |                           |                                                  | D: 0.51                       |                                                  |                   |
|                                           |                           |                                                  | R: 0.64                       |                                                  |                   |
|                                           |                           |                                                  | W: 0.47                       |                                                  |                   |
| McHorney                                  | PDC                       | NA                                               | PDC80:                        | NA                                               | NA                |
| (2018)                                    | (>80% &                   |                                                  | A:0.78                        |                                                  |                   |
|                                           | >90%)                     |                                                  | R: 0.82                       |                                                  |                   |
|                                           |                           |                                                  | PDC90:                        |                                                  |                   |
|                                           |                           |                                                  | A: 0.60                       |                                                  |                   |
| ~ 1                                       |                           | <b>X X A I A</b>                                 | R: 0.67                       |                                                  |                   |
| Pham                                      | PDC                       | Index OAC:                                       | Index OAC:                    | Index OAC:                                       | Index OAC:        |
| (2019)                                    | (>80%)                    | A: 0.76 ± 0.29                                   | A: 0.63                       | A: $0.70 \pm 0.33$                               | A: 0.56.          |
|                                           |                           | D: 0.67± 0.33                                    | D: 0.53                       | D: $0.57 \pm 0.36$                               | D: 0.41           |
|                                           |                           | R: $0.72 \pm 0.32$                               | R: 0.58                       | R: $0.64 \pm 0.36$                               | R: 0.50           |
|                                           |                           |                                                  |                               |                                                  |                   |
|                                           |                           |                                                  |                               | Any OAC:                                         |                   |
|                                           |                           |                                                  |                               | A: $0.73 \pm 0.31$                               |                   |
|                                           |                           |                                                  |                               | D: $0.64 \pm 0.34$                               |                   |
| 01                                        |                           |                                                  | D 0 20                        | $R: 0.68 \pm 0.34$                               |                   |
| Shore<br>(2014)                           | PDC<br>(>80%)             | NA                                               | D: 0.28                       | NA                                               | NA                |
| (2014)                                    | (~80%)                    |                                                  |                               |                                                  |                   |
| Sørensen (2017)                           | PDC                       | NA                                               | Odds of being                 | NA                                               | NA                |
|                                           | (>80%)                    |                                                  | adherent                      |                                                  |                   |
|                                           |                           |                                                  | R: reference;                 |                                                  |                   |
|                                           |                           |                                                  | A: 0.79 (0.69 - 0.92)         |                                                  |                   |
|                                           |                           |                                                  | D: 0.72 (0.66 - 0.80)         |                                                  |                   |
|                                           |                           |                                                  | VKA: 0.76 (0.69 -             |                                                  |                   |
| Tsai                                      | PDC                       | D:                                               | 0.83)<br>NA                   | NA                                               | NA                |
| (2013)                                    | (no threshold)            | D:<br>warfarin-naïve: 0.67 ±                     | NA                            | NA                                               | INA               |
| (2013)                                    | (no uneshold)             | 0.36                                             |                               |                                                  |                   |
|                                           |                           | warfarin-experienced:                            |                               |                                                  |                   |
|                                           |                           | $0.71 \pm 0.35$                                  |                               |                                                  |                   |
| Yao (2016)                                | PDC                       | NA                                               | Overall: 47.5%                | NA                                               | NA                |
| 100 (2010)                                | (>80%)                    | 141                                              | A: 0.52                       |                                                  | 1111              |
|                                           | ( 00,0)                   |                                                  | D: 0.46                       |                                                  |                   |
|                                           |                           |                                                  | R: 0.48                       |                                                  |                   |
|                                           |                           |                                                  | W: 0.39                       |                                                  |                   |
| Medication Possession<br>Beyer-Westendorf | Ratio (MPR)<br>MPR (>0.8) | D: 0.67 ± SD missing                             | D: 0.50                       | D: 0.64 ± SD missing                             | D: 0.48           |
| (2016)                                    | IVII IX (~0.0)            | $D: 0.67 \pm SD$ missing<br>R: 0.76 ± SD missing | R: 0.61                       | $D: 0.64 \pm SD$ missing<br>R: 0.75 ± SD missing | R: 0.63           |
| (-010)                                    |                           | $1.0.70 \pm 5D$ missing                          | 1. 0.01                       | $1.0.75 \pm 5D$ missing                          | 1. 0.05           |
| Eapen                                     | MPR                       | NA                                               | NA                            | Median (IQR):                                    | NA                |
| (2014)                                    | (no threshold)            |                                                  |                               | 0.77 (0.51- 0.98)                                |                   |
| Gomez-lumberas                            | MPR                       | NA                                               | NA                            | NA                                               | A: 0.62           |
| (2018)                                    | (>0.8)                    |                                                  |                               |                                                  |                   |
| Jacobs                                    | MPR                       | NA                                               | NA                            | NA                                               | Sweden: 0.95      |
| (2018)                                    | (≥0.8)                    |                                                  |                               |                                                  | Netherlands: 0.93 |
|                                           |                           |                                                  |                               |                                                  |                   |
| McHorney (2017)                           | MPR                       | NA                                               | NA                            | A: $0.85 \pm 0.2$                                | A: 0.76           |
|                                           | (>0.8)                    |                                                  |                               | D: $0.81 \pm 0.2$                                | D: 0.66           |
|                                           |                           |                                                  |                               | $R: 0.86 \pm 0.2$                                | R: 0.78           |
| 71                                        | ) (DD                     |                                                  | D 0.50                        | W: 0.80 ± 0.2                                    | W: 0.59           |
| Zhou<br>(2015)                            | MPR<br>(>0.8)             | D: 0.73 ± 0.30                                   | D: 0.59                       | D: 0.65 ± 0.35                                   | D: 0.51           |
| Mueller                                   | MPR>80*                   | NA                                               | NA                            | NA                                               | DOACs: 0.82       |
| (2017)                                    |                           |                                                  |                               |                                                  | A: 0.88           |
|                                           |                           |                                                  |                               |                                                  | D: 0.65           |
|                                           |                           |                                                  |                               |                                                  | R: 0.83           |

| Márquez-Contrera | CP>80%   | NA  | R: Global                           | NA  | R: Global comp          |
|------------------|----------|-----|-------------------------------------|-----|-------------------------|
| (2016)           |          |     | compliance: 0.84                    |     | 0.80                    |
|                  |          |     | Daily compliance: 0.84              |     | Daily compliand<br>0.80 |
|                  |          |     | %therapeutic cover:                 |     | % therapeutic co        |
| McAlister        | TTR>65%  | NA  | 90.04%<br>W: Percent patients       | NA  | 89.25%<br>NA            |
| (2018)           | (INR2-3) | INA | with time in                        | INA | INA                     |
|                  |          |     | therapeutic range: 4.11%            |     |                         |
| Footnote:        |          |     |                                     |     |                         |
|                  |          |     | lays' supply / total days in study) |     |                         |
|                  |          |     |                                     |     |                         |


| Table 3: Pooled a | dherence results |
|-------------------|------------------|
|-------------------|------------------|

|                       | Adherence over                  |                       |                        | over 1 year          |  |
|-----------------------|---------------------------------|-----------------------|------------------------|----------------------|--|
|                       | post index o                    |                       |                        | lex date             |  |
|                       | Mean                            | Proportion            | Mean                   | Proportion adherent  |  |
|                       | (95% CI)                        | adherent<br>(95% CI)  | (95% CI)               | (95% CI)             |  |
| Apixaban              | 77.15 (75.03, 79.27)            | 0.62 (0.53, 0.72)     | 81.75 (74.32, 89.18)   | 0.74 (0.62, 0.87)    |  |
| Dabigatran            | 73.94 (68.94, 78.93)            | 0.55 (0.48, 0.61)     | 75.04 (67.74, 82.34)   | 0.65 (0.54, 0.76)    |  |
| Rivaroxaban           | 78.30 (72.47, 84.14)            | 0.64 (0.54, 0.73)     | 77.45 (68.9, 85.96)    | 0.73 (0.64, 0.81)    |  |
| Warfarin              | No data available               | 0.52 (0.26, 0.77)++   | No data available      | 0.50 (0.32, 0.68) ++ |  |
| All OACs              | 76.62 (73.91, 79.33)            | 0.63 (0.58, 0.68)     | 73.72 (68.36, 79.08)   | 0.70 (0.65, 0.76)    |  |
| Sub-analysis: Exclu   | ding studies with conflict of i | nterest               |                        |                      |  |
| Apixaban              | 78.39 (73.59, 83.19)++          | 0.51 (0.49, 0.53) ++  | One study              | 0.79 (0.55, 1.04)    |  |
| Dabigatran            | 72.87 (64.40, 81.33)            | 0.50 (0.46, 0.54)+    | 65.20 (49.13, 81.27)++ | 0.67 (0.50, 0.84)    |  |
| Rivaroxaban           | 74.25 (69.84, 78.66)++          | 0.50 (0.46, 0.53) ++  | 66.85 (61.27, 72.44)++ | 0.75 (0.55, 0.96)    |  |
| Warfarin              | No data available               | 0.39 (0.38-0.39)      | No data available      | No data available    |  |
| All OACs              | 73.40 (69.86, 76.94)            | 0.56 (0.49, 0.62)     | 65.56 (59.41, 71.72)   | 0.68 (0.58, 0.79)    |  |
| Sub-analysis: Exclu   | ding studies with low and me    | dium quality (assesse | d by ISPOR)            | X X                  |  |
| Apixaban              | 77.15 (75.03, 79.27) ++         | 0.62 (0.53, 0.72) ++  | 77.50 (62.80, 92.20)   | 0.66 (0.47, 0.85)    |  |
| Dabigatran            | 73.32 (67.08, 79.57)            | 0.54 (0.47, 0.60)     | 73.83 (62.99, 84.65)   | 0.61 (0.45, 0.76)    |  |
| Rivaroxaban           | 77.38 (69.95, 84.80)            | 0.62 (0.51, 0.74)     | 72.23 (58.64, 87.83)   | 0.67 (0.5, 0.83)     |  |
| Warfarin              | No data available 📏             | 0.52 (0.26, 0.77) ++  | No data available      | No data available    |  |
| All OACs              | 77.29 (74.19, 80.40)            | 0.63 (0.58, 0.68)     | 68.61 (62.63, 74.58)   | 0.67 (0.58, 0.76)    |  |
| Sub-analysis: By ad   | lherence measure                |                       | · · ·                  |                      |  |
|                       |                                 | MPR                   |                        |                      |  |
| Apixaban              | No data available               | No data available     | No data available      | 0.75 (0.64, 0.87)    |  |
| Dabigatran            | 77.00 (69.16, 81.84) ++         | 0.54 (0.45, 0.63) ++  | No data available      | 0.58 (0.49, 0.66)    |  |
| Rivaroxaban           | No data available               | No data available     | No data available      | 0.75 (0.69, 0.81)    |  |
| Warfarin              | No data available               | No data available     | No data available      | 0.59+                |  |
| All OACs              | 81.01 (77.21, 84.81)            | 0.57 (0.51, 0.63)     | No data available      | 0.74 (0.64, 0.83)    |  |
|                       |                                 | PDC                   |                        |                      |  |
| Apixaban              | 77.15 (75.03, 79.27)            | 0.62 (0.53, 0.72) 🦉   | 80.67 (69.40, 91.94)   | 0.74 (0.45, 1.02)    |  |
| Dabigatran            | 72.41 (65.90, 78.91)            | 0.55 (0.47, 0.63)     | 74.05 (65.56, 82.53)   | 0.67 (0.52, 0.82)    |  |
| Rivaroxaban           | 76.38 (71.35, 81.40)            | 0.64 (0.54, 0.74)     | 75.74 (67.44, 84.03)   | 0.69 (0.57, 0.82)    |  |
| Warfarin              | No data available               | 0.52 (0.26, 0.77)++   | No data available      | 0.41+                |  |
| All OACs              | 74.93 (72.09, 77.77)            | 0.64 (0.58, 0.69)     | 74.5 (68.89, 80.14)    | 0.70 (0.62, 0.77)    |  |
| *I <sup>2</sup> <80%. |                                 |                       |                        |                      |  |
| + Not pooled. Based   | v                               |                       |                        |                      |  |
| ++ Pooled results of  | only two studies                |                       |                        |                      |  |

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

Table 4: Pooled adherence results from studies reporting adherence to more than one drug in the same cohort

|                                                          |                             | e at 6 months<br>dex date |                             | erence at 1 year<br>st index date |  |  |  |  |
|----------------------------------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------------|--|--|--|--|
|                                                          | Number of unique<br>studies | Odds ratio<br>(95% CI)    | Number of unique<br>studies | Odds ratio<br>(95% CI)            |  |  |  |  |
| Apixaban vs dabigatran                                   | 3                           | 1.24 (1.07, 1.45)         | 5                           | 1.76 (1.35, 2.29)                 |  |  |  |  |
| Rivaroxaban vs dabigatran                                | 5                           | 1.39 (1.15, 1.67)         | 8                           | 1.17 (0.38, 3.60)                 |  |  |  |  |
| Rivaroxaban vs apixaban                                  | 4                           | 0.80 (0.51, 1.24)         | 5                           | 1.02 (0.79, 1.33)                 |  |  |  |  |
|                                                          | Sub-an:                     | alysis: By adherence me   | etric                       |                                   |  |  |  |  |
|                                                          |                             | MPR                       |                             |                                   |  |  |  |  |
| Apixaban vs dabigatran                                   | NA                          | NA                        | 2                           | 2.49 (0.98, 6.30)                 |  |  |  |  |
| Rivaroxaban vs dabigatran                                | 1                           | 1.63 (1.36, 1.94)         | 3                           | 2.10 (1.56, 2.81)                 |  |  |  |  |
| Rivaroxaban vs apixaban                                  | NA                          | NA                        | 2                           | 0.90 (0.54,1.17)                  |  |  |  |  |
|                                                          |                             | PDC                       | 1 1                         |                                   |  |  |  |  |
| Apixaban vs dabigatran                                   | 3                           | 1.24 (1.07, 1.45)         | 3                           | 1.41 (0.99, 2.01)                 |  |  |  |  |
| Rivaroxaban vs dabigatran                                | 4                           | 1.34 (1.09, 1.65)         | 5                           | 0.82 (0.18, 3.69)                 |  |  |  |  |
| Rivaroxaban vs apixaban                                  | 4                           | 0.80 (0.51, 1.24)         | 3                           | 1.13 (0.71, 1.82)                 |  |  |  |  |
| *I <sup>2</sup> <80%.<br>+ Not pooled. Based on one stud |                             | 4                         |                             |                                   |  |  |  |  |
|                                                          |                             |                           |                             |                                   |  |  |  |  |
|                                                          |                             |                           |                             |                                   |  |  |  |  |





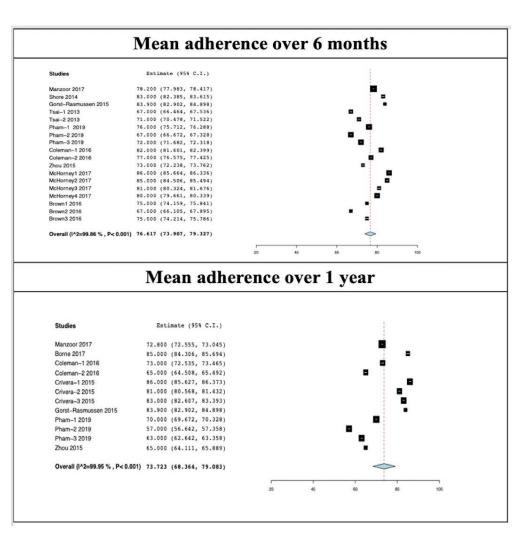



Figure 2.0: Forest plots illustrating patients' mean adherence scores over six-month and one-year post index date. See Supplementary 4 for additional forest plots for each OAC and subgroup analyses.

90x90mm (300 x 300 DPI)



## PRISMA 2009 Checklist (Supplementary 1a)

| age 41 of 80              |          | BMJ Open                                                                                                                                                                                                                                                                                                    |                                                                                     |
|---------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| PRISMA                    | 2009     | Checklist (Supplementary 1a)                                                                                                                                                                                                                                                                                |                                                                                     |
| Section/topic             | #        | Checklist item                                                                                                                                                                                                                                                                                              | Reported on page #                                                                  |
| TITLE                     | <u>.</u> | 7000<br>8000<br>0                                                                                                                                                                                                                                                                                           |                                                                                     |
| Title                     | 1        | Identify the report as a systematic review, meta-analysis, or both.     ∞       ⊘     ⊘                                                                                                                                                                                                                     | Cover page<br>1                                                                     |
| ABSTRACT                  |          | ii 20                                                                                                                                                                                                                                                                                                       |                                                                                     |
| Structured summary        | 2        | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. | Abstract<br>2                                                                       |
| INTRODUCTION              |          | a<br>de                                                                                                                                                                                                                                                                                                     |                                                                                     |
| Rationale                 | 3        | Describe the rationale for the review in the context of what is already known.                                                                                                                                                                                                                              | Introduction<br>4                                                                   |
| Objectives                | 4        | Provide an explicit statement of questions being addressed with reference to participants, interventions comparisons, outcomes, and study design (PICOS).                                                                                                                                                   | s, Introduction<br>4                                                                |
| METHODS                   |          |                                                                                                                                                                                                                                                                                                             |                                                                                     |
| Protocol and registration | 5        | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if availab provide registration information including registration number.                                                                                                                                  | le, NA                                                                              |
| 5 Eligibility criteria    | 6        | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g. years considered, language, publication status) used as criteria for eligibility, giving rationale.                                                                                                       | Inclusion criteria and<br>study selection<br>5                                      |
| Information sources       | 7        | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.                                                                                                                                  | Search strategy<br>5                                                                |
| Search                    | 8        | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.                                                                                                                                                                               | Supplementary<br>File 2                                                             |
| Study selection           | 9        | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                                                                                                                   | Inclusion criteria and<br>study selection, Data<br>extraction and synthesis<br>5, 6 |
| Data collection process   | 10       | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and<br>any processes for obtaining and confirming data from investigators.                                                                                                                               | Inclusion criteria and<br>study selection, Data<br>extraction and synthesis<br>5, 6 |
| Data items                | 11       | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.                                                                                                                                                                       | Inclusion criteria and<br>study selection, Data                                     |
| 4<br>5                    |          | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                   | extraction and synthesis 5, 6                                                       |



## PRISMA 2009 Checklist (Supplementary 1a)

|                                    |     | BMJ Open 36/6                                                                                                                                                                                                          | Page 42 of                                                            |
|------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| PRISMA 2                           | 009 | Checklist (Supplementary 1a)                                                                                                                                                                                           |                                                                       |
| Risk of bias in individual studies | 12  | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. | Supplementary File 3,<br>Quality assessment, Data<br>analysis<br>6, 7 |
| Summary measures                   | 13  | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                          | Data analysis<br>6, 7                                                 |
| Synthesis of results               | 14  | Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I <sup>2</sup> ) for each meta-analysis.                                                     | Data analysis<br>6, 7                                                 |
| Risk of bias across studies        | 15  | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).                                                                           | Supplementary File 3,<br>Quality assessment, Data<br>analysis<br>7    |
| Additional analyses                | 16  | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.                                                                       | Data analysis<br>6, 7                                                 |
| RESULTS                            | -   | Ť<br>Ţ                                                                                                                                                                                                                 |                                                                       |
| Study selection                    | 17  | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.                                                        | Results<br>9                                                          |
| Study characteristics              | 18  | For each study, present characteristics for which data were extracted (e.g., study size, PICOS follow-up period) and provide the citations.                                                                            | Table 1<br>31, 32                                                     |
| Risk of bias within studies        | 19  | Present data on risk of bias of each study and, if available, any outcome level assessment (segitem 12).                                                                                                               | Supplementary File 3,<br>Quality assessment<br>7                      |
| Results of individual studies      | 20  | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary=data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.               | Table 2<br>33, 34                                                     |
| Synthesis of results               | 21  | Present results of each meta-analysis done, including confidence intervals and measures of $c \partial \sigma$ is sistency.                                                                                            | Table 3,4<br>37, 37                                                   |
| Risk of bias across studies        | 22  | Present results of any assessment of risk of bias across studies (see Item 15).                                                                                                                                        | Supplementary File 4.                                                 |
| Additional analysis                | 23  | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).                                                                                                  | Table 3<br>36                                                         |
| DISCUSSION                         |     | otec                                                                                                                                                                                                                   |                                                                       |
| Summary of evidence                | 24  | Summarize the main findings including the strength of evidence for each main outcome; con det their relevance to key groups (e.g., healthcare providers, users, and policy makers).                                    | Discussion<br>12                                                      |
| Limitations                        | 25  | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).                                                          | Limitations<br>14                                                     |
| Conclusions                        | 26  | Provide a general interpretation of the results in the context of other evidence, and implications for future research peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                           | Discussion, Future<br>directions                                      |

| Page 43 of 80                                                                                                                                                                                                                                | 1                                               |         | BMJ Open                                                                                                                         | .1136/               |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|
| 1<br>2                                                                                                                                                                                                                                       | PRISMA 20                                       | 09 (    | Checklist (Supplementary 1a)                                                                                                     | bmiopen-2            |                         |
| 3                                                                                                                                                                                                                                            |                                                 |         |                                                                                                                                  | 019                  | 12, 13, 14, 15          |
| 4<br>5 <b>EUNIDIN</b>                                                                                                                                                                                                                        |                                                 |         |                                                                                                                                  |                      |                         |
| 6 FUNDIN                                                                                                                                                                                                                                     | G                                               |         |                                                                                                                                  | 7                    |                         |
| 7 Funding                                                                                                                                                                                                                                    |                                                 | 27      | Describe sources of funding for the systematic review and other support (e.g., supply of data funders for the systematic review. | bg role of<br>∞<br>≽ | Funding<br>16           |
| 9<br>10 <i>From:</i> M<br>11 Statement<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44 | Ioher D, Liberati A, T<br>t. PLoS Med 6(6): e10 | °etzlai | Cerreview only                                                                                                                   | 20.                  | ta-Analyses: The PRISMA |
| 45<br>46<br>47                                                                                                                                                                                                                               |                                                 |         | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                        |                      |                         |

## **MOOSE** Guidelines (Supplementary 1b)

| BMJ Open                                                                                                                                                    | .1136/                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| MOOSE Guidelines (Supp                                                                                                                                      | plementary 1b)                                                                                                                                        |
| MOOSE Guidelines for Meta-Analyses and Systematic Reviews of Observational St                                                                               |                                                                                                                                                       |
| Background                                                                                                                                                  | 778                                                                                                                                                   |
| Problem definition                                                                                                                                          | Introduction <sup>9</sup><br>4 <sup>20</sup>                                                                                                          |
| Hypothesis statement                                                                                                                                        | NA- The study is mostly descriptive                                                                                                                   |
| Description of study outcomes                                                                                                                               | Introduction, Data extraction and synthesis<br>4, 6                                                                                                   |
| Type of exposure or intervention used                                                                                                                       | Introduction, Inclusion criteria and study selection<br>4, 5                                                                                          |
| Type of study design used                                                                                                                                   | Inclusion criteria and study selection<br>5                                                                                                           |
| Study population                                                                                                                                            | Inclusion criteria and study selection<br>5 ₽                                                                                                         |
| Search Strategy                                                                                                                                             | ф://                                                                                                                                                  |
| Qualification of searchers                                                                                                                                  | Search strategy 5                                                                                                                                     |
| Search strategy including time periods included in the synthesis and keywords                                                                               | Supplementary File 2, Search strategy                                                                                                                 |
| Effort to include all available studies, including contact with authors                                                                                     | Inclusion criteria and study selection<br>5, Authors were not contacted                                                                               |
| Databases and registries searched                                                                                                                           | Search strategy 5                                                                                                                                     |
| Search software used, name and version, including special features used                                                                                     | NA 5                                                                                                                                                  |
| Use of hand searching                                                                                                                                       | Search strategy 5                                                                                                                                     |
| List of citations located and those excluded                                                                                                                | Figure 1.0: PRISMA flow charge                                                                                                                        |
| Method of addressing articles published in languages other than English                                                                                     | Inclusion criteria and study selection                                                                                                                |
| Method of handling abstracts and unpublished studies                                                                                                        | Inclusion criteria and study selection                                                                                                                |
| Description of any contact with authors                                                                                                                     | All relevant information for this systematic review<br>could be found in the published reports. There was no<br>need to contact the respective athors |
| Methods                                                                                                                                                     |                                                                                                                                                       |
| Description of relevance or appropriateness of studies assembled for assessing the<br>hypothesis to be tested For peer review only - http://bmjopen.bmj.com | Introduction, Supplementary File 3<br>/site/apout/guidelines.xhtml                                                                                    |

## **MOOSE** Guidelines (Supplementary 1b)

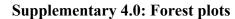
| 45 of 80                                                                                  | BMJ Open                                                                                                                                            | 1136/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                           | <b>MOOSE</b> Guidelines (Supple                                                                                                                     | mentary 1b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rationale for the selection and coding of d                                               | ata (eg, sound clinical principles or convenience)                                                                                                  | Introduction, Inclusion criteria and study selection<br>Data extraction and synthesis, Bata analysis<br>4, 5, 6, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Documentation of how data were classified interrater reliability)                         | and coded (eg, multiple raters, blinding, and                                                                                                       | Inclusion criteria and study selection, Data extract<br>and synthesis, Data analysis $\infty$<br>5, 6, 7 $\ge$<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Assessment of confounding (eg, comparab appropriate)                                      | ility of cases and controls in studies where                                                                                                        | NA ni<br>202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Assessment of study quality, including blin<br>regression on possible predictors of study |                                                                                                                                                     | Data analysis. Quality assessment<br>6, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Assessment of heterogeneity                                                               |                                                                                                                                                     | Data analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| models, justification of whether the choser                                               | plete description of fixed or random effects<br>models account for predictors of study results,<br>-analysis) in sufficient detail to be replicated | Data analysis<br>6, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Provision of appropriate tables and graphic                                               | 28                                                                                                                                                  | Figure 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Results                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Graphic summarizing individual study esti                                                 | mates and overall estimate                                                                                                                          | Figures 2 and 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Table giving descriptive information for ea                                               | ch study included                                                                                                                                   | Tables 1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Results of sensitivity testing (eg, subgroup                                              | analysis)                                                                                                                                           | Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Indication of statistical uncertainty of find                                             | ngs                                                                                                                                                 | Results 2<br>10 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Discussion                                                                                |                                                                                                                                                     | A pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Quantitative assessment of bias (eg, public                                               | ation bias)                                                                                                                                         | Supplementary File 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Justification for exclusion (eg, exclusion o                                              |                                                                                                                                                     | Inclusion criteria and study selection. Limitations 5, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Assessment of quality of included studies                                                 |                                                                                                                                                     | Supplementary File 3, Results, Fable 1<br>9, 31, 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Conclusion                                                                                |                                                                                                                                                     | est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Consideration of alternative explanations f                                               |                                                                                                                                                     | Discussion T<br>12, 13, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Generalization of the conclusions (ie, appr<br>domain of the literature review)           | opriate for the data presented and within the                                                                                                       | Discussion P<br>12, 13, 14 Discussion P<br>Limitations Discussion P<br>14 Discussion P<br>15 Discussion P<br>16 Discussion P<br>17 Discussion P<br>18 Discussion P<br>19 Discussion P<br>19 Discussion P<br>19 Discussion P<br>10 Discus |
| Guidelines for future research                                                            |                                                                                                                                                     | Future directions   0     15   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Disclosure of funding sources                                                             |                                                                                                                                                     | Funding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

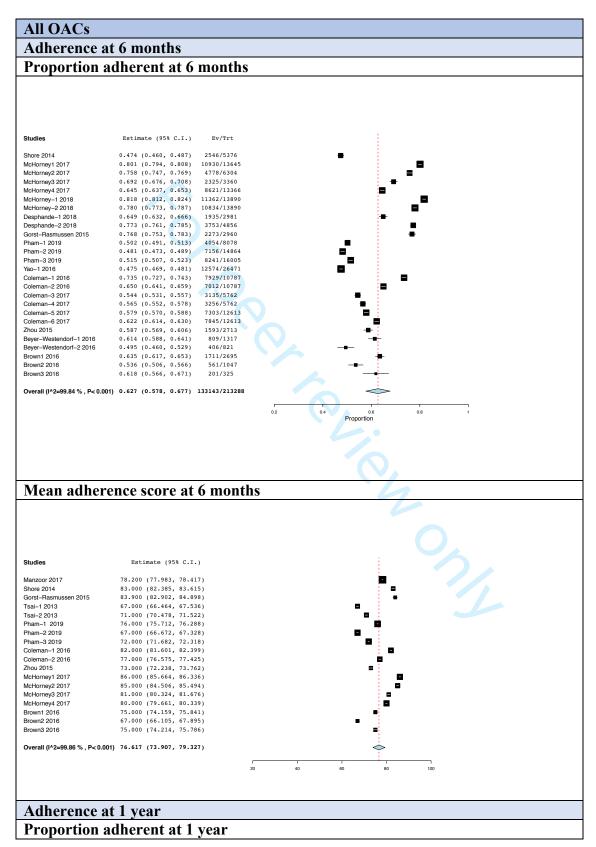
| 2        |
|----------|
|          |
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| /        |
| 8        |
| 9        |
| 10       |
| 11       |
|          |
|          |
| 13       |
| 14       |
| 15       |
| 16       |
| 16<br>17 |
| 1/       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| 22       |
| 23       |
| 24       |
| 25       |
| 26       |
| 27       |
|          |
| 28       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
|          |
| 34       |
| 35       |
| 36       |
| 37       |
| 38       |
|          |
| 39       |
| 40       |
| 41       |
| 42       |
| 43       |
|          |
| 44       |
| 45       |
| 46       |
| 47       |
| 48       |
|          |
| 49       |
| 50       |
| 51       |
| 52       |
| 53       |
|          |
| 54       |
| 55       |
| 56       |
| 57       |
| 58       |
|          |

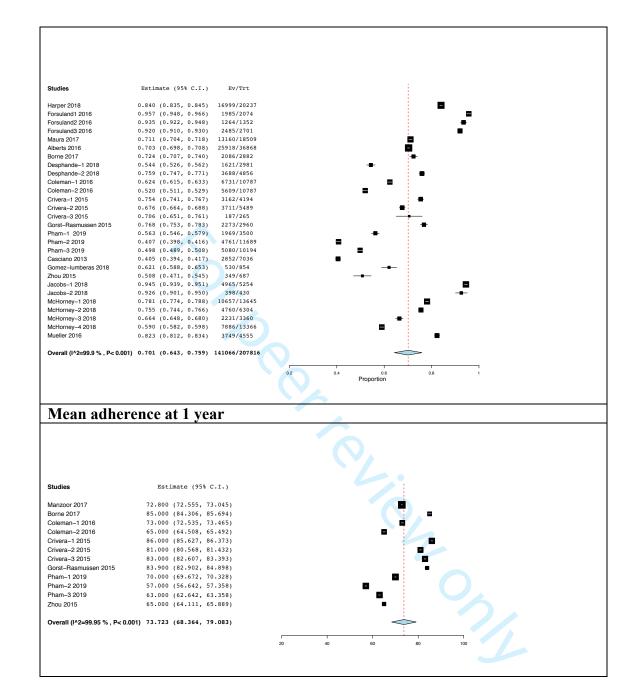
1

## Supplementary file 1: Literature search

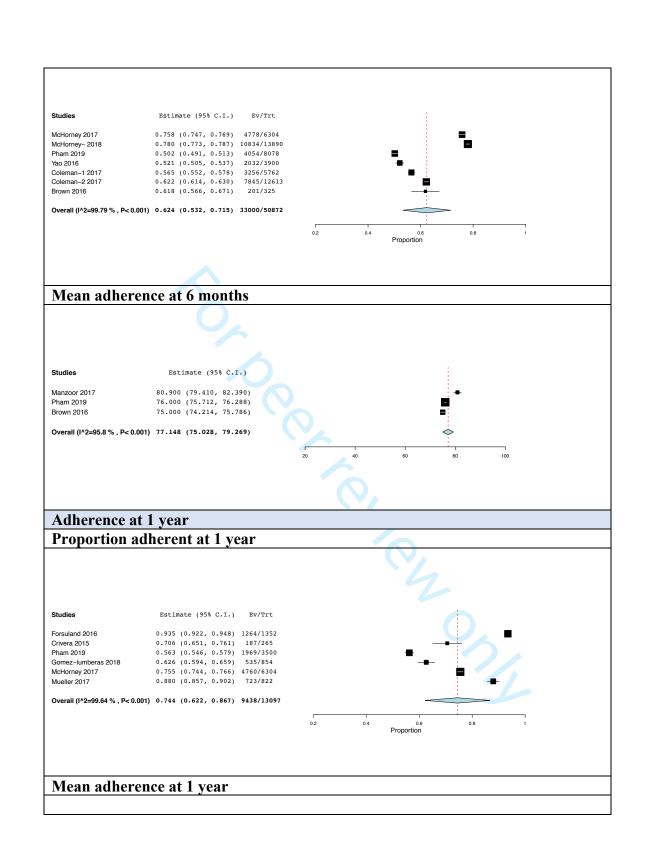
| Concept             | Keywords                                                                                                                                                                                                                                                                                                                                                                        | MeSH terms (Pubmed)                                     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Medications         | Anticoagulant* OR "blood thinner" OR<br>"Vitamin K antagonists"OR "new oral<br>anticoagulants" OR VKA OR NOAC OR<br>DOAC OR Apixaban OR Eliquis OR<br>dabigatran OR "dabigatran etexilate" mesylate<br>OR pradaxa OR edoxaban OR lixiana OR<br>rivaroxaban OR xarelto OR warfarin OR<br>coumadin OR betrixaban OR bevyxxa OR<br>acenocoumarol OR phenprocoumon OR<br>fluindione | Warfarin<br>Anticoagulants<br>Dabigatran<br>Rivaroxaban |
| Adherence           | Adherence OR persistence OR compliance<br>"Medication taking" OR "discontinuation"<br>OR "nonpersistence" OR "nonadherence"<br>OR "noncompliance"                                                                                                                                                                                                                               | Treatment Adherence and Compliance"[Mesh])              |
| Atrial fibrillation | "atrial fibrillation" OR NVAF OR "non-<br>valvular atrial fibrillation"                                                                                                                                                                                                                                                                                                         | atrial fibrillation                                     |


### Complete search example for Pubmed:


| Page 47 of 80                                                                                                                                                                                                                                    |            |                     |                                 |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   | BM                    | IJ Ope                             | 'n                             |                    |                 |                     |                     |                | 36/bmjopen-2019                           |                           |                      |                      |                     |              |               |                      |              |             |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|---------------------------------|---------------|-------------------|----------------------|---------------------|---------------------|------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------|-----------------------|------------------------------------|--------------------------------|--------------------|-----------------|---------------------|---------------------|----------------|-------------------------------------------|---------------------------|----------------------|----------------------|---------------------|--------------|---------------|----------------------|--------------|-------------|--------------|
| 1<br>2                                                                                                                                                                                                                                           |            |                     |                                 |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   |                       |                                    |                                |                    |                 |                     |                     |                | 1                                         |                           |                      |                      |                     |              |               |                      |              |             |              |
| 3<br>4<br>5 <b>STROBE</b><br>6<br>7                                                                                                                                                                                                              | CODE       | Alber<br>ts<br>2016 | Beyer<br>Weste<br>ndorf<br>2016 | Borne<br>2017 | Brow<br>n<br>2016 | Casci<br>ano<br>2013 | Cole<br>man<br>2016 | Cole<br>man<br>2017 | Criver<br>a 2015 | Desh<br>pand<br>e 2018<br>PMI<br>D:<br>29694<br>285 | Desh<br>pand<br>e 2018<br>PMI<br>D:<br>29334<br>815 | Eape<br>n<br>2014 | Forsu<br>land<br>2016 | Gome<br>z-<br>Lum<br>beras<br>2018 | Gorst<br>Rasm<br>ussen<br>2015 | Harp<br>er<br>2018 | Jacob<br>s 2018 | Manz<br>oor<br>2017 | Marq<br>uez<br>2016 | Maur<br>a 2017 | 034778 on 8 A<br><sup>McAl</sup> 8 2018 A | McC<br>ormic<br>k<br>2001 | McH<br>orney<br>2017 | McH<br>orney<br>2018 | Muell<br>er<br>2017 | Pham<br>2019 | Shore<br>2014 | Soren<br>sen<br>2017 | Tsai<br>2013 | Yao<br>2016 | Zhou<br>2015 |
| Title and abstract<br>Edicate the study's design with a<br>commonly used term in the title or the<br>abstract                                                                                                                                    | 1a         | 0                   | 0                               | 0             | 0                 | 0                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 0                 | 0                     | 1                                  | 1                              | 1                  | 0               | 0                   | 0                   | 0              | 1 2                                       | 1                         | 0                    | 0                    | 0                   | 0            | 1             | 0                    | 0            | 0           | 0            |
| apstract<br>Provide in the abstract an informative<br>and alanced summary of what was done<br>and what was found.                                                                                                                                | 1b         | 0                   | 1                               | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 0                 | 0                     | 0                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              | 1 .                                       | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Biclground/rationale: Explain the<br>scientific background and rationale for<br>the divestigation being reported                                                                                                                                 | 2          | 1                   | 1                               | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              |                                           | 1                         | 1                    | 0                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Objective: State specific objectives,<br>inclding any prespecified hypothesis.                                                                                                                                                                   | 3          | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              |                                           | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Study design: Present key elements of<br>study design early in the paper                                                                                                                                                                         | 4          | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              |                                           | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Setting: Describe the setting, locations,<br>add gelevant dates, including periods of<br>recruitment exposure follow-up and                                                                                                                      | 5          | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 0                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              | ed fro                                    | 0                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| art collection.<br>Participants: Give the eligibility criteria,<br>apd The sources and methods of selection<br>of participants                                                                                                                   | 6a         | 1                   | 1                               | 1             | 1                 | 0                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 0                  | 0               | 1                   | 1                   | 1              |                                           | 1                         | 1                    | 1                    | 0                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Progratched studies, give matching<br>chiefn and number of exposed and<br>upproceed                                                                                                                                                              | 6b         | 1                   | NA                              | NA            | NA                | NA                   | 1                   | 1                   | NA               | NA                                                  | 1                                                   | NA                | NA                    | NA                                 | NA                             | NA                 | NA              | NA                  | NA                  | NA             | NA NA                                     | NA                        | NA                   | 1                    | NA                  | NA           | NA            | NA                   | NA           | 1           | NA           |
| Variables: Clearly define all outcomes,<br>Surces, predictors, potential<br>Counders, and effect modifiers. Give                                                                                                                                 | 7          | 0                   | 1                               | 0             | 1                 | 0                    | 0                   | 1                   | 1                | 1                                                   | 0                                                   | 1                 | 1                     | 1                                  | 1                              | 0                  | 1               | 1                   | 1                   | 1              |                                           | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 0            | 1           | 1            |
| degnostic criteria, if applicable.<br>Math sources/measurement: For each<br>wrighle of interest, give sources of data<br>actificatils of methods of assessment<br>(messurement). Describe comparability<br>of usessment methods if there is more | 8          | 0                   | 1                               | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              | pen.bmj.co                                | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| than one grou<br>24<br>potential sources of bias (e.g. Propensity<br>305)                                                                                                                                                                        | 9          | 1                   | 0                               | 0             | 0                 | 0                    | 1                   | 1                   | 0                | 1                                                   | 1                                                   | 0                 | 0                     | 0                                  | 0                              | 0                  | 1               | 1                   | 1                   | 1              | ₀ / <b>m</b>                              | 1                         | 1                    | 1                    | 0                   | 1            | 1             | 0                    | 0            | 0           | 0            |
| Study size: Explain how the study size                                                                                                                                                                                                           | 10         | 0                   | 0                               | 0             | 0                 | 0                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 0                 | 0                     | 0                                  | 0                              | 0                  | 0               | 0                   | 1                   | 0              | 0 n                                       | 0                         | 0                    | 0                    | 0                   | 0            | 0             | 0                    | 0            | 0           | 0            |
| Quantitative variables/ statistical<br>analysis:                                                                                                                                                                                                 |            |                     |                                 |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   |                       |                                    |                                |                    |                 |                     |                     |                |                                           |                           |                      |                      |                     |              |               |                      |              |             |              |
| Explain how quantitative variables were<br><b>2.2</b> do in the analyses. If applicable,<br>describe which groupings were chosen,<br>apply, (categorizing)                                                                                       | 11         | 0                   | 1                               | 1             | 1                 | 1                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 1                 | 1                     | 1                                  | 1                              | 0                  | 1               | 0                   | 0                   | 1              | <sup>1</sup> 16, 1                        | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Describe all statistical methods, including<br>the used to control for confounding                                                                                                                                                               | 12a        | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 0                  | 1               | 1                   | 1                   | 1              | 1 202                                     | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 0                    | 1            | 1           | 1            |
| Describe any methods used to examine<br>sogroups and interactions                                                                                                                                                                                | 12b        | 1                   | 0                               | 1             | 1                 | 0                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 0                     | 0                                  | 1                              | 0                  | 1               | 1                   | 0                   | 1              | :4 k                                      | 0                         | 1                    | 1                    | 0                   | 0            | 1             | 0                    | 1            | 1           | 1            |
| Explain how missing data were addressed<br>Trt study: If applicable, describe how<br>loss tofollow-up was addressed.                                                                                                                             | 12c<br>12d | 0<br>NA             | 0<br>NA                         | 0<br>NA       | 0<br>NA           | 0<br>NA              | 0<br>NA             | 1<br>NA             | 0<br>NA          | 0<br>NA                                             | 0<br>NA                                             | 0<br>NA           | 0<br>NA               | 0<br>NA                            | 0<br>NA                        | 0<br>NA            | 0<br>NA         | 1<br>NA             | 0                   | 0<br>NA        |                                           | 0<br>NA                   | 0<br>NA              | 0<br>NA              | 0<br>NA             | 0<br>NA      | 1<br>NA       | 0<br>NA              | 0<br>NA      | 0<br>NA     | 0<br>NA      |
| Describe any sensitivity analyses                                                                                                                                                                                                                | 12u<br>12e | 0                   | 1                               | 1             | 0                 | 0                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 0                 | 1                     | 0                                  | 1                              | 0                  | 1               | 1                   | 0                   | 1              |                                           | 0                         | 1                    | 1                    | 0                   | 0            | 1             | 1                    | 0            | 1           | 1            |
| Participants:<br>B44t the numbers of individuals at each<br>stage of the study—e.g., numbers<br>D45tally digible, examined for<br>eligbility, confirmed eligble, included in<br>D40udy, completing follow-up, and<br>analysed.                   | 13a        | 0                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 0                  | 1               | 0                   | 0                   | 1              | st. Protect                               | 0                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 0            | 0           | 1            |
| Svyreasons for non-participation at each stage                                                                                                                                                                                                   | 13b        | NA                  | NA                              | NA            | NA                | NA                   | NA                  | NA                  | NA               | NA                                                  | NA                                                  | NA                | NA                    | NA                                 | NA                             | NA                 | NA              | NA                  | 0                   | NA             | NAO                                       | NA                        | NA                   | NA                   | NA                  | NA           | NA            | NA                   | NA           | NA          | NA           |
| Descriptive data:                                                                                                                                                                                                                                | 13c        | 0                   | 1                               | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 0                  | 0               | 0                   | 0                   | 1              | 1 by (                                    | 0                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 0            | 0           | 1            |
| <b>39</b><br>Give characteristics of study participants<br>(A.O.demographic, clinical, social) and                                                                                                                                               | 14a        | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              |                                           | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| 41<br>42                                                                                                                                                                                                                                         |            |                     |                                 |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   |                       |                                    |                                |                    |                 |                     |                     |                | right.                                    |                           |                      |                      |                     |              |               |                      |              |             |              |

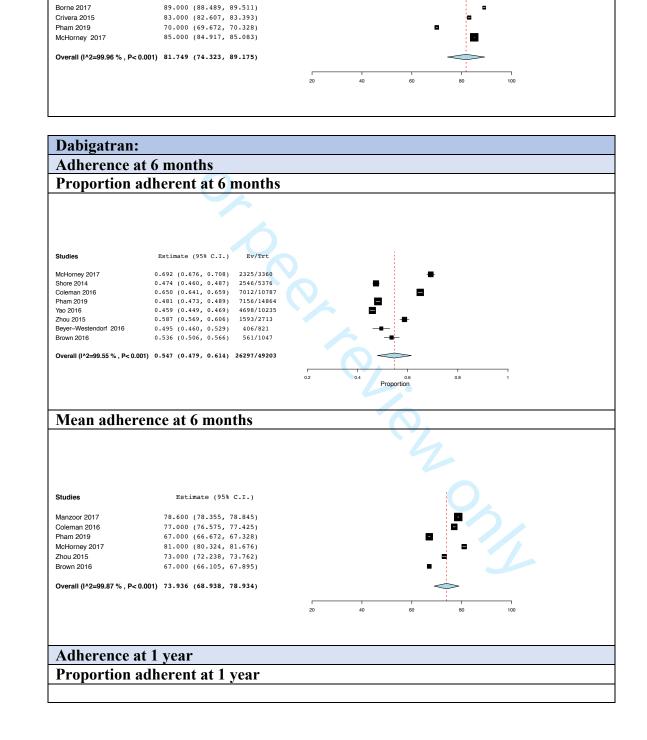

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

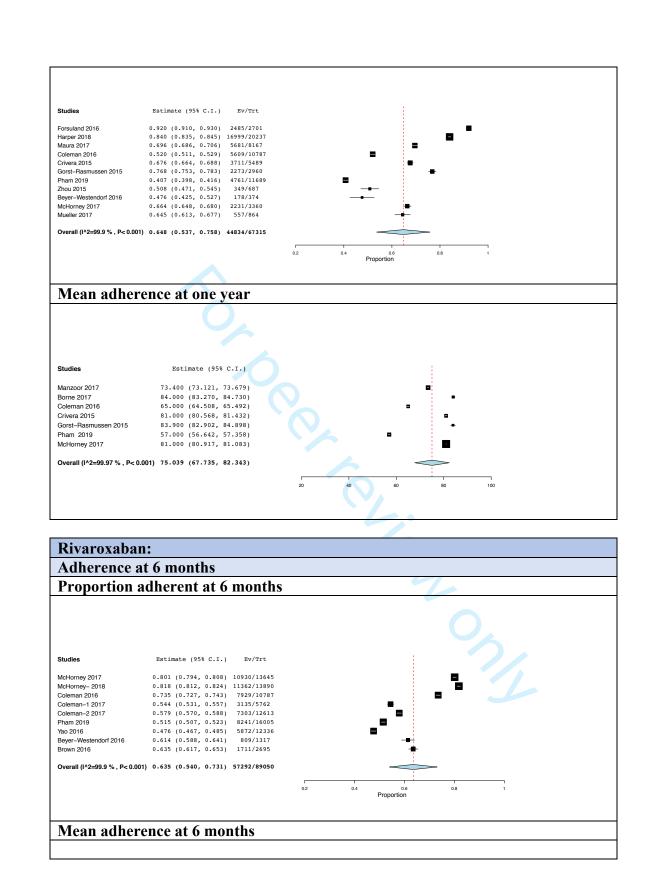
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |              |                 |        |                |        |               |                 |              |                 |                 |        | BN     | 1Ј Оре | en  |        |                |     |       |                 | 36/bmjopen-2019-03           |     |                 |                 |     |                 |     |                 | Paç            | ge 48 c         | of 80        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-----------------|--------|----------------|--------|---------------|-----------------|--------------|-----------------|-----------------|--------|--------|--------|-----|--------|----------------|-----|-------|-----------------|------------------------------|-----|-----------------|-----------------|-----|-----------------|-----|-----------------|----------------|-----------------|--------------|
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | ∍n-2                         | ı.  |                 |                 |     |                 |     |                 |                |                 | 1            |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | 019                          |     |                 |                 |     |                 |     |                 |                |                 | ŗ            |
| Z<br>Formation on exposures and potential<br>confounders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I          | I            | 1               | I      | I              | I      | I             | I               | 1            | 1               | I               | I.     | 1      | I      | I   | I      | I <sup>1</sup> | I ' | I     | I               | -03                          | 1   | I               | I 1             | 1   | I               | I   | I               | I <sup>1</sup> | 1 1             | <b>ا</b> ر ا |
| confounders<br>dicate the number of participants with<br>missing data for each variable of interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14b        | 0            | 0               | 0      | 0              | 0      | 0             | 0               | 0            | 0               | 1               | 0      | 0      | 1      | 0   | 0      | 0              | 0   | 0     | 0               | <u> </u>                     |     | 0               | 1               | 0   | 1               | 0   | 0               | 0              | 0               | 0            |
| missing data for each variable of interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 140<br>14c | 1            | 1               | 1      | 0              | 1      | 1             | 1               | 1            | 0               | 1               | 1      | 0      | -      | 0   | 0      | 1              | 0   | 1     | 1               | 0 78                         |     | 1               | 0               | 1   | 0               | 1   | 0               | 0              | 1               | 0            |
| and total amount)<br>Gutcome data: Report numbers of<br>outcome events or summary measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15         | 0            |                 | 0      |                | 0      |               | 0               | 0            |                 |                 | 1      | 0      | 0      | 0   | 0      | 0              |     | 0     | 0               | 3                            |     |                 | 1               | 1   |                 |     | 0               | 0              |                 |              |
| outcome events or summary measures<br>oyer time<br>Main results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13         | v            | 1               | U U    | 1              |        | 1             | v               | U            | 1               | 1               | 1      | U      | U      | U   | v      | 0              | 1   | U     | v               | <sup>1</sup> Ø               | U   | 1               | 1               | 1   | 1               | 1   | U               | U              | 1               | 1            |
| By e unadjusted estimates and, if<br>applicable, confounder-adjusted estimates<br>of their precision (e.g., 95% confidence<br>interval). Make clear which confounders<br>were adjusted for and why they were<br>included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16a        | 1            | 0               | 0      | 1              | 0      | 0             | 0               | 1            | 1               | 1               | 1      | 0      | 0      | 1   | 0      | 1              | 0   | 1     | NA              | vpril 2020.                  |     | 1               | 1               | 0   | 0               | 1   | 1               | 0              | 1               | 1            |
| Report category boundaries when<br>continuous variables were categorized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16b        | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1               | 1               | NA     | 1      | 1      | 1   | 1      | 1              | 1   | 1     | 1               | 1 Do                         |     | 1               | 1               | 1   | 1               | 1   | 1               | 1              | 1               | 1            |
| If relevant, consider translating estimates<br>of value risk into absolute risk for a<br>meaningful time period<br>Ottor analysis: Report other analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16c        | NA           | NA              | NA     | NA             | NA     | NA            | NA              | NA           | NA              | NA              | NA     | NA     | NA     | NA  | NA     | NA             | NA  | NA    | NA              | NANIC                        |     | NA              | NA              | NA  | NA              | NA  | NA              | NA             | NA              | NA           |
| done—e.g., analyses of subgroups and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17         | 1            | 1               | 1      | 1              | 1      | 0             | 1               | 1            | 1               | 1               | 1      | 1      | 0      | 1   | 0      | 1              | 1   | 0     | 1               | 1<br>1                       |     | 1               | 1               | 1   | 1               | 1   | 0               | 1              | 1               | 1            |
| Key results: Summarize key results with<br>reference to study objectives.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18         | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | -1              | 1               | 1      | 1      | 1      | 1   | 1      | 1              | 1   | 1     | 1               | ₁ d fr                       | 1   | 1               | 1               | 1   | 1               | 1   | 1               | 1              | 1               | 1            |
| Limitations: Discuss limitations of the<br>sub, taking into account sources of<br>potential bias or imprecision. Discuss<br>bbil direction and magnitude of any<br>restricted bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19         | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1               |                 | 1      | 1      | 1      | 1   | 1      | 1              | 1   | 1     | 1               | rom ht                       | 1   | 1               | 1               | 1   | 1               | 1   | 1               | 1              | 1               | 1            |
| potential bias.<br>However, the second | 20         | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1               | 1               | 1      | 1      | 1      | 1   | 1      | 1              | 1   | 1     | 1               | ttp://bmjo                   |     | 1               | 1               | 1   | 1               | 1   | 1               | 1              | 1               | 1            |
| gongralizability (external validity) of the<br>study results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21         | 1            | 0               | 1      | 1              | 1      | 1             | 1               | 1            | 1               | 1               | 1      | 1      | 1      | 1   | 1      | 1              | 1   | 1     | 1               | <sup>1</sup><br><sup>1</sup> | 0   | 1               | 1               | 1   | 1               | 1   | 1               | 1              | 1               | 1            |
| Durging: Give the source of funding and<br>the role of the funders for the present<br>source and, if applicable, for the original<br>source on which the present article is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22         | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1               | 1               | 1      | 1      | 1      | 1   | 1      | 1              | 0   | 1     | 0               | .bmj.cc                      | 1   | 1               | 1               | 1   | 1               |     | 1               | 1              | 1               | 1            |
| Sent<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 19           | 22              | 22     | 23             | 19     | 17            | 24              | 22           | 23              | 25              | 22     | 19     | 15     | 24  | 14     | 24             | 21  | 20    | 23              | 26                           | 18  | 26              | 26              | 21  | 23              | 27  | 20              | 18             | 24              | 24           |
| 25<br>Total applicable<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 31           | 30              | 30     | 30             | 30     | 31            | 31              | 30           | 30              | 31              | 29     | 30     | 30     | 30  | 30     | 30             | 30  | 32    | 29              | 30 <b>D</b>                  | 30  | 30              | 31              | 30  | 30              | 30  | 30              | 30             | 31              | 30           |
| Score<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 0.6129<br>03 | 0.7333<br>33333 | 0.7333 | 3 0.7666<br>67 | 0.6333 | 0.5483<br>871 | 0.7741<br>93548 | 0.7333<br>33 | 0.7666<br>66667 | 0.8064<br>51613 | 0.7586 | 0.6333 | 0.5    | 0.8 | 0.4666 | 0.8            | 0.7 | 0.625 | 0.7931<br>03448 | 0.866 <b>6</b>               | 0.6 | 0.8666<br>66667 | 0.8387<br>09677 | 0.7 | 0.7666<br>66667 | 0.9 | 0.6666<br>66667 | 0.6            | 0.7741<br>93548 | 0.8          |
| 26<br>Score<br>27<br>Percent<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 61           | 73              | 73     |                | 63     | 55            | 77              | 73           | 77              | 81              | 76     | 63     | 50     | 80  | 47     | 80             | 70  | 63    | 79              | 87                           |     | 87              | 84              | 70  | 77              | 90  | 67              | 60             | 77              | 80           |
| 29<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | 6, 2024                      |     |                 |                 |     |                 |     |                 |                |                 |              |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | by                           |     |                 |                 |     |                 |     |                 |                |                 | I            |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | guest.                       |     |                 |                 |     |                 |     |                 |                |                 | I            |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | est.                         |     |                 |                 |     |                 |     |                 |                |                 | I            |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | Pr                           | I   |                 |                 |     |                 |     |                 |                |                 |              |
| 34<br>35<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | otec                         |     |                 |                 |     |                 |     |                 |                |                 |              |
| 36<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | cteo                         |     |                 |                 |     |                 |     |                 |                |                 |              |
| 37<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | Protected by copyright.      |     |                 |                 |     |                 |     |                 |                |                 |              |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | / cc                         |     |                 |                 |     |                 |     |                 |                |                 |              |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | уру                          |     |                 |                 |     |                 |     |                 |                |                 |              |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | righ                         |     |                 |                 |     |                 |     |                 |                |                 |              |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |                 |        |                |        |               |                 |              |                 |                 |        |        |        |     |        |                |     |       |                 | .Ħ                           |     |                 |                 |     |                 |     |                 |                |                 | I            |

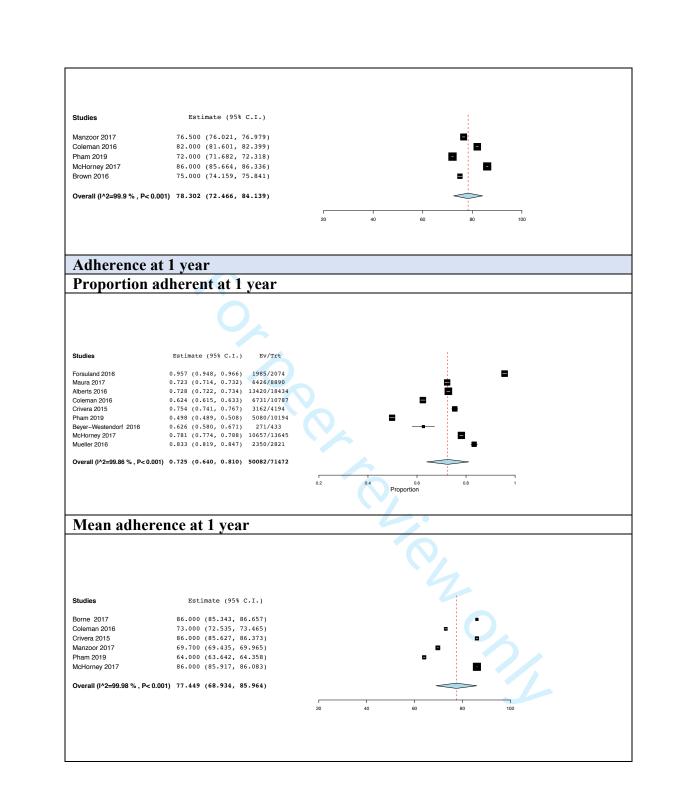

| Page 49                                           | 9 of 80                                                                                                          |                  |                                      |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       | BMJ C                              | )pen                                |                    |                 |                     |                     |                |                       | 36/bmjopen-2019           |                     |                      |                     |                   |               |                      |              |             |              |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|---------------|----------------|----------------------|---------------------|---------------------|------------------|----------------------------------------------------|----------------------------------------------------|----------------|-----------------------|------------------------------------|-------------------------------------|--------------------|-----------------|---------------------|---------------------|----------------|-----------------------|---------------------------|---------------------|----------------------|---------------------|-------------------|---------------|----------------------|--------------|-------------|--------------|
| 2<br>B Item<br>4<br>5                             | ISPOR                                                                                                            | Albert<br>s 2016 | Beyer<br>-<br>Weste<br>ndorf<br>2016 | Borne<br>2017 | Brow<br>n 2016 | Casci<br>ano<br>2013 | Cole<br>man<br>2016 | Cole<br>man<br>2017 | Criver<br>a 2015 | Desh<br>pande<br>2018<br>PMI<br>D:<br>29694<br>285 | Desh<br>pande<br>2018<br>PMI<br>D:<br>29334<br>815 | Eape<br>n 2014 | Forsu<br>land<br>2016 | Gome<br>z-<br>Lumb<br>eras<br>2018 | Gorst<br>-<br>Rasm<br>ussen<br>2015 | Harp<br>er<br>2018 | Jacob<br>s 2018 | Manz<br>oor<br>2017 | Marq<br>uez<br>2006 | Maur<br>a 2017 | McAli<br>ster<br>2018 | 19-0334778 on             | McH<br>omey<br>2017 | McH<br>orney<br>2018 | Muell<br>er<br>2017 | Phar<br>m<br>2019 | Shore<br>2014 | Soren<br>son<br>2017 | Tsai<br>2013 | Yao<br>2016 | Zhou<br>2015 |
| 7 1                                               | Title / Abstract<br>Title is descriptive and reflective                                                          | 0                | 0                                    | 0             | 0              | 0                    | 0                   | 0                   | 0                | 0                                                  | 0                                                  | 0              | 0                     | 1                                  | 1                                   | 1                  | 0               | 0                   | 0                   | 1              | 1                     | $\mathbf{D}_0$            | 1                   | 1                    | 0                   | 0                 | 1             | 0                    | 0            | 0           | 0            |
| <b>8</b> <sup>2</sup>                             | of study purpose<br>Abstract is a concise and<br>accurate, reflecting contents of                                | 0                | 1                                    | 1             | 1              | 1                    | 0                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 0                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     | р<br>гіі                  | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 9                                                 | the study Introduction Classer of feedbacetel                                                                    |                  |                                      |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       |                                    |                                     |                    |                 |                     |                     |                |                       | 202                       |                     |                      |                     |                   |               |                      |              |             |              |
| 10                                                | Clear review of fundamental<br>literature related to topic                                                       | 1                | 1                                    | 1             | 1              | 1                    | 0                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     | 20 <sub>1</sub>           | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 13                                                | Objectives and Definitions<br>Objective(s) stated?                                                               | 1                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     |                           | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 13                                                | Design and Methods<br>Study design appropriate for                                                               |                  |                                      | 4             | 1              |                      |                     | 1                   | 1                | 1                                                  |                                                    | 1              |                       | 1                                  |                                     | 4                  |                 | 4                   | 1                   | 4              | 4                     |                           | 1                   | 4                    | 1                   | 4                 | 1             | 1                    | 4            | 4           |              |
| 14                                                | objectives<br>Data sources adequately                                                                            | 1                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     |                           | 1                   | 1                    | 1                   | 1                 | 0             | 1                    | 1            | 1           | 1            |
| 15                                                | described<br>Evidence provided for reliability                                                                   | 0                | 0                                    | 0             | 0              | 0                    | 0                   | 1                   | 0                | 0                                                  | 0                                                  | 0              | 0                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     |                           | 1                   | 1                    | 1                   | 1                 | 1             | 0                    | 1            | 0           | 0            |
| 16                                                | / acuracy of data<br>Sampling methods described                                                                  | NA               | NA                                   | NA            | NA             | NA                   | NA                  | NA                  | NA               | NA                                                 | NA                                                 | NA             | NA                    | NA                                 | NA                                  | NA                 | NA              | 1                   | NA                  | NA             | NA                    | ONA                       | NA                  | NA                   | NA                  | NA                | NA            | NA                   | NA           | NA          | NA           |
| 17                                                | Well describe patient population<br>and Subject inclusion / exclusion<br>criteria stated                         | 1                | 1                                    | 1             | 1              | 0                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     |                           | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 0            | 1           | 1            |
| 18                                                | Sufficient data to make valid<br>estimate of compliance (i.e.<br>Continuous eligibility for drug                 | 0                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 1                                  | 1                                   | 0                  | 1               | 0                   | 1                   | 1              | 1                     | tp://bi                   | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 19<br>20                                          | during study period verified)<br>Sufficient pre-enrollment period<br>to ensure drug naivety? (If                 | NA               | 1                                    | NA            | 1              | 1                    | NA                  | 1                   | NA               | NA                                                 | NA                                                 | 1              | NA                    | NA                                 | NA                                  | 0                  | NA              | 1                   | NA                  | 1              | 1                     | ONA                       | 1                   | 1                    | 0                   | 1                 | NA            | 1                    | NA           | 1           | 1            |
| 212                                               | applicable)<br>Explanation of how patients who                                                                   |                  |                                      |               |                |                      |                     | •                   |                  |                                                    |                                                    |                |                       |                                    |                                     |                    |                 |                     |                     |                |                       | pen                       |                     | *                    | 0                   |                   |               |                      |              |             |              |
| 22<br>235                                         | switched drugs within or<br>between therapeutic classes were<br>handled<br>Explicit definition of                | 0                | 0                                    | 0             | 1              | 0                    | 0                   | 1                   | 1                | 0                                                  | 0                                                  | 0              | 1                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 0                   | 1              | NA                    | <b>D</b> NA               | 0                   | 1                    | 0                   | 1                 | 1             | 0                    | 1            | 1           | 1            |
| 24                                                | compliance/persistence based on<br>published, accepted definition?                                               | 1                | 1                                    | 1             | 1              | 1                    | 0                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 1                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 0                     |                           | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 25 <sup>14</sup>                                  | Methods for calculating<br>compliance / persistence clearly<br>described (and matches<br>operational definition) | 1                | 1                                    | 1             | 0              | 1                    | 0                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     | n/ on                     | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 26<br>27                                          | Was handling of medication gaps<br>described                                                                     | 0                | 0                                    | 0             | 1              | 1                    | 0                   | 0                   | 0                | 1                                                  | 1                                                  | 0              | 0                     | 0                                  | 1                                   | 1                  | 0               | 0                   | 1                   | 1              | 1                     | Apr<br>Ppr                | 0                   | 1                    | 0                   | 1                 | 1             | 0                    | 0            | 0           | 0            |
| 28                                                | Follow-up period specified<br>Statistics appropriate to design                                                   | 1                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 0                                  | 1                                   | 0                  | 0               | 1                   | 1                   | 1              | 1                     | <u>-i</u> 1<br><u>1</u> 1 | 1                   | 1                    | 1                   | 0                 | 1             | 1                    | 1            | 1           | 0            |
| 29                                                | and data<br>Test statistics are reported<br>appropriately (i.e. CIs, p-values                                    | 1                | 1                                    | 1             | 1              | 1                    | 0                   | 0                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     | 6, 2 <sup>1</sup>         | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 0            | 1           | 1            |
| <u>во</u>                                         | reported)<br>Appropriate descriptive data on<br>study sample are presented                                       | 1                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     | <b>2</b> 41               | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 81<br>32<br>32                                    | Distribution of<br>compliance/persistence variable<br>is presented (i.e. proportion of                           | 1                | 0                                    | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 0              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 0                   | 1              | 1                     | by g                      | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 33<br>Jaum                                        | discontinuers)                                                                                                   | 12               | 14                                   | 14            | 16             | 15                   | 9                   | 16                  | 11               | 15                                                 | 15                                                 | 14             | 11                    | 12                                 | 18                                  | 10                 | 15              | 17                  | 15                  | 19             | 17                    | uest <sub>14</sub>        | 17                  | 19                   | 10                  | 17                | 17            | 15                   | 14           | 16          | 15           |
| 84<br>B <sup>Total</sup>                          |                                                                                                                  | 18               | 19                                   | 18            | 10             | 19                   | 18                  | 19                  | 18               | 18                                                 | 18                                                 | 19             | 18                    | 18                                 | 18                                  | 19                 | 18              | 20                  | 18                  | 19             | 18                    | <b>P</b><br><b>O</b> 17   | 19                  | 19                   | 19                  | 19                | 18            | 19                   | 18           | 19          | 19           |
| ble<br>B <b>O</b> core                            |                                                                                                                  | 0.6666           | 0.7368                               | 0.7777        | 0.8421         | 0.7894               | 0.5                 | 0.8421              | 0.6111           | 0.8333                                             | 0.8333                                             | 0.7368         | 0.6111                | 0.6666                             | 10                                  | 0.5263             | 0.833           | 0.85                | 0.8333              | 19             |                       | Ote<br>Cte<br>2941        | 0.8947              | 19                   | 0.5263              | 0.895             | 0.944         | 0.7894<br>73684      | 0.778        | 0.842       | 0.789        |
| 34<br>35pplica<br>ble<br>36core<br>37<br>98<br>88 |                                                                                                                  | 67<br>67         | 4211                                 | 778<br>78     | 053<br>84      | 7368                 | 50                  | 0526<br>84          | 61               | 333<br>83                                          | 33333<br>83                                        | 4211<br>74     | 61                    | 6667<br>67                         | 100                                 | 53                 | 83              | 85                  | 333<br>83           | 1              |                       | 02941<br>0<br>0<br>82     | 368<br>89           | 1 100                | 158<br>53           | 89                | 94            | 73684<br>79          | 78           | 84          | 79           |
| 39                                                |                                                                                                                  | 07               | /4                                   | 70            | - 04           | 19                   | 50                  | 04                  | 01               |                                                    | 0.5                                                | .4             | 01                    | 07                                 | 100                                 |                    |                 | 00                  |                     | 100            |                       |                           |                     | 100                  | 33                  | 09                | 74            | .,,                  |              |             |              |
| 40<br>41<br>42                                    |                                                                                                                  |                  |                                      |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       |                                    |                                     |                    |                 |                     |                     |                |                       | copyright.                |                     |                      |                     |                   |               |                      |              |             |              |

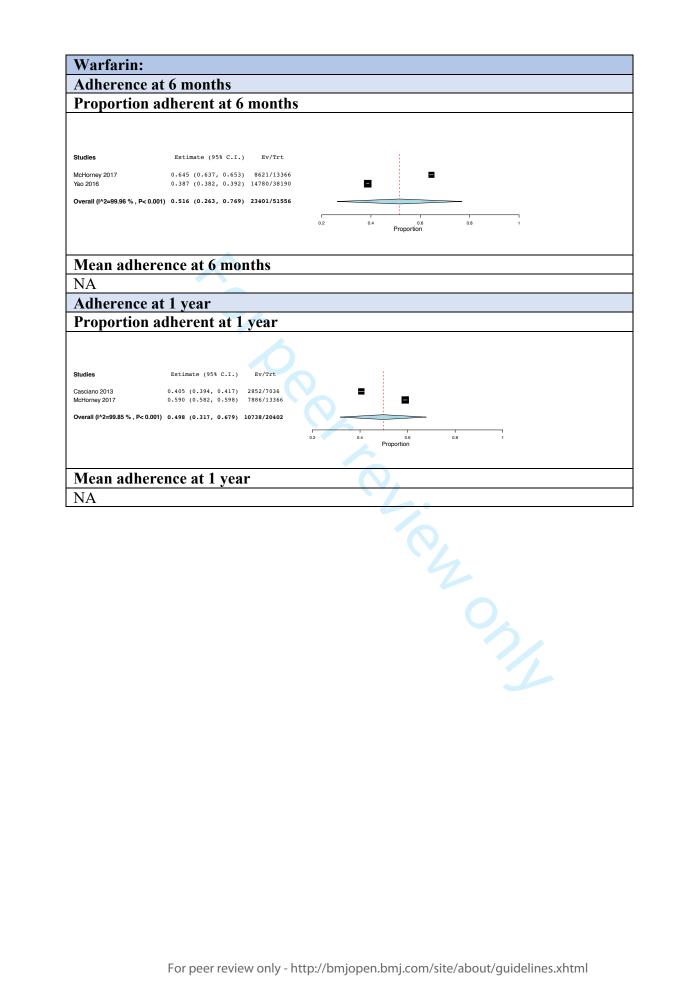


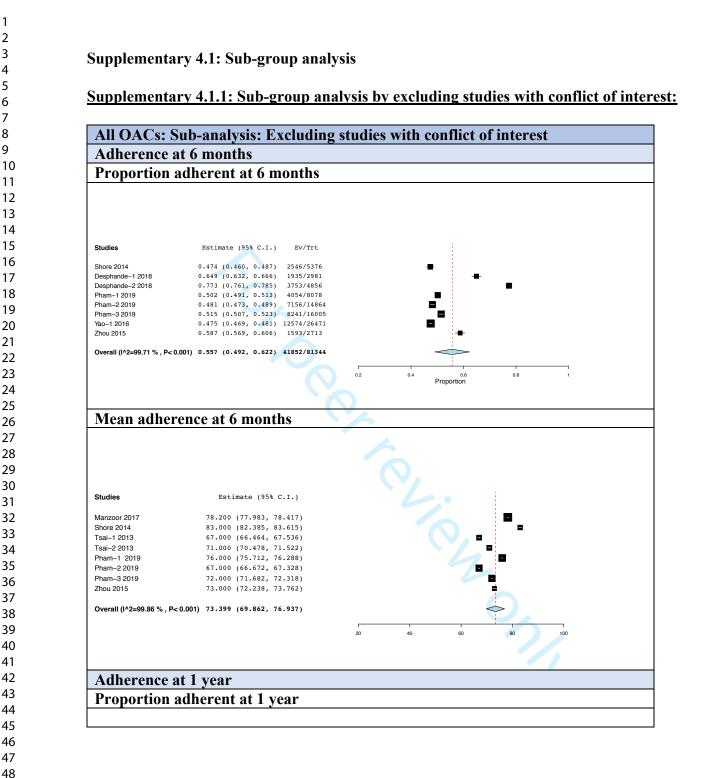


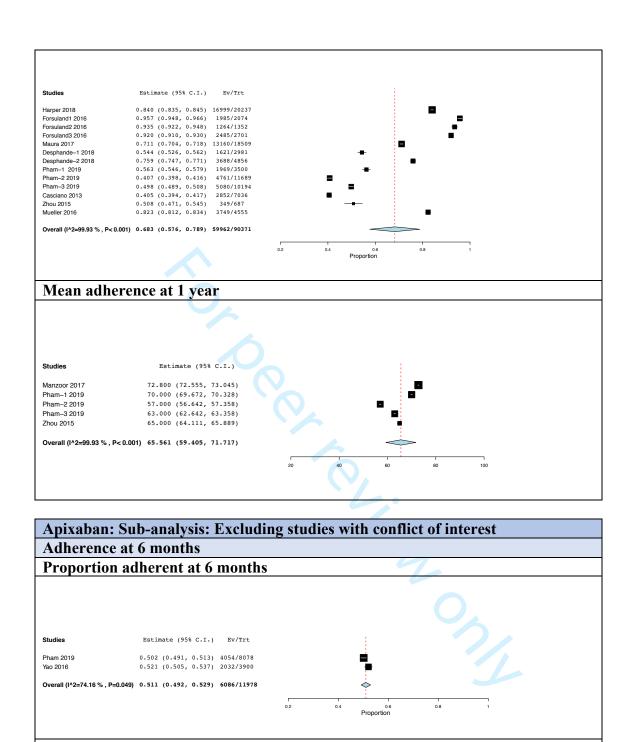




| Apixaban                        |
|---------------------------------|
| Adherence at 6 months           |
| Proportion adherent at 6 months |
|                                 |



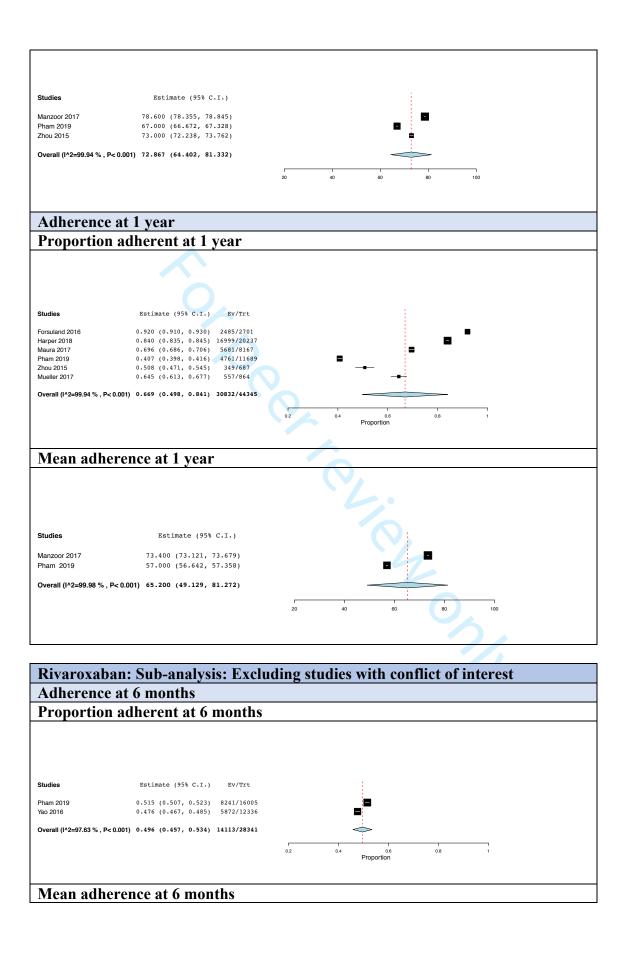


Studies

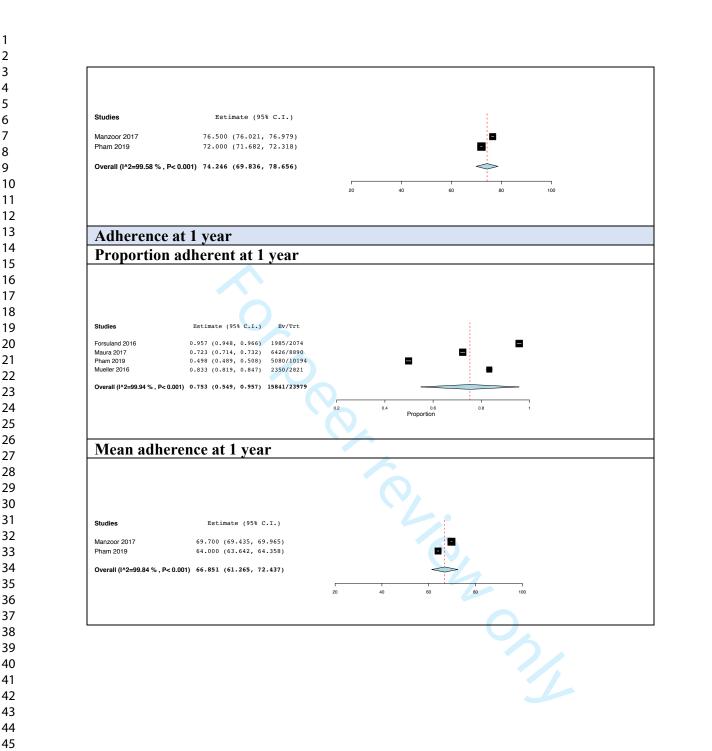

Estimate (95% C.I.)



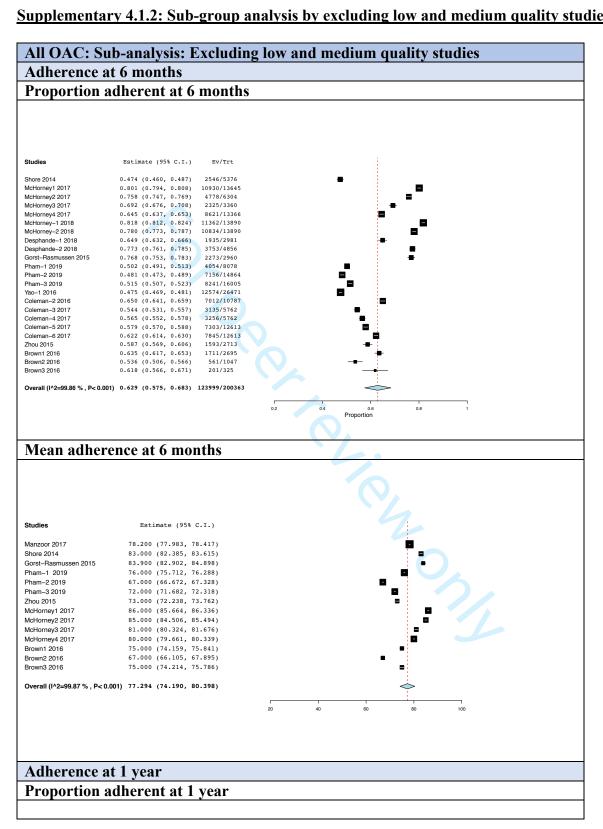




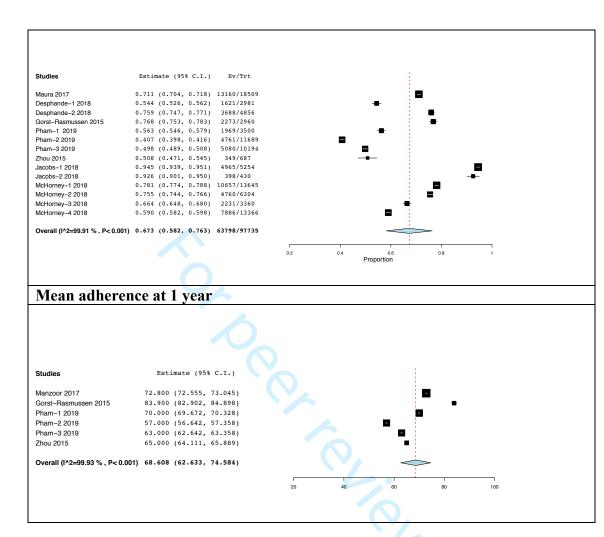





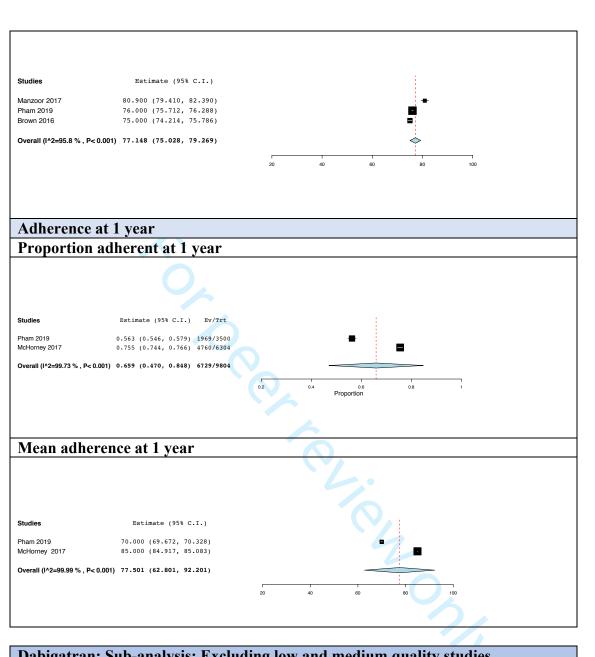


#### Mean adherence at 1 year

| Studies                                                        | Estimate (95% C.I.)                                                                              |                           |                 | 1           |            |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|-----------------|-------------|------------|
| Manzoor 2017<br>Pham 2019                                      | 80.900 (79.410, 82.390)<br>76.000 (75.712, 76.288)                                               |                           | _               | -           |            |
|                                                                | P<0.001) 78.393 (73.593, 83.194)                                                                 |                           | <               | >           |            |
|                                                                |                                                                                                  | 20 40                     | 60              | 80 100      |            |
|                                                                | e at 1 year:                                                                                     |                           |                 |             |            |
| Proportion                                                     | n adherent at 1 year                                                                             |                           |                 |             |            |
|                                                                |                                                                                                  |                           |                 |             |            |
| Studies                                                        | Estimate (95% C.I.) Ev/Trt                                                                       |                           | 1               |             |            |
| Forsuland 2016<br>Pham 2019<br>Mueller 2017                    | 0.935 (0.922, 0.948) 1264/1352<br>0.563 (0.546, 0.579) 1969/3500<br>0.880 (0.857, 0.902) 723/822 | •                         |                 | •           |            |
|                                                                |                                                                                                  |                           |                 | _           |            |
| Overall (I^2=99.84 % , P<                                      | <pre>&lt;0.001) 0.792 (0.549, 1.036) 3956/5674</pre>                                             | 02 0.4 Propor             | 0.8 0.8<br>tion | 1           |            |
|                                                                |                                                                                                  | a2 0.4 Propor             |                 |             |            |
| Mean adh                                                       | erence at 1 year                                                                                 | e2 04 Propor              |                 | ;           |            |
| Mean adh<br>NA (one st                                         | erence at 1 year<br>tudy)                                                                        | Propor                    | tion            |             |            |
| Mean adh<br>NA (one st<br>Dabigatra                            | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclu                                              | Propor                    | tion            | t of intere | est        |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence               | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclu-<br>e at 6 months                            | Propor<br>ding studies wi | tion            | t of intere | est        |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence               | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclu                                              | Propor<br>ding studies wi | tion            | t of intere | est        |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence<br>Proportion | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclu-<br>e at 6 months<br>n adherent at 6 months  | Propor<br>ding studies wi | tion            | t of intere | est        |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence               | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclu-<br>e at 6 months                            | Propor<br>ding studies wi | tion            | t of intere | <u>est</u> |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence<br>Proportion | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclude<br>e at 6 months<br>n adherent at 6 months | Propor<br>ding studies wi | tion            | t of intere | est        |

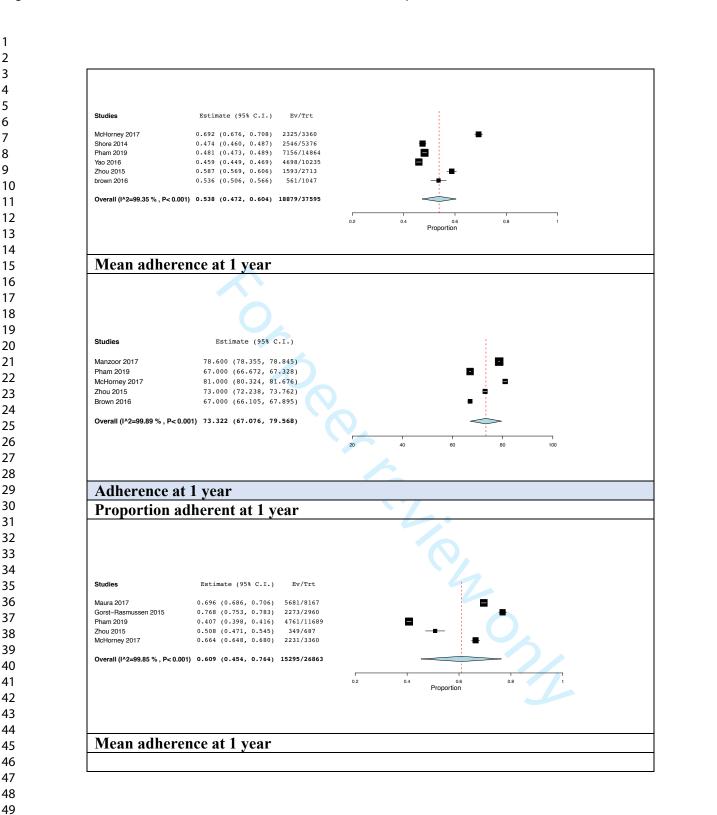


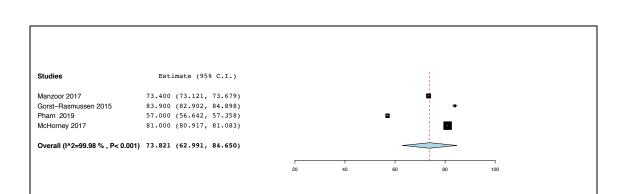


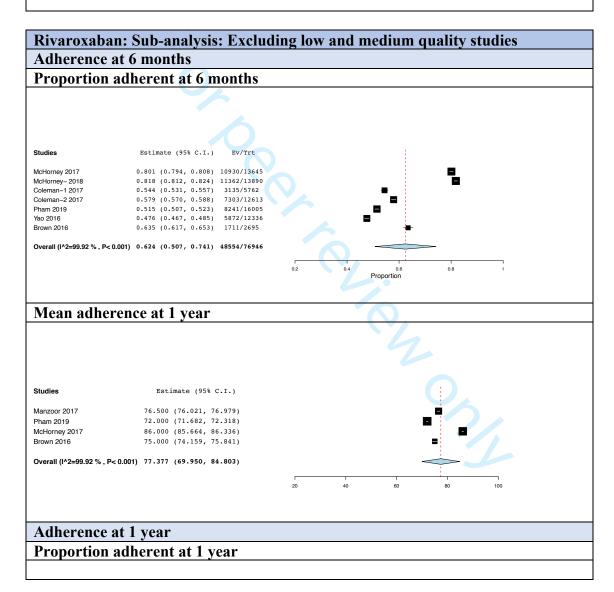


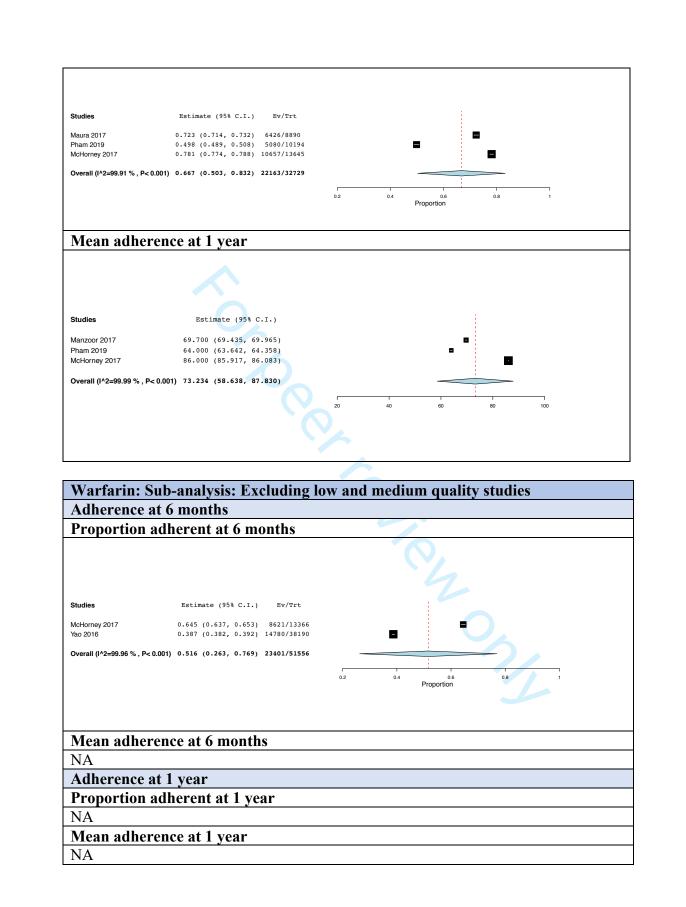

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright



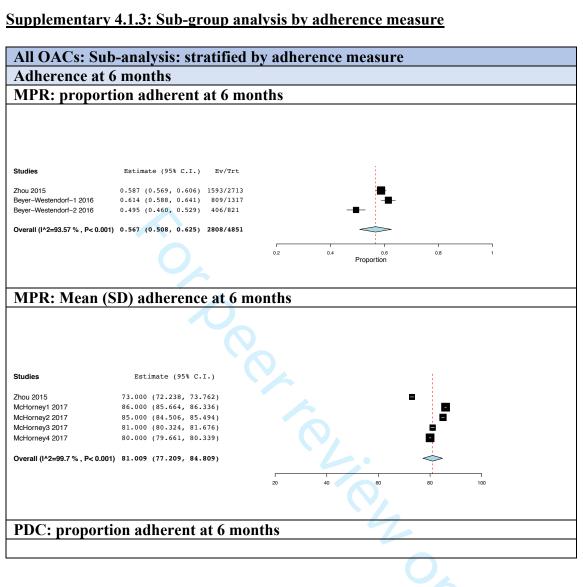

#### Supplementary 4.1.2: Sub-group analysis by excluding low and medium quality studies.

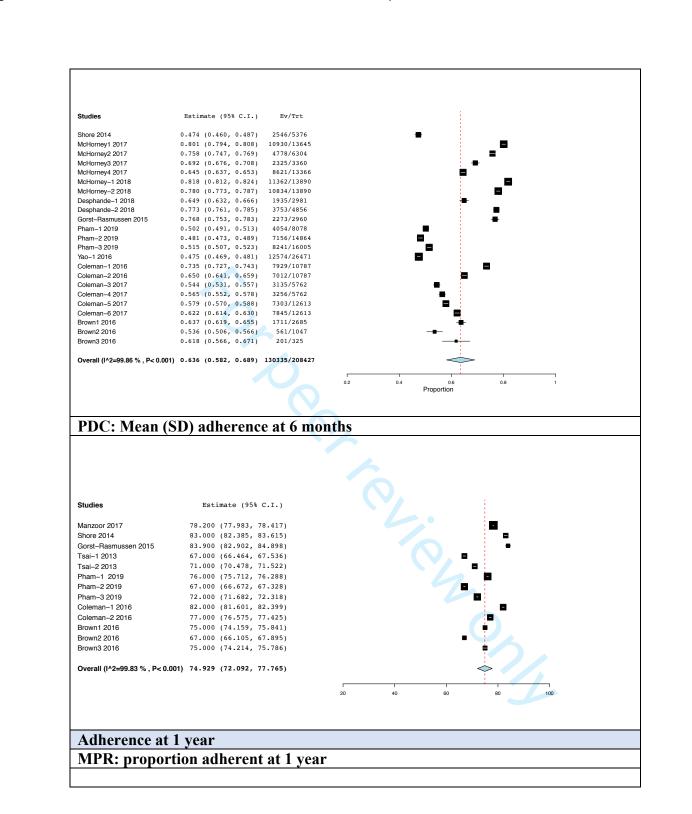


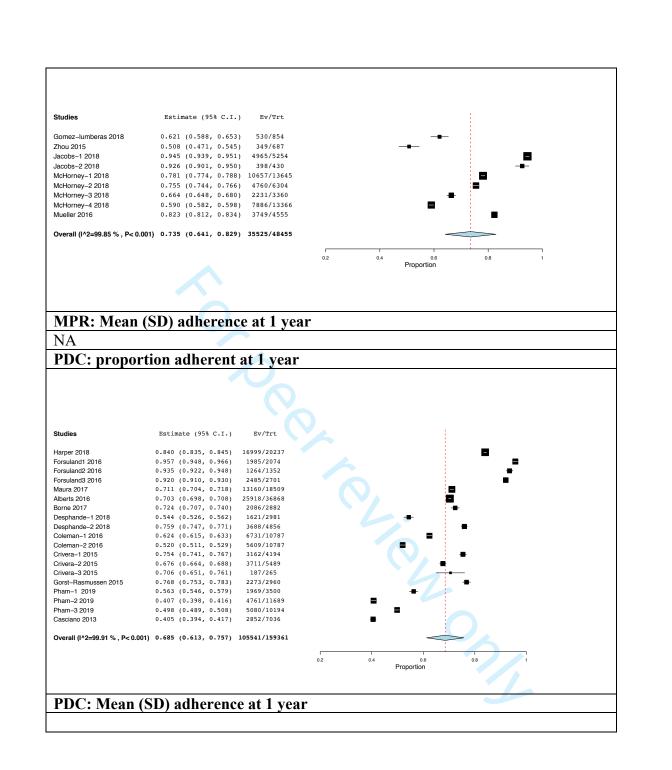



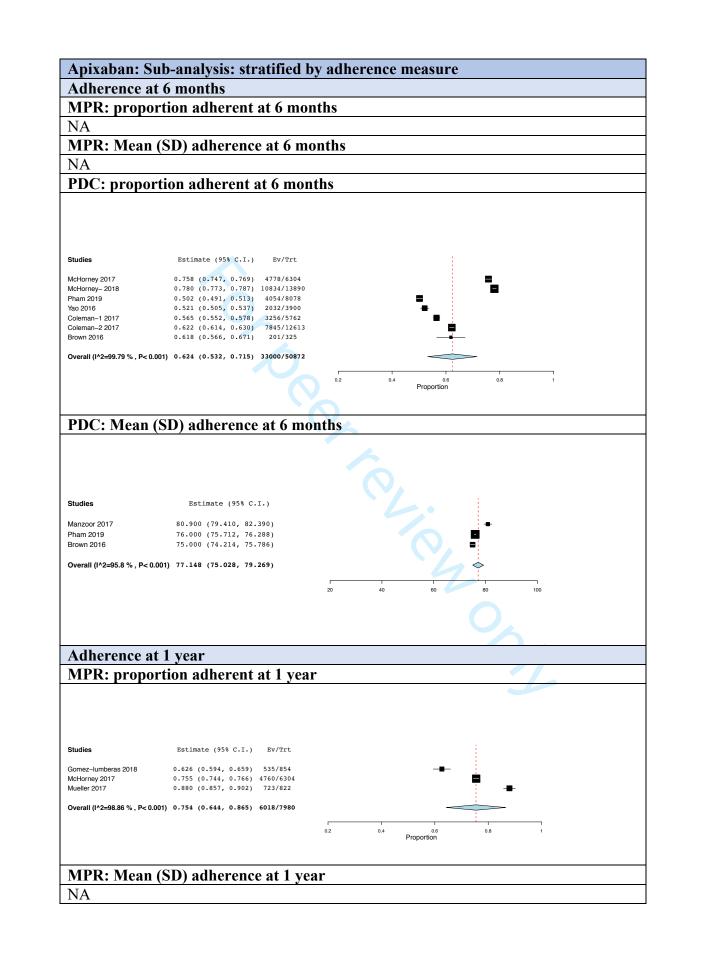

#### Dabigatran: Sub-analysis: Excluding low and medium quality studies Adherence at 6 months Proportion adherent at 6 months



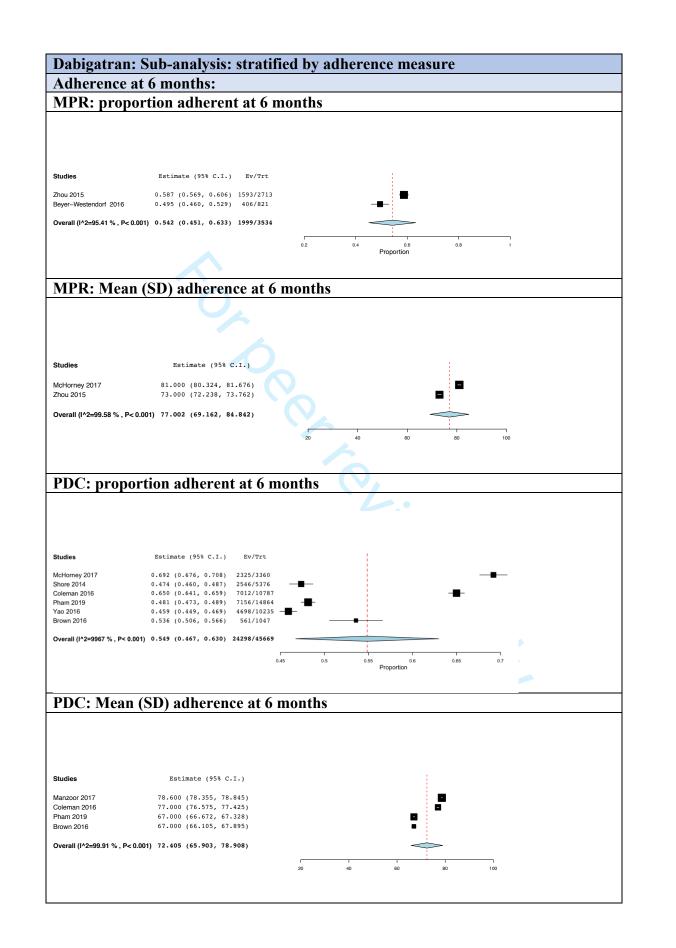



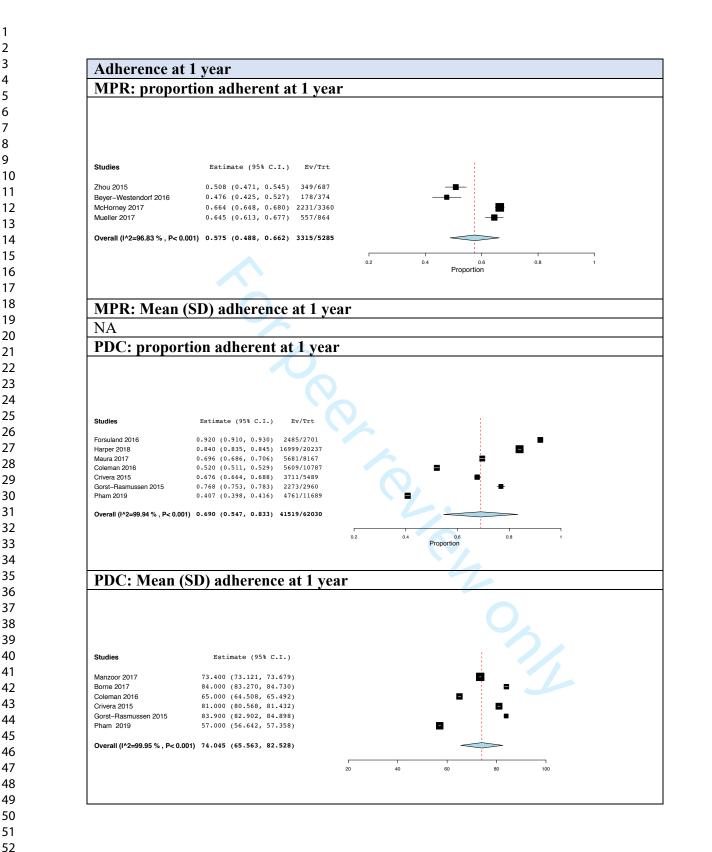



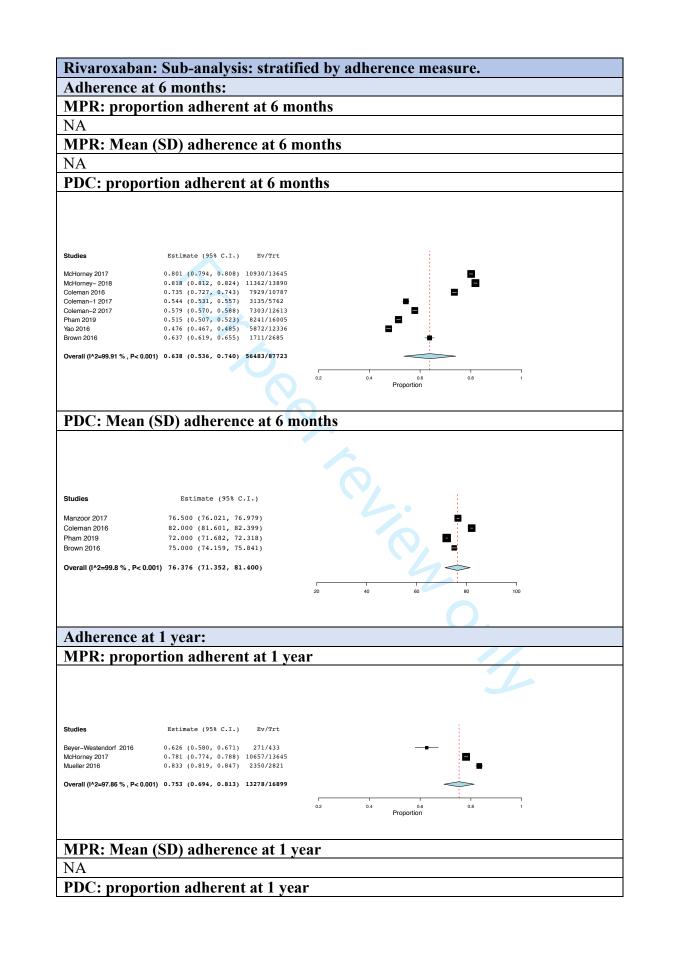




BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright.







| 1                                                                          |                                                                               |   |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|---|
| 2<br>3                                                                     |                                                                               | Т |
| 4                                                                          |                                                                               |   |
| 5 Studies                                                                  | Estimate (95% C.I.)                                                           |   |
| 7 Manzoor 2017<br>Borne 2017<br>3 Coleman-1 2016                           | 72.800 (72.555, 73.045)<br>85.000 (84.306, 85.694)<br>73.000 (72.535, 73.465) |   |
| Coleman-2 2016<br>Crivera-1 2015<br>Crivera-2 2015                         | 65.000 (64.508, 65.492)                                                       |   |
| 10 Crivera-2 2015<br>Crivera-3 2015<br>Gorst-Rasmussen 2015<br>Pham-1 2019 | 83.000 (82.607, 83.393)<br>83.900 (82.902, 84.898)<br>70.000 (69.672, 70.328) |   |
| 12 Pham-2 2019<br>Pham-3 2019                                              | 55.000 (56.642, 57.358)<br>63.000 (62.642, 63.358)                            |   |
| 14 Overall (I^2=99.95 % , P< 0.1                                           | 1.001) 74.515 (68.891, 80.139)                                                |   |
| 15<br>16                                                                   |                                                                               |   |
| 17<br>18<br>19                                                             |                                                                               |   |
| 20<br>21                                                                   |                                                                               |   |
| 22<br>23                                                                   |                                                                               |   |
| 24                                                                         |                                                                               |   |
| 25<br>26                                                                   |                                                                               |   |
| 27                                                                         |                                                                               |   |
| 28<br>29                                                                   |                                                                               |   |
| 30<br>31                                                                   |                                                                               |   |
| 32                                                                         |                                                                               |   |
| 33<br>34                                                                   |                                                                               |   |
| 35<br>36                                                                   |                                                                               |   |
| 7<br>3                                                                     |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml     |   |

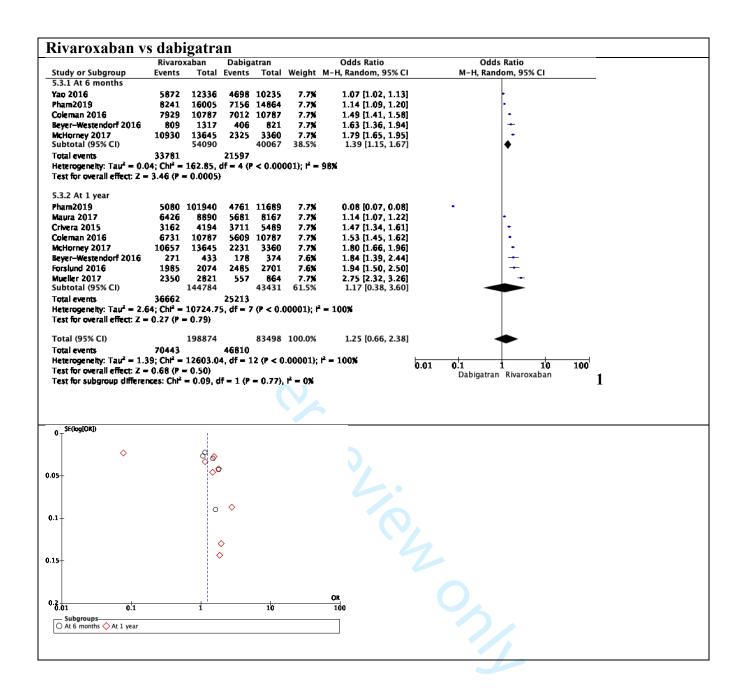













| Warfar                   | in: Sub-analysis: stratified by adherence measure |
|--------------------------|---------------------------------------------------|
|                          | nce at 6 months:                                  |
| MPR: p                   | roportion adherent at 6 months                    |
| NA                       |                                                   |
| MPR: N                   | Aean (SD) adherence at 6 months                   |
| NA                       |                                                   |
| PDC: p                   | roportion adherent at 6 months                    |
| •                        | •                                                 |
|                          |                                                   |
| Studies                  | Estimate (95% C.I.) Ev/Trt                        |
| McHorney 2017            | 0.645 (0.637, 0.653) 8621/13366                   |
| Yao 2016                 | 0.387 (0.382, 0.392) 14780/38190                  |
| Uverall (I^2=99.96 % , P | <0.001) 0.516 (0.263, 0.769) 23401/51556          |
|                          | Proportion US 1                                   |
| PDC · M                  | Iean (SD) adherence at 6 months                   |
| NA                       | tean (SD) adherence at 6 months                   |
|                          | nce at 1 year                                     |
|                          | proportion adherent at 1 year                     |
| NA NA                    |                                                   |
|                          | Aean (SD) adherence at 1 year                     |
| NA                       |                                                   |
|                          | roportion adherent at 1 year                      |
| NA                       |                                                   |
|                          | Iean (SD) adherence at 1 year                     |
| NA                       |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |

| Apixaban vs da                                                                                                                                                                                                                                  | bigatra                                                                                      | an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                 |                                                   |                                                                                        |      |                          |                             |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|------|--------------------------|-----------------------------|----------------|
| •                                                                                                                                                                                                                                               | Apixa                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dabig                                                                          | atran                                           |                                                   | Odds Ratio                                                                             |      |                          | s Ratio                     |                |
| Study or Subgroup                                                                                                                                                                                                                               | Events                                                                                       | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Events                                                                         | Total                                           | Weight                                            | M-H, Random, 95% CI                                                                    |      | M-H, Ranc                | dom, 95%                    | CI             |
| 3.3.1 At 6 months                                                                                                                                                                                                                               |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 |                                                   |                                                                                        |      |                          |                             |                |
| McHorney 2017                                                                                                                                                                                                                                   | 4778                                                                                         | 6304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2325                                                                           |                                                 |                                                   | 1.39 [1.27, 1.53]                                                                      |      |                          | +                           |                |
| Pham2019                                                                                                                                                                                                                                        | 4054                                                                                         | 8078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7156                                                                           | 14864                                           | 13.5%                                             | 1.09 [1.03, 1.15]                                                                      |      |                          | •                           |                |
| Yao 2016                                                                                                                                                                                                                                        | 2032                                                                                         | 3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4698                                                                           | 10235                                           | -                                                 | 1.26 [1.19, 1.36]                                                                      |      |                          |                             |                |
| Subtotal (95% CI)                                                                                                                                                                                                                               |                                                                                              | 18282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                | 28459                                           | 40.3%                                             | 1.24 [1.07, 1.45]                                                                      |      |                          | •                           |                |
| Total events                                                                                                                                                                                                                                    | 10864                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14179                                                                          |                                                 |                                                   |                                                                                        |      |                          |                             |                |
| Heterogeneity: Tau <sup>2</sup> -                                                                                                                                                                                                               |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                | 2 (P < 0                                        | .00001);                                          | r = 92%                                                                                |      |                          |                             |                |
| Test for overall effect                                                                                                                                                                                                                         | : Z = 2.82                                                                                   | $(\mathbf{P}=0.)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 005)                                                                           |                                                 |                                                   |                                                                                        |      |                          |                             |                |
| 3.3.2 At 1 year                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 |                                                   |                                                                                        |      |                          |                             |                |
| ,                                                                                                                                                                                                                                               | 107                                                                                          | 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                | C 4 8 6                                         | 10.00                                             | 1 10 10 00 1 001                                                                       |      |                          |                             |                |
| Crivera 2015<br>Forslund 2016                                                                                                                                                                                                                   | 187<br>1264                                                                                  | 265<br>1352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3711<br>2485                                                                   |                                                 |                                                   | 1.15 [0.88, 1.50]<br>1.25 [0.97, 1.61]                                                 |      |                          |                             |                |
| McHorney 2017                                                                                                                                                                                                                                   | 4760                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 | -                                                 | 1.56 [1.42, 1.71]                                                                      |      |                          | <b>1</b> .                  |                |
| Mueller 2017                                                                                                                                                                                                                                    | 723                                                                                          | 822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 557                                                                            |                                                 |                                                   | 4.03 [3.13, 5.18]                                                                      |      |                          | <b>-</b>                    |                |
|                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 |                                                   |                                                                                        |      |                          |                             |                |
|                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 |                                                   |                                                                                        |      |                          | •                           |                |
| Pham2019                                                                                                                                                                                                                                        | 1969                                                                                         | 3500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                | 11689                                           | 13.4%                                             | 1.87 [1.73, 2.02]                                                                      |      |                          | •                           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -                                                                                                                                                              | 1969<br>8903<br>= 0.08; Ch                                                                   | 3500<br>12243<br>1 <sup>2</sup> = 66.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4761<br>13745<br>93, df =                                                      | 11689<br>24103                                  | 13.4%<br>59.7%                                    | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]                                                 |      |                          | •                           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events                                                                                                                                                                                                   | 1969<br>8903<br>= 0.08; Ch                                                                   | 3500<br>12243<br>1 <sup>2</sup> = 66.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4761<br>13745<br>93, df =                                                      | 11689<br>24103<br>4 (P < 0                      | 13.4%<br>59.7%                                    | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]                                                 |      |                          | •                           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events                                                                                                 | 1969<br>8903<br>= 0.08; Ch<br>; Z = 4.18<br>19767                                            | 3500<br>12243<br>I <sup>2</sup> = 66.<br>(P < 0.0<br>30525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4761<br>13745<br>93, df =<br>0001}<br>27924                                    | 11689<br>24103<br>4 (P < 0<br>52562             | 13.4%<br>59.7%<br>.00001);<br>100.0%              | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1 <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]    |      |                          | •                           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)                                                                                                                 | 1969<br>8903<br>= 0.08; Ch<br>; Z = 4.18<br>19767<br>= 0.07; Ch<br>; Z = 4.29                | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 | <b>0.1</b><br>Dabigatran | <ul> <li>Apixaba</li> </ul> | <b>10</b><br>n |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif        | 1969<br>6903<br>= 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>Apixaba                |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif        | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>•<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif        | 1969<br>6903<br>= 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>•<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif        | 1969<br>6903<br>= 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>•<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>1<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>6903<br>= 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>1<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>1<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\ I^2 = 66. \\ (P < 0.0 \\ 30525 \\ I^2 = 218 \\ (P < 0.0 \\ Chl^2 = 5. \\ (P < 0.0 \\ Chl^2 =$ | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)<br>01, df = | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>1<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\   ^2 = 66. \\ (P < 0.) \\ 30525 \\   ^2 = 216 \\ (P < 0.) \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0 \\   ^2 = 0.0$              | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>8.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>1<br>Apixaba           |                |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\ I^2 = 66. \\ (P < 0.0 \\ 30525 \\ I^2 = 218 \\ (P < 0.0 \\ Chl^2 = 5. \\ (P < 0.0 \\ Chl^2 =$ | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)<br>01, df = | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | 0.01 |                          | •<br>Apixaba                |                |

### Supplementary 4.2: studies reporting adherence to different medications in the same

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright.



| Rivaroxaban v                                                                 | s Apixa              | ıban                  |                    |               |                   |                          |      |                     |                        |   |
|-------------------------------------------------------------------------------|----------------------|-----------------------|--------------------|---------------|-------------------|--------------------------|------|---------------------|------------------------|---|
| Study or Subgroup                                                             | Rivarox              |                       | Apixa              |               | Weight            | Odds Ratio               |      | Odds R              |                        |   |
| Study or Subgroup<br>4.3.1 At 6 months                                        | Events               | Iotai                 | Events             | Iotai         | weight            | M-H, Random, 95% (       | .1   | M-H, Randor         | n, 95% CI              | _ |
| Coleman 2017                                                                  | 7303                 | 12613                 |                    | 12613         |                   |                          |      | •                   |                        |   |
| Coleman 2017<br>McHorney 2017                                                 | 3135<br>10930        | 5762<br>13645         | 3256<br>4778       | 5762<br>6304  | 10.2%<br>10.2%    |                          |      | 1.                  |                        |   |
| Pham2019                                                                      | 8241                 | 16005                 | 4054               | 6078          | 10.3%             | 1.05 [1.00, 1.1]         | ]    |                     |                        |   |
| <b>Yao 2016</b><br>Subtotal (95% CI)                                          | 5872                 | 23361<br>71386        | 2032               | 3900<br>36657 | 10.3×<br>51.3%    |                          |      | •                   |                        |   |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: |                      |                       |                    | = 4 (P <      | 0.00001)          | ); i <sup>2</sup> = 100% |      |                     |                        |   |
| 4.3.2 At 1 year                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
| 4.3.2 At 1 year<br>Crivera 2015                                               | 3162                 | 4194                  | 167                | 265           | 9.4%              | 1.28 [0.97, 1.66         | i]   |                     | -                      |   |
| Forslund 2016                                                                 | 1985                 | 2074                  | 1264               | 1352          | 9.2%              | 1.55 [1.15, 2.10         | )]   | _                   | -                      |   |
| McHorney 2017<br>Mueller 2017                                                 | 10657<br>2350        | 13645<br>2821         | 4760<br>723        | 822           | 10.3X<br>9.6X     | 0.68 [0.54, 0.86         | ij   | <sup>*</sup>        |                        |   |
| Pham2019<br>Subtotal (95% CI)                                                 | 5080                 | 10194<br>32928        | 1969               | 3500<br>12243 | 10.2%<br>48.7%    |                          |      | •                   |                        |   |
| Total events                                                                  | 23234                |                       | 8903               |               |                   |                          | .,   | Ť                   |                        |   |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                 |                      |                       |                    | (P < 0.(      | 00001); P         | * = 95%                  |      |                     |                        |   |
| Total (95% CI)                                                                |                      | 104314                |                    | 48900         | 100.0%            | 0.90 [0.68, 1.19         | 9]   | •                   |                        |   |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =                             | 58715<br>• 0.20; Chi | <sup>2</sup> = 1120   | 30868<br>.53, df • | = 9 (P <      | 0.00001)          | ); I <sup>2</sup> = 99%  |      | _ <u>_</u>          |                        | 1 |
| Test for overall effect:                                                      | : Z = 0.71           | (P = 0.4)             | 3)                 |               |                   |                          | 0.01 | 0.1 1<br>Apixaban R | 1'0 100<br>Livaroxaban |   |
| Test for subgroup diff<br>0                                                   | ierences: C          | .m <sup>-</sup> = 0.9 | ı, <b>q</b> ⊺ = )  | ι (r = Q.     | <u>34), F = (</u> | V/4                      |      |                     |                        |   |
|                                                                               | 00                   |                       |                    |               |                   |                          |      |                     |                        |   |
| .05-                                                                          | ° 💊                  | ø                     |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
| 0.1+                                                                          |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               | \$                   |                       |                    |               |                   |                          |      |                     |                        |   |
| .15+                                                                          |                      | <b>\$</b>             |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      | <b>\$</b>             |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               | OR                |                          |      |                     |                        |   |
| 0.2 0.01 0.1                                                                  | 4                    |                       | 10                 |               | OR<br>100         |                          |      |                     |                        |   |
| ○ At 6 months ◇ At 1 year                                                     |                      |                       |                    |               |                   | C                        |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |
|                                                                               |                      |                       |                    |               |                   |                          |      |                     |                        |   |

### **BMJ Open**

# Adherence to oral anticoagulants among patients with atrial fibrillation: A systematic review and meta-analysis of observational studies

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Manuscript ID                        | bmjopen-2019-034778.R3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Date Submitted by the Author:        | 06-Mar-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Complete List of Authors:            | Salmasi, Shahrzad; Collaboration for Outcomes Research and Evaluation<br>(CORE), The University of British Columbia; University of British<br>Columbia Faculty of Pharmaceutical Sciences<br>Loewen, Peter; University of British Columbia Faculty of Pharmaceutical<br>Sciences; Collaboration for Outcomes Research and Evaluation (CORE),<br>The University of British Columbia<br>Tandun, Rachel; University of British Columbia Faculty of Pharmaceutical<br>Sciences<br>Andrade, Jason; University of British Columbia, Faculty of Medicine;<br>Institut De Cardiologie de Montreal<br>De Vera, MA; University of British Columbia, Faculty of Pharmaceutical<br>Sciences; Collaboration for Outcomes Research and Evaluation (CORE),<br>The University of British Columbia, Faculty of Pharmaceutical<br>Sciences; Collaboration for Outcomes Research and Evaluation (CORE),<br>The University of British Columbia |  |  |  |
| <b>Primary Subject<br/>Heading</b> : | Cardiovascular medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Secondary Subject Heading:           | Cardiovascular medicine, Public health, Epidemiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Keywords:                            | Stroke medicine < INTERNAL MEDICINE, Thromboembolism < CARDIOLOGY, Anticoagulation < HAEMATOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

## A systematic review and meta-analysis of observational studies

Shahrzad Salmasi<sup>1</sup>, Peter Loewen<sup>1</sup>, Rachel Tandun<sup>1</sup>, Jason G Andrade<sup>2,3</sup>, Mary A. De Vera<sup>1</sup>

<sup>1</sup>Collaboration for Outcomes Research & Evaluation (CORE), Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada.

<sup>2</sup>Atrial Fibrillation Clinic, Vancouver General Hospital, Vancouver, Canada.

<sup>3</sup> Faculty of Medicine, The University of British Columbia, Vancouver, Canada.

Word count: 3584

Tables: 4; Figures: 2; Supplementary files: 4

Short title: Adherence to anticoagulants in patients with AF.

**Corresponding author:** 

Shahrzad Salmasi B.Pharmacy (Hons), MSc

Faculty of Pharmaceutical Sciences, The University of British Columbia

2405 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3

Tel: 604-726-9970; Email: shahrzad.salmasi@ubc.ca

#### ABSTRACT

#### **INTRODUCTION**

Medications cannot exert their effect if not taken as prescribed by patients. Our objective was to summarize the observational evidence on adherence to oral anticoagulants (OACs) among patients with atrial fibrillation (AF).

#### **METHODS**

In March 2019 we systematically searched PubMed/Medline, Embase, CINAHL and PsycINFO (from inception) for observational studies measuring adherence, its determinants and impacts in patients with AF. Mean adherence measures and corresponding proportions of adherent patients were pooled using random effects models. Factors shown to be independently associated with adherence were extracted as well as the clinical and economic outcomes of adherence.

#### RESULTS

We included 30 studies. Pooled mean adherence scores of over half a million patients with AF six months and one year after therapy initiation were 77 (95% CI: 74-79) and 74 (68-79) out of 100, respectively. Drug-specific pooled mean adherence score at six months and one year were as follows: rivaroxaban: 78 (73-84) and 77 (69-86); apixaban: 77 (75-79) and 82 (74-89); dabigatran: 74 (69-79) and 75 (68-82), respectively. There was inadequate information on warfarin for inclusion in meta-analysis.

Factors associated with increased adherence included: older age, higher stroke risk, once-daily regimen, history of hypertension, diabetes, or stroke, concomitant cardiovascular medications, living in rural areas, and being an experienced OAC user. Non-adherent patients were more likely to experience stroke and death, and incurred higher medical costs compared to patients with poor adherence.

#### CONCLUSIONS

Our findings show that up to 30% of patients with AF are non-adherent, suggesting an important therapeutic challenge in this patient population.

Keywords: Atrial fibrillation, anticoagulants, medication adherence, stroke.

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

#### 

#### Strengths and limitations of this study

- This is a timely systematic review that synthesizes the evidence on extent of poor adherence to oral anticoagulants, its determinants and clinical and economic outcomes, among patients with atrial fibrillation.
- We focused on observational studies (retrospective and prospective) to synthesize the evidence on patients' real-world medication taking behaviour.
- We considered all oral anticoagulants, including the newer drugs (apixaban, rivaroxaban, dabigatran, and edoxaban) and aimed to generate pooled adherence at the individual drug level.
- Drug utilisation consists of three interconnected but distinct phases (initiation, implementation, and discontinuation) and the focus of this study was confined to the implementation phase.

#### INTRODUCTION

Atrial fibrillation (AF) - the most common chronic arrhythmia - is an epidemic affecting more than 33 million people worldwide.<sup>1</sup> AF increases stroke risk by up to five-fold, and is responsible for a third of strokes in people over 60.<sup>2-5</sup> Strokes secondary to AF are far more debilitating and carry three times the risk of death than strokes due to other causes.<sup>6-8</sup>

Oral anticoagulants (OACs), which include vitamin K antagonists (VKA) and direct oral anticoagulants (DOACs), are the only effective agents thus far in preventing stroke in patient with AF, showing approximately 66% relative risk reduction in clinical trials.<sup>9-13</sup> When used outside the controlled environment of clinical trials, however, the effectiveness of these drugs is impacted by patients' adherence.<sup>14,15</sup> The clinical consequences of non-adherence can potentially be more significant for DOACs, given their short half-lives.<sup>14-18</sup>

Studies have previously attempted to summarize the medication taking behavior of patients with AF. These reviews, however, focus on discontinuation of therapy (not implementation or execution of dosing), or when looking at implementation, only focus on DOACs, summarize evidence from randomized controlled trials (which do not reflect the day to day behaviors of patients), and provide a narrative summary of results with no meta-analysis.<sup>19-21</sup> Further, no studies have summarized the evidence on determinants of adherence in this patient population and the association between adherence and outcomes (clinical or economical). The objective of this systematic review and meta-analysis was to summarize the evidence from observational studies on the extent, determinants, and impacts of adherence to all OACs among patients with AF.

#### **METHODS**

We conducted a systematic review and meta-analysis following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) and the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines (Supplementary file 1).<sup>22,23</sup>

#### Search strategy

In March 2019 we systematically searched PubMed/Medline, Embase, CINAHL and PsycINFO (from inception) using the relevant keywords and MeSH terms (Supplementary 2). The search strategy was designed with the help of a medical librarian and aimed to identify peer-reviewed published manuscripts that reported on extent, determinants, and impacts of non-adherence to any OAC. A manual search was also performed on Google Scholar and the bibliography of included studies.

#### Inclusion criteria and study selection

Studies were included if they utilized a prospective or retrospective observational study design, and quantitatively measured secondary adherence, (also known as the "implementation" phase) which looks at medication dose omissions, additions, or delays and does not involve those who did not initiate their therapy.<sup>15</sup> Studies published in English, French, Spanish, Persian, Finnish, Cantonese or Korean were included.<sup>24</sup> No limitations were imposed on setting, country, publication date, or quality.

While we were primarily interested in OAC adherence in patients with non-valvular AF (NVAF), we included studies that did not specifically restrict inclusion to this population, with notation in quality assessment. Studies of self-reported adherence were excluded (including those using validated scales such as Morisky Medication Adherence Scale<sup>®</sup>) as they are prone to overestimation of adherence (social desirability bias).<sup>24</sup> Cross-sectional and interventional studies, editorials, conference proceedings, and studies that evaluated or validated adherence measurement methods were also excluded.

Two authors independently screened titles and abstracts of the retrieved studies followed by full text review of candidate studies. Disagreements about inclusion were resolved by discussion with a third author.

#### Data extraction and synthesis

The primary adherence measure extracted was the mean and standard deviation (SD) of patients' adherence over six- or twelve- months post index date (after therapy initiation). The secondary adherence measure was proportions of adherent patients, that is proportion of patients reported in each study to have mean adherence score more than 80 (this could be > or  $\geq$  depending on how the study defined "adherent"). The 80% adherence is the conventional threshold for "good adherence".<sup>25,26</sup> Six or twelve months were chosen as these were the most common follow-up times. If a study had variable follow-up time (e.g. from initiation to permanent discontinuation or death) the median follow-up time was used. For studies that reported the proportion of *non*-adherent participants, data were transformed to proportion *adherent* to allow pooling. When both unadjusted and adjusted outcomes were reported we extracted and analysed the adjusted results. When unmatched and propensity score matched results were reported, we extracted the matched results as they were expected to be more accurate estimates. When a study reported adherence to both index OAC and current OAC (allowing for switching), adherence to index OAC was analyzed to minimize heterogeneity since studies defined switching differently. Adherence results with switching allowed were still reported.

We extracted information on the determinants or factors shown in the included studies to be independently associated with adherence in multivariable regression analyses. We classified the identified determinants under the World Health Organization's (WHO) five dimensions of medication adherence to identify areas in need of more research.<sup>27</sup> Finally, we extracted information on the clinical and economic consequences of poor adherence.

#### <u>Data analysis</u>

Meta-analyses were carried out using Der Simonian & Laird random-effects models to determine the pooled mean adherence and the corresponding pooled proportion of adherent patients over six months and one year of observation. If a study reported adherence scores for multiple cohorts, all were included in the meta-analysis (multiple entries per study). In anticipation of heterogeneity subgroup analysis was performed for each adherence measure, and by presence of potential conflict of interest, and study quality. Additional meta-analyses were also performed BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

focusing only on studies that reported comparative adherence between different OACs in the same cohort, to calculate the pooled odds ratio (OR) of adherence for each comparison.

I<sup>2</sup> statistics was used to quantify heterogeneity between studies.<sup>28</sup> Leave-one-out analysis was also performed for outliers to explore and potentially reduce heterogeneity.<sup>29</sup> Forest plots and funnel plots were constructed using OpenMeta-Analyst (Microsoft Corporation, Redmond, WA) or RevMan5 (version 5.3, Copenhagen, Denmark) software to illustrate the results and assess publication bias using funnel plots where relevant, that is, where studies reported measures of association (e.g. OR).<sup>30,31</sup> Clinical and economic impacts of poor adherence were summarized narratively as meta-analysis was not possible.

#### **Quality assessment**

We critically appraised the quality of adherence measurement in the included studies by adapting a condensed version of the checklist designed by the International Society of Pharmacoeconomics and Outcomes Research (ISPOR) Group, designed specifically for medication adherence studies, to establish standards for data sources, operational definitions, measurement of medication adherence, and reporting of results, previously used in a systematic reviews of adherence to gout medication.<sup>32</sup> We also critically appraised individual study reporting quality using STROBE.<sup>33</sup> Studies received a point for each checklist item they met and a zero score if not met. A quality score was computed for each study (number of items satisfactorily met / the total number of applicable items) and reported as a percentage. Items deemed not applicable were excluded from the denominator of the study's score. Studies were categorized as low, moderate or high quality if they scored  $\leq$ 50%, 51-80%, or >80%, respectively (arbitrary thresholds defined by authors).

Following Cochrane's commercial sponsorship policy as a guide, potential conflicts of interest were deemed present if any of the following were met: 1) provision of study funding by the forprofit manufacturer or marketer of any of the OACs included in the corresponding study, or 2) disclosure of potential conflict of interest with a for-profit manufacturer or marketer of any of the OACs included in the corresponding study.<sup>34</sup>

### Patient and Public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination of our research.

#### Ethical approval

Ethical approval for this study was not required per our institution's policies.

to beet eviewony

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

## RESULTS

Initial search led to 1,122 studies, all of which were in English (Figure 1.0). A total of 30 studies were included in this systematic review<sup>35-64</sup> involving 593,683 participants (DOAC: 437,610, VKA: 156,073). Most studies were published after 2015 (n=22, 73% of total included), conducted in North America (n=19, 63%), and retrospective (n=29, 97%), (Table 1). Adherence measurement was assessed to be of high quality in 59% of the included studies and moderate in 38%, according to the ISPOR checklist (Supplementary 3). The most frequently reported adherence measures were proportion days covered (PDC) (n=21, 70% of the included studies), and medication possession ratio (MPR) (n=9, 20%) over six months or one year post index date (Table 2). The majority of the included studies focused on adherence to DOACs with only 4 observational studies measuring and reporting adherence to warfarin. There were no data on phenproc. adherence to edoxaban, betrixaban, phenprocoumon, acenocoumarol, or fluindione.

#### BMJ Open

## Adherence

The range of reported adherence results was quite wide. Reported mean adherence ranged between 67 (out of 100)<sup>58,61,64</sup> to 86<sup>55</sup> over six months and 57<sup>58</sup> to 86<sup>41</sup> over one year post index date, with corresponding reported proportion of adherent patients ranging between 47%<sup>59</sup> to 82%<sup>56</sup> over six months and 41%<sup>58</sup> to 95%<sup>45</sup> over one year. A wide range of adherence results were observed even at the individual OAC level (Table 2).

Pooled mean adherence scores over six month and one year post medication initiation were 77 (95% CI: 74-79) and 74 (68-79), with the corresponding pooled proportion of adherent patients as 63% (58%-68%) and 70% (65%-76%), respectively. Adherence was similar between DOACs, although adherence to apixaban and rivaroxaban was slightly higher than dabigatran (Table 3). No meta-analysis could be conducted for mean adherence to warfarin since this was not reported by the included studies. Pooled estimates of proportion of adherent patients for warfarin resulted from meta-analysis of 2 studies only (as illustrated in tables 2 and 3). Due to the limited data in warfarin, no drug class comparison could be made. Figure 2.0 illustrates the forest plots for patients' mean adherence score over six months and one year. The remaining forests plots, including forest plots of proportion adherent, adherence to individual OACs, subgroup analyses [by adherence measure (PDC and MPR), study quality and potential for conflict of interest] can be found in supplementary 4.

Between-study variance (represented as I<sup>2</sup>) was high and not reduced by the leave-one out analysis or subgroup analysis. Exclusion of studies with potential conflicts of interest led to lower adherence scores for all OACs but did not change the rank-order of OACs (adherence to dabigatran remained lower than the others). Excluding studies of low and moderate quality or stratifying the analysis by adherence measure (PDC versus MPR), or country (USA versus others) had only minor impacts on pooled adherence results and the detected heterogeneity (Supplementary 4).

## Studies comparing adherence between different OACs in the same cohort

Nineteen studies reported comparative adherence between different OACs in the same cohort (Table 4).<sup>35-37,39-45,49,50,52,55-58,60,62</sup> Odds of being adherent was significantly higher for apixaban compared to dabigatran over both six months (Odds Ratio (OR):1.24, 95% CI: 1.07-1.45) and one year post index date (OR:1.76, 95% CI: 1.35-2.29). Odds of adherence was significantly

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

higher for rivaroxaban compared to dabigatran over six months (OR:1.39, 95% CI: 1.15-1.67), but not one year (OR:1.17, 95% CI: 0.38-3.60). Odds of adherence did not differ between apixaban and rivaroxaban over six months (OR:0.80, 95% CI: 0.51-1.24) or one year (OR:1.02, 95% CI: 0.79-1.33).

#### Studies reporting adherence among several cohorts with different characteristics

Three studies compared adherence between new versus experienced users.<sup>37,50,56</sup> McHorney et al. reported greater mean PDC score for both rivaroxaban and apixaban (0.90 and 0.88, respectively) among prior OAC users compared to naïve users (0.87 and 0.86, respectively).<sup>56</sup> Borne et al. reported a higher mean PDC score for apixaban users with prior warfarin experience compared to naïve users (0.89±0.14 vs naïve: 0.87±0.15, P < 0.01).<sup>37</sup> Confirming these results, Manzoor et al. reported higher mean PDC for experienced users compared to naïve users over six months (83.3±24.6 vs 72.3±31.3; p< 0.05), nine months (81.2±26.4 vs 67.3±33.8); p< 0.05) and one year (79.9±27.6 vs 63.7±35.2; p <0.05).<sup>50</sup>

One study, Eapen et al., compared adherence among those prescribed OAC at discharge versus after discharge and reported that patients prescribed warfarin at discharge had significantly higher prescription fill rates compared to those prescribed after discharge at three months (84.5% vs 12.3%; P<0.001) and one year (91.6% vs 16.8%; P<0.001).<sup>44</sup>

## **Determinants of adherence**

Many factors were identified by the included studies as significant determinants of adherence. Summarizing these under WHO's classification, the factors identified in the included studies to be significantly and positively associated with adherence were: **Patient factors:** history of hypertension<sup>43,49</sup>, diabetes<sup>37</sup> stroke<sup>37,52</sup>; **Regimen factors:** once daily dosing<sup>35,49</sup>, concomitant use of statin<sup>43,52</sup>, angiotensin converting enzyme inhibitor or angiotensin II receptor blockers<sup>43,52</sup>, higher risk of bleeding<sup>43</sup>; and **Social/economic factors:** living in rural or deprived areas.<sup>52,53</sup> Factors found to be significantly and negatively associated with adherence to OAC were: being a naïve OAC user<sup>50,56</sup>, twice daily dosing<sup>35,49</sup> and impaired cognitive or functional ability.<sup>56</sup> No **healthcare system** and **condition factors** related predictors of adherence were identified.

#### **BMJ** Open

Conflicting results were reported for female sex<sup>47,48,53</sup>, age<sup>37,43,47-50,52,53</sup>, risk of stroke<sup>43,47,53</sup>, presence of multiple comorbidities<sup>43,50,51,56</sup>, and higher number of concomitant medications.<sup>50,51</sup> These factors were found to be predictors of high *and* low OAC adherence in different studies

### **Impacts of adherence**

Four studies assessed the clinical impact of adherence.<sup>35,37,42,59</sup> Alberts et al. reported 50% increased hazard of ischemic stroke with DOAC non-adherence (aHR:1.50, 95% CI:1.30-1.73).<sup>35</sup> Deshpande et al. reported non-adherent patients to be 1.82 times (aHR:1.82, 95% CI: 1.24- 2.67; p=0.002) and 2.08 times (aHR:2.08, 95% CI: 1.11- 3.89; p=0.02) more likely to experience an ischemic stroke compared to adherent patients, over six and 12 months, respectively.<sup>42</sup> Similarly, Borne et al. reported a higher risk of death or stroke per 0.1 drop in the PDC among dabigatran users (HR:1.07, 95% CI: 1.03- 1.12; p<0.01).<sup>37</sup> Shore et al. reported a 13% increase in risk of combined all-cause mortality and stroke with lower adherence (aHR:1.13, 95%CI: 1.07-1.19 per 10% decrease in PDC) but found no association between adherence and non-fatal bleeding events (aHR:1.04 per 10% increase in PDC, 95% CI: 0.94-1.14) or myocardial infarction (aHR:0.97 per 10% increase in PDC, 95% CI: 0.78-1.21).<sup>59</sup>

Two studies measured the economic impacts of adherence.<sup>38,43</sup> Casciano et al. reported significantly more inpatient and emergency room encounters and longer length of stay for non-adherent patients compare to adherent patients and Deshpande et al. reported significantly higher annual adjusted per-patient medical cost (inpatient and outpatient) for non-adherent users compared to adherent ones (\$30,485 versus \$23,544; p≤0.001).<sup>38,43</sup>

## DISCUSSION

In this systematic review, we synthesized observational data of over half a million patients with AF to reveal that up to 30% are non-adherent to OACs, and that non-adherent patients are more likely to experience stroke, death and incur higher medical costs compared to adherent patients. We also found that older age, higher stroke risk, once-daily regimen, history of hypertension, diabetes, or stroke, concomitant cardiovascular medications, living in rural areas, and being an experienced OAC user could be associated with better adherence.

#### **BMJ** Open

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

Adherence to OACs among patients with AF has been thoroughly studied in developed countries. In our study, pooled proportion of adherent patients at six months and one year were 63% and 70%, respectively, which are higher than those found for other chronic cardiovascular medications such as statins (54%) and antihypertensives (59%).<sup>65</sup> However, our finding that up to 37% of patients with AF do not adhere to OACs is concerning considering the detrimental consequences of non-adherence in this particular clinical context. We were unable to ascertain whether the conveniences of DOACs translates into better adherence compared to warfarin due to lack of adherence data on warfarin, a likely result of warfarin dose variations complicating MPR and PDC ascertainment from administrative data. Between DOACs, however, adherence was found to be similar, although dabigatran appeared to have slightly lower adherence than apixaban and rivaroxaban.

Many patient-, regimen- and social/economic-related factors were identified by the included studies as significant determinants of adherence. It should be noted that each of these factors were reported to have a significant impact on adherence by one or two studies. The limited number of prospective observational studies on the topic restricted our ability to identify important psychosocial determinants as administrative data fall short in recording patients' knowledge gaps, misconceptions, and varying values and preferences, all of which have frequently been reported in patients with AF.<sup>66-71</sup> Further, questions remain about the role of sex, age, risk of stroke, presence of multiple comorbidities, and number of concomitant medications on adherence. One explanation for the inconsistencies we observed could be differences in how these factors were defined in our included studies. A 2019 systematic review of 34 systematic reviews on determinants of adherence to cardiovascular medications (beta blockers, calcium channel blockers, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers, and diuretics) also reported inconsistent results for the role of gender in adherence.<sup>72</sup> These authors also found that the effects of concomitant medications and comorbidities seem to be drugspecific and condition-specific, which could explain some of the inter-study variability with this factor.<sup>72</sup> A multivariate patient-level meta-regression analysis could provide more clarity to these issues with OACs in patients with AF. Nevertheless, our findings indicate potential opportunities for interventions such as education and counselling for younger or newly diagnosed patients (naïve users) and adherence support for those on twice daily dosed OACs.

Page 15 of 80

#### **BMJ** Open

Lastly, we looked at outcomes of poor adherence. Our review found evidence of association between lower adherence and strokes, mortality, healthcare utilization and costs. Our findings confirm the results of a 2017 systematic review of 79 studies across 14 disease groups which reported that \$3,347-19,472 are attributed to non-adherence per patient per year among those with cardiovascular conditions (hypertension, hypercholesterolaemia, and chronic heart failure).<sup>73</sup> Our findings in relation to clinical outcomes are in line with results of meta-analyses of a large body of research showing that poor adherence across a range of conditions was associated with a 26% increased risk of poor treatment outcomes.<sup>74</sup> The adherence-outcome relationship is, however, very complex, and dependant on many factors, including the nature of the disease.<sup>74</sup> This is why it was important to summarize the strength of this relationship specifically in AF. Our findings, while based on only four studies, reveal the relationship between lower adherence and poor clinical outcomes in patients with AF, and support the potential of interventions aimed at increasing adherence in patients with AF.<sup>73-79</sup>

### **Limitations**

This review was primarily limited by gaps in the available evidence. Given our interest in observational data, our evidence was narrowed to developed countries where the technology and infrastructure for systematic collection of such data is available. The high number of studies from a few developed countries introduced the possibility of duplicate patients in the analysis since many of the included studies used the same database with overlapping periods.<sup>35,38-40,50,64</sup> Furthermore, there may be potential for publication bias or under-representation from studies from developing countries. As described in the methods, we attempted to assess publication bias using funnel plots but were limited with few studies reporting measures of association. Nonetheless, for these meta-analyses, findings do not suggest presence of publication bias (Supplementary 3).

Another limitation of our analysis was the high heterogeneity (I<sup>2</sup>>80%) among the studies. Possible sources of heterogeneity include differences in patient inclusion criteria (e.g. OAC naïve versus experienced); methods for handling and defining medication switches, stockpiling, refill gaps, and hospitalization dates; fixed versus variable observational periods and adherence measure used (PDC versus MPR). Subgroup analyses did not affect the amount of statistical heterogeneity detected. Nonetheless, in addition to the summary measures derived from metaBMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

analysis, we were able to detect the range of adherence measures from the included studies. Finally, drug utilisation consists of initiation, implementation, and discontinuation,<sup>15,80</sup> and the focus of this study was confined to the implementation phase. Systematic reviews of OAC initiation and discontinuation are needed to provide a complete picture of medication taking behaviour in patients with AF.

## **FUTURE DIRECTIONS**

Our understanding of the comparative adherence between warfarin and DOACs among patients with AF is currently impeded by lack of observational data on warfarin. Sophisticated statistical models are needed to calculate days' supply of warfarin, despite its varying dose, to allow measurement of MPR or PDC for this drug using administrative data. Furthermore, we lack information on patterns of non-adherence to OACs. All of the current studies have treated adherence as a static behavior, calculating and reporting it using a single summary measure. This methodological approach does not provide a complete picture of adherence, which is a dynamic behavior that changes over time.<sup>25,81</sup> Characterization of adherence patterns over time is vital in understanding the problem of poor adherence and targeting the right patients at the right time with the right interventions.<sup>82-86</sup>

There is a need for more research investigating the clinical and economic consequences of poor adherence as the current evidence is limited to findings of four studies. Moreover, a clinically meaningful OAC adherence threshold has yet to be determined in AF.<sup>35,37,42,59</sup> While the association between taking more than 80% of medications and improved clinical outcomes has been shown in four AF studies, it remains unclear if this is the optimal threshold for AF.<sup>35,37,42,59</sup> Clinically relevant adherence cut-off values have been shown to differ widely (from 58% to 85%) in different diseases, and even among drug classes.<sup>14,87</sup> As with antiretroviral medications, given the detrimental consequences of OAC non-adherence, the clinically meaningful threshold for "good adherence" to OACs may need to be much higher than 80%.<sup>87</sup>

## CONCLUSION

Synthesis of observational data suggests that overall OAC adherence in patients with AF is below the conventional threshold of "adherent" (80%). These findings, combined with evidence that lower adherence is associated with poor clinical outcomes and higher costs, suggest an important therapeutic challenge in this patient population. Our study also highlights the need for

#### **BMJ** Open

more consistent measures of adherence, and more research to characterize patterns of OAC nonadherence, identifying determinants of poor OAC adherence, and investigate the clinical and economic consequences of OAC non-adherence.

### FUNDING

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. Dr. Loewen's research is partially supported by the UBC David H MacDonald Professorship in Clinical Pharmacy. Dr. De Vera holds a Canada Research Chair in Medication Adherence, Utilization, and Outcomes and is a Michael Smith Foundation for Health Research Scholar.

## **COMPETING INTERESTS**

Authors have no competing interests to declare.

## **CONTRIBUTIONS**

Conceived the study: SS, PL, MDV; Designed the search strategy: SS, MDV, PL; Conducted the literature search: SS; Screened titles and abstracts: SS, RT; Screened full texts: SS, RT; Extracted data: SS, RT; Made methodological decisions (data synthesis and analysis): MDV, SS; Analyzed the data: SS; Conducted quality assessment; SS, RT; Interpreted the results: SS, PL, JGA, MDV; Prepared the manuscript first draft: SS, MDV, PL, RT; Reviewed the manuscript and provided critical feedback: JGA, MDV, PL; Revised the manuscript: SS, PL, RT, MDV.

#### DATA AVAILABILITY STATEMENT

No additional data available.

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

#### 

## FIGURE LEGENDS

Figure 1.0: PRISMA flow diagram that details the number of studies identified by our search strategy, screened, and included in the final analysis.

Figure 2.0: Forest plots illustrating patients' mean adherence scores over six months and one year post index date. See Supplementary 4 for additional forest plots for each OAC and subgroup analyses.

to beet terien only

2

#### **BMJ** Open

| 3                    |  |
|----------------------|--|
| 4                    |  |
| 5                    |  |
| 5<br>6<br>7          |  |
| 0                    |  |
| /                    |  |
| 8                    |  |
| 9                    |  |
| 10                   |  |
| 11                   |  |
| 12                   |  |
| 13                   |  |
| 14                   |  |
| 14<br>15<br>16<br>17 |  |
| 16                   |  |
| 17                   |  |
| 18                   |  |
|                      |  |
| 19                   |  |
| 20                   |  |
| 21                   |  |
| 22                   |  |
| 23                   |  |
| 24                   |  |
| 25                   |  |
| 26                   |  |
| 27                   |  |
| 28                   |  |
| 29                   |  |
| 30                   |  |
| 31                   |  |
| 32                   |  |
| 5Z                   |  |
| 33                   |  |
| 34                   |  |
| 35                   |  |
| 36                   |  |
| 37                   |  |
| 38                   |  |
| 39                   |  |
| 40                   |  |
| 41                   |  |
| 42                   |  |
| 43                   |  |
| 44                   |  |
| 45                   |  |
| 46                   |  |
|                      |  |
| 47                   |  |
| 48                   |  |
| 49                   |  |
| 50                   |  |
| 51                   |  |
| 52                   |  |
| 53                   |  |
| 54                   |  |
| 55                   |  |
| 56                   |  |
| 57                   |  |
| 58                   |  |
|                      |  |
| 59                   |  |
| 60                   |  |

#### REFERENCES

- 1. Morillo CA, Banerjee A, Perel P, et al. Atrial fibrillation: The current epidemic. *J Geriatr Cardiol* 2017;14(3):195-203. doi: 10.11909/j.issn.1671-5411.2017.03.011
- Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: The Framingham study. *Stroke* 1991;22(8):983-88. doi: 10.1161/01.str.22.8.983
- 3. Hart RG, Pearce LA, McBride R, et al. Factors associated with ischemic stroke during aspirin therapy in atrial fibrillation: Analysis of 2012 participants in the SPAF i-iii clinical trials. The stroke prevention in atrial fibrillation (SPAF) investigators. *Stroke* 1999;30(6):1223-9. doi: 10.1161/01.str.30.6.1223 [published Online First: 1999/06/04]
- 4. World Health Organization. The top 10 causes of death 2018 [Available from: <u>https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death</u> accessed 2.05.2019 2019.
- Wolf PA, Dawber TR, Thomas HE, Jr., et al. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: The Framingham study. *Neurology* 1978;28(10):973-7. doi: 10.1212/wnl.28.10.973 [published Online First: 1978/10/01]
- 6. Marini C, De Santis F, Sacco S, et al. Contribution of atrial fibrillation to incidence and outcome of ischemic stroke: Results from a population-based study. *Stroke* 2005;36(6):1115-9. doi: 10.1161/01.STR.0000166053.83476.4a [published Online First: 2005/05/10]
- McGrath ER, Kapral MK, Fang J, et al. Association of atrial fibrillation with mortality and disability after ischemic stroke. *Neurology* 2013;81(9):825-32. doi: 10.1212/WNL.0b013e3182a2cc15 [published Online First: 2013/08/02]

#### **BMJ** Open

- 8. Fang MC, Go AS, Chang Y, et al. Long-term survival after ischemic stroke in patients with atrial fibrillation. *Neurology* 2014;82(12):1033-37. doi:
- 9. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. *NEJM* 2009;361(12):1139-51. doi: 10.1056/NEJMoa0905561
- Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. *NEJM* 2013;369(22):2093-104. doi: 10.1056/NEJMoa1310907
- 11. Hart RG, Pearce LA, Aguilar MI. Meta-analysis: Antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. *Ann Intern Med* 2007;146(12):857-67. doi: 10.7326/0003-4819-146-12-200706190-00007 [published Online First: 2007/06/20]
- 12. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. *NEJM*, 2011;365(10):883-91. doi: 10.1056/NEJMoa1009638
- 13. European Society of Cardiology. ESC guidelines for the management of atrial fibrillation developed in collaboration with eacts. *Eur Heart J* 2016;20(1) doi:
   10.1093/eurhearti/ebw210
- 14. Karve S, Cleves MA, Helm M, et al. Good and poor adherence: Optimal cut-point for adherence measures using administrative claims data. *Curr Med Res Opin,* 2009;25(9):2303-10. doi: 10.1185/03007990903126833 [published Online First: 2009/07/29]
- 15. De Geest S, Zullig LL, Dunbar-Jacob J, et al. Espacomp medication adherence reporting guideline (emerge). *Ann Intern Med* 2018;169(1):30-35. doi: 10.7326/m18-0543
  [published Online First: 2018/06/28]

#### **BMJ** Open

| 2                                                                                  |  |
|------------------------------------------------------------------------------------|--|
| 3                                                                                  |  |
| 4                                                                                  |  |
| 5                                                                                  |  |
| 6                                                                                  |  |
| 7                                                                                  |  |
| 8                                                                                  |  |
| 9                                                                                  |  |
| 10                                                                                 |  |
| 11                                                                                 |  |
| 12                                                                                 |  |
| 13                                                                                 |  |
| 14                                                                                 |  |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 |  |
| 16                                                                                 |  |
| 17                                                                                 |  |
| 18                                                                                 |  |
| 10                                                                                 |  |
| 20                                                                                 |  |
| 20                                                                                 |  |
| 21<br>22                                                                           |  |
| 22                                                                                 |  |
| 25                                                                                 |  |
| 22<br>23<br>24<br>25                                                               |  |
| 25                                                                                 |  |
| 26                                                                                 |  |
| 27                                                                                 |  |
| 28                                                                                 |  |
| 29                                                                                 |  |
| 30                                                                                 |  |
| 31<br>32<br>33                                                                     |  |
| 32                                                                                 |  |
| 33                                                                                 |  |
| 34                                                                                 |  |
| 35                                                                                 |  |
| 36                                                                                 |  |
| 37                                                                                 |  |
| 38                                                                                 |  |
| 39                                                                                 |  |
| 40                                                                                 |  |
| 41                                                                                 |  |
| 42                                                                                 |  |
| 43                                                                                 |  |
| 44                                                                                 |  |
| 45                                                                                 |  |
| 46                                                                                 |  |
| 47                                                                                 |  |
| 48                                                                                 |  |
| 49                                                                                 |  |
| 50                                                                                 |  |
| 51                                                                                 |  |
| 52                                                                                 |  |
| 53                                                                                 |  |
| 54                                                                                 |  |
| 55                                                                                 |  |
| 56                                                                                 |  |
| 57                                                                                 |  |
| 58                                                                                 |  |
| 58                                                                                 |  |
|                                                                                    |  |

60

16. Aronis KN, Hylek EM. Evidence gaps in the era of non-vitamin k oral anticoagulants. *JAHA* 2018;7(3):e007338. doi: 10.1161/JAHA.117.007338

- 17. Chin PK, Doogue MP. Long-term prescribing of new oral anticoagulants. *Aust Prescr* 2016;39(6):200-04. doi: 10.18773/austprescr.2016.068 [published Online First: 2016/12/05]
- 18. Mekaj YH, Mekaj AY, Duci SB, et al. New oral anticoagulants: Their advantages and disadvantages compared with vitamin k antagonists in the prevention and treatment of patients with thromboembolic events. *Ther clin risk manag*, 2015;11:967-77. doi: 10.2147/TCRM.S84210
- Obamiro K, Chalmers L, Bereznicki L. A summary of the literature evaluating adherence and persistence with oral anticoagulants in atrial fibrillation. *Am J Cardiovasc Drugs*, 2016;16(5):349-63. doi: 10.1007/s40256-016-0171-6
- 20. Chatterjee S, Sardar P, Giri JS, et al. Treatment discontinuations with new oral agents for long-term anticoagulation: Insights from a meta-analysis of 18 randomized trials including 101,801 patients. *Mayo Clin Proc*, 2014;89(7):896-907. doi: 10.1016/j.mayocp.2014.01.030 [published Online First: 2014/07/06]
- 21. Shehab A, Bhagavathula AS, Abebe TB, et al. Patient adherence to novel oral anticoagulants (noacs) for the treatment of atrial fibrillation and occurrence of associated bleeding events: A systematic review and meta-analysis. *Curr Vasc Pharmacol*, 2018 doi: 10.2174/1570161116666180123111949 [published Online First: 2018/01/24]
- 22. Liberati A, Altman DG, Tetzlaff J, et al. The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

and elaboration. PLoS medicine 2009;6(7):e1000100. doi:

10.1371/journal.pmed.1000100

# 23. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of observational studies in epidemiology (moose) group. JAMA 2000;283(15):2008-12. doi:

10.1001/jama.283.15.2008 [published Online First: 2000/05/02]

- 24. Osterberg L, Blaschke T. Adherence to medication. *NEJM* 2005;353(5):487-97. doi: 10.1056/NEJMra050100
- 25. Andrade SE, Kahler KH, Frech F, et al. Methods for evaluation of medication adherence and persistence using automated databases. *Pharmacoepidemiol Drug Saf*, 2006;15(8):565-74; discussion 75-7. doi: 10.1002/pds.1230 [published Online First: 2006/03/04]
- 26. Baumgartner PC, Haynes RB, Hersberger KE, et al. A systematic review of medication adherence thresholds dependent of clinical outcomes. *Front Pharmacol* 2018;9(1290) doi: 10.3389/fphar.2018.01290
- 27. World Health Organisation. Adherence to long-term therapies: Evidence to action. Towards the solution: five interacting dimensions affect adherence. Switzerland, 2003.
- Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ* 2003;327(7414):557-60. doi: 10.1136/bmj.327.7414.557 %J BMJ

Willis BH, Riley RD. Measuring the statistical validity of summary meta-analysis and meta-regression results for use in clinical practice. *Stat Med*, 2017;36(21):3283-301. doi: 10.1002/sim.7372 [published Online First: 2017/06/18]

#### **BMJ** Open

| 30. W | Vallace BC, Dahabreh IJ, Trikalinos TA, et al. Closing the gap between methodologists ar  |
|-------|-------------------------------------------------------------------------------------------|
|       | end-users: R as a computational back-end. J Stat Softw 2012;49(5):15. doi:                |
|       | 10.18637/jss.v049.i05 [published Online First: 2012-06-30]                                |
| 31. P | eters JL, Sutton AJ, Jones DR, et al. Comparison of two methods to detect publication bia |
|       | in meta-analysis. JAMA 2006;295(6):676-80. doi: 10.1001/jama.295.6.676 %J JAMA            |
| 32. P | eterson AM, Nau DP, Cramer JA, et al. A checklist for medication compliance and           |
|       | persistence studies using retrospective databases. Value Health, 2007;10(1):3-12. doi:    |
|       | 10.1111/j.1524-4733.2006.00139.x [published Online First: 2007/01/31]                     |
| 33. V | on Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational     |
|       | studies in epidemiology (strobe) statement: Guidelines for reporting observational        |
|       | studies. Int J Surg 2014;12(12):1495-99. doi: https://doi.org/10.1016/j.ijsu.2014.07.013  |
| 34. C | ochrane community. Editorial and publishing policy resource conflicts of interest and     |
|       | cochrane reviews 2014 [Available from: https://community.cochrane.org/editorial-and-      |
|       | publishing-policy-resource/ethical-considerations/conflicts-interest-and-cochrane-revie   |
|       | accessed July 10 2019.                                                                    |
| 35. A | lberts MJ, Peacock WF, Fields LE, et al. Association between once- and twice-daily dire   |
|       | oral anticoagulant adherence in nonvalvular atrial fibrillation patients and rates of     |
|       | ischemic stroke. Int J Cardiol, 2016;215:11-3. doi: 10.1016/j.ijcard.2016.03.212          |
|       | [published Online First: 2016/04/23]                                                      |
| 36. B | eyer-Westendorf J, Ehlken B, Evers T. Real-world persistence and adherence to oral        |
|       | anticoagulation for stroke risk reduction in patients with atrial fibrillation. Europace, |
|       | 2016;18(8):1150-7. doi: 10.1093/europace/euv421 [published Online First: 2016/02/03       |

37. Borne RT, O'Donnell C, Turakhia MP, et al. Adherence and outcomes to direct oral anticoagulants among patients with atrial fibrillation: Findings from the veterans health administration. *BMC Cardiovasc Disord*, 2017;17(1):236. doi: 10.1186/s12872-017-0671-6 [published Online First: 2017/09/04]

- 38. Casciano JP, Dotiwala ZJ, Martin BC, et al. The costs of warfarin underuse and nonadherence in patients with atrial fibrillation: A commercial insurer perspective. J Manag Care Pharm, 2013;19(4):302-16. doi: 10.18553/jmcp.2013.19.4.302 [published Online First: 2013/05/01]
- 39. Coleman C, Yuan Z, Schein J, et al. Importance of balancing follow-up time and impact of oral-anticoagulant users' selection when evaluating medication adherence in atrial fibrillation patients treated with rivaroxaban and apixaban. *Curr Med Res Opin* 2017;33(6):1033-43. doi: 10.1080/03007995.2017.1297932 [published Online First: 2017/04/04]
- 40. Coleman CI, Tangirala M, Evers T. Medication adherence to rivaroxaban and dabigatran for stroke prevention in patients with non-valvular atrial fibrillation in the United States. *Int J Cardio* 2016;212:171-3. doi: 10.1016/j.ijcard.2016.03.051 [published Online First: 2016/04/04]
- 41. Crivera C, Nelson WW, Bookhart B, et al. Pharmacy quality alliance measure: Adherence to non-warfarin oral anticoagulant medications. *Curr Med Res Opin* 2015;31(10):1889-95. doi: 10.1185/03007995.2015.1077213 [published Online First: 2015/07/28]
- 42. Deshpande CG, Kogut S, Laforge R, et al. Impact of medication adherence on risk of ischemic stroke, major bleeding and deep vein thrombosis in atrial fibrillation patients

#### **BMJ** Open

| using novel oral anticoagulants. Curr Med Res Opin 2018;34(7):1285-92. doi:                |
|--------------------------------------------------------------------------------------------|
| 10.1080/03007995.2018.1428543                                                              |
| hpande CG, Kogut S, Willey C. Real-world health care costs based on medication             |
| adherence and risk of stroke and bleeding in patients treated with novel anticoagulant     |
| therapy. J Manag Care Spec Pharm, 2018;24(5):430-39. doi:                                  |
| 10.18553/jmcp.2018.24.5.430 [published Online First: 2018/04/26]                           |
| en ZJ, Mi X, Qualls LG, et al. Adherence and persistence in the use of warfarin after      |
| hospital discharge among patients with heart failure and atrial fibrillation. J Card Fail, |
| 2014;20(1):23-30. doi: 10.1016/j.cardfail.2013.11.006 [published Online First:             |
| 2013/11/28]                                                                                |
| slund T, Wettermark B, Hjemdahl P. Comparison of treatment persistence with different      |
| oral anticoagulants in patients with atrial fibrillation. Eur J Clin Pharmacol,            |
| 2016;72(3):329-38. doi: 10.1007/s00228-015-1983-z [published Online First:                 |
| 2015/11/29]                                                                                |
| nez-Lumbreras A, Cortes J, Morros R, et al. Characteristics of apixaban-treated patients,  |
| evaluation of the dose prescribed, and the persistence of treatment: A cohort study in     |
| catalonia. J Cardiovasc Pharmacol Ther 2018;23(6):494-501. doi:                            |
| 10.1177/1074248418778544                                                                   |
| st-Rasmussen A, Skjoth F, Larsen TB, et al. Dabigatran adherence in atrial fibrillation    |
| patients during the first year after diagnosis: A nationwide cohort study. J Thromb        |
| Haemost, 2015;13(4):495-504. doi: 10.1111/jth.12845 [published Online First:               |
| 2015/01/17]                                                                                |
|                                                                                            |
|                                                                                            |
|                                                                                            |

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

10.1080/03007995.2018.1428543 43. Deshpande CG, Kogut S, Willey C. Real-world health care costs based on adherence and risk of stroke and bleeding in patients treated with nove therapy. J Manag Care Spec Pharm, 2018;24(5):430-39. doi: 10.18553/jmcp.2018.24.5.430 [published Online First: 2018/04/26] 44. Eapen ZJ, Mi X, Qualls LG, et al. Adherence and persistence in the use of hospital discharge among patients with heart failure and atrial fibrillati 2014;20(1):23-30. doi: 10.1016/j.cardfail.2013.11.006 [published Onli 2013/11/28] 45. Forslund T, Wettermark B, Hjemdahl P. Comparison of treatment persister oral anticoagulants in patients with atrial fibrillation. Eur J Clin Pharm 2016;72(3):329-38. doi: 10.1007/s00228-015-1983-z [published Onlin 2015/11/29] 46. Gomez-Lumbreras A, Cortes J, Morros R, et al. Characteristics of apixaba evaluation of the dose prescribed, and the persistence of treatment: A c catalonia. J Cardiovasc Pharmacol Ther 2018;23(6):494-501. doi:

47. Gorst-Rasmussen A, Skjoth F, Larsen TB, et al. Dabigatran adherence in a patients during the first year after diagnosis: A nationwide cohort study Haemost, 2015;13(4):495-504. doi: 10.1111/jth.12845 [published Onli 2015/01/17]

**BMJ** Open

48. Harper P, Pollock D, Stephens M. Dabigatran persistence and adherence in new zealand: A nationwide retrospective observational study. *BMJ open* 2018;8(4):e020212. doi: 10.1136/bmjopen-2017-020212 [published Online First: 2018/04/08]

- 49. Jacobs MS, Schouten JF, de Boer PT, et al. Secondary adherence to non-vitamin-k antagonist oral anticoagulants in patients with atrial fibrillation in sweden and the netherlands. *Curr Med Res Opin* 2018;34(10):1839-47. doi: 10.1080/03007995.2018.1459528
- 50. Manzoor BS, Lee TA, Sharp LK, et al. Real-world adherence and persistence with direct oral anticoagulants in adults with atrial fibrillation. *Pharmacotherapy* 2017;37(10):1221-30. doi: 10.1002/phar.1989 [published Online First: 2017/07/22]
- 51. Marquez-Contreras E, Martell-Carlos N, Gil-Guillen V, et al. Therapeutic compliance with rivaroxaban in preventing stroke in patients with non-valvular atrial fibrillation: Cumrivafa study. *Curr Med Res Opin* 2016;32(12):2013-20. doi: 10.1080/03007995.2016.1227311 [published Online First: 2016/08/23]
  - Jours C. Deriante A. Alle E. et al. Adherence with direct and enticed gulants in r
- 52. Maura G, Pariente A, Alla F, et al. Adherence with direct oral anticoagulants in nonvalvular atrial fibrillation new users and associated factors: A french nationwide cohort study. *Pharmacoepidemiol Drug Saf* 2017;26(11):1367-77. doi: 10.1002/pds.4268 [published Online First: 2017/07/29]
- 53. McAlister FA, Wiebe N, Hemmelgarn BR. Time in therapeutic range and stability over time for warfarin users in clinical practice: A retrospective cohort study using linked routinely collected health data in alberta, canada. *BMJ open* 2018;8(1):e016980. doi:

10.1136/bmjopen-2017-016980 [published Online First: 2018/02/01]

#### **BMJ** Open

54. McCormick D, Gurwitz JH, Goldberg RJ, et al. Prevalence and quality of warfarin use for patients with atrial fibrillation in the long-term care setting. *Arch Intern Med* 2001;161(20):2458-63. [published Online First: 2001/12/01]

- 55. McHorney CA, Ashton V, Laliberte F, et al. Adherence to rivaroxaban compared with other oral anticoagulant agents among patients with nonvalvular atrial fibrillation. *J Manag Care Spec Pharm*, 2017;23(9):980-88. doi: 10.18553/jmcp.2017.23.9.980 [published Online First: 2017/08/31]
- 56. McHorney CA, Crivera C, Laliberte F, et al. Adherence to rivaroxaban versus apixaban among patients with non-valvular atrial fibrillation: Analysis of overall population and subgroups of prior oral anticoagulant users. *PloS one* 2018;13(4):e0194099. doi: 10.1371/journal.pone.0194099 [published Online First: 2018/04/06]
- 57. Mueller T, Alvarez-Madrazo S, Robertson C, et al. Use of direct oral anticoagulants in patients with atrial fibrillation in scotland: Applying a coherent framework to drug utilisation studies. *Pharmacoepidemiol Drug Saf* 2017;26(11):1378-86. doi: 10.1002/pds.4272 [published Online First: 2017/07/29]
- 58. Pham PN, Brown JDJBCD. Real-world adherence for direct oral anticoagulants in a newly diagnosed atrial fibrillation cohort: Does the dosing interval matter? *BMC Cardiovasc Disord* 2019;19(1):64. doi: 10.1186/s12872-019-1033-3

59. Shore S, Carey EP, Turakhia MP, et al. Adherence to dabigatran therapy and longitudinal patient outcomes: Insights from the veterans health administration. *Am Heart J*, 2014;167(6):810-7. doi: 10.1016/j.ahj.2014.03.023 [published Online First: 2014/06/04]

60. Sorensen R, Jamie Nielsen B, Langtved Pallisgaard J, et al. Adherence with oral anticoagulation in non-valvular atrial fibrillation: A comparison of vitamin k antagonists

and non-vitamin k antagonists. *Eur Heart J Cardiovasc Pharmacother*, 2017;3(3):151-56. doi: 10.1093/ehjcvp/pvw048 [published Online First: 2017/02/06]

- Tsai K, Erickson SC, Yang J, et al. Adherence, persistence, and switching patterns of dabigatran etexilate. *Am J Manag Care*, 2013;19(9):e325-32. [published Online First: 2014/01/24]
- 62. Yao X, Abraham NS, Alexander GC, et al. Effect of adherence to oral anticoagulants on risk of stroke and major bleeding among patients with atrial fibrillation. *J Am Heart Assoc*, 2016;5(2) doi: 10.1161/jaha.115.003074 [published Online First: 2016/02/26]
- 63. Zhou M, Chang HY, Segal JB, et al. Adherence to a novel oral anticoagulant among patients with atrial fibrillation. *J Manag Care Spec Pharm*, 2015;21(11):1054-62. doi: 10.18553/jmcp.2015.21.11.1054 [published Online First: 2015/11/02]
- 64. Brown JD, Shewale AR, Talbert JC. Adherence to rivaroxaban, dabigatran, and apixaban for stroke prevention in incident, treatment-naive nonvalvular atrial fibrillation. *J Manag Care Spec Pharm*, 2016;22(11):1319-29. doi: 10.18553/jmcp.2016.22.11.1319 [published Online First: 2016/10/27]
- 65. Chowdhury R, Khan H, Heydon E, et al. Adherence to cardiovascular therapy: A metaanalysis of prevalence and clinical consequences. *European heart journal* 2013;34(38):2940-8. doi: 10.1093/eurheartj/eht295 [published Online First: 2013/08/03]
- 66. Salmasi S, De Vera MA, Barry A, et al. Assessment of condition and medication knowledge gaps among atrial fibrillation patients: A systematic review and meta-analysis. *Ann Pharmacother*, 2019;0(0):1060028019835845. doi:

https://doi.org/10.1177/1060028019835845

#### **BMJ** Open

| 67. Salmasi S, Kwan L, MacGillivray J, et al. Assessment of atrial fibrillation patients' education |
|-----------------------------------------------------------------------------------------------------|
| needs from patient and clinician perspectives: A qualitative descriptive study. Thromb              |
| Res, 2018 doi: https://doi.org/10.1016/j.thromres.2018.11.015                                       |
| 68. Lee VWY, Tam CS, Yan BP, et al. Barriers to warfarin use for stroke prevention in patients      |
| with atrial fibrillation in hong kong. Clin Cardiol 2013;36(3):166-71. doi:                         |
| 10.1002/clc.22077                                                                                   |
| 69. McCabe PJ, Barnason SA, Houfek J. Illness beliefs in patients with recurrent symptomatic        |
| atrial fibrillation. Pacing Clin Electrophysiol, 2011;34(7):810-20. doi: 10.1111/j.1540-            |
| 8159.2011.03105.x                                                                                   |
| 70. McCabe PJ, Rhudy LM, DeVon HA. Patients' experiences from symptom onset to initial              |
| treatment for atrial fibrillation. J Clin Nurs 2015;24(5-6):786-96. doi:                            |
| 10.1111/jocn.12708                                                                                  |
| 71. Loewen PS, Ji AT, Kapanen A. Patient values and preferences for antithrombotic therapy in       |
| atrial fibrillation. <i>Thromb Haemost</i> , 2017                                                   |
| 72. Leslie KH, McCowan C, Pell JP. Adherence to cardiovascular medication: A review of              |
| systematic reviews. J Public Health (Oxf) 2019;41(1):e84-e94. doi:                                  |
| 10.1093/pubmed/fdy088                                                                               |
| 73. Cutler RL, Fernandez-Llimos F, Frommer M, et al. Economic impact of medication non-             |
| adherence by disease groups: A systematic review. BMJ Open 2018;8(1):e016982. doi:                  |
| 10.1136/bmjopen-2017-016982 %J BMJ Open                                                             |
| 74. DiMatteo MR, Giordani PJ, Lepper HS, et al. Patient adherence and medical treatment             |
| outcomes: A meta-analysis. Med Care, 2002;40(9):794-811. doi: 10.1097/00005650-                     |
| 200209000-00009 [published Online First: 2002/09/10]                                                |
|                                                                                                     |
| 28<br>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                     |
| T OF PEET EVIEW ONLY - HLLP.// DHJOPEN.DHJ.COM/ SILE/ dDOUL/ GUIGEIMES.XHLHH                        |

75. Bramley TJ, Nightengale BS, Frech-Tamas F, et al. Relationship of blood pressure control to adherence with antihypertensive monotherapy in 13 managed care organizations. J
 Manag Care Pharm 2006;12(3):239-45. doi: 10.18553/jmcp.2006.12.3.239

- 76. Ho PM, Rumsfeld JS, Masoudi FA, et al. Effect of medication nonadherence on hospitalization and mortality among patients with diabetes mellitus. *Arch Intern Med*, 2006;166(17):1836-41. doi: 10.1001/archinte.166.17.1836 %J Archives of Internal Medicine
- 77. Kennedy-Martin T, Boye KS, Peng X. Cost of medication adherence and persistence in type
  2 diabetes mellitus: A literature review. *Patient Prefer Adherence* 2017;11:1103-17. doi: 10.2147/PPA.S136639
- 78. Rasmussen JN, Chong A, Alter DA. Relationship between adherence to evidence-based pharmacotherapy and long-term mortality after acute myocardial infarction. *JAMA* 2007;297(2):177-86. doi: 10.1001/jama.297.2.177 %J JAMA
- 79. Tangkiatkumjai M, Walker D-M, Praditpornsilpa K, et al. Association between medication adherence and clinical outcomes in patients with chronic kidney disease: A prospective cohort study. *Clin Exp Nephrol* 2017;21(3):504-12. doi: 10.1007/s10157-016-1312-6
- 80. Vrijens B, De Geest S, Hughes DA, et al. A new taxonomy for describing and defining adherence to medications. *Br J Clin Pharmacol*, 2012;73(5):691-705. doi:

10.1111/j.1365-2125.2012.04167.x [published Online First: 2012/04/11]

81. Gellad WF, Thorpe CT, Steiner JF, et al. The myths of medication adherence.

*Pharmacoepidemiol Drug Saf* 2017;26(12):1437-41. doi: 10.1002/pds.4334 [published Online First: 2017/10/11]

#### **BMJ** Open

| 82. Fi | ranklin JM, Krumme AA, Tong AY, et al. Association between trajectories of statin      |
|--------|----------------------------------------------------------------------------------------|
|        | adherence and subsequent cardiovascular events. Pharmacoepidemiol Drug Saf,            |
|        | 2015;24(10):1105-13. doi: 10.1002/pds.3787 [published Online First: 2015/04/24]        |
| 83. Fi | anklin JM, Shrank WH, Pakes J, et al. Group-based trajectory models: A new approac     |
|        | classifying and predicting long-term medication adherence. Medical care                |
|        | 2013;51(9):789-96. doi: 10.1097/MLR.0b013e3182984c1f [published Online First:          |
|        | 2013/05/21]                                                                            |
| 84. L  | o-Ciganic WH, Donohue JM, Jones BL, et al. Trajectories of diabetes medication adhe    |
|        | and hospitalization risk: A retrospective cohort study in a large state medicaid progr |
|        | Gen Intern Med, 2016;31(9):1052-60. doi: 10.1007/s11606-016-3747-6 [published          |
|        | Online First: 2016/05/28]                                                              |
| 85. L  | o-Ciganic WH, Gellad WF, Gordon AJ, et al. Association between trajectories of         |
|        | buprenorphine treatment and emergency department and in-patient utilization. Addic     |
|        | 2016;111(5):892-902. doi: 10.1111/add.13270 [published Online First: 2015/12/15]       |
| 86. M  | odi AC, Rausch JR, Glauser TA. Patterns of nonadherence to antiepileptic drug therap   |
|        | children with newly diagnosed epilepsy. JAMA 2011;305(16):1669-76. doi:                |
|        | 10.1001/jama.2011.506 [published Online First: 2011/04/28]                             |
| 87. V  | iswanathan S, Justice AC, Alexander GC, et al. Adherence and hiv rna suppression in    |
|        | current era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr,      |
|        | 2015;69(4):493-8. doi: 10.1097/qai.000000000000643 [published Online First:            |
|        | 2015/04/19]                                                                            |

## Page 32 of 80

BMJ Open: first

## TABLES

1

2 3 4

5 6

## Table 1: Characteristics of the included studies

| Author<br>)<br>1                             | Year | Design        | Country                 | Total N;<br>(%Male)       | Age<br>Mean (SD)<br>Unless<br>otherwise<br>stated | Indication<br>for OAC | Adherence<br>reported to<br>index OAC<br>or current<br>OAC | Population<br>OAC Naïve<br>vs<br>Experienced | Potential<br>conflict<br>of<br>interest | Quality<br>Score:<br>STROBE | Qualit<br>score:<br>ISPOI |
|----------------------------------------------|------|---------------|-------------------------|---------------------------|---------------------------------------------------|-----------------------|------------------------------------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------|---------------------------|
| Alberts<br>2                                 | 2016 | Retrospective | USA                     | 36,868<br>(55%)           | 76%>65<br>years                                   | NVAF                  | NA                                                         | Both                                         | Yes                                     | 61%                         | 67%                       |
| eyer-<br>Vestendorf                          | 2016 | Retrospective | Germany                 | 7,265<br>(52%)            | NA                                                | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 73%                         | 74%                       |
| orne                                         | 2017 | Retrospective | USA                     | 2,882<br>(97%)            | 67.4 (9.5)                                        | NVAF                  | NA                                                         | Naïve to<br>DOACs <sup>‡</sup>               | Yes                                     | 73%                         | 78%                       |
| Brown<br>7                                   | 2016 | Retrospective | USA                     | 5,223<br>(40%)            | 59%≥65<br>years                                   | NVAF                  | Both                                                       | Naïve                                        | Yes                                     | 77%                         | 84%                       |
| Sasciano                                     | 2013 | Retrospective | USA                     | 13,289<br>(47%)           | 78% ≥75<br>years                                  | AF                    | NA                                                         | Naïve                                        | Yes                                     | 63%                         | 79%                       |
| Coleman<br>)                                 | 2016 | Retrospective | USA                     | 21,756<br>(54%)           | 66.5 (12.2)                                       | NVAF                  | NA                                                         | Naïve                                        | Yes                                     | 55%                         | 50%                       |
| Coleman                                      | 2017 | Retrospective | USA                     | 106,227<br>(63%)          | 71.1 (11.0)                                       | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 77%                         | 84%                       |
| )<br>Crivera<br>S                            | 2015 | Retrospective | USA                     | 9,948<br>(53%)            | 75.5 (8.3)                                        | NVAF                  | Both                                                       | Naïve                                        | Yes                                     | 73%                         | 61%                       |
| eshpande<br>MID:<br>29694285                 | 2018 | Retrospective | USA                     | 2,981<br>(70%)            | 64.4 (10.7)                                       | AF                    | NA                                                         | Naïve to<br>DOACs <sup>‡</sup>               | No                                      | 77%                         | 83%                       |
| <b>Peshpande</b><br>MID:<br><b>3</b> 9334815 | 2018 | Retrospective | USA                     | 4,856<br>(52%)            | 65.0 (10.5)                                       | AF                    | NA                                                         | Naïve                                        | No                                      | 81%                         | 83%                       |
| Sapen                                        | 2014 | Retrospective | USA                     | 2,691<br>(43%)            | 100%>65<br>years                                  | AF                    | NA                                                         | Both                                         | No                                      | 76%                         | 74%                       |
| orsuland                                     | 2016 | Retrospective | Sweden                  | 16,096<br>(52%)           | 75.45<br>(SD not<br>reported)                     | NVAF                  | Current OAC                                                | Both                                         | No                                      | 63%                         | 61%                       |
| omez-<br>Jomez-<br>Jumberas                  | 2018 | Retrospective | Spain                   | 854<br>(NA%)              | 73.2 (11.0)                                       | NVAF                  | NA                                                         | Both                                         | Yes                                     | 50%                         | 67%                       |
| Gorst-<br>Rasmussen                          | 2015 | Retrospective | Denmark                 | 2,960<br>(54%)            | 72.1 (10.8)                                       | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 80%                         | 100%                      |
| larper                                       | 2018 | Retrospective | New<br>Zealand          | 20,237<br>(NA%)           | 83%>60                                            | NVAF                  | NA                                                         | NA                                           | No                                      | 47%                         | 53%                       |
| /<br>acobs<br>}                              | 2018 | Retrospective | Sweden &<br>Netherlands | 5,684<br>(60%)            | 78%≥65<br>years                                   | AF                    | Current OAC                                                | Both                                         | Yes                                     | 80%                         | 83%                       |
| Manzoor                                      | 2017 | Retrospective | USA                     | 66,090<br>(62%)           | 68.7 (12.1)                                       | AF                    | Index OAC                                                  | Both                                         | Missing                                 | 70%                         | 85%                       |
| )<br>Márquez-<br>Contrera                    | 2016 | Prospective   | Spain                   | 412<br>(42%)              | 75.2 (7.5)                                        | NVAF                  | NA                                                         | Experienced                                  | Yes                                     | 63%                         | 83%                       |
| Maura                                        | 2017 | Retrospective | France                  | 22,267<br>(53%)           | 74.0 (10.8)                                       | NVAF                  | Index                                                      | Naïve                                        | No                                      | 79%                         | 100%                      |
| <u>}</u><br>AcAlister                        | 2018 | Retrospective | Canada                  | (55%)<br>57,669<br>(56%)  | 100%>65                                           | NVAF                  | Current OAC                                                | Naïve                                        | No                                      | 87%                         | 94%                       |
| NcCormick                                    | 2001 | Retrospective | USA                     | (30%)<br>429<br>(22%)     | years<br>87 (7.1)                                 | AF                    | Current OAC                                                | Experienced                                  | No                                      | 60%                         | 82%                       |
| /<br>/IcHorney<br>}                          | 2017 | Retrospective | USA                     | 36,675<br>(67%)           | 63.1<br>(SD not<br>reported)                      | NVAF                  | Index OAC                                                  | Naïve                                        | Yes                                     | 87%                         | 89%                       |
| AcHorney                                     | 2018 | Retrospective | USA                     | 41,201<br>(58%)           | NA                                                | NVAF                  | Index OAC                                                  | Both                                         | Yes                                     | 84%                         | 100%                      |
| Iueller                                      | 2017 | Retrospective | Scotland                | (38%)<br>5,398<br>(54%)   | 74.4 (11.3)                                       | AF                    | NA                                                         | NA                                           | No                                      | 70%                         | 53%                       |
| ham                                          | 2019 | Retrospective | USA                     | (5476)<br>38,947<br>(60%) | 100%>65                                           | NVAF                  | Index OAC & any OAC                                        | Naïve                                        | No                                      | 77%                         | 89%                       |
| hore                                         | 2014 | Retrospective | USA                     | (80%)<br>5,376<br>(98%)   | years<br>71.3 (9.7)                               | NVAF                  | Index OAC                                                  | NA                                           | No                                      | 90%                         | 94%                       |
| ørensen                                      | 2017 | Retrospective | Denmark                 | (98%)<br>46,675<br>(58%)  | 79%>65<br>years                                   | NVAF                  | Current OAC                                                | Naïve                                        | Yes                                     | 67%                         | 79%                       |

59

## BMJ Open

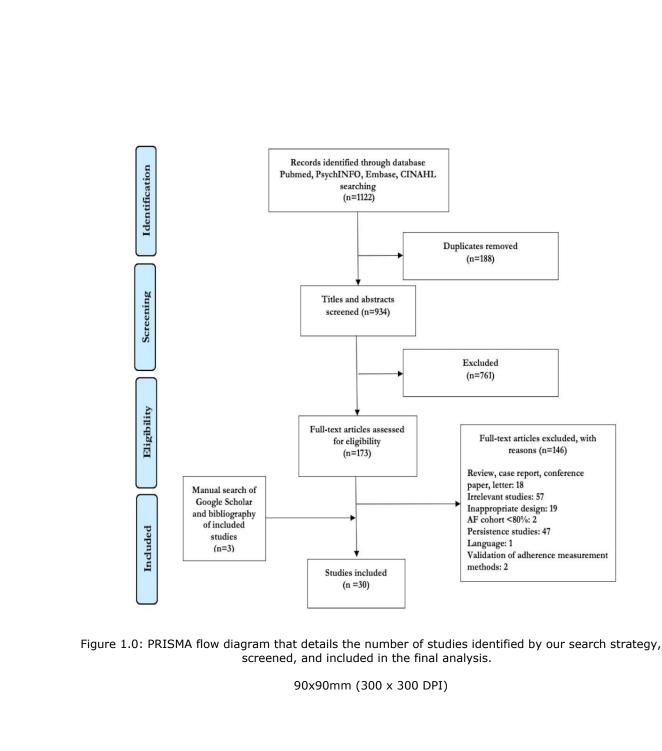
|      | 2013 | Retrospective | USA | 17,691<br>(49%) | 76.4 (8.7) | NA | Current OAC | Warfarin<br>Naïve and<br>warfarin<br>experienced | No | 60% | 789 |
|------|------|---------------|-----|-----------------|------------|----|-------------|--------------------------------------------------|----|-----|-----|
|      | 2016 | Retrospective | USA | 64,661<br>(56%) | 75% >65    | AF | Index OAC   | Naïve                                            | No | 77% | 849 |
| ote: | 2015 | Retrospective | USA | 5,951<br>(34%)  | 36.1%>65   | AF | Index OAC   | Naïve                                            | No | 80% | 799 |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |
|      |      |               |     |                 |            |    |             |                                                  |    |     |     |

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright.

| Study (year)                       | Adherence<br>measure | Adherence<br>Over 6 m                                                               |                                                                                                                          | Adherence results<br>Over 1 year                                                                                                          |                                                                                |  |
|------------------------------------|----------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
|                                    | (Threshold)          | Mean adherence score<br>± SD                                                        | Proportion<br>adherent                                                                                                   | Mean adherence<br>score ± SD                                                                                                              | Proportion adheren                                                             |  |
| <b>Proportion Days Cove</b>        | red (PDC)            |                                                                                     |                                                                                                                          |                                                                                                                                           |                                                                                |  |
| Alberts<br>(2016)                  | PDC (>80%)           | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | Overall: 0.70<br>A and D: 0.68<br>R: 0.73                                      |  |
| Borne<br>(2017)                    | PDC (>80%)           | NA                                                                                  | NA                                                                                                                       | Overall: $0.85 \pm 0.19$<br>A: $0.89 \pm 0.14$<br>D: $0.84 \pm 0.20$<br>R: $0.86 \pm 0.18$                                                | Overall: 0.72<br>A: 0.77<br>D: 0.71<br>R: 0.75                                 |  |
| Brown (2016)                       | PDC (≥80%)           | A: $0.75 \pm 0.29$<br>D: $0.67 \pm 0.33$<br>R: $0.75 \pm 0.31$                      | A: 0.62<br>D: 0.54<br>R: 0.64                                                                                            | NA                                                                                                                                        | NA                                                                             |  |
| Casciano<br>(2013)                 | PDC (>80%)           | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | W: 0.41                                                                        |  |
| Coleman<br>(2016)                  | PDC (>80%)           | D: 0.77 ± 0.32                                                                      | D: 0.65<br>R: 0.74                                                                                                       | D: $0.65 \pm 0.37$                                                                                                                        | D: 0.52<br>R: 0.62                                                             |  |
| (2016)<br>Coleman                  | PDC                  | R: 0.82 ± 0.30<br>NA                                                                | A: 0.57 and 0.62                                                                                                         | R: 0.73 ± 0.35<br>NA                                                                                                                      | NA                                                                             |  |
| (2017)                             | (≥80%)               |                                                                                     | R: 0.54 and 0.58<br>(Two different<br>databases were used<br>for this study hence<br>two adherence<br>results per drug.) |                                                                                                                                           |                                                                                |  |
| Crivera<br>(2015)                  | PDC (>80%)           | NA                                                                                  | NA                                                                                                                       | Index DOAC:<br>A: $0.83 \pm 0.20$<br>D: $0.81 \pm 0.22$<br>R: $0.86 \pm 0.19$<br>Any OAC:<br>A: $0.84 \pm 0.18$ ;<br>D: $0.85 \pm 0.18$ ; | Index DOAC:<br>A: 0.71<br>D: 0.68<br>R: 0.75<br>Any OAC:<br>A: 0.71<br>D: 0.73 |  |
|                                    |                      |                                                                                     |                                                                                                                          | $R: 0.87 \pm 0.17;$                                                                                                                       | R: 0.77                                                                        |  |
| Deshpande (2018)<br>PMID: 29694285 | PDC<br>(≥80%)        | NA                                                                                  | R and D: 0.65                                                                                                            | NA NA                                                                                                                                     | R and D: 0.54                                                                  |  |
| Deshpande (2018)<br>PMID: 29334815 | PDC (≥80%)           | R and D:<br>0.86 ± SD missing                                                       | R and D: 0.77                                                                                                            | R and D:<br>0.85 ± SD missing                                                                                                             | R and D: 0.76                                                                  |  |
| Forsuland (2016)                   | PDC (>80%)           | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | A: 0.93<br>D: 0.92<br>R: 0.96                                                  |  |
| Gorst-Rasmussen<br>(2015)          | PDC<br>(>80%)        | $0.84 \pm 0.28$                                                                     | NA                                                                                                                       | NA                                                                                                                                        | D: 0.77                                                                        |  |
| Harper<br>(2018)                   | PDC<br>(>80%)        | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | D: 0.84                                                                        |  |
| Manzoor<br>(2017)                  | PDC high (≥<br>90%)  | Overall:<br>0.78 ± 28.40<br>A: 80.90 ± 24.9<br>D: 78.60 ± 27.70<br>R: 76.50 ± 30.70 | <b>PDC90</b><br>0.55                                                                                                     | Overall:<br>72.80 ± 32.20<br>A: No users of A at 12<br>months<br>D: 73.4± 31.6;<br>R: 69.7± 34.8                                          | <b>PDC90</b> 0.34                                                              |  |
| Maura<br>(2017)                    | PDC>80               | NA                                                                                  | NA                                                                                                                       | NA                                                                                                                                        | Index OAC:<br>Overall: 0.71<br>D: 0.70                                         |  |

|                                           |                           |                                                  |                               |                                                  | R: 0.72           |
|-------------------------------------------|---------------------------|--------------------------------------------------|-------------------------------|--------------------------------------------------|-------------------|
| McHorney (2017)                           | PDC<br>(>80% &<br>>90%)   | NA                                               | PDC 80:<br>A: 0.76<br>D: 0.69 | NA                                               | NA                |
|                                           | > )0/0)                   |                                                  | R: 0.80                       |                                                  |                   |
|                                           |                           |                                                  | W: 0.65                       |                                                  |                   |
|                                           |                           |                                                  | PDC90:                        |                                                  |                   |
|                                           |                           |                                                  | A: 0.57                       |                                                  |                   |
|                                           |                           |                                                  | D: 0.51                       |                                                  |                   |
|                                           |                           |                                                  | R: 0.64                       |                                                  |                   |
|                                           |                           |                                                  | W: 0.47                       |                                                  |                   |
| McHorney                                  | PDC                       | NA                                               | PDC80:                        | NA                                               | NA                |
| (2018)                                    | (>80% &                   |                                                  | A:0.78                        |                                                  |                   |
|                                           | >90%)                     |                                                  | R: 0.82                       |                                                  |                   |
|                                           |                           |                                                  | PDC90:                        |                                                  |                   |
|                                           |                           |                                                  | A: 0.60                       |                                                  |                   |
| ~ 1                                       |                           | <b>X X A I A</b>                                 | R: 0.67                       |                                                  |                   |
| Pham                                      | PDC                       | Index OAC:                                       | Index OAC:                    | Index OAC:                                       | Index OAC:        |
| (2019)                                    | (>80%)                    | A: 0.76 ± 0.29                                   | A: 0.63                       | A: $0.70 \pm 0.33$                               | A: 0.56.          |
|                                           |                           | D: 0.67± 0.33                                    | D: 0.53                       | D: $0.57 \pm 0.36$                               | D: 0.41           |
|                                           |                           | R: $0.72 \pm 0.32$                               | R: 0.58                       | R: $0.64 \pm 0.36$                               | R: 0.50           |
|                                           |                           |                                                  |                               |                                                  |                   |
|                                           |                           |                                                  |                               | Any OAC:                                         |                   |
|                                           |                           |                                                  |                               | A: $0.73 \pm 0.31$                               |                   |
|                                           |                           |                                                  |                               | D: $0.64 \pm 0.34$                               |                   |
| 01                                        |                           |                                                  | D 0 20                        | $R: 0.68 \pm 0.34$                               |                   |
| Shore<br>(2014)                           | PDC<br>(>80%)             | NA                                               | D: 0.28                       | NA                                               | NA                |
| (2014)                                    | (~80%)                    |                                                  |                               |                                                  |                   |
| Sørensen (2017)                           | PDC                       | NA                                               | Odds of being                 | NA                                               | NA                |
|                                           | (>80%)                    |                                                  | adherent                      |                                                  |                   |
|                                           |                           |                                                  | R: reference;                 |                                                  |                   |
|                                           |                           |                                                  | A: 0.79 (0.69 - 0.92)         |                                                  |                   |
|                                           |                           |                                                  | D: 0.72 (0.66 - 0.80)         |                                                  |                   |
|                                           |                           |                                                  | VKA: 0.76 (0.69 -             |                                                  |                   |
| Tsai                                      | PDC                       | D:                                               | 0.83)<br>NA                   | NA                                               | NA                |
| (2013)                                    | (no threshold)            | D:<br>warfarin-naïve: 0.67 ±                     | NA                            | NA                                               | INA               |
| (2013)                                    | (no uneshold)             | 0.36                                             |                               |                                                  |                   |
|                                           |                           | warfarin-experienced:                            |                               |                                                  |                   |
|                                           |                           | $0.71 \pm 0.35$                                  |                               |                                                  |                   |
| Yao (2016)                                | PDC                       | NA                                               | Overall: 47.5%                | NA                                               | NA                |
| 100 (2010)                                | (>80%)                    | 141                                              | A: 0.52                       |                                                  | 1111              |
|                                           | ( 00,0)                   |                                                  | D: 0.46                       |                                                  |                   |
|                                           |                           |                                                  | R: 0.48                       |                                                  |                   |
|                                           |                           |                                                  | W: 0.39                       |                                                  |                   |
| Medication Possession<br>Beyer-Westendorf | Ratio (MPR)<br>MPR (>0.8) | D: 0.67 ± SD missing                             | D: 0.50                       | D: 0.64 ± SD missing                             | D: 0.48           |
| (2016)                                    | IVII IX (~0.0)            | $D: 0.67 \pm SD$ missing<br>R: 0.76 ± SD missing | R: 0.61                       | $D: 0.64 \pm SD$ missing<br>R: 0.75 ± SD missing | R: 0.63           |
| (-010)                                    |                           | $1.0.70 \pm 5D$ missing                          | 1. 0.01                       | $1.0.75 \pm 5D$ missing                          | 1. 0.05           |
| Eapen                                     | MPR                       | NA                                               | NA                            | Median (IQR):                                    | NA                |
| (2014)                                    | (no threshold)            |                                                  |                               | 0.77 (0.51- 0.98)                                |                   |
| Gomez-lumberas                            | MPR                       | NA                                               | NA                            | NA                                               | A: 0.62           |
| (2018)                                    | (>0.8)                    |                                                  |                               |                                                  |                   |
| Jacobs                                    | MPR                       | NA                                               | NA                            | NA                                               | Sweden: 0.95      |
| (2018)                                    | (≥0.8)                    |                                                  |                               |                                                  | Netherlands: 0.93 |
|                                           |                           |                                                  |                               |                                                  |                   |
| McHorney (2017)                           | MPR                       | NA                                               | NA                            | A: $0.85 \pm 0.2$                                | A: 0.76           |
|                                           | (>0.8)                    |                                                  |                               | D: $0.81 \pm 0.2$                                | D: 0.66           |
|                                           |                           |                                                  |                               | $R: 0.86 \pm 0.2$                                | R: 0.78           |
| 71                                        | ) (DD                     |                                                  | D 0.50                        | W: 0.80 ± 0.2                                    | W: 0.59           |
| Zhou<br>(2015)                            | MPR<br>(>0.8)             | D: 0.73 ± 0.30                                   | D: 0.59                       | D: 0.65 ± 0.35                                   | D: 0.51           |
| Mueller                                   | MPR>80*                   | NA                                               | NA                            | NA                                               | DOACs: 0.82       |
| (2017)                                    |                           |                                                  |                               |                                                  | A: 0.88           |
|                                           |                           |                                                  |                               |                                                  | D: 0.65           |
|                                           |                           |                                                  |                               |                                                  | R: 0.83           |

| Márquez-Contrera | CP>80%   | NA  | R: Global                           | NA  | R: Global comp          |
|------------------|----------|-----|-------------------------------------|-----|-------------------------|
| (2016)           |          |     | compliance: 0.84                    |     | 0.80                    |
|                  |          |     | Daily compliance: 0.84              |     | Daily compliand<br>0.80 |
|                  |          |     | %therapeutic cover:                 |     | % therapeutic co        |
| McAlister        | TTR>65%  | NA  | 90.04%<br>W: Percent patients       | NA  | 89.25%<br>NA            |
| (2018)           | (INR2-3) | INA | with time in                        | INA | INA                     |
|                  |          |     | therapeutic range: 4.11%            |     |                         |
| Footnote:        |          |     |                                     |     |                         |
|                  |          |     | lays' supply / total days in study) |     |                         |
|                  |          |     |                                     |     |                         |


| Table 3: Pooled a | dherence results |
|-------------------|------------------|
|-------------------|------------------|

|                       | Adherence over                  |                       | Adherence over 1 year                      |                      |
|-----------------------|---------------------------------|-----------------------|--------------------------------------------|----------------------|
|                       | post index o                    |                       | post index date<br>Mean Proportion adheren |                      |
|                       | Mean                            | Proportion            |                                            | Proportion adherent  |
|                       | (95% CI)                        | adherent<br>(95% CI)  | (95% CI)                                   | (95% CI)             |
| Apixaban              | 77.15 (75.03, 79.27)            | 0.62 (0.53, 0.72)     | 81.75 (74.32, 89.18)                       | 0.74 (0.62, 0.87)    |
| Dabigatran            | 73.94 (68.94, 78.93)            | 0.55 (0.48, 0.61)     | 75.04 (67.74, 82.34)                       | 0.65 (0.54, 0.76)    |
| Rivaroxaban           | 78.30 (72.47, 84.14)            | 0.64 (0.54, 0.73)     | 77.45 (68.9, 85.96)                        | 0.73 (0.64, 0.81)    |
| Warfarin              | No data available               | 0.52 (0.26, 0.77)++   | No data available                          | 0.50 (0.32, 0.68) ++ |
| All OACs              | 76.62 (73.91, 79.33)            | 0.63 (0.58, 0.68)     | 73.72 (68.36, 79.08)                       | 0.70 (0.65, 0.76)    |
| Sub-analysis: Exclu   | ding studies with conflict of i |                       |                                            |                      |
| Apixaban              | 78.39 (73.59, 83.19)++          | 0.51 (0.49, 0.53) ++  | One study                                  | 0.79 (0.55, 1.04)    |
| Dabigatran            | 72.87 (64.40, 81.33)            | 0.50 (0.46, 0.54)+    | 65.20 (49.13, 81.27)++                     | 0.67 (0.50, 0.84)    |
| Rivaroxaban           | 74.25 (69.84, 78.66)++          | 0.50 (0.46, 0.53) ++  | 66.85 (61.27, 72.44)++                     | 0.75 (0.55, 0.96)    |
| Warfarin              | No data available               | 0.39 (0.38-0.39)      | No data available                          | No data available    |
| All OACs              | 73.40 (69.86, 76.94)            | 0.56 (0.49, 0.62)     | 65.56 (59.41, 71.72)                       | 0.68 (0.58, 0.79)    |
| Sub-analysis: Exclu   | ding studies with low and me    | dium quality (assesse | d by ISPOR)                                |                      |
| Apixaban              | 77.15 (75.03, 79.27) ++         | 0.62 (0.53, 0.72) ++  | 77.50 (62.80, 92.20)                       | 0.66 (0.47, 0.85)    |
| Dabigatran            | 73.32 (67.08, 79.57)            | 0.54 (0.47, 0.60)     | 73.83 (62.99, 84.65)                       | 0.61 (0.45, 0.76)    |
| Rivaroxaban           | 77.38 (69.95, 84.80)            | 0.62 (0.51, 0.74)     | 72.23 (58.64, 87.83)                       | 0.67 (0.5, 0.83)     |
| Warfarin              | No data available 📏             | 0.52 (0.26, 0.77) ++  | No data available                          | No data available    |
| All OACs              | 77.29 (74.19, 80.40)            | 0.63 (0.58, 0.68)     | 68.61 (62.63, 74.58)                       | 0.67 (0.58, 0.76)    |
| Sub-analysis: By ad   | lherence measure                |                       | · · ·                                      |                      |
|                       |                                 | MPR                   |                                            |                      |
| Apixaban              | No data available               | No data available     | No data available                          | 0.75 (0.64, 0.87)    |
| Dabigatran            | 77.00 (69.16, 81.84) ++         | 0.54 (0.45, 0.63) ++  | No data available                          | 0.58 (0.49, 0.66)    |
| Rivaroxaban           | No data available               | No data available     | No data available                          | 0.75 (0.69, 0.81)    |
| Warfarin              | No data available               | No data available     | No data available                          | 0.59+                |
| All OACs              | 81.01 (77.21, 84.81)            | 0.57 (0.51, 0.63)     | No data available                          | 0.74 (0.64, 0.83)    |
|                       |                                 | PDC                   |                                            |                      |
| Apixaban              | 77.15 (75.03, 79.27)            | 0.62 (0.53, 0.72) 🦉   | 80.67 (69.40, 91.94)                       | 0.74 (0.45, 1.02)    |
| Dabigatran            | 72.41 (65.90, 78.91)            | 0.55 (0.47, 0.63)     | 74.05 (65.56, 82.53)                       | 0.67 (0.52, 0.82)    |
| Rivaroxaban           | 76.38 (71.35, 81.40)            | 0.64 (0.54, 0.74)     | 75.74 (67.44, 84.03)                       | 0.69 (0.57, 0.82)    |
| Warfarin              | No data available               | 0.52 (0.26, 0.77)++   | No data available                          | 0.41+                |
| All OACs              | 74.93 (72.09, 77.77)            | 0.64 (0.58, 0.69)     | 74.5 (68.89, 80.14)                        | 0.70 (0.62, 0.77)    |
| *I <sup>2</sup> <80%. |                                 |                       |                                            |                      |
| + Not pooled. Based   | v                               |                       |                                            |                      |
| ++ Pooled results of  | only two studies                |                       |                                            |                      |

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright

Table 4: Pooled adherence results from studies reporting adherence to more than one drug in the same cohort

|                                                          | Adherence at 6 months<br>post index date |                         | Adherence at 1 year<br>post index date |                        |
|----------------------------------------------------------|------------------------------------------|-------------------------|----------------------------------------|------------------------|
|                                                          | Number of unique<br>studies              | Odds ratio<br>(95% CI)  | Number of unique<br>studies            | Odds ratio<br>(95% CI) |
| Apixaban vs dabigatran                                   | 3                                        | 1.24 (1.07, 1.45)       | 5                                      | 1.76 (1.35, 2.29)      |
| Rivaroxaban vs dabigatran                                | 5                                        | 1.39 (1.15, 1.67)       | 8                                      | 1.17 (0.38, 3.60)      |
| Rivaroxaban vs apixaban                                  | 4                                        | 0.80 (0.51, 1.24)       | 5                                      | 1.02 (0.79, 1.33)      |
|                                                          | Sub-an:                                  | alysis: By adherence me | etric                                  |                        |
|                                                          |                                          | MPR                     |                                        |                        |
| Apixaban vs dabigatran                                   | NA                                       | NA                      | 2                                      | 2.49 (0.98, 6.30)      |
| Rivaroxaban vs dabigatran                                | 1                                        | 1.63 (1.36, 1.94)       | 3                                      | 2.10 (1.56, 2.81)      |
| Rivaroxaban vs apixaban                                  | NA                                       | NA                      | 2                                      | 0.90 (0.54,1.17)       |
|                                                          |                                          | PDC                     | 1 1                                    |                        |
| Apixaban vs dabigatran                                   | 3                                        | 1.24 (1.07, 1.45)       | 3                                      | 1.41 (0.99, 2.01)      |
| Rivaroxaban vs dabigatran                                | 4                                        | 1.34 (1.09, 1.65)       | 5                                      | 0.82 (0.18, 3.69)      |
| Rivaroxaban vs apixaban                                  | 4                                        | 0.80 (0.51, 1.24)       | 3                                      | 1.13 (0.71, 1.82)      |
| *I <sup>2</sup> <80%.<br>+ Not pooled. Based on one stud |                                          | 4                       |                                        |                        |
|                                                          |                                          |                         |                                        |                        |
|                                                          |                                          |                         |                                        |                        |





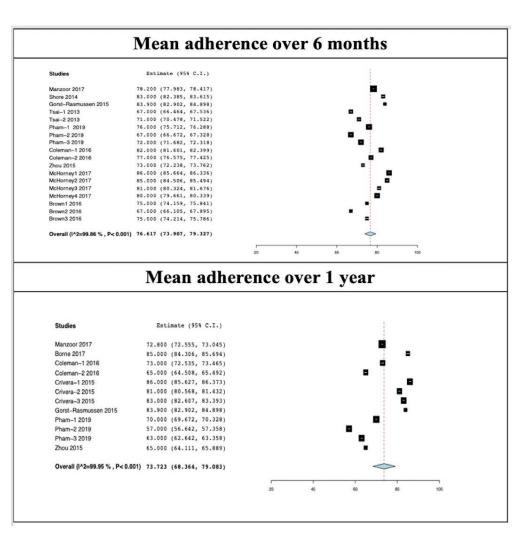



Figure 2.0: Forest plots illustrating patients' mean adherence scores over six-month and one-year post index date. See Supplementary 4 for additional forest plots for each OAC and subgroup analyses.

90x90mm (300 x 300 DPI)



# PRISMA 2009 Checklist (Supplementary 1a)

| age 41 of 80              |          | BMJ Open 1136                                                                                                                                                                                                                                                                                               |                                                                                     |
|---------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| PRISMA                    | 2009     | Checklist (Supplementary 1a)                                                                                                                                                                                                                                                                                |                                                                                     |
| Section/topic             | #        | Checklist item 63<br>47                                                                                                                                                                                                                                                                                     | Reported on page #                                                                  |
| TITLE                     | <u> </u> | 8<br>0                                                                                                                                                                                                                                                                                                      |                                                                                     |
| Title                     | 1        | Identify the report as a systematic review, meta-analysis, or both.     ∞       ©     §                                                                                                                                                                                                                     | Cover page<br>1                                                                     |
| ABSTRACT                  |          |                                                                                                                                                                                                                                                                                                             |                                                                                     |
| Structured summary        | 2        | Provide a structured summary including, as applicable: background; objectives; data sources; Study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. | Abstract<br>2                                                                       |
| INTRODUCTION              |          |                                                                                                                                                                                                                                                                                                             |                                                                                     |
| Rationale                 | 3        | Describe the rationale for the review in the context of what is already known.                                                                                                                                                                                                                              | Introduction<br>4                                                                   |
| Objectives                | 4        | Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).                                                                                                                                                  | Introduction<br>4                                                                   |
| METHODS                   |          |                                                                                                                                                                                                                                                                                                             |                                                                                     |
| Protocol and registration | 5        | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available provide registration information including registration number.                                                                                                                                | e, NA                                                                               |
| 5 Eligibility criteria    | 6        | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g. years considered, language, publication status) used as criteria for eligibility, giving rationale.                                                                                                       | Inclusion criteria and<br>study selection<br>5                                      |
| Information sources       | 7        | Describe all information sources (e.g., databases with dates of coverage, contact with study and hors to identify additional studies) in the search and date last searched.                                                                                                                                 | Search strategy<br>5                                                                |
| Search                    | 8        | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.                                                                                                                                                                               | Supplementary<br>File 2                                                             |
| Study selection           | 9        | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                                                                                                                   | Inclusion criteria and<br>study selection, Data<br>extraction and synthesis<br>5, 6 |
| Data collection process   | 10       | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and<br>any processes for obtaining and confirming data from investigators.                                                                                                                               | Inclusion criteria and<br>study selection, Data<br>extraction and synthesis<br>5, 6 |
| Data items                | 11       | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.                                                                                                                                                                       | Inclusion criteria and<br>study selection, Data                                     |
| 4<br>5                    |          | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                   | extraction and synthesis 5, 6                                                       |



# PRISMA 2009 Checklist (Supplementary 1a)

|                                    |     | BMJ Open 36/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Page 42 of                                                            |
|------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| PRISMA 2                           | 009 | Checklist (Supplementary 1a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |
| Risk of bias in individual studies | 12  | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Supplementary File 3,<br>Quality assessment, Data<br>analysis<br>6, 7 |
| Summary measures                   | 13  | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Data analysis<br>6, 7                                                 |
| Synthesis of results               | 14  | Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I <sup>2</sup> ) for each meta-analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Data analysis<br>6, 7                                                 |
| Risk of bias across studies        | 15  | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Supplementary File 3,<br>Quality assessment, Data<br>analysis<br>7    |
| Additional analyses                | 16  | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Data analysis<br>6, 7                                                 |
| RESULTS                            |     | ter and ter an |                                                                       |
| Study selection                    | 17  | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Results<br>9                                                          |
| Study characteristics              | 18  | For each study, present characteristics for which data were extracted (e.g., study size, PICOS follow-up period) and provide the citations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Table 1<br>31, 32                                                     |
| Risk of bias within studies        | 19  | Present data on risk of bias of each study and, if available, any outcome level assessment (segitem 12).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Supplementary File 3,<br>Quality assessment<br>7                      |
| Results of individual studies      | 20  | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary at a for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 2<br>33, 34                                                     |
| Synthesis of results               | 21  | Present results of each meta-analysis done, including confidence intervals and measures of $c \partial \sigma$ is sistency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Table 3,4<br>37, 37                                                   |
| Risk of bias across studies        | 22  | Present results of any assessment of risk of bias across studies (see Item 15).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Supplementary File 4.                                                 |
| Additional analysis                | 23  | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 3<br>36                                                         |
| DISCUSSION                         |     | btec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |
| Summary of evidence                | 24  | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Discussion<br>12                                                      |
| Limitations                        | 25  | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limitations<br>14                                                     |
| Conclusions                        | 26  | Provide a general interpretation of the results in the context of other evidence, and implications for future research peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Discussion, Future<br>directions                                      |

| Page 43 of 80                                                                                                                                                                                                                                | 1                                               |         | BMJ Open                                                                                                                         | .1136/               |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|
| 1<br>2                                                                                                                                                                                                                                       | PRISMA 20                                       | 09 (    | Checklist (Supplementary 1a)                                                                                                     | bmiopen-2            |                         |
| 3                                                                                                                                                                                                                                            |                                                 |         |                                                                                                                                  | 019                  | 12, 13, 14, 15          |
| 4<br>5 <b>EUNIDIN</b>                                                                                                                                                                                                                        |                                                 |         |                                                                                                                                  |                      |                         |
| 6 FUNDIN                                                                                                                                                                                                                                     | G                                               |         |                                                                                                                                  | 7                    | -                       |
| 7 Funding                                                                                                                                                                                                                                    |                                                 | 27      | Describe sources of funding for the systematic review and other support (e.g., supply of data funders for the systematic review. | bg role of<br>∞<br>≽ | Funding<br>16           |
| 9<br>10 <i>From:</i> M<br>11 Statement<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44 | Ioher D, Liberati A, T<br>t. PLoS Med 6(6): e10 | °etzlai | Cerreview only                                                                                                                   | 20.                  | ta-Analyses: The PRISMA |
| 45<br>46<br>47                                                                                                                                                                                                                               |                                                 |         | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                        |                      |                         |

# **MOOSE** Guidelines (Supplementary 1b)

| BMJ Open                                                                                                                                                    | .1136/                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| MOOSE Guidelines (Supp                                                                                                                                      | plementary 1b)                                                                                                                                        |
| MOOSE Guidelines for Meta-Analyses and Systematic Reviews of Observational St                                                                               |                                                                                                                                                       |
| Background                                                                                                                                                  | 7778                                                                                                                                                  |
| Problem definition                                                                                                                                          | Introduction <sup>9</sup><br>4 <sup>20</sup>                                                                                                          |
| Hypothesis statement                                                                                                                                        | NA- The study is mostly descriptive                                                                                                                   |
| Description of study outcomes                                                                                                                               | Introduction, Data extraction and synthesis<br>4, 6                                                                                                   |
| Type of exposure or intervention used                                                                                                                       | Introduction, Inclusion criteria and study selection<br>4, 5                                                                                          |
| Type of study design used                                                                                                                                   | Inclusion criteria and study selection<br>5                                                                                                           |
| Study population                                                                                                                                            | Inclusion criteria and study selection<br>5 ₽                                                                                                         |
| Search Strategy                                                                                                                                             | ф://                                                                                                                                                  |
| Qualification of searchers                                                                                                                                  | Search strategy 5                                                                                                                                     |
| Search strategy including time periods included in the synthesis and keywords                                                                               | Supplementary File 2, Search strategy                                                                                                                 |
| Effort to include all available studies, including contact with authors                                                                                     | Inclusion criteria and study selection<br>5, Authors were not contacted                                                                               |
| Databases and registries searched                                                                                                                           | Search strategy 5                                                                                                                                     |
| Search software used, name and version, including special features used                                                                                     | NA 5                                                                                                                                                  |
| Use of hand searching                                                                                                                                       | Search strategy 5                                                                                                                                     |
| List of citations located and those excluded                                                                                                                | Figure 1.0: PRISMA flow charge                                                                                                                        |
| Method of addressing articles published in languages other than English                                                                                     | Inclusion criteria and study selection                                                                                                                |
| Method of handling abstracts and unpublished studies                                                                                                        | Inclusion criteria and study selection                                                                                                                |
| Description of any contact with authors                                                                                                                     | All relevant information for this systematic review<br>could be found in the published reports. There was no<br>need to contact the respective athors |
| Methods                                                                                                                                                     |                                                                                                                                                       |
| Description of relevance or appropriateness of studies assembled for assessing the<br>hypothesis to be tested For peer review only - http://bmjopen.bmj.com | Introduction, Supplementary File 3<br>/site/apout/guidelines.xhtml                                                                                    |

## **MOOSE** Guidelines (Supplementary 1b)

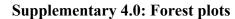
| 45 of 80                                                                              | BMJ Open                                                                                                                                               | 1136/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                       | <b>MOOSE Guidelines (Supple</b>                                                                                                                        | mentary 1b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Rationale for the selection and coding of o                                           | ata (eg, sound clinical principles or convenience)                                                                                                     | Introduction, Inclusion criteria and study selection<br>Data extraction and synthesis, Bata analysis<br>4, 5, 6, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Documentation of how data were classifie<br>interrater reliability)                   | d and coded (eg, multiple raters, blinding, and                                                                                                        | Inclusion criteria and study selection, Data extract and synthesis, Data analysis $\int_{\infty}^{\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Assessment of confounding (eg, comparal appropriate)                                  | ility of cases and controls in studies where                                                                                                           | NA <sup>n</sup><br>202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Assessment of study quality, including bli regression on possible predictors of study | nding of quality assessors; stratification or results                                                                                                  | Data analysis. Quality assessment<br>6, 7 §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Assessment of heterogeneity                                                           | Vr b                                                                                                                                                   | Data analysis<br>7<br>Data analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| models, justification of whether the chosen                                           | nplete description of fixed or random effects<br>n models account for predictors of study results,<br>-analysis) in sufficient detail to be replicated | Data analysis<br>6, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Provision of appropriate tables and graphi                                            | cs                                                                                                                                                     | Figure 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Results                                                                               |                                                                                                                                                        | ji                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Graphic summarizing individual study est                                              | imates and overall estimate                                                                                                                            | Figures 2 and 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table giving descriptive information for e                                            | ach study included                                                                                                                                     | Tables 1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Results of sensitivity testing (eg, subgroup                                          | analysis)                                                                                                                                              | Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Indication of statistical uncertainty of find                                         | ings                                                                                                                                                   | Results 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Discussion                                                                            |                                                                                                                                                        | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Quantitative assessment of bias (eg, public                                           | cation bias)                                                                                                                                           | Supplementary File 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Justification for exclusion (eg, exclusion o                                          |                                                                                                                                                        | Inclusion criteria and study selection. Limitations 5, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Assessment of quality of included studies                                             |                                                                                                                                                        | Supplementary File 3, Results, Fable 1<br>9, 31, 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Conclusion                                                                            |                                                                                                                                                        | est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Consideration of alternative explanations                                             |                                                                                                                                                        | Discussion T<br>12, 13, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Generalization of the conclusions (ie, appr<br>domain of the literature review)       | opriate for the data presented and within the                                                                                                          | Discussion P<br>12, 13, 14 D<br>Limitations C<br>14 D<br>Limitations C<br>Limitations C<br>Li |
| Guidelines for future research                                                        |                                                                                                                                                        | Future directions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Disclosure of funding sources                                                         |                                                                                                                                                        | Funding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

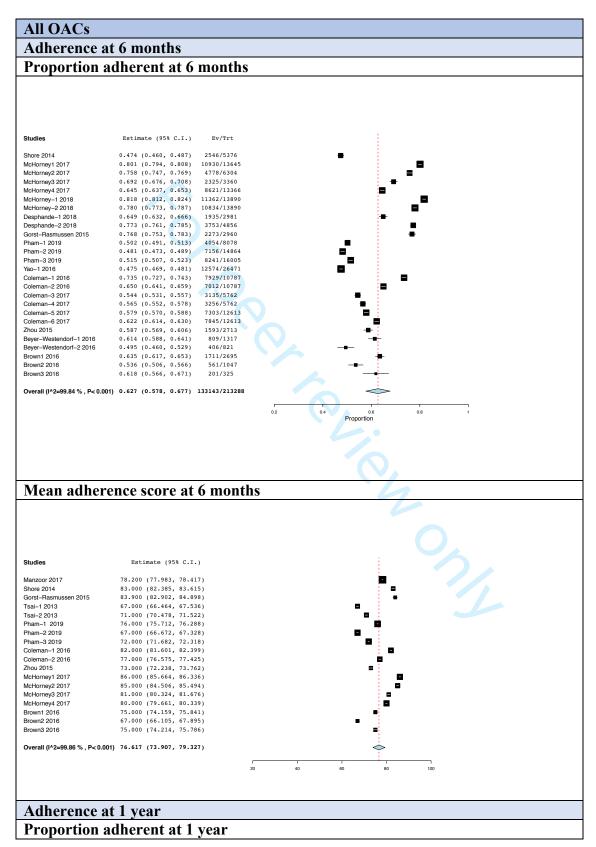
| 2  |
|----|
|    |
| 3  |
| 4  |
| 5  |
|    |
| 6  |
| 7  |
| 8  |
|    |
| 9  |
| 10 |
|    |
| 11 |
| 12 |
| 13 |
|    |
| 14 |
| 15 |
| 16 |
| 17 |
| 17 |
| 18 |
| 19 |
|    |
| 20 |
| 21 |
| 22 |
| 23 |
|    |
| 24 |
| 25 |
| 26 |
|    |
| 27 |
| 28 |
| 29 |
|    |
| 30 |
| 31 |
| 32 |
|    |
| 33 |
| 34 |
| 35 |
|    |
| 36 |
| 37 |
| 38 |
|    |
| 39 |
| 40 |
| 41 |
|    |
| 42 |
| 43 |
| 44 |
|    |
| 45 |
| 46 |
| 47 |
|    |
| 48 |
| 49 |
| 50 |
|    |
| 51 |
| 52 |
| 53 |
|    |
| 54 |
| 55 |
| 56 |
|    |
| 57 |
| 58 |
|    |

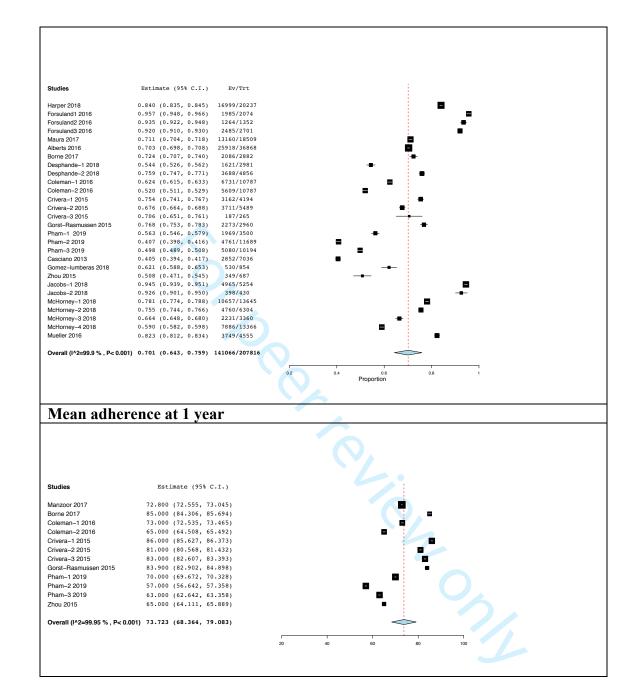
1

## Supplementary file 2: Literature

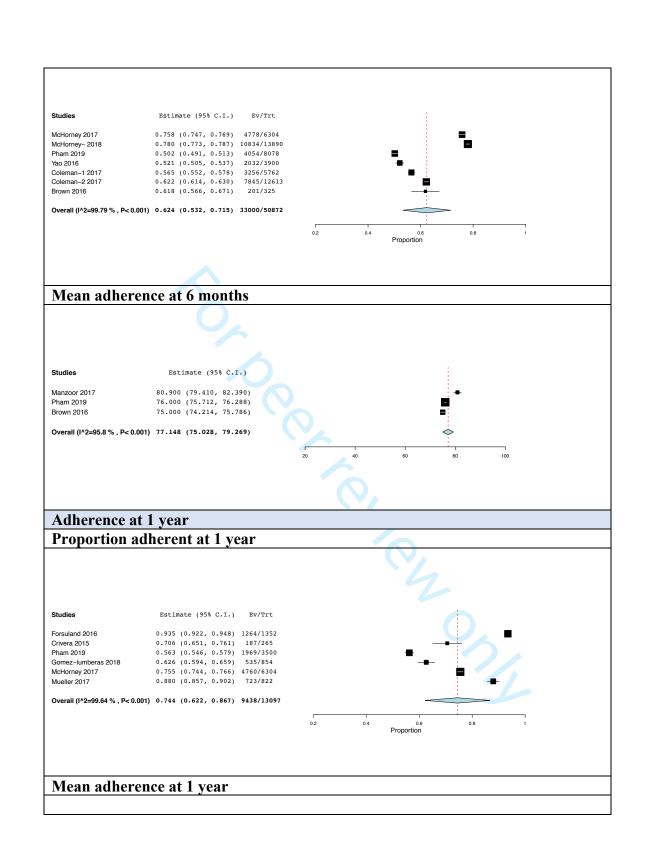
| Concept             | Keywords                                                                                                                                                                                                                                                                                                                                                                        | MeSH terms (Pubmed)                                     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Medications         | Anticoagulant* OR "blood thinner" OR<br>"Vitamin K antagonists"OR "new oral<br>anticoagulants" OR VKA OR NOAC OR<br>DOAC OR Apixaban OR Eliquis OR<br>dabigatran OR "dabigatran etexilate" mesylate<br>OR pradaxa OR edoxaban OR lixiana OR<br>rivaroxaban OR xarelto OR warfarin OR<br>coumadin OR betrixaban OR bevyxxa OR<br>acenocoumarol OR phenprocoumon OR<br>fluindione | Warfarin<br>Anticoagulants<br>Dabigatran<br>Rivaroxaban |
| Adherence           | Adherence OR persistence OR compliance<br>"Medication taking" OR "discontinuation"<br>OR "nonpersistence" OR "nonadherence"<br>OR "noncompliance"                                                                                                                                                                                                                               | Treatment Adherence and Compliance"[Mesh])              |
| Atrial fibrillation | "atrial fibrillation" OR NVAF OR "non-<br>valvular atrial fibrillation"                                                                                                                                                                                                                                                                                                         | atrial fibrillation                                     |


#### Complete search example for Pubmed:


| Page 47 of 80                                                                                                                                                                                                                                                                                  |            |                     |                                 |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   | BM                    | IJ Ope                             | 'n                             |                    |                 |                     |                     |                | 36/bmjopen-2019  |                           |                      |                      |                     |              |               |                      |              |             |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|---------------------------------|---------------|-------------------|----------------------|---------------------|---------------------|------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------|-----------------------|------------------------------------|--------------------------------|--------------------|-----------------|---------------------|---------------------|----------------|------------------|---------------------------|----------------------|----------------------|---------------------|--------------|---------------|----------------------|--------------|-------------|--------------|
| 1<br>2                                                                                                                                                                                                                                                                                         |            |                     |                                 |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   |                       |                                    |                                |                    |                 |                     |                     |                | 1                |                           |                      |                      |                     |              |               |                      |              |             |              |
| 3<br>4<br>5 <b>STROBE</b><br>6<br>7                                                                                                                                                                                                                                                            | CODE       | Alber<br>ts<br>2016 | Beyer<br>Weste<br>ndorf<br>2016 | Borne<br>2017 | Brow<br>n<br>2016 | Casci<br>ano<br>2013 | Cole<br>man<br>2016 | Cole<br>man<br>2017 | Criver<br>a 2015 | Desh<br>pand<br>e 2018<br>PMI<br>D:<br>29694<br>285 | Desh<br>pand<br>e 2018<br>PMI<br>D:<br>29334<br>815 | Eape<br>n<br>2014 | Forsu<br>land<br>2016 | Gome<br>z-<br>Lum<br>beras<br>2018 | Gorst<br>Rasm<br>ussen<br>2015 | Harp<br>er<br>2018 | Jacob<br>s 2018 | Manz<br>oor<br>2017 | Marq<br>uez<br>2016 | Maur<br>a 2017 | 034778 on 8 A    | McC<br>ormic<br>k<br>2001 | McH<br>orney<br>2017 | McH<br>orney<br>2018 | Muell<br>er<br>2017 | Pham<br>2019 | Shore<br>2014 | Soren<br>sen<br>2017 | Tsai<br>2013 | Yao<br>2016 | Zhou<br>2015 |
| Title and abstract<br>Edicate the study's design with a<br>commonly used term in the title or the<br>abstract                                                                                                                                                                                  | 1a         | 0                   | 0                               | 0             | 0                 | 0                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 0                 | 0                     | 1                                  | 1                              | 1                  | 0               | 0                   | 0                   | 0              | 1 2              | 1                         | 0                    | 0                    | 0                   | 0            | 1             | 0                    | 0            | 0           | 0            |
| apstract<br>Provide in the abstract an informative<br>and alanced summary of what was done<br>and what was found.                                                                                                                                                                              | 1b         | 0                   | 1                               | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 0                 | 0                     | 0                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              | 1 020.           | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Biclground/rationale: Explain the<br>scientific background and rationale for<br>tile westigation being reported                                                                                                                                                                                | 2          | 1                   | 1                               | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              |                  | 1                         | 1                    | 0                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Objective: State specific objectives,<br>inclding any prespecified hypothesis.                                                                                                                                                                                                                 | 3          | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              |                  | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Study design: Present key elements of<br>study design early in the paper                                                                                                                                                                                                                       | 4          | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              |                  | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Setting: Describe the setting, locations,<br>add gelevant dates, including periods of<br>recruitment exposure follow-up and                                                                                                                                                                    | 5          | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 0                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              | ed fro           | 0                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| duccollection.<br>Participants: Give the eligibility criteria,<br>apd ne sources and methods of selection<br>of participants                                                                                                                                                                   | 6a         | 1                   | 1                               | 1             | 1                 | 0                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 0                  | 0               | 1                   | 1                   | 1              |                  |                           | 1                    | 1                    | 0                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Progratched studies, give matching<br>chiefia and number of exposed and<br>upprocessed                                                                                                                                                                                                         | 6b         | 1                   | NA                              | NA            | NA                | NA                   | 1                   | 1                   | NA               | NA                                                  | 1                                                   | NA                | NA                    | NA                                 | NA                             | NA                 | NA              | NA                  | NA                  | NA             | NA               | NA                        | NA                   | 1                    | NA                  | NA           | NA            | NA                   | NA           | 1           | NA           |
| Variables: Clearly define all outcomes,<br>Surgers, predictors, potential<br>Counders, and effect modifiers. Give                                                                                                                                                                              | 7          | 0                   | 1                               | 0             | 1                 | 0                    | 0                   | 1                   | 1                | 1                                                   | 0                                                   | 1                 | 1                     | 1                                  | 1                              | 0                  | 1               | 1                   | 1                   | 1              | 1 O              | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 0            | 1           | 1            |
| degnostic criteria, if applicable.<br>Math sources/measurement: For each<br>wrighle of interest, give sources of data<br>actification of the sources of data<br>actification of the sources of the sources<br>(mesurement). Describe comparability<br>of the sessment methods if there is more | 8          | 0                   | 1                               | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              | pen.bmj.co       |                           | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| than one grou<br>224Describe any efforts to address potential sources of bias (e.g. Propensity<br>3055)                                                                                                                                                                                        | 9          | 1                   | 0                               | 0             | 0                 | 0                    | 1                   | 1                   | 0                | 1                                                   | 1                                                   | 0                 | 0                     | 0                                  | 0                              | 0                  | 1               | 1                   | 1                   | 1              | 0 <b>/ WC</b>    | 1                         | 1                    | 1                    | 0                   | 1            | 1             | 0                    | 0            | 0           | 0            |
| Study size: Explain how the study size                                                                                                                                                                                                                                                         | 10         | 0                   | 0                               | 0             | 0                 | 0                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 0                 | 0                     | 0                                  | 0                              | 0                  | 0               | 0                   | 1                   | 0              | 0 N              | 0                         | 0                    | 0                    | 0                   | 0            | 0             | 0                    | 0            | 0           | 0            |
| Quantitative variables/ statistical<br>analysis:                                                                                                                                                                                                                                               |            |                     |                                 |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   |                       |                                    |                                |                    |                 |                     |                     |                |                  |                           |                      |                      |                     |              |               |                      |              |             |              |
| Explain how quantitative variables were<br><b>D22</b> of in the analyses. If applicable,<br>describe which groupings were chosen,<br><b>apQ</b> -hy. (categorizing)                                                                                                                            | 11         | 0                   | 1                               | 1             | 1                 | 1                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 1                 | 1                     | 1                                  | 1                              | 0                  | 1               | 0                   | 0                   | 1              | <sup>1</sup> 16, | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| Describe all statistical methods, including<br>the used to control for confounding                                                                                                                                                                                                             | 12a        | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 0                  | 1               | 1                   | 1                   | 1              | 102              | 1                         | 1                    | 1                    | 1                   | 1            | 1             | 0                    | 1            | 1           | 1            |
| Describe any methods used to examine<br>says roups and interactions                                                                                                                                                                                                                            | 12b        | 1                   | 0                               | 1             | 1                 | 0                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 0                     | 0                                  | 1                              | 0                  | 1               | 1                   | 0                   | 1              | 14               |                           | 1                    | 1                    | 0                   | 0            | 1             | 0                    | 1            | 1           | 1            |
| Explain how missing data were addressed<br>Trt study: If applicable, describe how<br>loss tofollow-up was addressed.                                                                                                                                                                           | 12c<br>12d | 0<br>NA             | 0<br>NA                         | 0<br>NA       | 0<br>NA           | 0<br>NA              | 0<br>NA             | 1<br>NA             | 0<br>NA          | 0<br>NA                                             | 0<br>NA                                             | 0<br>NA           | 0<br>NA               | 0<br>NA                            | 0<br>NA                        | 0<br>NA            | 0<br>NA         | 1<br>NA             | 0                   | 0<br>NA        |                  | 0<br>NA                   | 0<br>NA              | 0<br>NA              | 0<br>NA             | 0<br>NA      | 1<br>NA       | 0<br>NA              | 0<br>NA      | 0<br>NA     | 0<br>NA      |
| Describe any sensitivity analyses                                                                                                                                                                                                                                                              | 12u<br>12e | 0                   | 1                               | 1             | 0                 | 0                    | 0                   | 0                   | 0                | 0                                                   | 0                                                   | 0                 | 1                     | 0                                  | 1                              | 0                  | 1               | 1                   | 0                   | 1              |                  |                           | 1                    | 1                    | 0                   | 0            | 1             | 1                    | 0            | 1           | 1            |
| Participants:<br>B44t the numbers of individuals at each<br>stage of the study—e.g., numbers<br>B45tally eligible, examined for<br>eligibility, confirmed eligible, included in<br>B40dy, completing follow-up, and<br>analysed.                                                               | 13a        | 0                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 0                  | 1               | 0                   | 0                   | 1              | st. Protect      | 0                         | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 0            | 0           | 1            |
| Syreasons for non-participation at each stage                                                                                                                                                                                                                                                  | 13b        | NA                  | NA                              | NA            | NA                | NA                   | NA                  | NA                  | NA               | NA                                                  | NA                                                  | NA                | NA                    | NA                                 | NA                             | NA                 | NA              | NA                  | 0                   | NA             | NA O             |                           | NA                   | NA                   | NA                  | NA           | NA            | NA                   | NA           | NA          | NA           |
| Descriptive data:                                                                                                                                                                                                                                                                              | 13c        | 0                   | 1                               | 1             | 1                 | 1                    | 0                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 0                                  | 1                              | 0                  | 0               | 0                   | 0                   | 1              |                  |                           | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 0            | 0           | 1            |
| <b>39</b><br>Give characteristics of study participants<br>(A.O.demographic, clinical, social) and                                                                                                                                                                                             | 14a        | 1                   | 1                               | 1             | 1                 | 1                    | 1                   | 1                   | 1                | 1                                                   | 1                                                   | 1                 | 1                     | 1                                  | 1                              | 1                  | 1               | 1                   | 1                   | 1              | 1 py             |                           | 1                    | 1                    | 1                   | 1            | 1             | 1                    | 1            | 1           | 1            |
| 41<br>42                                                                                                                                                                                                                                                                                       |            |                     |                                 |               |                   |                      |                     |                     |                  |                                                     |                                                     |                   |                       |                                    |                                |                    |                 |                     |                     |                | /right.          |                           |                      |                      |                     |              |               |                      |              |             |              |

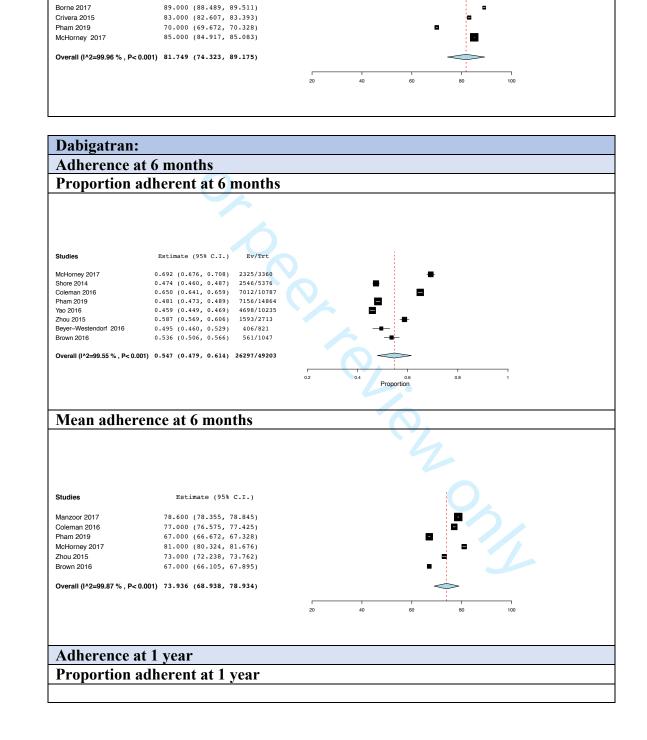

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

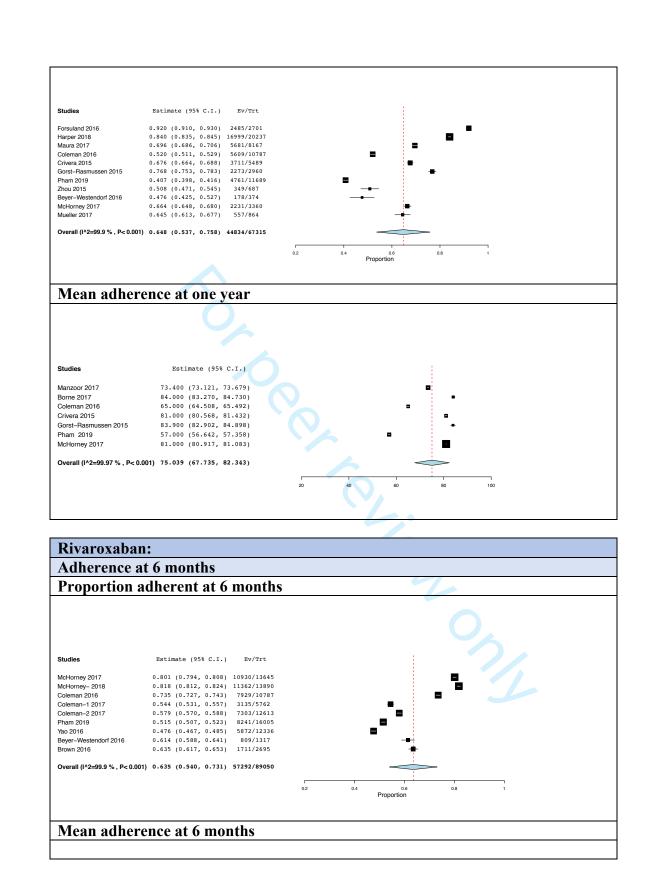
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |              |                 |        |                |        |               |                 |              |        |                 |             | BN              | 1) Ope | en  |              |                |     |       |                 | 36/bmjopen-2019-03           | -   |                 |                 |     |                 |     |                 | Pag | ge 48 c         | of 80            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-----------------|--------|----------------|--------|---------------|-----------------|--------------|--------|-----------------|-------------|-----------------|--------|-----|--------------|----------------|-----|-------|-----------------|------------------------------|-----|-----------------|-----------------|-----|-----------------|-----|-----------------|-----|-----------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | ∍n-2                         | 'n  |                 |                 |     |                 |     |                 |     |                 |                  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | 019                          |     |                 |                 |     |                 |     |                 |     |                 | , I              |
| Z<br>Sormation on exposures and potential<br>confounders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I          | I            | I               | I      | 1              | I      | I             | I               | I            | 1      | I               | I.          | I.              | I      | I   | I            | I <sup>1</sup> | I ' | I     | I               | -03                          | J   | I               | 1 '             | 1   | I               | 1   | I ]             | . 1 | , i             | <sup>ا</sup> ر ر |
| confounders<br>Calciate the number of participants with<br>missing data for each variable of interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14b        | 0            | 0               | 0      | 0              | 0      | 0             | 0               | 0            | 0      | 1               | 0           | 0               | 1      | 0   | 0            | 0              | 0   | 0     | 0               | <u> </u>                     |     | 0               | 1               | 0   | 1               | 0   | 0               | 0   | 0               | 0                |
| missing data for each variable of interest.<br>Symmarise follow-up time (eg, average<br>and total amount)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14b<br>14c | 1            | 1               | 1      | 0              | 1      | 1             | 1               | 1            | 0      | 1               | 1           | 0               | -      | 0   | 0            | 1              | 0   | 1     | 1               | 0 78                         |     | 1               | 0               | 1   | 0               | 1   | 0               | 0   | 1               | 0                |
| and total amount)<br>Gitcome data: Report numbers of<br>outcome events or summary measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15         | 0            | +               | 0      |                | 0      |               | 0               | 0            |        |                 | 1           | 0               | 0      | 0   | 0            | 0              |     | 0     | 0               | 3                            |     |                 | 1               | 1   |                 |     | 0               | 0   |                 |                  |
| outcome events or summary measures<br>oyer time<br>Main results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15         |              | <u> </u>        | U U    | 1              |        | 1             | v               | U U          | 1      | 1               | 1           | U               | U      | U   | v            | 0              | 1   | U     | v               | <sup>1</sup> Ø               | U   | 1               | 1               | 1   | 1               | 1   |                 | 0   | 1               | 1                |
| Gre unadjusted estimates and, if<br>applicable, confounder-adjusted estimates<br>of their precision (e.g., 95% confidence<br>interval). Make clear which confounders<br>were adjusted for and why they were<br>included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16a        | 1            | 0               | 0      | 1              | 0      | 0             | 0               | 1            | 1      | 1               | 1           | 0               | 0      | 1   | 0            | 1              | 0   | 1     | NA              | vpril 2020.                  |     | 1               | 1               | 0   | 0               | 1   | 1               | 0   | 1               | 1                |
| Report category boundaries when<br>continuous variables were categorized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16b        | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1      | 1               | NA          | 1               | 1      | 1   | 1            | 1              | 1   | 1     | 1               | 1 Do                         |     | 1               | 1               | 1   | 1               | 1   | 1               | 1   | 1               | 1                |
| If relevant, consider translating estimates<br>of relative risk into absolute risk for a<br>meaningful time period<br>Other analysis: Report other analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16c        | NA           | NA              | NA     | NA             | NA     | NA            | NA              | NA           | NA     | NA              | NA          | NA              | NA     | NA  | NA           | NA             | NA  | NA    | NA              | NANIC                        |     | NA              | NA              | NA  | NA              | NA  | NA              | NA  | NA              | NA               |
| done—e.g., analyses of subgroups and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17         | 1            | 1               | 1      | 1              | 1      | 0             | 1               | 1            | 1      | 1               | 1           | 1               | 0      | 1   | 0            | 1              | 1   | 0     | 1               | 1<br>1                       |     | 1               | 1               | 1   | 1               | 1   | 0               | 1   | 1               | 1                |
| Key results: Summarize key results with<br>reference to study objectives.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18         | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1      | 1               | 1           | 1               | 1      | 1   | 1            | 1              | 1   | 1     | 1               | ₁ fi                         | 1   | 1               | 1               | 1   | 1               | 1   | 1               | 1   | 1               | 1                |
| Limitations: Discuss limitations of the<br>sub, taking into account sources of<br>potential bias or imprecision. Discuss<br>but direction and magnitude of any<br>constraint bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19         | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1      |                 | 1           | 1               | 1      | 1   | 1            | 1              | 1   | 1     | 1               | rom ht                       |     | 1               | 1               | 1   | 1               | 1   | 1               | 1   | 1               | 1                |
| potential bias.<br>How the second secon | 20         | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1      | 1               | 1           | 1               | 1      | 1   | 1            | 1              | 1   | 1     | 1               | ttp://bmjo                   | 1   | 1               | 1               | 1   | 1               | 1   | 1               | 1   | 1               | 1                |
| gongralizability (external validity) of the<br>study results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21         | 1            | 0               | 1      | 1              | 1      | 1             | 1               | 1            | 1      | 1               | 1           | 1               | 1      | 1   | 1            | 1              | 1   | 1     | 1               | <sup>1</sup><br><sup>1</sup> | 0   | 1               | 1               | 1   | 1               | 1   | 1               | 1   | 1               | 1                |
| Funding: Give the source of funding and<br>the role of the funders for the present<br>syndy and, if applicable, for the original<br>study on which the present article is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22         | 1            | 1               | 1      | 1              | 1      | 1             | 1               | 1            | 1      | 1               | 1           | 1               | 1      | 1   |              | 1              | 0   | 1     | 0               | 1.bmj.cc                     | 1   | 1               | 1               | 1   | 1               |     | 1               | 1   | 1               | 1                |
| based<br>Suffi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 19           | 22              | 22     | 23             | 19     | 17            | 24              | 22           | 23     | 25              | 22          | 19              | 15     | 24  | 14           | 24             | 21  | 20    | 23              | 26                           | 18  | 26              | 26              | 21  | 23              | 27  | 20              | 18  | 24              | 24               |
| 25<br>Total applicable<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 31           | 30              | 30     | 30             | 30     | 31            | 31              | 30           | 30     | 31              | 29          | 30              | 30     | 30  | 30           | 30             | 30  | 32    | 29              | 30 <b>D</b>                  | 30  | 30              | 31              | 30  | 30              | 30  | 30              | 30  | 31              | 30               |
| 26<br>Soure<br>27<br>Percent<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 0.6129<br>03 | 0.7333<br>33333 | 0.7333 | 3 0.7666<br>67 | 0.6333 | 0.5483<br>871 | 0.7741<br>93548 | 0.7333<br>33 | 0.7666 | 0.8064<br>51613 | 0.7586<br>2 | 0.6333<br>33333 | 0.5    | 0.8 | 0.4666<br>67 | 0.8            | 0.7 | 0.625 | 0.7931<br>03448 | 0.866 <b>6</b><br>66667      | 0.6 | 0.8666<br>66667 | 0.8387<br>09677 | 0.7 | 0.7666<br>66667 | 0.9 | 0.6666<br>66667 | 0.6 | 0.7741<br>93548 | 0.8              |
| Percent<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 61           | 73              | 73     |                | 63     | 55            | 77              | 73           | 77     | 81              | 76          | 63              | 50     | 80  | 47           | 80             | 70  | 63    | 79              | 87                           |     | 87              | 84              | 70  | 77              | 90  | 67              | 60  | 77              | 80               |
| 29<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | 6, 2024                      | ×   |                 |                 |     |                 |     |                 |     |                 |                  |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | 4 by                         | -   |                 |                 |     |                 |     |                 |     |                 | I                |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | ,<br>gu                      |     |                 |                 |     |                 |     |                 |     |                 |                  |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | guest.                       | 1   |                 |                 |     |                 |     |                 |     |                 |                  |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | יין דיין<br>דיי              | J   |                 |                 |     |                 |     |                 |     |                 |                  |
| 34<br>35<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | ote                          | •   |                 |                 |     |                 |     |                 |     |                 |                  |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | ;cte                         | ,   |                 |                 |     |                 |     |                 |     |                 |                  |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | ä<br>o                       | 2   |                 |                 |     |                 |     |                 |     |                 |                  |
| 38<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | Protected by copyright.      |     |                 |                 |     |                 |     |                 |     |                 |                  |
| 39<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | opy                          |     |                 |                 |     |                 |     |                 |     |                 |                  |
| 40<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | /rig                         | -   |                 |                 |     |                 |     |                 |     |                 |                  |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                 |        |                |        |               |                 |              |        |                 |             |                 |        |     |              |                |     |       |                 | nt.                          | *   |                 |                 |     |                 |     |                 |     |                 |                  |

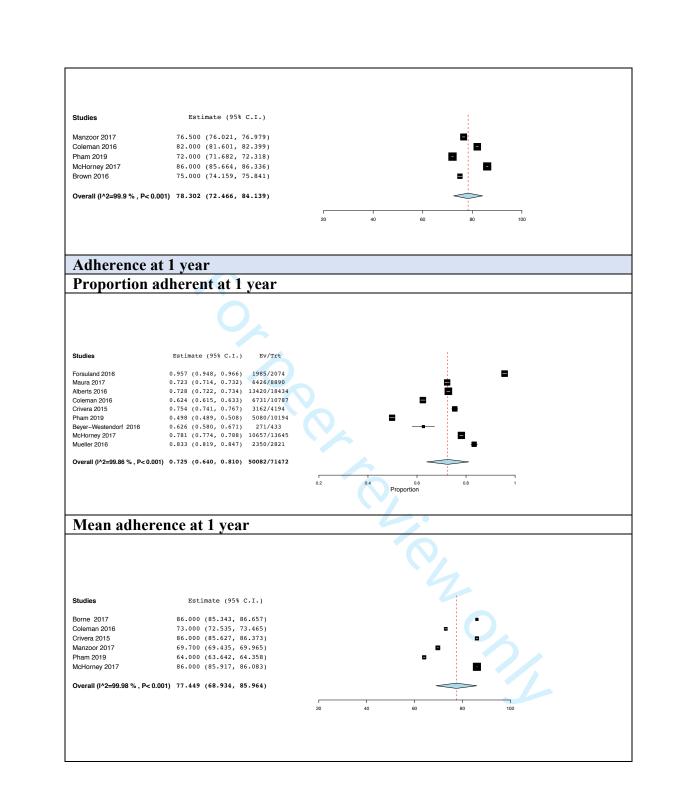

| Page 49                                           | 9 of 80                                                                                                          |                  |                                      |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       | BMJ C                              | )pen                                |                    |                 |                     |                     |                |                       | 36/bmjopen-2019           |                     |                      |                     |                   |               |                      |              |             |              |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|---------------|----------------|----------------------|---------------------|---------------------|------------------|----------------------------------------------------|----------------------------------------------------|----------------|-----------------------|------------------------------------|-------------------------------------|--------------------|-----------------|---------------------|---------------------|----------------|-----------------------|---------------------------|---------------------|----------------------|---------------------|-------------------|---------------|----------------------|--------------|-------------|--------------|
| 2<br>B Item<br>4<br>5                             | ISPOR                                                                                                            | Albert<br>s 2016 | Beyer<br>-<br>Weste<br>ndorf<br>2016 | Borne<br>2017 | Brow<br>n 2016 | Casci<br>ano<br>2013 | Cole<br>man<br>2016 | Cole<br>man<br>2017 | Criver<br>a 2015 | Desh<br>pande<br>2018<br>PMI<br>D:<br>29694<br>285 | Desh<br>pande<br>2018<br>PMI<br>D:<br>29334<br>815 | Eape<br>n 2014 | Forsu<br>land<br>2016 | Gome<br>z-<br>Lumb<br>eras<br>2018 | Gorst<br>-<br>Rasm<br>ussen<br>2015 | Harp<br>er<br>2018 | Jacob<br>s 2018 | Manz<br>oor<br>2017 | Marq<br>uez<br>2006 | Maur<br>a 2017 | McAli<br>ster<br>2018 | 19-0334778 on             | McH<br>omey<br>2017 | McH<br>orney<br>2018 | Muell<br>er<br>2017 | Phar<br>m<br>2019 | Shore<br>2014 | Soren<br>son<br>2017 | Tsai<br>2013 | Yao<br>2016 | Zhou<br>2015 |
| 71                                                | Title / Abstract<br>Title is descriptive and reflective                                                          | 0                | 0                                    | 0             | 0              | 0                    | 0                   | 0                   | 0                | 0                                                  | 0                                                  | 0              | 0                     | 1                                  | 1                                   | 1                  | 0               | 0                   | 0                   | 1              | 1                     | $\mathbf{D}_0$            | 1                   | 1                    | 0                   | 0                 | 1             | 0                    | 0            | 0           | 0            |
| <b>8</b> <sup>2</sup>                             | of study purpose<br>Abstract is a concise and<br>accurate, reflecting contents of                                | 0                | 1                                    | 1             | 1              | 1                    | 0                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 0                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     | р<br>гіі                  | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 9                                                 | the study Introduction Classer of feedbacetel                                                                    |                  |                                      |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       |                                    |                                     |                    |                 |                     |                     |                |                       | 202                       |                     |                      |                     |                   |               |                      |              |             |              |
| 10                                                | Clear review of fundamental<br>literature related to topic                                                       | 1                | 1                                    | 1             | 1              | 1                    | 0                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     | 20 <sub>1</sub>           | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 13                                                | Objectives and Definitions<br>Objective(s) stated?                                                               | 1                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     |                           | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 13                                                | Design and Methods<br>Study design appropriate for                                                               |                  |                                      | 4             | 1              |                      |                     | 1                   | 1                | 1                                                  |                                                    | 1              |                       | 1                                  | 4                                   | 4                  |                 | 4                   | 1                   | 4              | 4                     |                           | 1                   | 4                    | 1                   | 4                 | 1             | 1                    | 4            | 4           |              |
| 14                                                | objectives<br>Data sources adequately                                                                            | 1                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     |                           | 1                   | 1                    | 1                   | 1                 | 0             | 1                    | 1            | 1           | 1            |
| 15                                                | described<br>Evidence provided for reliability                                                                   | 0                | 0                                    | 0             | 0              | 0                    | 0                   | 1                   | 0                | 0                                                  | 0                                                  | 0              | 0                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     |                           | 1                   | 1                    | 1                   | 1                 | 1             | 0                    | 1            | 0           | 0            |
| 16                                                | / acuracy of data<br>Sampling methods described                                                                  | NA               | NA                                   | NA            | NA             | NA                   | NA                  | NA                  | NA               | NA                                                 | NA                                                 | NA             | NA                    | NA                                 | NA                                  | NA                 | NA              | 1                   | NA                  | NA             | NA                    | ONA                       | NA                  | NA                   | NA                  | NA                | NA NA         | NA                   | NA           | NA          | NA           |
| 17                                                | Well describe patient population<br>and Subject inclusion / exclusion<br>criteria stated                         | 1                | 1                                    | 1             | 1              | 0                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     |                           | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 0            | 1           | 1            |
| 18<br>10                                          | Sufficient data to make valid<br>estimate of compliance (i.e.<br>Continuous eligibility for drug                 | 0                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 1                                  | 1                                   | 0                  | 1               | 0                   | 1                   | 1              | 1                     | tp://bi                   | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 19<br>20                                          | during study period verified)<br>Sufficient pre-enrollment period<br>to ensure drug naivety? (If                 | NA               | 1                                    | NA            | 1              | 1                    | NA                  | 1                   | NA               | NA                                                 | NA                                                 | 1              | NA                    | NA                                 | NA                                  | 0                  | NA              | 1                   | NA                  | 1              | 1                     | ONA                       | 1                   | 1                    | 0                   | 1                 | NA            | 1                    | NA           | 1           | 1            |
| 212                                               | applicable)<br>Explanation of how patients who                                                                   |                  |                                      |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       |                                    |                                     |                    |                 |                     |                     | •              |                       | pen                       |                     | *                    | 0                   |                   |               |                      |              |             |              |
| 22<br>235                                         | switched drugs within or<br>between therapeutic classes were<br>handled<br>Explicit definition of                | 0                | 0                                    | 0             | 1              | 0                    | 0                   | 1                   | 1                | 0                                                  | 0                                                  | 0              | 1                     | 0                                  | 1                                   | 0                  | 1               | 1                   | 0                   | 1              | NA                    | <b>D</b> NA               | 0                   | 1                    | 0                   | 1                 | 1             | 0                    | 1            | 1           | 1            |
| 24                                                | compliance/persistence based on<br>published, accepted definition?                                               | 1                | 1                                    | 1             | 1              | 1                    | 0                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 1                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 0                     |                           | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 25 <sup>14</sup>                                  | Methods for calculating<br>compliance / persistence clearly<br>described (and matches<br>operational definition) | 1                | 1                                    | 1             | 0              | 1                    | 0                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     | n/ on                     | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 26<br>27                                          | Was handling of medication gaps<br>described                                                                     | 0                | 0                                    | 0             | 1              | 1                    | 0                   | 0                   | 0                | 1                                                  | 1                                                  | 0              | 0                     | 0                                  | 1                                   | 1                  | 0               | 0                   | 1                   | 1              | 1                     | Apr<br>Ppr                | 0                   | 1                    | 0                   | 1                 | 1             | 0                    | 0            | 0           | 0            |
| 28                                                | Follow-up period specified<br>Statistics appropriate to design                                                   | 1                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 0                | 1                                                  | 1                                                  | 1              | 0                     | 0                                  | 1                                   | 0                  | 0               | 1                   | 1                   | 1              | 1                     | <u>-i</u> 1<br><u>1</u> 1 | 1                   | 1                    | 1                   | 0                 | 1             | 1                    | 1            | 1           | 0            |
| 29                                                | and data<br>Test statistics are reported<br>appropriately (i.e. CIs, p-values                                    | 1                | 1                                    | 1             | 1              | 1                    | 0                   | 0                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 0                  | 1               | 1                   | 1                   | 1              | 1                     | 6, 2 <sup>1</sup>         | 1                   | 1                    | 0                   | 1                 | 1             | 1                    | 0            | 1           | 1            |
| <u>во</u>                                         | reported)<br>Appropriate descriptive data on<br>study sample are presented                                       | 1                | 1                                    | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 1              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 1                   | 1              | 1                     | <b>2</b> 41               | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 81<br>32<br>32                                    | Distribution of<br>compliance/persistence variable<br>is presented (i.e. proportion of                           | 1                | 0                                    | 1             | 1              | 1                    | 1                   | 1                   | 1                | 1                                                  | 1                                                  | 0              | 1                     | 1                                  | 1                                   | 1                  | 1               | 1                   | 0                   | 1              | 1                     | by g                      | 1                   | 1                    | 1                   | 1                 | 1             | 1                    | 1            | 1           | 1            |
| 33<br>Jaum                                        | discontinuers)                                                                                                   | 12               | 14                                   | 14            | 16             | 15                   | 9                   | 16                  | 11               | 15                                                 | 15                                                 | 14             | 11                    | 12                                 | 18                                  | 10                 | 15              | 17                  | 15                  | 19             | 17                    | uest <sub>14</sub>        | 17                  | 19                   | 10                  | 17                | 17            | 15                   | 14           | 16          | 15           |
| 84<br>B <sup>Total</sup>                          |                                                                                                                  | 18               | 19                                   | 18            | 10             | 19                   | 18                  | 19                  | 18               | 18                                                 | 18                                                 | 19             | 18                    | 18                                 | 18                                  | 19                 | 18              | 20                  | 18                  | 19             | 18                    | <b>P</b><br><b>O</b> 17   | 19                  | 19                   | 19                  | 19                | 18            | 19                   | 18           | 19          | 19           |
| ble<br>B <b>O</b> core                            |                                                                                                                  | 0.6666           | 0.7368                               | 0.7777        | 0.8421         | 0.7894               | 0.5                 | 0.8421              | 0.6111           | 0.8333                                             | 0.8333                                             | 0.7368         | 0.6111                | 0.6666                             | 18                                  | 0.5263             | 0.833           | 0.85                | 0.8333              | 19             |                       | Ote<br>Cte<br>2941        | 0.8947              | 19                   | 0.5263              | 0.895             | 0.944         | 0.7894<br>73684      | 0.778        | 0.842       | 0.789        |
| 34<br>35pplica<br>ble<br>36core<br>37<br>98<br>88 |                                                                                                                  | 67<br>67         | 4211                                 | 778           | 053<br>84      | 7368                 | 50                  | 0526<br>84          | 61               | 333<br>83                                          | 33333<br>83                                        | 4211<br>74     | 61                    | 6667<br>67                         | 100                                 | 53                 | 83              | 85                  | 333<br>83           | 1              |                       | 02941<br>0<br>0<br>82     | 368<br>89           | 1 100                | 158<br>53           | 89                | 94            | 73684<br>79          | 78           | 84          | 79           |
| 39                                                |                                                                                                                  | 07               | /4                                   | 70            | - 04           | 19                   | 50                  | 04                  | 01               |                                                    | 0.5                                                | .4             | 01                    | 07                                 | 100                                 |                    |                 | 00                  | 0.5                 | 100            |                       |                           |                     | 100                  | 33                  | 09                | 74            |                      |              |             |              |
| 40<br>41<br>42                                    |                                                                                                                  |                  |                                      |               |                |                      |                     |                     |                  |                                                    |                                                    |                |                       |                                    |                                     |                    |                 |                     |                     |                |                       | copyright.                |                     |                      |                     |                   |               |                      |              |             |              |

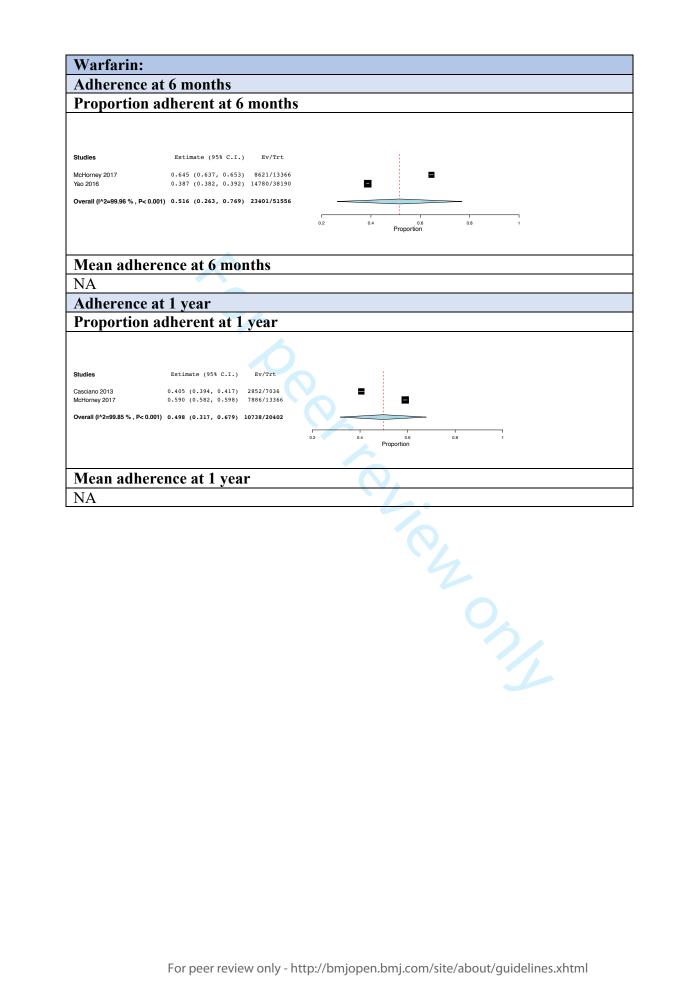


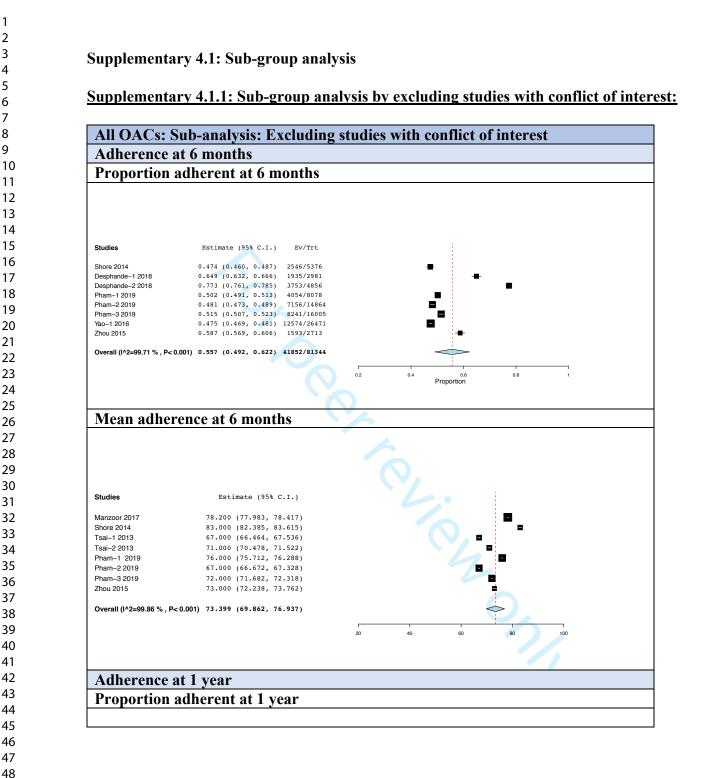


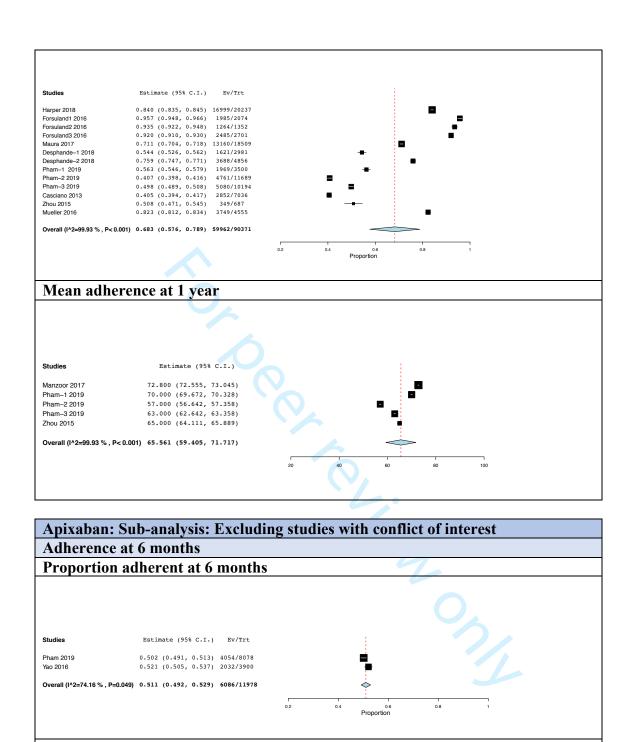




| Apixaban                        |
|---------------------------------|
| Adherence at 6 months           |
| Proportion adherent at 6 months |
|                                 |



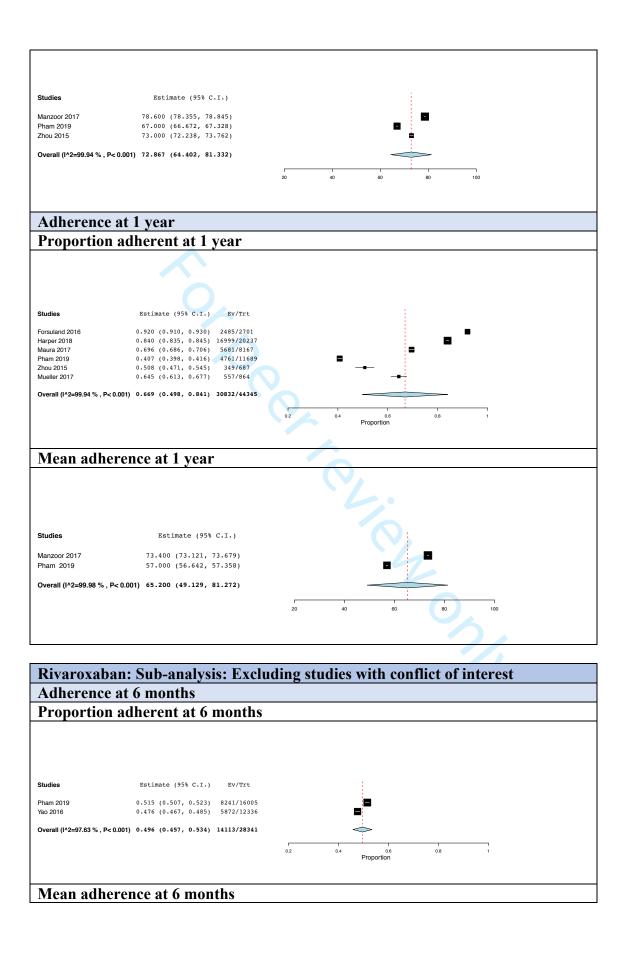


Studies

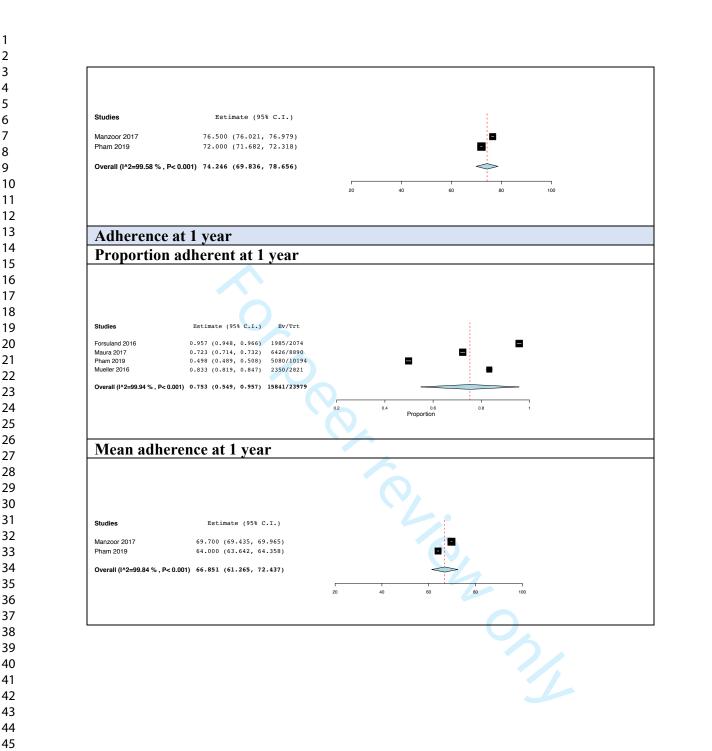

Estimate (95% C.I.)



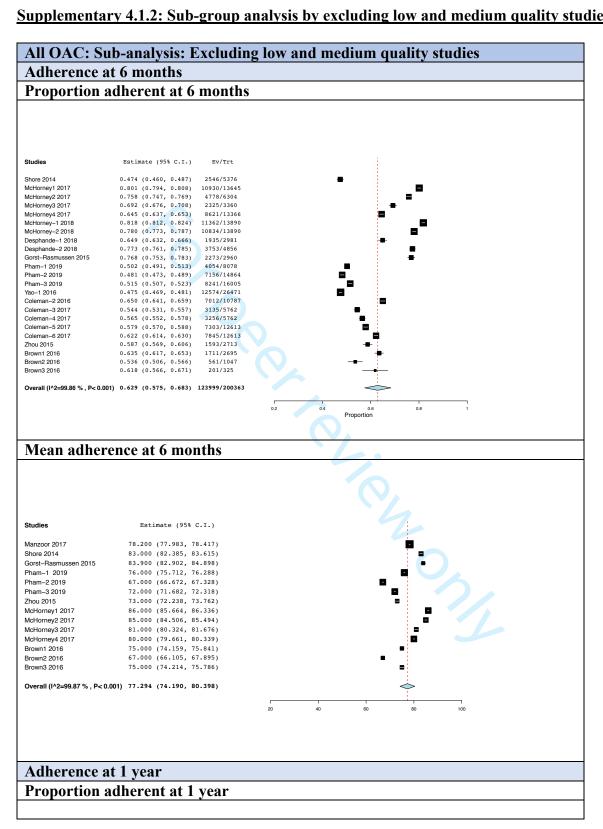




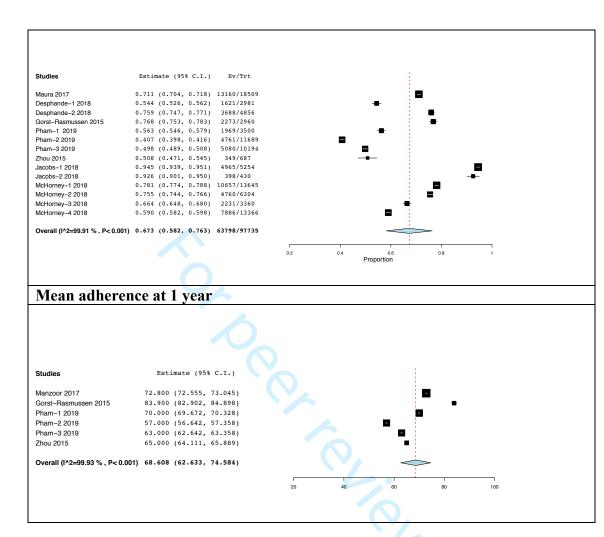





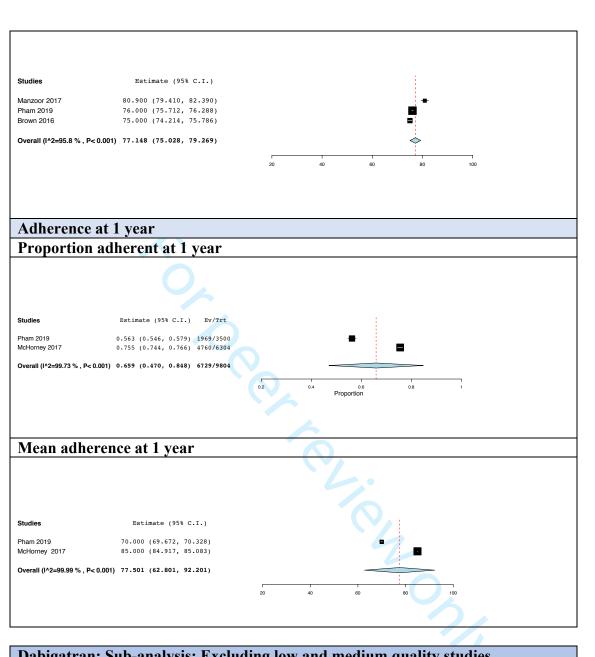


#### Mean adherence at 1 year

| Studies                                                        | Estimate (95% C.I.)                                                                              |                          | 1     |         |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------|-------|---------|--|
| Manzoor 2017<br>Pham 2019                                      | 80.900 (79.410, 82.390)<br>76.000 (75.712, 76.288)                                               |                          | -     |         |  |
|                                                                | P<0.001) 78.393 (73.593, 83.194)                                                                 |                          |       |         |  |
|                                                                |                                                                                                  | 20 40                    | 60 80 | 100     |  |
|                                                                | e at 1 year:                                                                                     |                          |       |         |  |
| Proportion                                                     | n adherent at 1 year                                                                             |                          |       |         |  |
|                                                                |                                                                                                  |                          |       |         |  |
| Studies                                                        | Estimate (95% C.I.) Ev/Trt                                                                       |                          |       |         |  |
| Forsuland 2016<br>Pham 2019<br>Mueller 2017                    | 0.935 (0.922, 0.948) 1264/1352<br>0.563 (0.546, 0.579) 1969/3500<br>0.880 (0.857, 0.902) 723/822 | =                        | =     |         |  |
|                                                                |                                                                                                  |                          | _     |         |  |
| Overall (I^2=99.84 % , P∢                                      | <0.001) 0.792 (0.549, 1.036) 3956/5674                                                           | 0.2 0.4 Proportion       | 0.8   |         |  |
|                                                                |                                                                                                  | 02 0.4 Proportion        | 0.8   | 7       |  |
| Mean adh                                                       | erence at 1 year                                                                                 | 02 0.4 0.6<br>Proportion | 0.8   |         |  |
| Mean adh<br>NA (one st                                         | erence at 1 year<br>tudy)                                                                        | Proportion               |       |         |  |
| Mean adh<br>NA (one st<br>Dabigatra                            | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclue                                             | Proportion               |       | nterest |  |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence               | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclude<br>e at 6 months                           | Proportion               |       | nterest |  |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence               | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclue                                             | Proportion               |       | nterest |  |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence               | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclude<br>e at 6 months                           | Proportion               |       | nterest |  |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence<br>Proportion | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclude<br>e at 6 months<br>n adherent at 6 months | Proportion               |       | nterest |  |
| Mean adh<br>NA (one st<br>Dabigatra<br>Adherence<br>Proportion | erence at 1 year<br>tudy)<br>n: Sub-analysis: Exclude<br>at 6 months<br>n adherent at 6 months   | Proportion               |       | nterest |  |

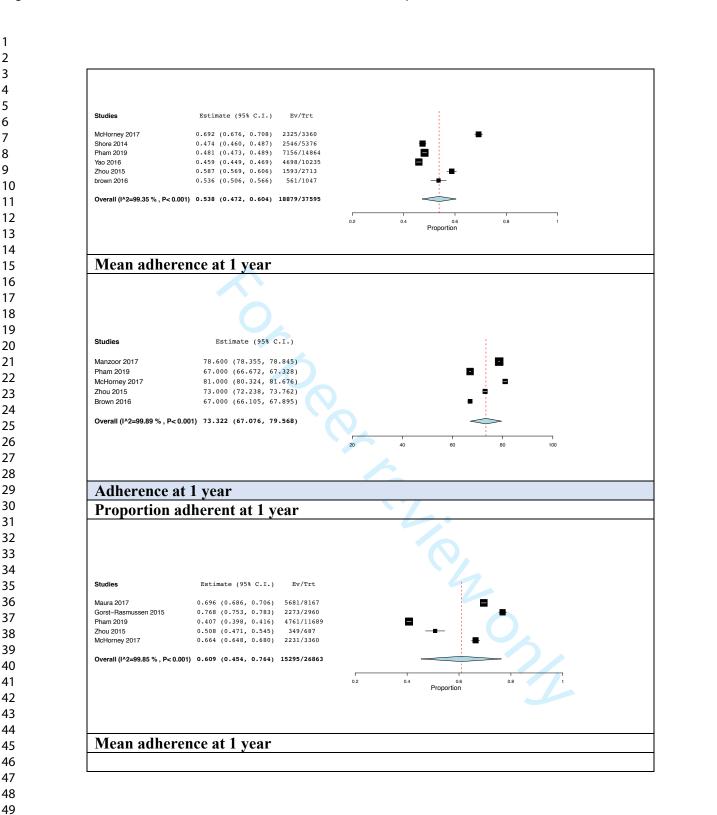


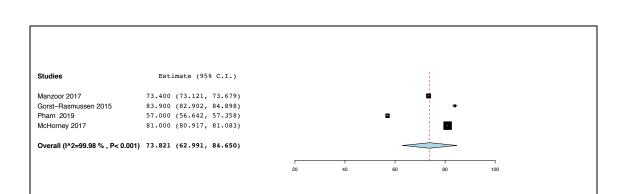


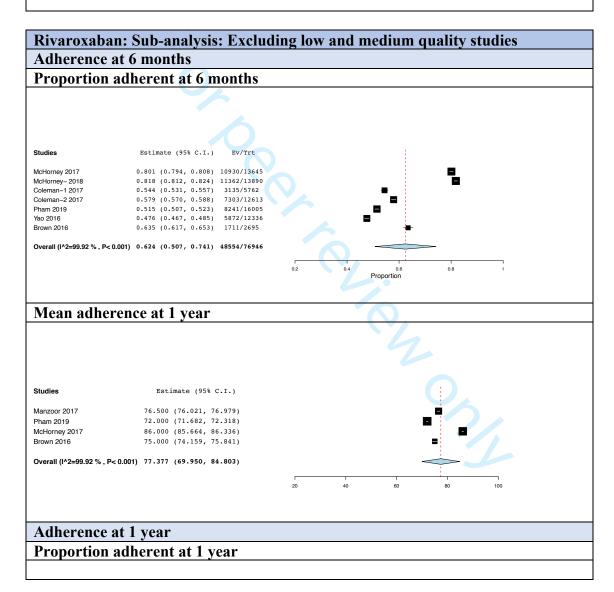


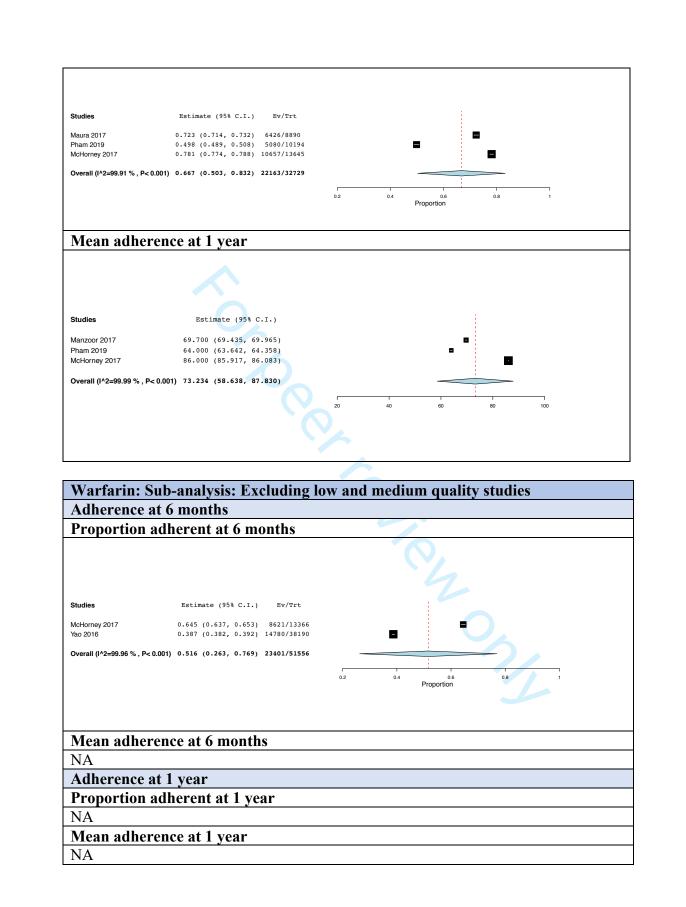

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright



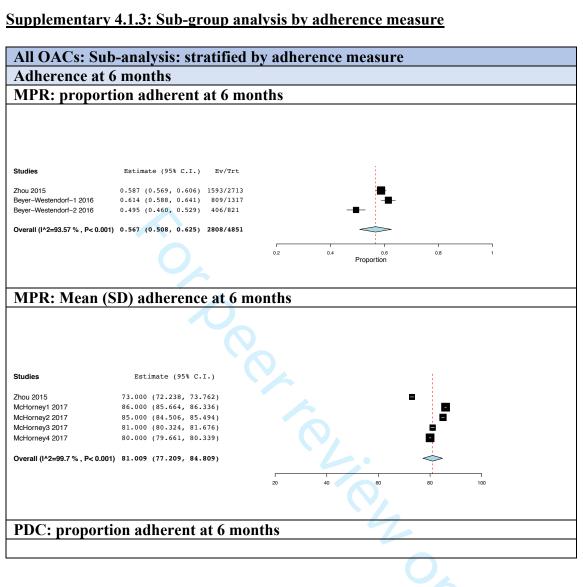

#### Supplementary 4.1.2: Sub-group analysis by excluding low and medium quality studies.

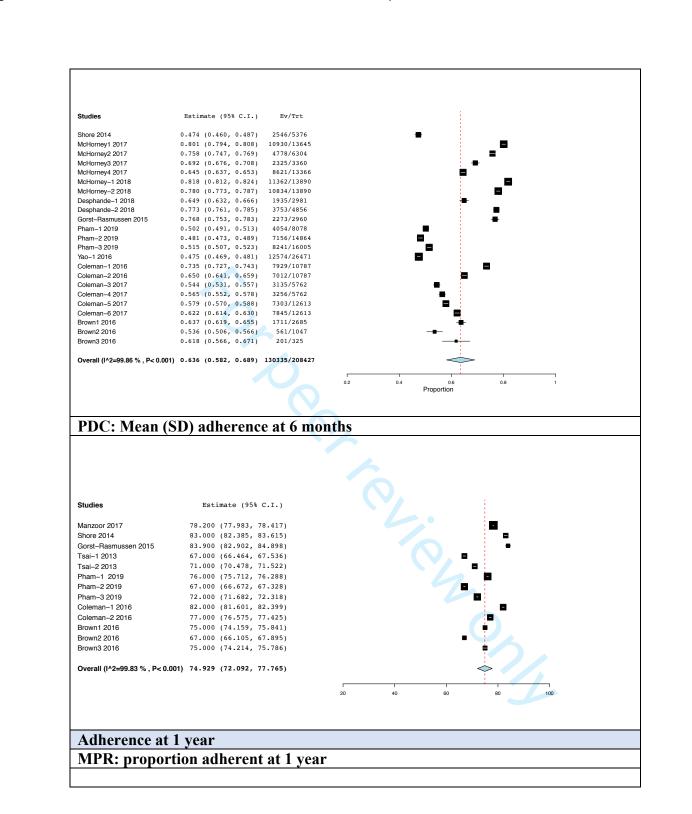


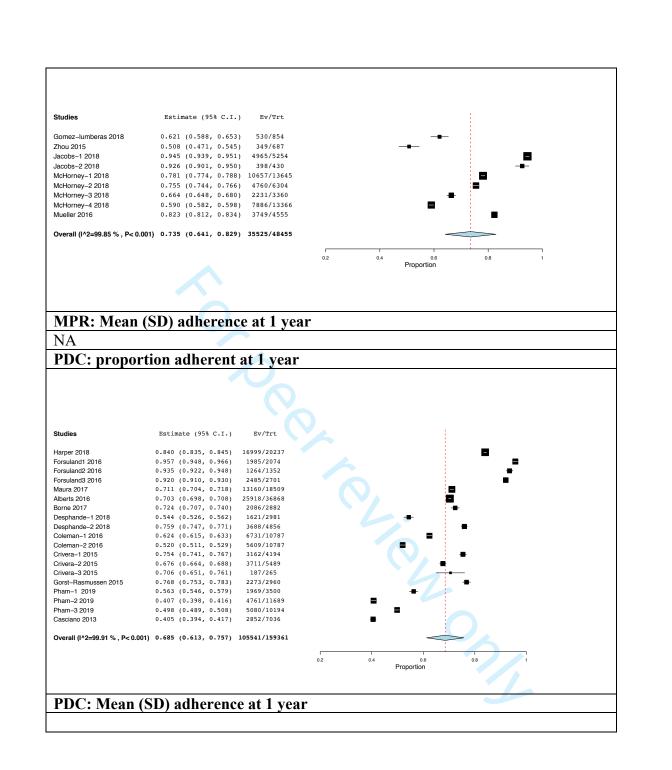



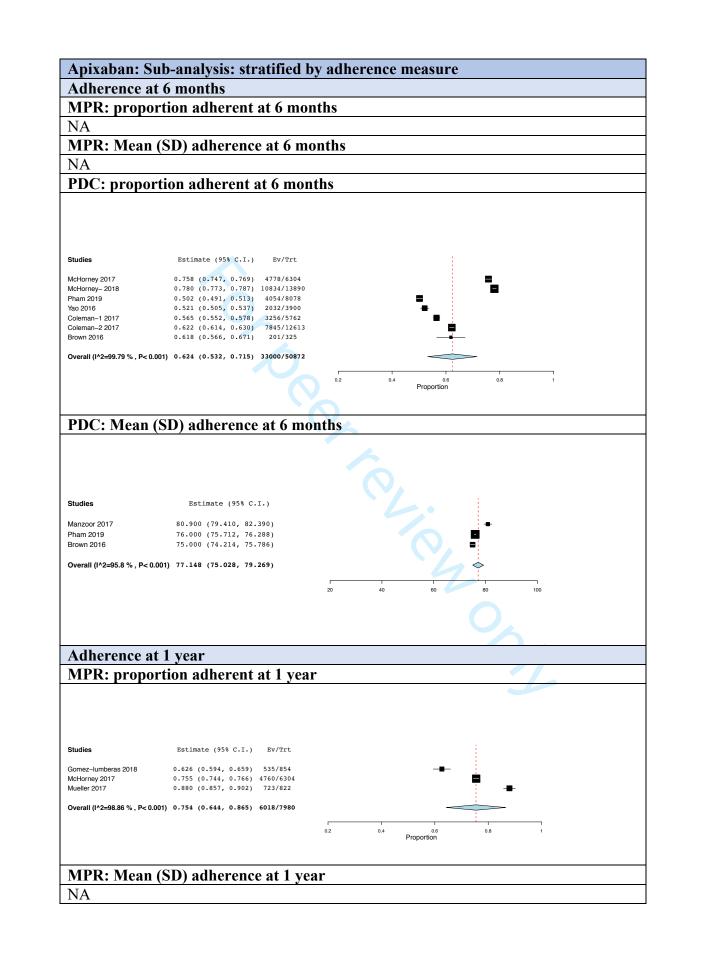

### Dabigatran: Sub-analysis: Excluding low and medium quality studies Adherence at 6 months Proportion adherent at 6 months



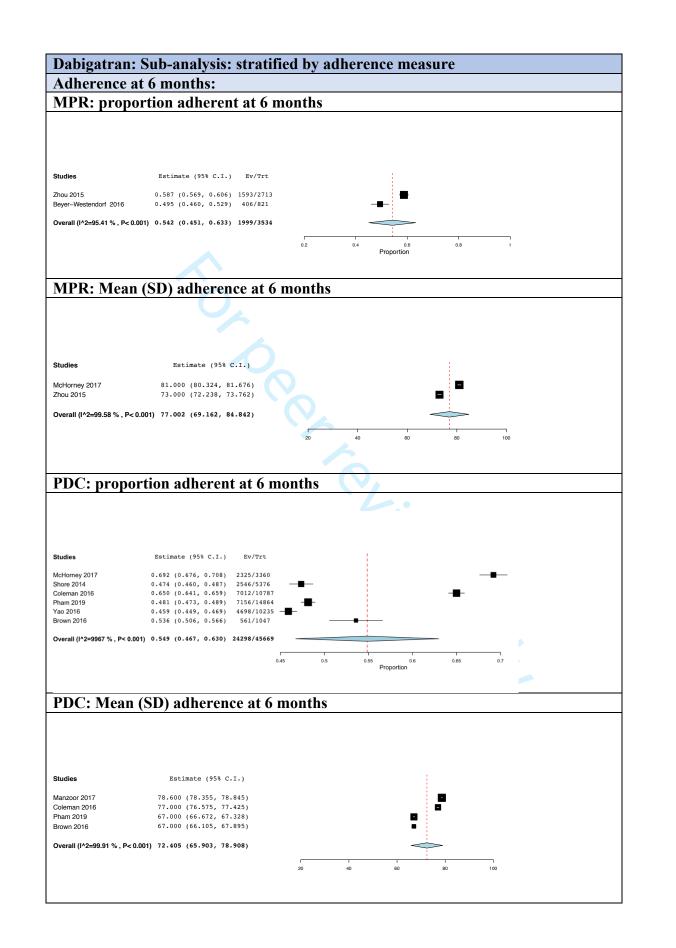



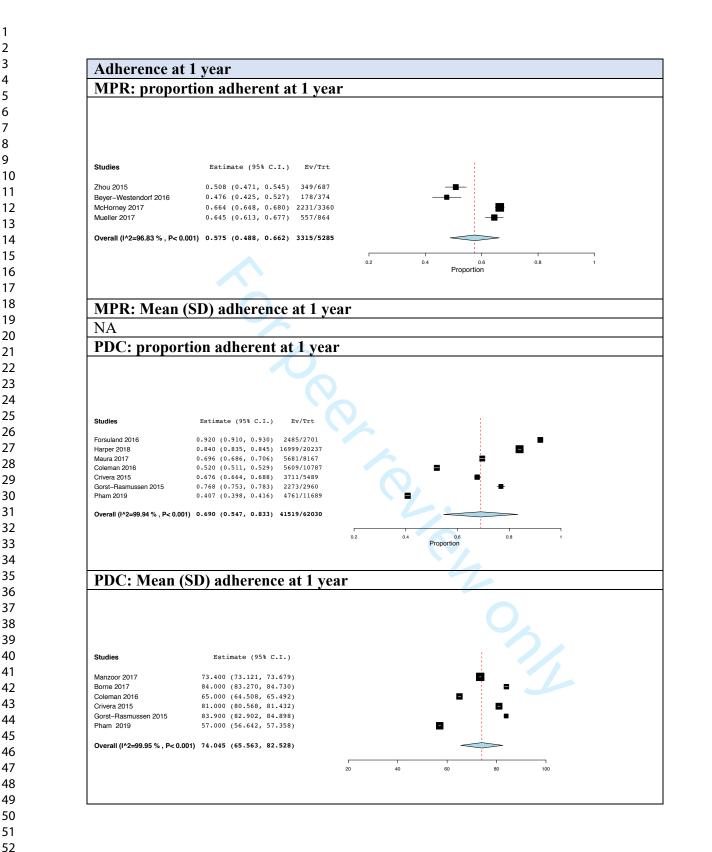



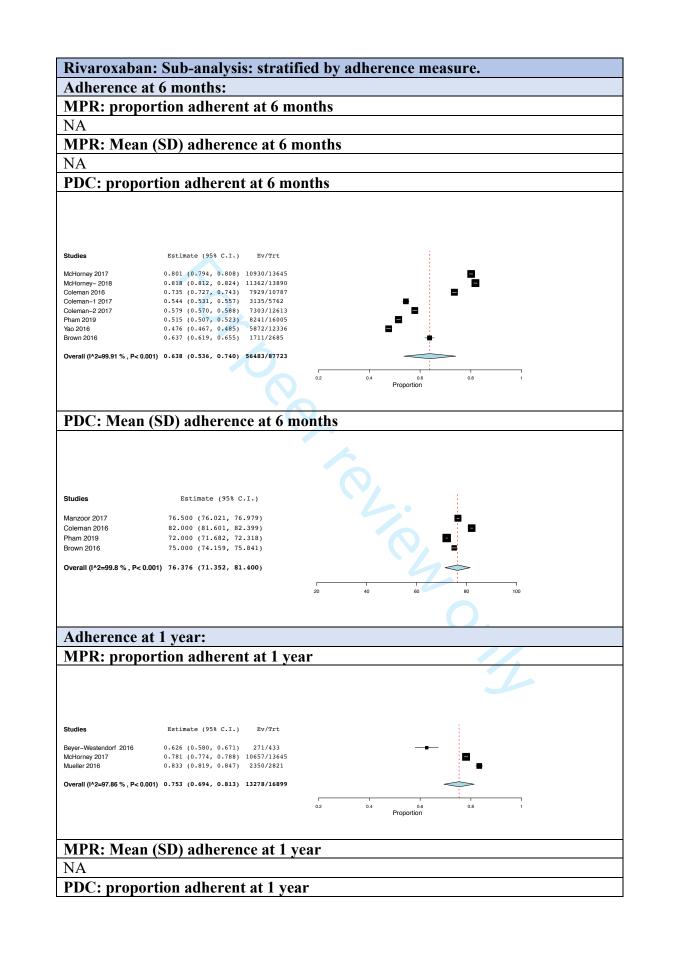




BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright.







| 1                                                                          |                                                                               |   |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|---|
| 2<br>3                                                                     |                                                                               |   |
| 4                                                                          |                                                                               |   |
| 5 Studies                                                                  | Estimate (95% C.I.)                                                           |   |
| 7 Manzoor 2017<br>Borne 2017<br>8 Coleman-1 2016                           | 72.800 (72.555, 73.045)<br>85.000 (84.306, 85.694)<br>73.000 (72.535, 73.465) |   |
| Coleman-2 2016<br>Crivera-1 2015<br>Crivera-2 2015                         | 65.000 (64.508, 65.492)                                                       |   |
| 10 Crivera-2 2015<br>Crivera-3 2015<br>Gorst-Rasmussen 2015<br>Pham-1 2019 | 83.000 (82.607, 83.393)<br>83.900 (82.902, 84.898)<br>70.000 (69.672, 70.328) |   |
| 12 Pham-2 2019<br>Pham-3 2019                                              | 55.000 (56.642, 57.358)<br>63.000 (62.642, 63.358)                            |   |
| 14 Overall (I^2=99.95 % , P< 0.1                                           | 0.001) 74.515 (68.891, 80.139)                                                |   |
| 15                                                                         |                                                                               |   |
| 17<br>18<br>19                                                             |                                                                               | ] |
| 20<br>21                                                                   |                                                                               |   |
| 22<br>23                                                                   |                                                                               |   |
| 24                                                                         |                                                                               |   |
| 25<br>26                                                                   |                                                                               |   |
| 27                                                                         |                                                                               |   |
| 28<br>29                                                                   |                                                                               |   |
| 30<br>31                                                                   |                                                                               |   |
| 32                                                                         |                                                                               |   |
| 33<br>34                                                                   |                                                                               |   |
| 35<br>36                                                                   |                                                                               |   |
| 7<br>3                                                                     |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            |                                                                               |   |
|                                                                            | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml     |   |

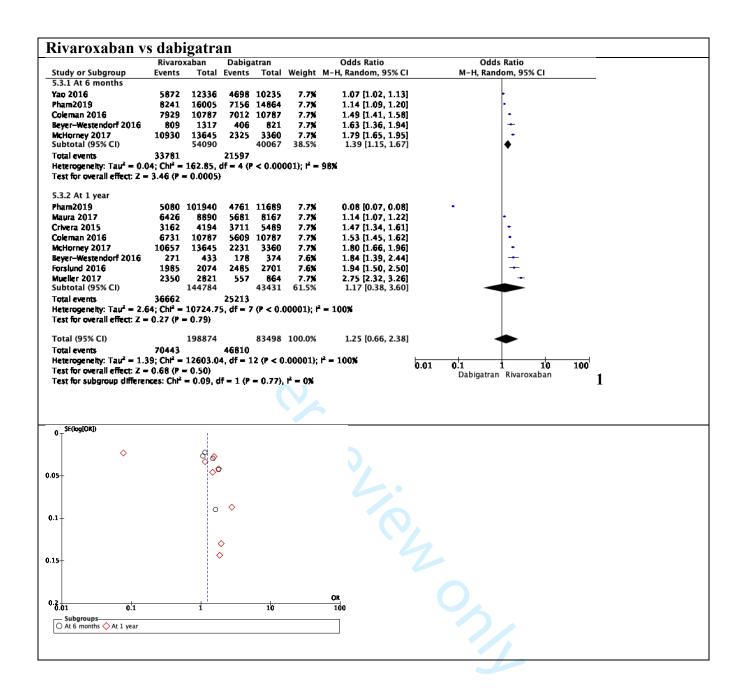













| Warfar                   | in: Sub-analysis: stratified by adherence measure |
|--------------------------|---------------------------------------------------|
|                          | nce at 6 months:                                  |
| MPR: p                   | roportion adherent at 6 months                    |
| NA                       |                                                   |
| MPR: N                   | Aean (SD) adherence at 6 months                   |
| NA                       |                                                   |
| PDC: p                   | roportion adherent at 6 months                    |
| •                        | •                                                 |
|                          |                                                   |
| Studies                  | Estimate (95% C.I.) Ev/Trt                        |
| McHorney 2017            | 0.645 (0.637, 0.653) 8621/13366                   |
| Yao 2016                 | 0.387 (0.382, 0.392) 14780/38190                  |
| Uverall (I^2=99.96 % , P | <0.001) 0.516 (0.263, 0.769) 23401/51556          |
|                          | Proportion US 1                                   |
| PDC · M                  | Iean (SD) adherence at 6 months                   |
| NA                       | tean (SD) adherence at 6 months                   |
|                          | nce at 1 year                                     |
|                          | proportion adherent at 1 year                     |
| NA NA                    |                                                   |
|                          | Aean (SD) adherence at 1 year                     |
| NA                       |                                                   |
|                          | roportion adherent at 1 year                      |
| NA                       |                                                   |
|                          | Iean (SD) adherence at 1 year                     |
| NA                       |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |
|                          |                                                   |

| Apixaban vs da                                                                                                                                                                                                                                  | bigatra                                                                                      | an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                 |                                                   |                                                                                        |                         |                      |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------|----------------------|------------------|
| •                                                                                                                                                                                                                                               | Apixa                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dabig                                                                          | atran                                           |                                                   | Odds Ratio                                                                             |                         | s Ratio              |                  |
| Study or Subgroup                                                                                                                                                                                                                               | Events                                                                                       | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Events                                                                         | Total                                           | Weight                                            | M-H, Random, 95% CI                                                                    | M-H, Ran                | dom, 95%             | CI               |
| 3.3.1 At 6 months                                                                                                                                                                                                                               |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 |                                                   |                                                                                        |                         |                      |                  |
| McHorney 2017                                                                                                                                                                                                                                   | 4778                                                                                         | 6304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2325                                                                           |                                                 |                                                   | 1.39 [1.27, 1.53]                                                                      |                         | •                    |                  |
| Pham2019                                                                                                                                                                                                                                        | 4054                                                                                         | 8078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7156                                                                           | 14864                                           | 13.5%                                             | 1.09 [1.03, 1.15]                                                                      |                         | •                    |                  |
| Yao 2016                                                                                                                                                                                                                                        | 2032                                                                                         | 3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4698                                                                           | 10235                                           | -                                                 | 1.26 [1.19, 1.36]                                                                      |                         |                      |                  |
| Subtotal (95% CI)                                                                                                                                                                                                                               |                                                                                              | 18282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                | 28459                                           | 40.3%                                             | 1.24 [1.07, 1.45]                                                                      |                         | •                    |                  |
| Total events                                                                                                                                                                                                                                    | 10864                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14179                                                                          |                                                 |                                                   |                                                                                        |                         |                      |                  |
| Heterogeneity: Tau <sup>2</sup> -                                                                                                                                                                                                               |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                | 2 (P < 0                                        | .00001);                                          | r = 92%                                                                                |                         |                      |                  |
| Test for overall effect                                                                                                                                                                                                                         | : Z = 2.62                                                                                   | $(\mathbf{P}=0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 005)                                                                           |                                                 |                                                   |                                                                                        |                         |                      |                  |
| 222 4+ 1 1000                                                                                                                                                                                                                                   |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 |                                                   |                                                                                        |                         |                      |                  |
| 3.3.2 At 1 year                                                                                                                                                                                                                                 |                                                                                              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                | F 4 6 6                                         | 10.00                                             | 1 1 F IA 66 1 FAI                                                                      |                         |                      |                  |
| Crivera 2015<br>Forslund 2016                                                                                                                                                                                                                   | 187<br>1264                                                                                  | 265<br>1352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3711<br>2485                                                                   |                                                 |                                                   | 1.15 [0.88, 1.50]<br>1.25 [0.97, 1.61]                                                 |                         |                      |                  |
| McHorney 2017                                                                                                                                                                                                                                   | 4760                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 | -                                                 | 1.56 [1.42, 1.71]                                                                      |                         | <b>.</b>             |                  |
| Mueller 2017                                                                                                                                                                                                                                    | 723                                                                                          | 822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 557                                                                            |                                                 |                                                   | 4.03 [3.13, 5.18]                                                                      |                         |                      |                  |
|                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 |                                                   |                                                                                        |                         |                      |                  |
|                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                 |                                                   |                                                                                        |                         | 1 <b>.</b> .         |                  |
| Pham2019                                                                                                                                                                                                                                        | 1969                                                                                         | 3500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                | 11689                                           | 13.4%                                             | 1.87 [1.73, 2.02]                                                                      |                         |                      |                  |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -                                                                                                                                                              | 1969<br>8903<br>= 0.08; Ch                                                                   | 3500<br>12243<br>1 <sup>2</sup> = 66.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4761<br>13745<br>93, df =                                                      | 11689<br>24103                                  | 13.4%<br>59.7%                                    | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]                                                 |                         | •                    |                  |
| Pham2019<br>Subtotal (95% CI)<br>Total events                                                                                                                                                                                                   | 1969<br>8903<br>= 0.08; Ch                                                                   | 3500<br>12243<br>1 <sup>2</sup> = 66.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4761<br>13745<br>93, df =                                                      | 11689<br>24103<br>4 (P < 0                      | 13.4%<br>59.7%                                    | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]                                                 |                         | •                    |                  |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events                                                                                                 | 1969<br>8903<br>= 0.08; Ch<br>; Z = 4.18<br>19767                                            | 3500<br>12243<br>II <sup>2</sup> = 66.<br>(P < 0.0<br>30525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4761<br>13745<br>93, df =<br>0001}<br>27924                                    | 11689<br>24103<br>4 (P < 0<br>52562             | 13.4%<br>59.7%<br>.00001);<br>100.0%              | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1 <sup>2</sup> = 94%<br>1.53 [1.26, 1.86]    |                         | •                    |                  |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)                                                                                                                 | 1969<br>8903<br>= 0.08; Ch<br>; Z = 4.18<br>19767<br>= 0.07; Ch<br>; Z = 4.29                | $3500 \\ 12243 \\ 1^{2} = 66.3 \\ (P < 0.0 \\ 30525 \\ 1^{2} = 216 \\ (P < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.$                         | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% | <b>0.1</b><br>Dabigatra | •<br>1<br>n Apixaba  | <b>10 1</b><br>n |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif        | 1969<br>6903<br>= 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\ 1^{2} = 66.3 \\ (P < 0.0 \\ 30525 \\ 1^{2} = 216 \\ (P < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.$                         | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% |                         | •<br>n Apixabai      |                  |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif        | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\ 1^{2} = 66.3 \\ (P < 0.0 \\ 30525 \\ 1^{2} = 216 \\ (P < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.$                         | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% |                         | •<br>1<br>n Apixabai |                  |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>6903<br>= 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\ 1^{2} = 66.3 \\ (P < 0.0 \\ 30525 \\ 1^{2} = 216 \\ (P < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.$                         | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% |                         | •<br>1<br>n Apixabal |                  |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Test for subgroup dif        | 1969<br>6903<br>= 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\ 1^{2} = 66.3 \\ (P < 0.0 \\ 30525 \\ 1^{2} = 216 \\ (P < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.$                         | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% |                         | •<br>In Apixabal     |                  |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\ 1^{2} = 66.3 \\ (P < 0.0 \\ 30525 \\ 1^{2} = 216 \\ (P < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.$                         | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% |                         | •<br>I<br>Apixabal   |                  |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>6903<br>= 0.06; Ch<br>: Z = 4.16<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>ferences: ( | $3500 \\ 12243 \\ 1^{2} = 66.3 \\ (P < 0.0 \\ 30525 \\ 1^{2} = 216 \\ (P < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.$                         | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% |                         | •<br>In Apixabal     |                  |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\ 1^{2} = 66.3 \\ (P < 0.0 \\ 30525 \\ 1^{2} = 216 \\ (P < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.$                         | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% |                         | •<br>n Apixabal      |                  |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\ 1^2 = 66. \\ (P < 0.1) \\ 30525 \\ 1^2 = 216 \\ (P < 0.1) \\ Chr^2 = 5. \\ (P < 0.1) \\ Chr^2 = 5. \\ (P < 0.1) \\ Chr^2 = 5. \\ (P < 0.1) \\ (P$ | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)<br>01, df = | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% |                         | •<br>1<br>n Apixabal |                  |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\ 1^{2} = 66.3 \\ (P < 0.0 \\ 30525 \\ 1^{2} = 216 \\ (P < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.0 \\ 1^{2} < 0.$                         | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df<br>0001)               | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% |                         | Apixabal             |                  |
| Pham2019<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br><u>Test for subgroup dif</u> | 1969<br>8903<br>= 0.08; Ch<br>: Z = 4.18<br>19767<br>= 0.07; Ch<br>: Z = 4.29<br>Terences: ( | $3500 \\ 12243 \\ 1^2 = 66. \\ (P < 0.1) \\ 30525 \\ 1^2 = 216 \\ (P < 0.1) \\ Chr^2 = 5. \\ (P < 0.1) \\ Chr^2 = 5. \\ (P < 0.1) \\ Chr^2 = 5. \\ (P < 0.1) \\ (P$ | 4761<br>13745<br>93, df =<br>0001)<br>27924<br>3.35, df -<br>0001)<br>01, df = | 11669<br>24103<br>4 (P < 0<br>52562<br>= 7 (P < | 13.4%<br>59.7%<br>0.00001);<br>100.0%<br>0.00001) | 1.87 [1.73, 2.02]<br>1.76 [1.35, 2.29]<br>1' = 94%<br>1.53 [1.26, 1.86]<br>1; 1' = 97% |                         | Apixabal             |                  |

# Supplementary 4.2: studies reporting adherence to different medications in the same

BMJ Open: first published as 10.1136/bmjopen-2019-034778 on 8 April 2020. Downloaded from http://bmjopen.bmj.com/ on April 16, 2024 by guest. Protected by copyright.



| Rivaroxaban vs                                                                | s Apixa       | ban            |              |               |                     |                                      |          |                  |        |
|-------------------------------------------------------------------------------|---------------|----------------|--------------|---------------|---------------------|--------------------------------------|----------|------------------|--------|
| Study or Subgroup                                                             | Rivarox       |                | Apixa        |               | Weight              | Odds Ratio                           |          | Odds Ratio       | -      |
| Study or Subgroup<br>4.3.1 At 6 months                                        | Events        | Iotai          | Events       | Total         | weight              | M-H, Random, 95% (                   | .I N     | 1-H, Random, 95% |        |
| Coleman 2017                                                                  | 7303          | 12613          |              | 12613         | 10.3%               | 0.84 [0.79, 0.86                     |          | •                |        |
| Coleman 2017<br>McHorney 2017                                                 | 3135<br>10930 | 5762<br>13645  | 3256<br>4778 | 5762<br>6304  | 10.2%<br>10.2%      | 0.92 [0.85, 0.99<br>1.29 [1.20, 1.36 |          | 1.               |        |
| Pham2019                                                                      | 8241          | 16005          | 4054         | 8078          | 10.3%               | 1.05 [1.00, 1.11                     | ]        | · · ·            |        |
| <b>Yao 2016</b><br>Subtotal (95% CI)                                          | 5872          | 23361<br>71386 | 2032         | 3900<br>36657 | 10.3×<br>51.3%      | 0.31 [0.29, 0.33<br>0.80 [0.51, 1.24 |          | •                |        |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: |               |                |              | = 4 (P <      | 0.00001)            | ); <b> ² = 100%</b>                  |          |                  |        |
| 4.3.2 At 1 year                                                               |               | • • • •        |              |               |                     |                                      |          |                  |        |
| Crivera 2015                                                                  | 3162          | 4194           | 167          | 265           | 9.4%                | 1.28 [0.97, 1.66                     | i]       | -                |        |
| Forslund 2016<br>McHorney 2017                                                | 1985<br>10657 | 2074<br>13645  | 1264<br>4760 | 1352<br>6304  | 9.2×<br>10.3×       | 1.55 [1.15, 2.10<br>1.16 [1.08, 1.24 |          |                  |        |
| Mueller 2017                                                                  | 2350          | 2821           | 723          | 822           | 9.6%                | 0.68 [0.54, 0.86                     | )]       |                  |        |
| Pham2019<br>Subtotal (95% CI)                                                 | 5080          | 10194<br>32928 | 1969         | 3500<br>12243 | 10.2%<br>48.7%      | 0.77 [0.71, 0.83<br>1.02 [0.79, 1.33 |          | •                |        |
| Total events                                                                  | 23234         |                | 8903         |               |                     |                                      |          | Ţ                |        |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                 |               |                |              | (P < 0.0      | )0001); P           | - 95%                                |          |                  |        |
| Total (95% CI)                                                                |               | 104314         |              | 48900         | 100.0%              | 0.90 [0.68, 1.19                     | 01       |                  |        |
| Total events                                                                  | 58715         |                | 30868        |               |                     |                                      |          |                  |        |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                 |               |                |              | = 9 (P < I    | 0.00001)            | ); i" = 99%                          | 0.01 0.1 |                  | 10 100 |
| Test for subgroup diff                                                        |               |                |              | l (P = 0.     | 34) <u>, 1² = (</u> | 0%                                   |          | Apixaban Rivarox | aban   |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               | 00<br>00      | ອ              |              |               |                     |                                      |          |                  |        |
| 05                                                                            |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
| 0.1-                                                                          | ♦             |                |              |               |                     |                                      |          |                  |        |
|                                                                               | × .           | <b>&gt;</b>    |              |               |                     |                                      |          |                  |        |
| .15-                                                                          |               | <b>`</b>       |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               | 0.                  |                                      |          |                  |        |
| 0.2.0.1<br>0.01 0.1                                                           | i             |                | 10           | I             | OR<br>100           |                                      |          |                  |        |
| O At 6 months At 1 year                                                       |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |
|                                                                               |               |                |              |               |                     |                                      |          |                  |        |