

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Prognostic models for predicting in-hospital paediatric mortality in resource-limited countries: a systematic review

Manuscript ID bmjo Article Type: Origi Date Submitted by the Author: 21-0 Complete List of Authors: ogera Manuscript ID and Authors Manuscript ID ogera Authors: ogera Manuscript ID ogera Authors: oger	Open open-2019-035045 nal research oct-2019 o, morris; KEMRI-Wellcome Trust Research Programme, a, Lucas; Kenya Medical Research Institute - Wellcome Trust; ersity of Oxford
Article Type: Origi Date Submitted by the Author: 21-0 Complete List of Authors: oger Malla Unive Aluva Rese Agwe	nal research htt-2019 o, morris; KEMRI-Wellcome Trust Research Programme, a, Lucas; Kenya Medical Research Institute - Wellcome Trust;
Date Submitted by the Author: 21-0 Complete List of Authors: oger Malla Unive Aluva Rese Agwe	oct-2019 o, morris; KEMRI-Wellcome Trust Research Programme, a, Lucas; Kenya Medical Research Institute - Wellcome Trust;
Author: 21-0 Complete List of Authors: oger Malla Unive Aluva Rese Agwe	o, morris; KEMRI-Wellcome Trust Research Programme, a, Lucas; Kenya Medical Research Institute - Wellcome Trust;
Malla Unive Aluva Rese Agwe	a, Lucas; Kenya Medical Research Institute - Wellcome Trust;
Engli Depa Onya Scho	aala, Jalemba ; Kenya Medical Research Institute/Wellcome Trust arch Programme, Health Services Unit eyu, Ambrose; Kenya Medical Research Institute, uta, Rachel ; University of Nairobi School of Physical Sciences, ol of Mathematics sh, Mike; University of Oxford, Nuffield Department of Medicine and artment of Paediatrics ango, Nelson ; University of Nairobi School of Physical Sciences, ol of mathematics h, Samuel; KEMRI-Wellcome Trust Research Programme Nairobi
	DIATRICS, STATISTICS & RESEARCH METHODS, Community child h < PAEDIATRICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Prognostic models for predicting in-hospital paediatric mortality in resource-limited

countries: a systematic review

Morris Ogero^{1, 2}, Lucas Malla¹, Jalemba Aluvaala¹, Ambrose Agweyu¹, Rachel Sarguta², Mike English^{1, 3}, Nelson Onyango², Samuel Akech¹

¹Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Nairobi, Kenya; ²School of Mathematics, University of Nairobi, Kenya; and ³Nuffield Department of Medicine, University of Oxford, UK.

Correspondence: Morris Ogero,

KEMRI / Wellcome Trust Research Programme,

P.O Box 43640-00100 Nairobi, Kenya.

mogero@kemri-wellcome.org

Abstract

Objectives: To identify and appraise the methodological rigor of multivariable prognostic models predicting in-hospital paediatric mortality in low- and middle-income countries (LMIC).**Design**: Systematic review of peer-reviewed journals.

Data sources: MEDLINE, CINAHL, Google Scholar, and Web of Science electronic databases since inception to August 2019.

Eligibility criteria: We included model development studies predicting in-hospital paediatric mortality in LMIC.

Data extraction and synthesis: This systematic review followed the CHARMS (Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) framework. The risk of bias assessment was conducted using PROBAST (Prediction model Risk of Bias Assessment Tool). No quantitative summary was conducted due to substantial heterogeneity that was observed after conducting a meta-analysis of the studies included.

Results: Our search strategy identified a total of 4054 unique articles. Among these, 3545 articles were excluded after review of titles and abstracts as they covered non-relevant topics. Full texts of 509 articles were screened for eligibility, of which 15 studies reporting 21 models met the eligibility criteria. Based on the PROBAST tool, risk of bias was assessed in four domains; participant, predictors, outcome, and analyses. The domain of statistical analyses (events per variable, missing data, etc) was the main area of concern where 20/21 models were judged to be of high risk and one model judged to be of unclear risk of bias among the included models.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Conclusion: This review identified 21 models predicting in-hospital paediatric mortality in LMIC. However, most reports characterising these models are of poor quality when judged against recent reporting standards and have a high risk of bias. Future studies should adhere to standardized methodological criteria and progress from identifying new risk scores to validating or adapting existing scores.

Trial registration number: CRD42018088599

Article summary

Strengths and limitations of this study

- This is the first systematic review on methodological quality of prognostic models predicting in-hospital paediatric mortality in resource-limited settings.
- The review was based on robust search strategy with no language restriction yielding a large number of potentially eligible studies, hence it is unlikely that any potentially eligible study was not included.
- Quality of the included models was assessed based on recent reporting standards which we applied to the identified studies and we also highlighted limitations in the existing prognostic models.
- We relied on what was reported to determine the risk of bias of the models. For instance, if no mention was made of internal validation or even verification of the model assumptions, we assumed they were not done as required in prognostic model development.

BMJ Open

Introduction

Over recent decades, there has been considerable progress in improving child survival¹ but child mortality remains high in sub-Saharan Africa relative to the rest of the world.² Paediatric deaths in hospitalized children mostly occur soon after admission,³ and are caused by common conditions such as malaria, pneumonia, and diarrhoeal diseases among others, which are readily treatable by cost-effective interventions.³⁻⁵ In low- and middle-income countries (LMIC), clinicians often use a set of clinical signs as recommended in the guidelines by World Health Organization (WHO) to identify patients at risk of deterioration while making decisions on appropriate treatment.⁶ Clinical criteria recommended by WHO were developed following expert recommendations based on review of evidence from studies reporting risk factors for mortality. Prognostic models, which use statistical equations to predict patients' risk based on the combination of prognostic factors, may improve clinicians' ability to identify high-risk patients and thus improve outcomes.⁷ BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Various clinical prediction models for hospitalised paediatric patients have been developed over the last 3 decades,⁸ however, there are doubts whether appropriate methodology has been used in their development.⁹ Notably, none are currently recommended for use in existing paediatric clinical practice guidelines in LMIC and systematic reviews of the methodology used in their development have been strongly recommended.¹⁰ This systematic review addresses this need and aims at identifying and summarizing existing studies reporting prognostic models for predicting in-hospital paediatric mortality in LMIC. Specifically, the research summarises the evidence from the published studies and appraises the methodological rigor of each existing model.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Methods

Protocol and registration

We registered the protocol for this review at PROSPERO (International Prospective Register of Systematic Reviews) (CRD42018088599).¹¹ This work is reported as per guidelines by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).¹²

Eligibility criteria

Reports were eligible for inclusion if they met the following criteria:

- Study design: peer-reviewed studies whose design was either a randomized controlled trial, cohort (prospective or retrospective), cross-sectional, or case-control observational study.
- Outcome: studies fitting models predicting all-cause in-hospital mortality in a general paediatric ward were included. Studies predicting post-discharge mortality, trauma or operative mortality were excluded.
- 3. Target population and setting: studies on children aged over 1-month old admitted in general paediatric wards within LMIC as defined by the World Bank¹³ were included. Studies whose predictive models were targeting patients in intensive care unit (ICU) or high dependency unit (HDU) were excluded because these facilities are largely unavailable in low-resource settings. We also excluded studies whose predictive models targeted uncommon conditions in children e.g., chronic kidney disease, cancer, diabetes. However, if a study focused on one of the common childhood illnesses such as malaria, pneumonia, meningitis, anaemia, and diarrhoea/dehydration³ was included.

1	
2 3	
4	4. Type of studies: we included studies whose main objective was deriving a predictive
5	model(a) or accrime system(a) We evoluded commentaries editorials expert views
6	model(s) or scoring system(s). We excluded commentaries, editorials, expert views,
7	conference proceedings, case reports, case-series, reviews and explanatory studies that
8 9	concrete proceedings, case reports, case-series, reviews and explanatory studies that
10	mainly generate hypothesis ¹⁴ .
11	manny generate hypothesis .
12	5. Models: studies that reported multivariable model with at least 2 variables/predictors
13 14	
15	were included.
16	
17	6. Full text and language: We excluded studies that were not available in full text. Non-
18	
19 20	English language studies were translated using Google Translate. Hence no language
21	
22	restriction was made.
23	
24 25	
26	Connol structure
27	Search strategy
28	
29	As recommended by CHARMS checklist, we came up with seven key items (supplementary file
30 31	
32	1 (Table 1)) applicable to our study that guided the framing of the search strategy, review aim
33	
34	and eligibility criteria.
35 36	We need Medical Cabinet Handlines (MeCH) to me address prints becaused to identify
37	We used Medical Subject Headlines (MeSH) terms where appropriate keywords to identify
38	articles with prognostic models relevant for this review. A search of articles was conducted in
39	articles with prognostic models relevant for this review. A search of articles was conducted in
40 41	MEDLINE, Google Scholar, and CINAHL (via EbscoHost) since inception to August 2019. We
41	MEDERAE, Google Scholar, and Charmer (via Ebsectrost) since inception to Magast 2017. We
43	also performed a search in Web of Science to identify additional reports that cited the identified
44	
45	studies. Reference lists of all identified articles were searched manually to identify other
46 47	
48	potentially eligible studies.
49	
50	We manually searched reference lists of all relevant articles to identify additional eligible
51 52	
52 53	studies. Final search results were collated in EndNoteX7 [™] . Detailed search terms and strategy
54	and married in symplementary file 1/T-1-1-2)
55	are provided in supplementary file 1(Table 3).
56 57	
57 58	6
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Prior to screening titles and abstracts, 2 reviewers (MO and LM) standardized the approach to be used in the process of screening. We used a sample of 30 search results to train and familiarize reviewers with the screening process. Titles and abstracts of the studies were screened by the two reviewers. Discrepancies were resolved via discussion and, when necessary, a final decision was adjudicated by a third reviewer (JA).

Data Extraction

Data were extracted from relevant articles in accordance with the Cochrane Prognosis Methods' guidance; the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS).¹⁵ From each study included, data were extracted on participant enrolment, study design, study population characteristics, location, sample size, number and selection of predictors, study dates, handling of continuous predictors, missing data, method of modelling (e.g., logistic regression, survival), verification of model assumptions, internal validation methods (e.g., random split of data, and resampling techniques); model presentation (e.g., nomogram, score chart, or regression formula with coefficients); and model performance metrics including discrimination -area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI); calibration; classification measures such as sensitivity, specificity, positive, and negative predictive values. We further investigated from literature to determine if included models have been externally validated elsewhere. For articles that described development of multiple prognostic models, we treated each model separately whenever the predictor-outcome association produced different model estimates. For each study, extracted data elements were compared between two reviewers (MO & LM), and any disagreements were resolved by discussion with the third reviewer (JA).

BMJ Open

No quantitative summary was conducted due to substantial heterogeneity that was observed after conducting a meta-analysis of the studies included.

Assessment of methodological quality

The *risk of bias* (shortcomings in the predictive models that might lead to unreliable predictions)¹⁵ of the included studies was assessed based on the Prediction study Risk Of Bias Assessment Tool (PROBAST).¹⁶¹⁷ We assessed the risk of bias (RoB) for each model, in four domains: participant selection (e.g. study design), predictors (e.g. assessment of candidate and final model predictors), outcome, and analysis (e.g. handling of missing data, the handling of continuous predictors) see supplementary file 1 (Table 2). For each domain, signalling questions have five possible answers: yes; probably yes; probably no; no; and no information. Any positive answer (yes, or probably yes) suggests low RoB. Each domain had three possible outcomes: low; high; or unclear RoB. Using these domain outcomes, we came up with an overall judgement of RoB for each model. As recommended by PROBAST, if a prediction model was judged as low on all five domains, we assigned it an overall judgment of "low RoB". If a model was rated as high at least in one domain, we judged it as having "high RoB". If at least one domain of the model was rated as unclear and the rest of the domains rated as low, it was judged as having "unclear RoB". If a predictive model was rated as low RoB for all domains, and it has not been subjected to any external validation, we downgraded it to "high RoB".

Patient and public involvement

No patient involved.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Results

Characteristics of the included studies

Our search strategy identified a total of 4054 unique articles, 3545 articles were excluded after review of titles and abstracts as they reported non-relevant topics. Full texts of 509 articles were screened for eligibility, of which 15 primary studies reporting 21 developed models met the eligibility criteria (Figure 1). The eligible studies analysed data for patients who were below 15 years of age with median mortality being 6.7% (range 1.2% to 43.9%).^{18 19} While majority of the models were developed for general cases in paediatric wards (n=9), some were tailored for specific paediatric groups defined by common diagnoses such as febrile illness (n=1),²⁰ malaria (n=2), ^{21 22} pneumonia (n=4),^{18 23-25} malnutrition (n=2) ^{26 27} and other infectious diseases (n=3) (see supplementary file 1).

Most of the included studies have been published post year 2000 (n = 20) except for one study ²⁶ published in 1996. The latest data used in the models under review were from 2016 to 2017 by Rosman *et al.*²⁸ and the oldest data were utilized by Draimax *et al.*²⁶ from 1986 to 1988. Five reports of the 15 included studies utilized data from at least two centres of which 3 studies ²¹ were conducted in multiple countries including sub-Saharan Africa and Asian countries (Figure 2). Of the reviewed studies, most of the information we were abstracting were either not reported or were partially reported, an indication of non-adherence to the TRIPOD (Transparent Reporting of a Multivariable Prognostic Model for Individual Prognosis or Diagnosis) guidelines.^{21 22 29 30}

Summary of issues in methodology of the reviewed models

Candidate predictors

There were 61 distinct predictors used in the final reported models (a median of 7 predictors in any one model). Initial selection of the candidate predictors was mostly based on univariable analysis except for three studies²⁶ where the selection was based on literature reviews or clinical relevance. Backward stepwise selection method was used in 6 models in a multivariable analysis to determine final model predictors. Commonly included predictors in the final models were: altered consciousness, malnutrition indicators, vital signs, and signs of respiratory distress (see Figure 3). Some models included predictors that were either not easy to obtain or required laboratory techniques.²⁶ Of the 13 models including continuous predictors, 8 models categorized continuous predictors where a continuous scale would have been possible. Two out of 13 models applied other techniques such as fractional polynomial^{29 31 32} and restricted cubic splines²⁷ to determine the suitable functional form of the continuous predictors (See supplementary file 2).

Sample size, events per variable (EPV) and missing data

Sample size ranged from 168 ²⁸ to 50,249 ³³ with a median of 1307. The median EPV was 21(IQR 8.3 - 32.5) of which 7 models had less than 10 EPVs, suggestive of insufficient sample sizes which is prone to over-fitting. For instance, 60 deaths were reported in the dataset used to develop PEDIA-Immediate score in the study by Berkley *et al.*³⁴ In reference to the rule that a study developing predictive model should have a minimum of 10 events for each independent predictor in a prognostic model,³⁵ a model with, at the most, 6 predictors should have been considered but 10 predictors were considered instead hence making EPV 6.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Proportions of missing data was not always reported. Handling of missing data varied across the reviewed studies as follows: 6 models did not report handling of missing data; 8 used complete case analysis; 4 used multiple imputation (using Chained Equations); and one study²⁷ used single imputation.

Model development

Majority of the studies applied logistic regression, one study³¹ used Cox regression, one study³⁴ used Spiegelhalter/Knill-Jones method and another study²² used a machine learning technique (classification and regression trees (CRT)) in model development. Verification of model assumptions was not reported in most of the studies. For instance, George *et al*³¹ despite utilizing Cox regression to develop their model, did not report the verification of proportional hazard assumption nor explore the possibility of competing risks. Other regression assumptions e.g. multicollinearity was equally not reported. However, since backward elimination method disregards redundant variables, we inferred the satisfaction of multicollinearity assumption if this method was applied.³⁶ Five studies developed models using data from different countries/centres but none of them clustered their analysis by source of data in a multilevel model to account for heterogeneity. Ignoring clustering leads to a biased predictor effect.³⁷

Model performance evaluation & presentation

Performance measures (both calibration and discrimination) were poorly reported in most of the studies and in most cases AUC for discrimination was reported (n=20). Performance of the derived models was evaluated in 12 models using either split-sample, resampling methods, or separate datasets. Except for the model derived by George *et al*,²⁰ all other models did not report both apparent discrimination (without any adjustment for optimism) and optimism-corrected discrimination measures. Despite inadequate reporting of the models' performance, 16 models

BMJ Open

reported AUCs \geq 0.80, an indication of promising models. Apart from the following exceptions; *Lambarene Organ Dysfunction* (LOD) score,²¹ *Paediatric Early Death Index for Africa* (PEDIA) score,¹⁹ *Signs of Inflammation in Children that Kill* (SICK) score,³⁸ *Respiratory Index of Severity in Children*(RISC) score,¹⁸ and *Modified Respiratory Index of Severity in Children* (mRISC) score,³⁸ other scores have not been externally validated (by independent investigators using diverse populations). Only 2 studies²⁴ developing 4 models provided a full model formula (both coefficients and intercept/baseline function) in their results as recommended.^{39 40} While most of the models (n=17) were presented as simplified integer scores, only a few were assigned weights according to the regression coefficients.

Risk of bias (RoB) assessment

Based on the PROBAST tool, RoB was assessed in four domains; participants, predictors, outcome, and analyses. Figure 4 summarizes the RoB assessment across all models included in this review, the domain of outcome was deemed to be of low risk in all models. The domain of statistical analyses was the main area of concern where 20/21 models were judged to be of high risk and one model judged to be of unclear RoB (see Figure 5). Full details are provided in supplementary file 3. Most of the models were downgraded to high RoB because of either inadequate sample size (EPV <10) (n=7/21), poor handling of missing data (n=17/21), or using discouraged techniques to perform model selection such as univariable analysis (n=18/21), a sub-optimal approach in analysing continuous predictors (n=8), and lack of reporting on verification of model assumptions (n=13). Details on each PROBAST criterion (20 signalling questions) across domains are provided in the supplementary file 3.

Discussion

Summary of key findings

We conducted a systematic review to identify published scores predicting in-hospital mortality for paediatrics in resource-limited countries. Fifteen studies that described the development of 21 prognostic models were identified. We described characteristics of these studies as well as the methodological quality of the included models by using agreed recent guidelines applicable to predictive models. We have identified several important quality deficiencies such as inadequate reporting and other methodological concerns, including poor handling of missing data, automated selection of predictors, categorization of continuous predictors, inadequate EPV and the poor presentation of the proposed model for use. As a result, a majority (21 out of 22) of the included models were found to be of poor methodological quality and consequently judged to potentially high risk of bias in predictions (Figure 5).

Our findings suggest that predictive models fail to meet recently agreed methodological criteria in various ways. Firstly, in this review we observed that univariable analysis was routinely used in 18 out of 21 models in the selection of candidate predictors to be used in a multivariable analysis. This strategy tends to leave out possibly important prognostic factors which might be insignificant in a univariable analysis but turn out to be significant when combined with other predictors.^{39 40} *A priori* selection of predictors using expert opinion, clinical intuition or literature is recommended for this purpose,^{41 42} however only two models in this review employed this approach.^{39 40}

Small sample sizes in model development can lead to poor predictive performance, over-fitting, and biased effect estimates. Prognostic models must have a minimum of 10 events per candidate predictor, as this is the accepted norm⁴³⁻⁴⁵ and underpowered models arising from inadequate

BMJ Open

events per variable (EPV) increase the possibility of spurious results.³⁵ In this review, 7 of 21 models had inadequate sample sizes (EPV<10) and there was no information on whether bootstrapping, which serves to reduce overfitting was used in these models.⁴⁶

Just like most of the epidemiological studies, missing data is a common problem which is solved using multiple imputation or other reasonable approaches, but this was rarely the case in the model development studies under this review. For instance, 8/21 models used complete case analysis (CCA), 4/21 used multiple imputation, and 6/21 models did not report how missing data were handled and therefore we assumed CCA was used. Following Harrell's guidelines,47 CCA should only be used if the percentage of missingness is < 5% but the appropriateness of the CCA approach could not be ascertained as most of the included studies failed to report the proportion of missing data per variable. Inappropriate use of CCA results in use of only a small subset of the data which cannot be regarded as a random sample from the target population unless data are missing completely at random(MCAR),⁴⁸ a mechanism which is rarely in practice.¹⁵ Consequently, there are concerns about possible loss of precision in inferences and the potential biases of the estimated parameters⁴⁹ in the models employing CCA. Finally, handling of continuous predictors was a concern in this review. Of the 13 models including continuous predictors, 8 models categorized continuous predictors where a continuous scale would have been possible. While this approach is intuitive to most researchers, its simplicity comes at a considerable cost of predictive performance.⁵⁰ The resulting prognostic models have been shown to have poor predictive accuracy because of the loss of statistical power and information. It is recommended that the nature of continuous data should be retained or handled by using other techniques such as regression splines or LOESS functions.^{50 51} In this review, appropriate

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

BMJ Open

methods of transforming continuous data was done by only 2 models which applied fractional polynomial^{29 31 32} and restricted cubic splines.²⁷

Comparison with Other Studies

Methods used to assess quality measures of the included models in the current study have been applied previously to critically evaluate the quality of predictive models in other specialties.⁵²⁻⁵⁴ Just like the findings of this review, other previous reviews ^{9 55-57} describing the development of prognostic models highlighted a lot of flaws including inappropriate statistical analyses, poor reporting of important clinical and methodological information needed for validation of the model, and lack of external validations. Incomplete reporting of clinical models stops future studies on prognostic research from building on the information of already existing models. This has been marked as an important source of wasted research efforts.⁵⁸ For example, external validation of prognostic models requires a full model formula to enable direct estimation of survival probabilities.³⁹ However, this was presented in only 4 models. Thus, this review highlights the need for researchers to adhere to the TRIPOD statement while developing prognostic models. Of note, the quality of clinical predictive models does not appear to have improved over time as previous reviews from 1996,⁵⁹ 1997,⁶⁰ 2001,⁶¹ 2005,⁶² 2011,⁸ 2012,⁶³ 2016,^{64 65} 2017, ⁶⁶ to 2019⁶⁷ have consistently identified suboptimal methodologies in these predictive models. Poorly derived models may result in overoptimistic results and misleading performance. Presumably there are reasons why many prognostic models are of poor quality, including pressure to publish new predictive model regardless of the clinical value of the resultant model.68

BMJ Open

Implications of this study

Most of the included models have not been externally validated despite repeated recommendations that this is needed.^{39 40 69-72} This suggests that researchers focus more on deriving new models, often using similar prognostic factors, rather than validating and improving existing in-hospital mortality prediction models. This leaves healthcare policy makers with doubts as to which model to recommend in their setting. Large datasets such as that of the Clinical Information Network (CIN) ^{3 73 74} now exist in resource-limited settings. Future studies on prognostic research should leverage such datasets to externally validate competing models identified in this review for comparative performances as recommended by Collins *et al*,⁷⁵ and if necessary, predictive performance of such models should be improved by addition of new prognostic factors. Even so, the application of these models is likely to be impaired as most of the models reported have simplified the original predictor coefficients. This has an implication on model performance during external validation due to loss in predictive accuracy arising from rounding coefficients to nearest integers.¹⁵

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Strengths and limitations

To our knowledge, this is the first review identifying models predicting in-hospital paediatric mortality in resource-limited settings. Our robust search strategy yielded a large number of potentially eligible studies, hence it is unlikely that any potentially eligible study was not included. The quality of the included models was assessed based on recent reporting standards and applied to the identified studies. For instance, if no mention was made of internal validation or even verification of the model assumptions, it could not be determined whether these crucial steps of model development were carried out or not. Thus, models that could have been

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

otherwise rated as low risk of bias were rated as either unclear or high risk of bias. Despite this, we still hold that complete reporting of any proposed model is necessary to facilitate external validation and its subsequent application in practice.

Conclusion

Rigorously developed and robustly validated promising predictive models have the potential for improving child survival in resource-limited countries. This review identified models predicting in-hospital mortality for paediatrics. However, most are of poor quality and have high risk of bias. Our research highlights the need to improve on the identified quality deficiencies when developing prognostic models in the future by adhering to existing generally accepted standardized methodological criteria. Majority of the derived models have not been externally validated as required. Inadequate reporting observed in the included models hinders rigorous external validation by other researchers, leave alone implementing them in practice. Rather than developing new prognostic models, researchers should carry out comprehensive joint external validation of the identified models using large datasets ideally collected over extended time periods and different locations. This will allow head-to-head comparisons and adaptation of the competing models, if necessary, to ascertain their generalizability.

Funding

Funds from The Wellcome Trust (#207522) awarded to ME as a Senior Fellowship together with additional funds from a Wellcome Trust core grant awarded to the KEMRI-Wellcome Trust Research Programme (#092654) supported this work. The funders had no role in drafting or submitting this manuscript.

Author Statement

The roles of the contributors were as follows: ME, SA, and AA conceptualized the study. MO, LM and JA conducted electronic searches to identify eligible models and did analyses. MO drafted the initial manuscript with SA, NO, RS, AA, and ME contributed to its development. All authors read and approved the final manuscript.

eliez oni

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Competing interests

The authors declare no conflicts of interest.

Data sharing statement

No additional data are available.

1. World Health Organization. Child mortality rates plunge by more than half since 1990 but global MDG

http://www.who.int/mediacentre/news/releases/2015/child-mortality-report/en/

2. Lucia Hug DS, Danzhen You. Levels and Trends in Child Mortality: UNICEF; 2019 [Available from:

target missed by wide margin: WHO; 2015 [Available from:

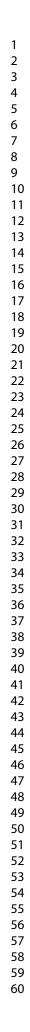
References

https://data.unicef.org/resources/levels-and-trends-in-child-mortality/
3. Ayieko P, Ogero M, Makone B, et al. Characteristics of admissions and variations in the use of basic
investigations, treatments and outcomes in Kenyan hospitals within a new Clinical Information
Network. Archives of disease in childhood 2015:archdischild-2015-309269.
4. World Health Organization. Serious childhood problems in countries with limited resources.
Geneva2004.
5. World Health Organization. Children: reducing mortality: WHO; 2017 [Available from:
http://www.who.int/mediacentre/factsheets/fs178/en/
 World Health Organization. Handbook IMCI: integrated management of childhood illness. Geneva2005.
7. Vogenberg FR. Predictive and prognostic models: implications for healthcare decision-making in a modern recession. American health & drug benefits 2009;2(6):218.
8. Maguire JL, Kulik DM, Laupacis A, et al. Clinical prediction rules for children: a systematic review.
<i>Pediatrics</i> 2011;128(3):e666-e77. doi: 10.1542/peds.2011-0043
 Bouwmeester W, Zuithoff NP, Mallett S, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS medicine 2012;9(5):e1001221.
10. Altman DG. Systematic reviews in health care: Systematic reviews of evaluations of prognostic
variables. BMJ: British Medical Journal 2001;323(7306):224.
11. Ogero M, Malla L, Agweyu A, et al. Prognostic models predicting in-hospital mortality of paediatrics in resource-limited countries: systematic review. 2018
12. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-
analyses: the PRISMA statement. PLoS medicine 2009;6(7):e1000097.
13. WORLD BANK. World Bank Country and Lending Groups: WOLD BANK; 2019 [Available from:
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-
lending-groups
14. Shmueli G. To explain or to predict? <i>Statistical science</i> 2010:289-310.
15. Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic
reviews of prediction modelling studies: the CHARMS checklist. <i>PLoS medicine</i>
2014;11(10):e1001744.
16. Wolff RF, Moons KG, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. <i>Annals of Internal Medicine</i> 2019;170(1):51-58.

- Moons KG, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. *Annals of Internal Medicine* 2019;170(1):W1-W33.
- Reed C, Madhi SA, Klugman KP, et al. Development of the Respiratory Index of Severity in Children (RISC) score among young children with respiratory infections in South Africa. *Plos One* 2012;7(1):e27793-e93. doi: 10.1371/journal.pone.0027793
- 19. Berkley JA, Ross A, Mwangi I, et al. Prognostic indicators of early and late death in children admitted to district hospital in Kenya: cohort study. *BMJ (Clinical Research Ed)* 2003;326(7385):361-61.

BMJ Open

20
36. Vijay Kotu BD. Feature Selection. In: Vijay Kotu BD, ed. Data Science Concepts and Practice2019:467- 90.
35. Concato J, Feinstein AR, Holford TR. The risk of determining risk with multivariable models. Annals of internal medicine 1993;118(3):201-10.
 Lowlaavar N, Larson CP, Kumbakumba E, et al. Pediatric in-Hospital Death from Infectious Disease in Uganda: Derivation of Clinical Prediction Models. <i>Plos One</i> 2016;11(3):e0150683-e83. doi: 10.1371/journal.pone.0150683
33. Mpimbaza A, Sears D, Sserwanga A, et al. Admission Risk Score to Predict Inpatient Pediatric Mortality at Four Public Hospitals in Uganda. <i>Plos One</i> 2015;10(7):e0133950-e50. doi: 10.1371/journal.pone.0133950
Ebola Virus Disease. <i>Plos Neglected Tropical Diseases</i> 2017;11(2):e0005265-e65. doi: 10.1371/journal.pntd.0005265
Paediatric Emergency Triage (PET) Score. <i>BMC Medicine</i> 2015;13(1):1-12. doi: 10.1186/s12916- 015-0407-3 32. Hartley M-A, Young A, Tran A-M, et al. Predicting Ebola Severity: A Clinical Prioritization Score for
study*. <i>Critical Care Medicine</i> 2012;40(3):952-59. 31. George EC, Walker AS, Kiguli S, et al. Predicting mortality in sick African children: the FEAST
30. Conroy ALP, Glover SJMD, Hawkes MMD, et al. Angiopoietin-2 levels are associated with retinopathy and predict mortality in Malawian children with cerebral malaria: A retrospective case-control
falciparum malaria in african children: findings from a large randomized trial. <i>Clinical Infectious Diseases: An Official Publication Of The Infectious Diseases Society Of America</i> 2012;54(8):1080-90. doi: 10.1093/cid/cis034
resource-limited settings. <i>Pediatrics</i> 2019;143(5):e20183657. 29. von Seidlein L, Olaosebikan R, Hendriksen ICE, et al. Predicting the clinical outcome of severe
Tropical Medicine & International Health 2013;18(7):871-78. doi: 10.1111/tmi.12137 28. Rosman SL, Karangwa V, Law M, et al. Provisional validation of a pediatric early warning score for
27. Olson D, Davis NL, Milazi R, et al. Development of a severity of illness scoring system (inpatient triage, assessment and treatment) for resource-constrained hospitals in developing countries.
 Dramaix M, Brasseur D, Donnen P, et al. Prognostic indices for mortality of hospitalized children in central Africa. American Journal Of Epidemiology 1996;143(12):1235-43.
in Human Immunodeficiency Virus–negative Children Presenting to Hospital in 7 Low-and Middle-income Countries. 2019
External Validation of RISC and mRISC, and Local Tool Development (RISC-Malawi) from Malawi. <i>PLoS ONE</i> 2016;11(12):1-13. doi: 10.1371/journal.pone.0168126 25. Gallagher KE, Knoll MD, Prosperi C, et al. The Predictive Performance of a Pneumonia Severity Score
respiratory illness in Western Kenya, 2009-2012. <i>Plos One</i> 2014;9(3):e92968-e68. doi: 10.1371/journal.pone.0092968 24. Hooli S, Colbourn T, Lufesi N, et al. Predicting Hospitalised Paediatric Pneumonia Mortality Risk: An
Ugandan children with severe malaria: a retrospective case-control study. <i>Plos One</i> 2011;6(2):e17440-e40. doi: 10.1371/journal.pone.0017440 23. Emukule GO, McMorrow M, Ulloa C, et al. Predicting mortality among hospitalized children with
2009;200(12):1834-41. doi: 10.1086/648409 22. Erdman LK, Dhabangi A, Musoke C, et al. Combinations of host biomarkers predict mortality among
015-0407-3 21. Helbok R, Kendjo E, Issifou S, et al. The Lambaréné Organ Dysfunction Score (LODS) is a simple clinical predictor of fatal malaria in African children. <i>Journal of Infectious Diseases</i>
Paediatric Emergency Triage (PET) Score. BMC Medicine 2015;13:174-74. doi: 10.1186/s12916-


- 37. Debray T, Moons KG, Ahmed I, et al. A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis. *Statistics in medicine* 2013;32(18):3158-80.
- 38. Kumar N, Thomas N, Singhal D, et al. Triage score for severity of illness. *Indian pediatrics* 2003;40(3):204-10.
- 39. Moons KGMP, Altman DGD, Reitsma JBMDP, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Annals of Internal Medicine 2015;162(1):W1-W73.
- 40. Collins GSP, Reitsma JBMDP, Altman DGD, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. *Annals of Internal Medicine* 2015;162(1):55-63.
- 41. Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. *Annals of internal medicine* 1999;130(6):515-24.
- 42. Kattan MW, Harrell FE. We should not be so quick to abandon the use of domain experts and full models (letter commenting: J Clin Epidemiol. 2015; 71C: 76--85.). *Journal of clinical epidemiology* 2016;75:131.
- 43. Concato J, Peduzzi P, Holford TR, et al. Importance of events per independent variable in proportional hazards analysis I. Background, goals, and general strategy. *Journal of clinical epidemiology* 1995;48(12):1495-501.
- 44. Peduzzi P, Concato J, Feinstein AR, et al. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. *Journal of clinical epidemiology* 1995;48(12):1503-10.
- 45. Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. *Journal of clinical epidemiology* 1996;49(12):1373-79.
- 46. A bootstrapping approach to reduce over-fitting in genetic programming. Proceedings of the 15th annual conference companion on Genetic and evolutionary computation; 2013. ACM.
- 47. Harrell FE. Regression Modeling Strategies. BIOS 2014;330
- 48. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. *Stat Med* 2011;30(4):377-99. doi: 10.1002/sim.4067
- 49. Molenberghs G, Fitzmaurice G, Kenward MG, et al. Handbook of missing data methodology: CRC Press 2014.
- 50. Collins GS, Ogundimu EO, Cook JA, et al. Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model. *Statistics in medicine* 2016;35(23):4124-35.
- 51. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. *Statistics in medicine* 2006;25(1):127-41.
- 52. Ensor J, Riley RD, Moore D, et al. Systematic review of prognostic models for recurrent venous thromboembolism (VTE) post-treatment of first unprovoked VTE. *BMJ open* 2016;6(5):e011190.
- 53. Smit HA, Pinart M, Antó JM, et al. Childhood asthma prediction models: a systematic review. *The Lancet Respiratory Medicine* 2015;3(12):973-84. doi: 10.1016/S2213-2600(15)00428-2
- 54. Hodgson LE, Sarnowski A, Roderick PJ, et al. Systematic review of prognostic prediction models for acute kidney injury (AKI) in general hospital populations. *BMJ open* 2017;7(9):e016591.
- 55. Collins GS, de Groot JA, Dutton S, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. *BMC medical research methodology* 2014;14(1):40.
- 56. Collins GS, Omar O, Shanyinde M, et al. A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriate methods. *Journal of clinical epidemiology* 2013;66(3):268-77.

BMJ Open

57. Fahey M, Crayton E, Wolfe C, et al. Clinical prediction models for mortality and functional outcome following ischemic stroke: A systematic review and meta-analysis. <i>PloS one</i> 2018;13(1):e0185402.
58. Glasziou P, Altman DG, Bossuyt P, et al. Reducing waste from incomplete or unusable reports of biomedical research. <i>The Lancet</i> 2014;383(9913):267-76.
59. Kwakkel G, Wagenaar RC, Kollen BJ, et al. Predicting disability in stroke—a critical review of the literature. <i>Age and ageing</i> 1996;25(6):479-89.
60. Laupacis A, Sekar N. Clinical prediction rules: a review and suggested modifications of methodological standards. <i>Jama</i> 1997;277(6):488-94.
61. Counsell C, Dennis M. Systematic review of prognostic models in patients with acute stroke. Cerebrovascular diseases 2001;12(3):159-70.
62. Jacob M, Lewsey JD, Sharpin C, et al. Systematic Review and Validation of Prognostic Models in Liver Transplantation. <i>Liver Transplantation</i> 2005;11(7):814-25.
63. Moons KGM, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External validation, model updating, and impact assessment. <i>Heart</i> 2012;98(9):691-98.
64. Damen JA, Hooft L, Schuit E, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. <i>Bmj</i> 2016;353:i2416.
65. Cruz GD, Strathe AB, Rossow HA, et al. Characterizing bovine adipocyte distribution and its relationship with carcass and meat characteristics using a finite mixture model. <i>J Anim Sci</i> 2012;90(9):2995-3002. doi: 10.2527/jas.2011-4838
66. Singendonk MMJ, Tabbers MM, Benninga MA, et al. Pediatric Gastroesophageal Reflux Disease: Systematic Review on Prognosis and Prognostic Factors. <i>Journal Of Pediatric Gastroenterology</i>

 And Nutrition 2017 doi: 10.1097/MPG.00000000000000697
 67. Carrillo-Larco RM, Altez-Fernandez C, Pacheco-Barrios N, et al. Cardiovascular Disease Prognostic Models in Latin America and the Caribbean: A Systematic Review. *Global heart* 2019;14(1):81-93.

- 68. Vickers AJ, Cronin AM. Everything you always wanted to know about evaluating prediction models (but were too afraid to ask). *Urology* 2010;76(6):1298-301.
- 69. Ewout W. Steyerberg KGMM, Danielle A. van der Windt3 Jill A. Hayden, Pablo Perel,, Sara Schroter RDR, Harry Hemingway, Douglas G. Altman*, for the PROGRESS Group. Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research. *PLOS Medicine* 201;10(2) doi: 10.1371/journal.pmed.100138110.1136/bmj.e559510.1371/jour10.1136/bmj.e5793
- 70. Bleeker S, Moll H, Steyerberg E, et al. External validation is necessary in prediction research:: A clinical example. *Journal of clinical epidemiology* 2003;56(9):826-32.
- 71. Altman DG, Royston P. What do we mean by validating a prognostic model? *Statistics in medicine* 2000;19(4):453-73.
- 72. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. *European heart journal* 2014:ehu207.
- 73. Tuti T, Bitok M, Malla L, et al. Improving documentation of clinical care within a clinical information network: an essential initial step in efforts to understand and improve care in Kenyan hospitals. BMJ global health 2016;1(1):e000028.
- 74. Gachau S, Ayieko P, Gathara D, et al. Does audit and feedback improve the adoption of recommended practices? Evidence from a longitudinal observational study of an emerging clinical network in Kenya. *BMJ Global Health* 2017;2(4):e000468.
- 75. Collins GS, Moons KG. Comparing risk prediction models: British Medical Journal Publishing Group, 2012.

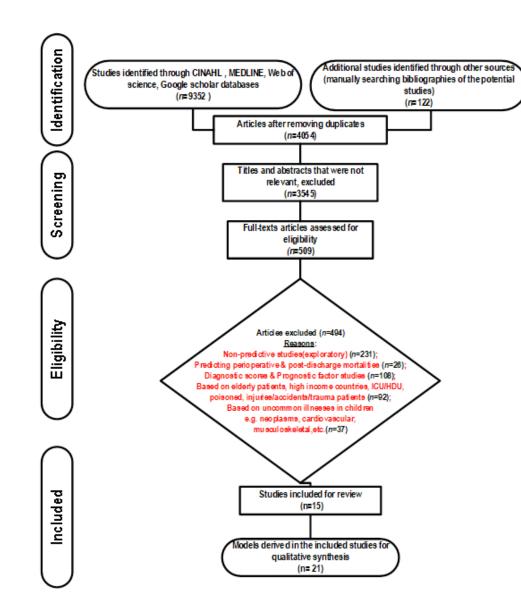


Figure 1: PRISMA flow diagram showing procedure used to identify and select pediatric prognostic models reviewed.

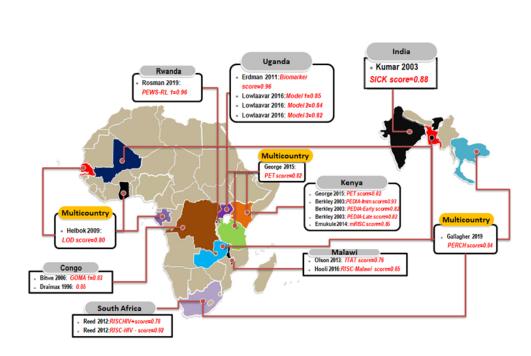


Figure 2: Included prognostic models by country. Text highlighted in red are the names of the models with their corresponding discrimination measures. Key: PEWS-RL score=Paediatric Early Warning Score for Resource-Limited Settings; SICK score=Signs of Inflammation in Children that Kill; PET score= Paediatric Emergency Triage; mRISC score= Modified Respiratory Index of Severity in Children score; RISC score= Respiratory Index of Severity in Children score; PERCH severity score= Pneumonia Etiology Research for Child Health severity score; LOD score= Lambarene Organ Dysfunction score; CRT= Classification and Regression Trees; ITAT Score= Inpatient Triage Assessment and Treatment score; PEDIA score= Paediatric Early Death Index for Africa score BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

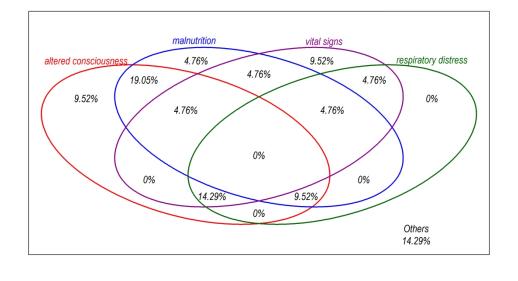
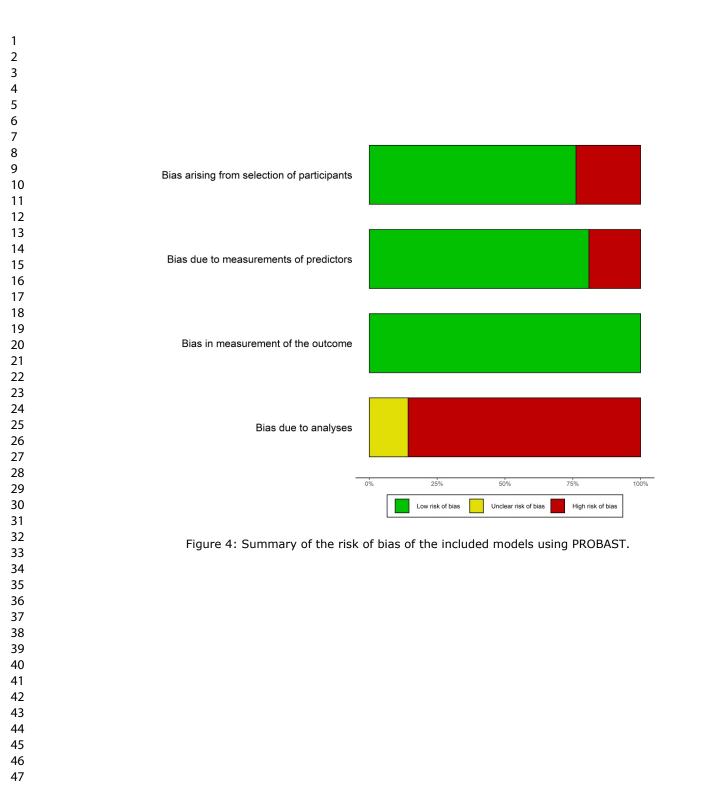



Figure 3: Top four categories of predictors in the models of the reviewed reports: altered consciousness (coma, prostration, not alert, unconscious); malnutrition indicators (kwashiorkor, edema, weight-for-height z-score, weight-for-age z-score, mid-upper arm circumference-MUAC, wasting); vital signs (temperature, respiratory rate, heart rate, oxygen saturation); signs of respiratory distress (indrawing, lung crepitation, difficult breathing, grunting).

228x127mm (300 x 300 DPI)

		Ris	k of bias doma	ins	
	D1	D2	D3	D4	Overall
Berkley 2003 (PEDIA -Immediate score)	+	+	+	X	
Berkley 2003(PEDIA -Early score)	+	+	+	X	X
Berkley 2003(PEDIA -Late score)	+	+	+	X	X
Bitwe 2006 (Goma score)	+	+	+	X	X
Draimax 1996	+	X	+	X	X
Kumar 2003(SICK score)	+	+	+	X	X
Geoge 2015 (PET score)	+	+	+	X	X
Emukule 2014 (mRISC score)	×	X	+	X	X
Reed 2012 (RISC HIV+ score)	+	+	+	X	X
Reed 2012 (RISC HIV- score)	+	+	+	X	X
Hooli 2016(RISC-Score Malawi)	×	+	+	X	X
Gallagher 2019(PERCH Score)	+	+	+	X	X
Helbok 2009(LOD score)	+	+	+	X	X
Erdman 2011(logistic regression)	+	+	+	X	×
Erdman 2011(CRT)	+	+	+	X	X
Lowlaavar 2016 (Model 1)	+	X	+	?	X
Lowlaavar 2016 (Model 2)	+	X	+	?	X
Lowlaavar 2016 (Model 3)	+	+	+	?	?
Mpimbaza 2015	X	+	+	X	X
Olson 2013(ITAT score)	X	+	+	X	X
Rosman 2019(PEWS-RL score)	X	+	+	X	X
Domains:					Judgemen
	D1: Bias due to participants selection D2: Bias due to predictors measurements. D3: Bias due to determination of outcome. D4: Bias due to analysis.				💉 High
					? Uncle

Figure 5: Risk of bias assessment. Low means low risk of bias, High means high risk of bias, and Unclear when it was not possible to assess the risk of bias.

Key: PEWS-RL score=Paediatric Early Warning Score for Resource-Limited Settings; SICK score=Signs of Inflammation in Children that Kill; PET score= Paediatric Emergency Triage; mRISC score= Modified Respiratory Index of Severity in Children score; RISC score= Respiratory Index of Severity in Children score; PERCH severity score= Pneumonia Etiology Research for Child Health severity score; LOD score= Lambarene Organ Dysfunction score; CRT= Classification and Regression Trees; ITAT Score= Inpatient Triage Assessment and Treatment score; PEDIA score= Paediatric Early Death Index for Africa score

Item	Criteria	
Prognostic or diagnostic model	Prognostic model predicting in-hospital mortality.	
Scope	Prognostic models to inform clinicians about the risk of deterioration or death.	
Type of prediction models	Prognostic models with and/or without external validation.	
Prediction target population	Children aged > 1 month to 15 years admitted in pediatric wards in developing countries	
Outcome of interest	All-cause in-hospital mortality.	
Prediction period	Any	
Intended moment to apply the prediction tool	Prognostic model to be used in primary prevention to assess risk of deterioration and thus guide prevention/treatment.	

deterioration and une e

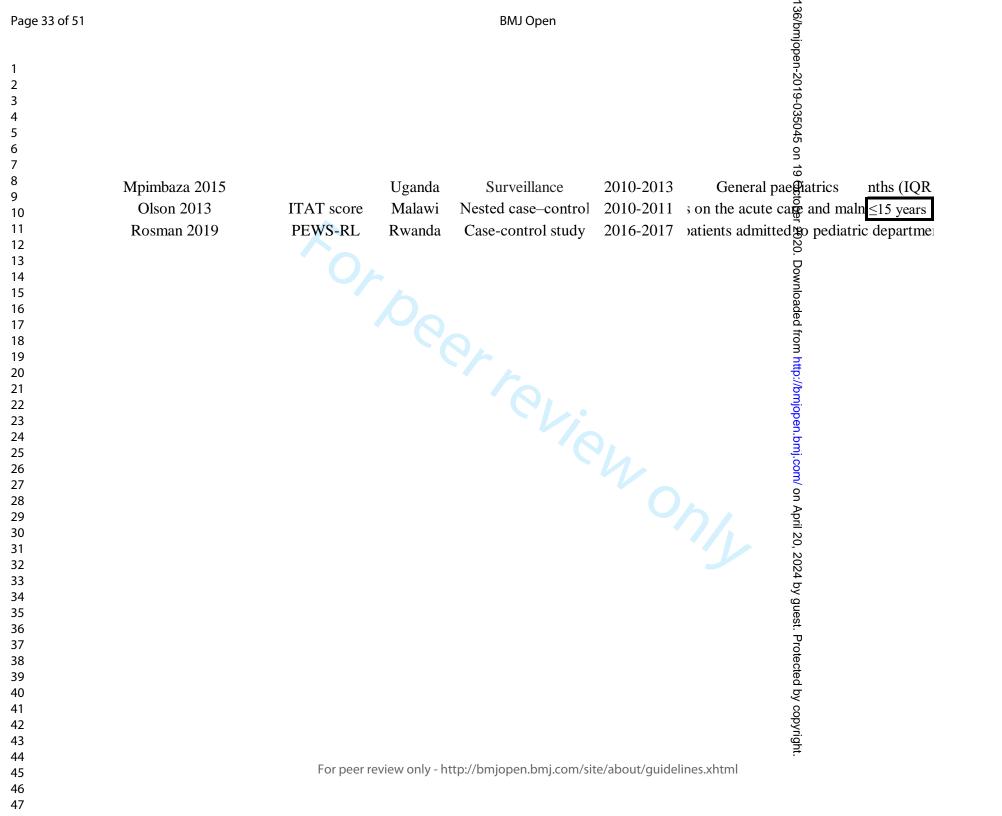
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 38 39
38
55
40 41
42 43
43 44
44 45
45 46
46 47
47 48
48 49
49 50
50 51
51
52 53
53 54
54 55
55 56
50 57
57 58
58

60

1

Table 2: List of domains and signaling questions used for risk of bias assessment.

Domain	ain Signalling question		
	Were appropriate data sources used, e.g., cohort, RCT, or nested case-control study		
Participants	data?		
selection	Were all inclusions and exclusions of participants appropriate?		
	Were predictors defined and assessed in a similar way for all participants?		
Predictors	Were predictor assessments made without knowledge of outcome data?		
	Are all predictors available at the time the model is intended to be used?		
	Was the outcome determined appropriately?		
	Was a prespecified or standard outcome definition used?		
	Were predictors excluded from the outcome definition?		
Outcome	Was the outcome defined and determined in a similar way for all participants?		
	Was the outcome determined without knowledge of predictor information?		
	Was the time interval between predictor assessment and outcome determination		
	appropriate?		
	Were there a reasonable number of participants with the outcome?		
	Were continuous and categorical predictors handled appropriately?		
	Were all enrolled participants included in the analysis?		
	Were participants with missing data handled appropriately?		
	Was selection of predictors based on univariable analysis avoided?		
	Were complexities in the data (e.g., censoring, competing risks, sampling of control		
	participants) accounted for appropriately?		
Analysis	Were relevant model performance measures evaluated appropriately?		
	Were model overfitting, underfitting, and optimism in model performance accounted		
	for?		
	Do predictors and their assigned weights in the final model correspond to the results		
	from the		
	reported multivariable analysis?		


Table 3:	Search	terms
----------	--------	-------

Search	Sub-heading	Search Terms
ID		
S4		
	Children	paediatric* OR pediatric* OR (MH "Pediatrics+") OR child*
S3		
	Hospital based	(MH "Hospitals+") OR hospital*
S2		(MH "Developing Countries+") OR (MH "Africa+") OR TI
	Low-income countries	("low income" OR "low and middle income" OR "LMIC"
		OR "LIC" OR "limited resource*" OR "poor resource*" OR
		"resource* poor" OR ("developing countries") OR
		("developing nations") OR ("third world") OR "resource-
		constrained" OR ("global south")
S1		prognos* OR (MH "prognosis") OR
		(Predict* AND (Outcome* OR Risk* OR Model* OR
	Predictive models	Mortality OR Index OR Rule* OR decision* OR scor*))
		OR "risk score" OR "scor* system" OR "logistic model*"
		"risk prediction" OR "risk calculation" OR "risk
		assessment" OR "c statistic" OR discrimination OR
		calibration OR AUC OR "area under the curve" OR "area
		under the receiver operator characteristic curve"

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

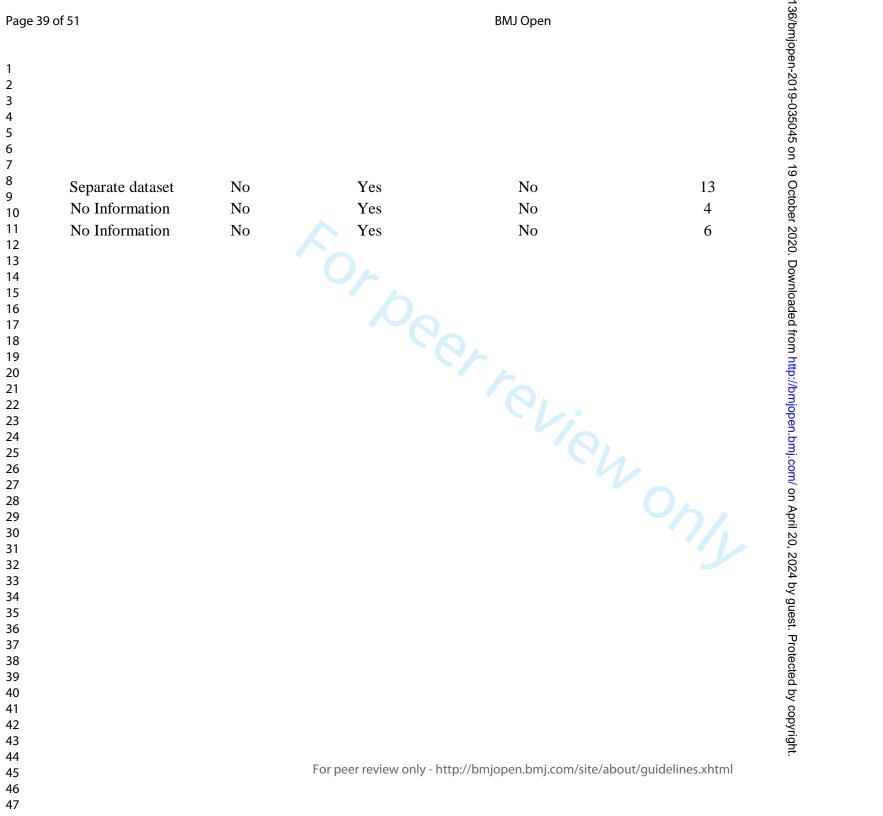
	BMJ Open				136/bmjopen-2019-035045 on 19	
Study	Model name	Country	Source of data	Study year	Inclusion criteria	Age
Berkley 2003	A Immediate	Kenya	Prospective cohort	1998-2000	Aged over 99 days	onths-13
Berkley 2003	DIA Early dea	Kenya	Prospective cohort	1998-2000	Aged over 90 days	onths-13
Berkley 2003	EDIA Late dea	Kenya	Prospective cohort	1998-2000	Aged over 🛞 days	onths-13
Bitwe 2006	Goma 1 Modeiti	c Republic o	Prospective cohort	2003-2004	<12 mor	an: 12.8
Draimax 1996		Congo	Prospective cohort	1986-1988	Malnutrition	ian: 27 r
Kumar 2003	SICK score	India	Prospective cohort	1998-1999	Paediatric patients	Informa
Geoge 2015	PET Score 1,	Uganda, Ta	RCT	2009-2011	Malar	: 24 (IQ
Emukule 2014	mRISC	Kenya	Surveillance	2009-2012	spitalized with severe acu	
Reed 2012	SC-HIV posit S	-		1998-2001	vations under $24 \frac{3}{4}$ months v	
	SC-HIV Negal S			1998-2001	tions under 24 m_{Ω}^{2} nths wi	th<24 mon
					April	
Hooli 2016	RISC-Malawi	Malawi	pective observationa	2011-2014	onths hospitalized with p	neк59 mon
Gallagher 2019	PERCH Scoreca	, Mali,Gam	Case-control study	2011-2014	ve hospitalized with sever	re a: 9(4-19
Helbok 2009	LOD score lla	wi,Kenya,G	Prospective cohort	2000-2005	alized children with sever	re 128(0-18
Erdman 2011 (Logistic regression	iomarker scor	Uganda	tive nested case-cor	2007-2009	6 months - 😰 years	onths - 12
Erdman 2011 (Classification tree)	Uganda	tive nested case-cor	2007-2009	6 months - 12 years	onths - 1
Lowlaavar 2016	Model 1	Uganda	ective observational	2012-2013	nths admitted with infec	tio[IQR 11.
Lowlaavar 2016	Model 2	U	ective observational	2012-2013	nths admitted with infec	tio[IQR 11.
Lowlaavar 2016	Model 3	Uganda	ective observational	2012-2013	nths admitted With infec	tio(IQR 11.

Page 32 of 51

			BM	136/bmjopen-2019-035045 on 19	
					n-20
					19-0
					350
					45 o
		Number of			n 19
OuctomeS	ample size	outcome events	Missing data handling r of	participant with missing da	_
					tobe
Mortality	429	60	No Information	No Information	lhalter/Kpill-Jones
Mortality	439	193	No Information	No Information	lhalter/Kgill-Jones
					/nlo
Mortality	436	183	No Information	No Information	lhalter/Kaill-Jones
Mortality	414	66	No Information	No Information	Logistic Fegressic
Mortality	1129	196	No Information	No Information	Logistic regression
Mortality	1099	44	No Information	No Information	Logistic
					la di anti-
Mortality	3170	315	Complete case analyses	Yes	portional portional portional
Mortality	3581	218	Complete case analyses	No Information	Logistic gegressio
Mortality	1502	265	Complete case analyses	No Information	Logistic
Mortality	2646	33	Complete case analyses	No Information	Logistic regression
					on April
Mortality	14665	464	Multiple imputation	Yes	Logistic egressio
d 7-days j	1802	120	Complete case analyses	No Information	Logistic Regression
Mortality	23980	1004	Complete case analyses	Yes	Logistic fe gressio
Mortality	103	23	No missing values	Yes	Logistic
Mortality	103	23	No missing values	Yes	Classific tion tre
Mortality	1307	65	Multiple imputation	No Information	Logistic Fegressic
Mortality	1307	65	Multiple imputation	No Information	Logistic gegressic
Mortality	1307	65	Multiple imputation	No Information	Logistic Jegressic
					/ copyright

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 35 of 51					BMJ Open		
Page 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	of 51 Mortality Mortality nt	50249 1606 168	1742 54 57			136/bmjopen-2019-035045 on 19 Logistic Regression Logistic Regression Logistic Regression Downloaded from http:	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47					Yes Yes No Information	rotected by copyright.	


Vore model accumptions ve	rifioDradiator salaationVac	BMJ Open	136/bmjopen-2019-035045 on Cassification usebration meDiscrimination mea@ures reported
vere model assumptions ve		s a shrinkage methou	0.93(0.92-
Yes	Univariate	No Information	The second se
1 65	Univariate	NO IIIOIIIation) Informatic 0.94) NogInformation 0.82(0.80-
Yes	Univariate	No Information) Informatic 0.83) No Information
105	Univariate		0.82(0.81-
Yes	Univariate	No Information) Informatic 0.84) N&Information
Yes	nivariate & Stepwi	No Information	Yes 1.83 (0.78-0.88 NorInformation
No Information	A priori	No Information) Informatic5(No informaties 40% and negative pr
No Information	ncluded all variable	No Information) Informatic 0.89 a score of 2.5 with a se
			0.82(0.77–0.
No Information	A priori	No Information	emeshow te 87) No Information
Yes	Univariate	Yes	alibration pl 0.85 a sensitivity of 1.8% and
No Information	Univariate	No Information	emeshow te 0.78 sensitivity of 4% and s
No Information	Univariate	No Information	emeshow te 0.92 is a sensitivity: 16% Spe
			on April
Yes	A priori	No Information	edictivenes 95% CI: 0.76-sensitienty of 57% and s
No Information	Univariate	No Information	alibration pl4(No Informatialue 28.6%, positive pr
No Information	ard & backward Ste	No Information) Informatic 80 (79–82) itivity was 85% and spe
Yes	Univariate	No Information	est and cali).96(0.90-0.9999.9) and specificity of
No Information	No Information	No Information) Information Informationd 92.5% specificity for
No Information	nivariate & Stepwi	No Information) Informatic.85 (0.80–0.89).74–0592), Specificity:
No Information	nivariate & Stepwi	No Information) Informatic.84 (0.79–0.89).70–0,890), Specificity:
No Information	nivariate & Stepwi	No Information) Informati(.82 (0.72–0.91).72–091), Specificity:
			r copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 37 of 51			BMJ Open	136/bm
1 2 3 4 5 6 7 8 9 10 11 12	No Information Yes No Information	Backward Univariate Univariate	No Information No Information No Information	eral paedia6(No informati NoInformation) Informati6(No informatiy: 0.86, PPV: 0.18, NI) Informati(95% CI 0.93–isitivity was 96.2%, and
13 14 15 16 17 18 19 20 21 20 21 22 23 24 25 26 27 28 29 30) Informatic() No informative 0.8%, PPV: 0.18, NI) Informatic() 95% CI 0.93–isitivity was 96.2%, and Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by gues
31 32 33 34 35 36 37 38 39 40 41 41 42 43 44 45 46 47				, 2024 by guest. Protected by copyright. m/site/about/guidelines.xhtml

Method used for internal validation	External validatio	Was a simplified model presented	Were coefficients(including intercept) of the regression model presented	Number of predictors ir final model
Separate dataset	Yes	Yes	NA	10
Separate dataset	Yes	Yes	NA	final model 10 8 9 8 4 9 11 9 7 5 5 12 8
Separate dataset	Yes	Yes	NA	9
No Information	No	Yes	No	8
Separate dataset	No	Yes	No	4
No Information	Yes	Yes	No	9
Separate dataset	No	Yes	No	11
Bootstrapping	Yes	Yes	No	9
Bootstrapping	No	Yes	No	7
Bootstrapping	Yes	Yes	No	5
No Information	No	Yes	Yes	5
pping & separate	No	Yes	No	12
No Information	Yes	Yes	No	8
Boostrappling	No	Yes	No	8
fold cross validat	No	No	No	3
No Information	No	No	Yes	3
No Information	No	No	Yes	8 3 3 2
No Information	No	No	Yes	2

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Predictors in the final model	ry based	Handlin g of continou s predicto rs	Events per variable	
out seizures, Impaired consciousness with se	No	NA	6	
nout seizures, Impaired consciousness with s	No	NA	24.125	
with seizures, Impaired consciousness with	No	tomized H	20.33333	
nconscious, Aware), Infectious diagnosis(A	No	Brachial pe	8.25	
IUAC, edema, Serum albumin, Transthyreti		MUAC	49	
olic blood pressure(Normal, Abnormal), Car	No	nized most	4.888889	
<2sec), Conscious level(prostrate, coma), R		• fractional	28.63636	
o drink/breastfeed, Night sweats, Chest wal	Yes	ized weigh		
fusing feeds, HIV classification(Severe, Mile	No		37.85714	
heezing, Refusing feeds, Weight for age(Lo ⁻ Oxygen saturation(moderate, severe),	No	ized weigh	6.6	
MUAC(moderate, severe), Gender,			92.8	
Wheeze, Consciousness	No	AC and O		
esponsive and deep breathing), cough, grunt	No	ized most	10	
hing, intercostal recession, Coma, Prostratic	Yes	NA	125.5	
I-1, soluble Flt-1, procalcitonin, IP-10, solul	Yes	NA	2.875	
IP-10, Ang-2, sICAM-1	Yes	NA	7.666667	
al BCS, Positive HIV diagnosis, Weight-age	Yes	ed as conti	21.66667	
Abnormal BCS, HIV diagnosis, MUAC	Yes	ed as conti	21.66667	
Abnormal BCS, MUAC	No	ed as conti	32.5	

 136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 41 of 51	BMJ Open
36 37 38 39 40 41 42 43	
44 45 For pee 46 47	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Page 42	of 51
---------	-------

Signaling	Participants	
Question	Were appropriate data sources used, e.g., cohort, RCT, or	Were all inclusions and
S	nested case–control study data?	exclusions of participants appropriate?
Berkley 2003 (PEDIA -Immed	Yes	Yes
Berkley 2003(PEDIA -Earl	Yes	Yes
Berkley 2003(PEDIA -Late	e Yes	Yes
Bitwe 2006 (Goma score)	Yes	Yes
Draimax 1996	Yes	Yes
Kumar 2003(SICK score)	Yes	Yes
Geoge 2015 (PET score)	Yes	Yes
Emukule 2014 (mRISC score	r No	Yes
Reed 2012 (RISC HIV+)	Yes	Yes
Reed 2012 (RISC HIV-)	Yes	Yes
Hooli 2016(RISC-Malawi	Νο	Yes
Gallagher 2019(PERCH Sco	Yes	Yes
Helbok 2009(LOD score)	Yes	Yes
Erdman 2011(logistic regress	Yes	Yes
Erdman 2011(CRT)	Yes	Yes
Lowlaavar 2016 (Model 1	Yes	Yes
Lowlaavar 2016 (Model 2	Yes	Yes
Lowlaavar 2016 (Model 3	Yes	Yes
Mpimbaza 2015	No	Yes
Olson 2013(ITAT score)	Yes	Yes
Rosman 2019(PEWS-RL sco	n No	Yes

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 43 of 51

1 2			Predictors		
3	Risk of Bias in	Were		Are all predictors	Risk of Bias in
4	participants	predictors	assessments	available at	predictors
5 6	L L	defined and	made without	the time the	L
0 7		assessed in a	knowledge of	model is intended	
8			outcome data?	to be used?	
9		all participants	outcome data:	to be used?	
10		an participants			
11 12					
12 13	Low	Yes	Yes	Yes	Low
14	Low	Yes	Yes	Yes	Low
15	Low	Yes	Yes	Yes	Low
16	Low	Yes	Yes	Yes	Low
17	Low	Yes	Yes	No	High
18 19	Low	Yes	Yes	Yes	Low
20	Low	Yes	Yes	Yes	Low
21	High	Yes	Yes	No	High
22	Low	Yes	Yes	Yes	Low
23 24					
24 25	Low	Yes	Yes	Yes	Low
26	High	Yes	Yes	Yes	Low
27	Low	Yes	Yes	Yes	Low
28	Low	Yes	Yes	Yes	Low
29	Low	Yes	Yes	Yes	Low
30 31	Low	Yes	Yes	Yes	Low
32	Low	Yes	Yes	No	High
33	Low	Yes	Yes	No	High
34	Low	Yes	Yes	Yes	Low
35	High	Yes	Yes	Yes	Low
36 37	Low	Yes	Yes	Yes	Low
38			Yes		Low
39	High	Yes	1 68	Yes	LOW
40					
41					

Was the outcome	Was a prespecified		Dutcome Was the	Was the outcome	
determined appropriately?	or standard outcome definition used?	-	outcome defined and determined in a	determined without knowledge of	
	useu ?	definition?	similar way for all	predictor information?	
			participants?		
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	
			/ •, / • . / •		
	For peer review only -	nttp://bmjopen.bmj	.com/site/about/guid	ieiines.xntml	

BMJ Open

2 3 4 5 6 7 8 9 10	Was the time interval between predictor assessment and outcome determination appropriate?	Risk of Bias in outcome	Were there a reasonable number of participants with the outcome?	Were continuous and categorical predictors handled appropriately?
11 12	Yes	Low	No	Yes
13	Yes	Low	Yes	Yes
14 15	Yes	Low	Yes	No
15 16				
17	Yes	Low	No	No
18	Yes	Low	Yes	No
19	Yes	Low	No	No
20	Yes	Low	Yes	Yes
21 22	Yes	Low	Yes	No
22	Yes	Low	Yes	Yes
24	Yes	Low	No	No
25	Yes	Low	Yes	No
26	Yes	Low	Yes	No
27 28	Yes	Low	Yes	Yes
20	Yes	Low	No	Yes
30	Yes	Low		Yes
31			No	
32	Yes	Low	Yes	Yes
33 34	Yes	Low	Yes	Yes
35	Yes	Low	Yes	Yes
36	Yes	Low	Yes	Yes
37	Yes	Low	Yes	Yes
38	Yes	Low	No	Yes
39 40				
40				

1	
2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

60

Were all enrolled participants included in the analysis?	Were participants with missing data handled appropriately?	Was selection of predictors based on univariable analysis avoided	Analysis Were complexities in the data (e.g., censoring, competing risks, sampling of control participants) accounted for appropriately?
Yes	Probably No	No	No Information
Yes	Probably No	No	No Information
Yes	Probably No	No	No Information
Yes	No Information	No	No Information
Yes	No Information	Yes	No Information
Yes	No Information	Yes	No Information
Yes	No	Yes	No
Yes	No	No	No Information
Yes	No Information	No	No Information
Yes	No Information	No	No Information
Yes	Yes	Yes	No Information
Yes	No	No	No Information
Yes	No	Yes	No Information
Yes	Yes	No	No Information
Yes	Yes	No Information	No Information
Yes	Yes	Yes	No Information
Yes	Yes	Yes	No Information
Yes	Yes	Yes	No Information
Yes	No	Yes	No Information
Yes	Probably No	No	No Information
Yes	No	No	No Information

Page 47 of 51						
1 2 3	XX7 1 4	XX7 1.1 (%,				BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by quest. Protected by copyright
4	Were relevant model	Were model overfitting, underfitting, and	Do predictors and their assigned	Risk of Bias in	(en: fi
5 6	performance	optimism in model	weights in the final model	analysis	, ,	rst p
7	measures	performance accounted	correspond to the results from			ublis
8 9	evaluated	for?	the reported multivariable			hed
9 10	appropriately?		analysis?		S	as
11						10.1
12 13	Probably No	No Information	Probably Yes	High		136/
14	Probably No	No Information	Probably Yes	High		hmic
15 16	Probably No	No Information	Probably Yes	High	1	nea
10	Yes	No Information	Yes	High	!	-201
18	No	No Information	Probably No	High		9-0;
19 20	No No	No Information No Information	Yes Yes	High High		3504
21	Yes	Yes	Yes	High High		5 S
22	Yes	Yes	Yes	High High	;	ר 19
23 24	Yes	Yes	Yes	High		Oct
25	Yes	No Information	Yes	High		ober
26 27	Yes	Yes	Yes	High		202
27	Probably No	No Information	Probably No	High		ŏ D
29	No	Yes	No Information	High		nwo
30 31	No Information	Yes	No Information	Unclear		lloac
32	No	No Information	Yes	Low		led f
33	No	No Information	Yes	Low		rom
34 35	No	No Information	Yes	Low		http
36	No Information	No Information	Yes	High		.//bn
37 38	No	No Information	No	High		niop
39	No	No Information	No	High		en.b
40						mi.c
41 42)mc
43						on A
44 45					1	oril
45						20.2
47						024
48 49						bv
50						nues
51 52						Ť P
52 53						otec
54						ted
55 56						hv c
57						npyr
58 50					ŭ	iaht.
59 60		For peer review only - http://k	omjopen.bmj.com/site/about/guideli	nes.xhtml		

Reporting checklist for systematic review and meta-analysis.

Based on the PRISMA guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the PRISMAreporting guidelines, and cite them as:

Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred Reporting Items for

Systematic Reviews and Meta-Analyses: The PRISMA Statement

Page

Reporting Item Number Title Identify the report as a systematic review, meta-analysis, or #1 both. Abstract

1 2	Structured	<u>#2</u>	Provide a structured summary including, as applicable:	2
3 4	summary		background; objectives; data sources; study eligibility criteria,	
5 6 7			participants, and interventions; study appraisal and synthesis	
7 8 9			methods; results; limitations; conclusions and implications of key	
10 11			findings; systematic review registration number	
12 13 14 15	Introduction			
16 17	Rationale	<u>#3</u>	Describe the rationale for the review in the context of what is	3
18 19			already known.	
20 21 22	Objectives	#1	Dravide an avaliait statement of questions being addressed with	3
23 24	Objectives	<u>#4</u>	Provide an explicit statement of questions being addressed with	3
25 26			reference to participants, interventions, comparisons, outcomes,	
27 28			and study design (PICOS).	
29 30 31	Methods			
32 33	Protocol and	<u>#5</u>	Indicate if a review protocol exists, if and where it can be	4
34 35 36	registration		accessed (e.g., Web address) and, if available, provide	
37 38 39			registration information including the registration number.	
40 41	Eligibility criteria	<u>#6</u>	Specify study characteristics (e.g., PICOS, length of follow-up)	4
42 43			and report characteristics (e.g., years considered, language,	
44 45 46			publication status) used as criteria for eligibility, giving rational	
47 48	Information	<u>#7</u>	Describe all information sources in the search (e.g., databases	N/A
49 50 51	sources		with dates of coverage, contact with study authors to identify	
52 53			additional studies) and date last searched.	
54 55	0			_
56 57	Search	<u>#8</u>	Present full electronic search strategy for at least one database,	5
58 59		-	including any limits used, such that it could be repeated.	
60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1 2	Study selection	<u>#9</u>	State the process for selecting studies (i.e., for screening, for	6
3 4			determining eligibility, for inclusion in the systematic review, and,	
5 6 7			if applicable, for inclusion in the meta-analysis).	
8 9 10	Data collection	<u>#10</u>	Describe the method of data extraction from reports (e.g., piloted	6
11 12	process		forms, independently by two reviewers) and any processes for	
13 14 15			obtaining and confirming data from investigators.	
16 17	Data items	<u>#11</u>	List and define all variables for which data were sought (e.g.,	6
18 19 20			PICOS, funding sources), and any assumptions and	
20 21 22			simplifications made.	
23 24 25	Risk of bias in	<u>#12</u>	Describe methods used for assessing risk of bias in individual	7
26 27	individual studies		studies (including specification of whether this was done at the	
28 29			study or outcome level, or both), and how this information is to	
30 31 32			be used in any data synthesis.	
33 34 35	Summary	<u>#13</u>	State the principal summary measures (e.g., risk ratio, difference	N/A
36 37 38	measures		in means).	
39 40	Planned methods	<u>#14</u>	Describe the methods of handling data and combining results of	N/A
41 42	of analyis		studies, if done, including measures of consistency (e.g., I2) for	
43 44 45			each meta-analysis.	
46 47 48	Risk of bias	<u>#15</u>	Specify any assessment of risk of bias that may affect the	7
49 50	across studies		cumulative evidence (e.g., publication bias, selective reporting	
51 52 53			within studies).	
54 55	Additional	<u>#16</u>	Describe methods of additional analyses (e.g., sensitivity or	N/A
56 57 58	analyses		subgroup analyses, meta-regression), if done, indicating which	
59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2			were pre-specified.	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 31\\ 32\\ 33\\ 45\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ \end{array}$	Results			
	Study selection	<u>#17</u>	Give numbers of studies screened, assessed for eligibility, and	8
			included in the review, with reasons for exclusions at each stage,	
12			ideally with a <u>flow diagram</u> .	
14 15	Study	<u>#18</u>	For each study, present characteristics for which data were	8
17	characteristics		extracted (e.g., study size, PICOS, follow-up period) and provide	
19 20			the citation.	
22	Risk of bias	<u>#19</u>	Present data on risk of bias of each study and, if available, any	11
24 25	within studies		outcome-level assessment (see Item 12).	
27	Results of	<u>#20</u>	For all outcomes considered (benefits and harms), present, for	N/A
30	individual studies		each study: (a) simple summary data for each intervention group	
32			and (b) effect estimates and confidence intervals, ideally with a	
34 35			forest plot.	
37	Synthesis of	<u>#21</u>	Present the main results of the review. If meta-analyses are	N/A
40	results		done, include for each, confidence intervals and measures of	
42			consistency.	
45	Risk of bias	<u>#22</u>	Present results of any assessment of risk of bias across studies	11
47 48	across studies		(see Item 15).	
50	Additional	<u>#23</u>	Give results of additional analyses, if done (e.g., sensitivity or	N/A
52 53 54	analysis		subgroup analyses, meta-regression [see Item 16]).	
55 56 57 58	Discussion			
59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1	Summary of	#24	Summarize the main findings, including the strength of evidence	12
2 3	Evidence		for each main outcome; consider their relevance to key groups	
4 5	Lvidence			
6 7			(e.g., health care providers, users, and policy makers	
8 9 10	Limitations	<u>#25</u>	Discuss limitations at study and outcome level (e.g., risk of bias),	15
11 12			and at review level (e.g., incomplete retrieval of identified	
13 14			research, reporting bias).	
15 16				10
17 18	Conclusions	<u>#26</u>	Provide a general interpretation of the results in the context of	16
19 20			other evidence, and implications for future research.	
21 22	Funding			
23 24	T driding			
25 26	Funding	<u>#27</u>	Describe sources of funding or other support (e.g., supply of	17
27 28			data) for the systematic review; role of funders for the systematic	
29 30			review.	
31 32				
33 34	The PRISMA chec	CKIIST IS	distributed under the terms of the Creative Commons Attribution License	
35 36	CC-BY. This chec	klist w	as completed on 15. October 2019 using <u>https://www.goodreports.org/</u> , a t	ool
37 38	made by the <u>EQU</u>	ATOR	Network in collaboration with Penelope.ai	
39 40				
41 42				
43 44				
45 46				
47 48				
49 50				
50 51 52				
53				
54 55				
56 57				
58 59		Γ	noor rouiou only http://braionon.http://wike/shout/wike-live-subtral	
60		LOL	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Prognostic models for predicting in-hospital paediatric mortality in resource-limited countries: a systematic review

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035045.R1
Article Type:	Original research
Date Submitted by the Author:	01-Jul-2020
Complete List of Authors:	ogero, morris; KEMRI-Wellcome Trust Research Programme; University of Nairobi College of Biological and Physical Sciences, School of Mathematics Sarguta, Rachel ; University of Nairobi College of Biological and Physical Sciences, School of Mathematics Malla, Lucas; KEMRI-Wellcome Trust Research Programme Nairobi Aluvaala, Jalemba ; KEMRI-Wellcome Trust Research Programme Nairobi, Health Services Unit Agweyu, Ambrose; KEMRI-Wellcome Trust Research Programme Nairobi English, Mike; Oxford University, Nuffield Department of Medicine and Department of Paediatrics; KEMRI-Wellcome Trust Research Programme Nairobi Onyango, Nelson ; University of Nairobi College of Biological and Physical Sciences, School of Mathematics Akech, Samuel; KEMRI-Wellcome Trust Research Programme Nairobi
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Research methods, Paediatrics, Health services research
Keywords:	STATISTICS & RESEARCH METHODS, PAEDIATRICS, Paediatric intensive & critical care < PAEDIATRICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Prognostic models for predicting in-hospital paediatric mortality in resource-limited

countries: a systematic review

Morris Ogero^{1, 2}, Rachel Sarguta², Lucas Malla¹, Jalemba Aluvaala¹, Ambrose Agweyu¹, Mike English^{1, 3}, Nelson Onyango², Samuel Akech¹

¹Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Nairobi, Kenya; ²School of Mathematics, University of Nairobi, Kenya; and ³Nuffield Department of Medicine, University of Oxford, UK.

Correspondence: Morris Ogero,

KEMRI / Wellcome Trust Research Programme,

P.O Box 43640-00100 Nairobi, Kenya.

mogero@kemri-wellcome.org

Abstract Objective

Objectives: To identify and appraise the methodological rigor of multivariable prognostic models predicting in-hospital paediatric mortality in low- and middle-income countries (LMIC).

Design: Systematic review of peer-reviewed journals.

Data sources: MEDLINE, CINAHL, Google Scholar, and Web of Science electronic databases since inception to August 2019.

Eligibility criteria: We included model development studies predicting in-hospital paediatric mortality in LMIC.

Data extraction and synthesis: This systematic review followed the CHARMS (Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) framework. The risk of bias assessment was conducted using PROBAST (Prediction model Risk of Bias Assessment Tool). No quantitative summary was conducted due to substantial heterogeneity that was observed after assessing the studies included.

Results: Our search strategy identified a total of 4054 unique articles. Among these, 3545 articles were excluded after review of titles and abstracts as they covered non-relevant topics. Full texts of 509 articles were screened for eligibility, of which 15 studies reporting 21 models met the eligibility criteria. Based on the PROBAST tool, risk of bias was assessed in four domains; participant, predictors, outcome, and analyses. The domain of statistical analyses was the main area of concern where none of the included models was judged to be of low risk of bias.

Conclusion: This review identified 21 models predicting in-hospital paediatric mortality in LMIC. However, most reports characterising these models are of poor quality when judged against recent reporting standards due to a high risk of bias. Future studies should adhere to

standardized methodological criteria and progress from identifying new risk scores to validating or adapting existing scores.

Review registration number: CRD42018088599

Article summary

Strengths and limitations of this study

- This is the first systematic review on methodological quality of prognostic models predicting in-hospital paediatric mortality in resource-limited settings.
- We used a robust search strategy with no language restriction yielding a large number of potentially eligible studies, hence it is unlikely that any potentially eligible study was not included.
- No meta-analysis was conducted due to substantial heterogeneity in the included studies.
- We relied on what was reported to determine the risk of bias of the models.
- Google Translate was used to translate one study from French to English. It is therefore possible that some statistical terminologies were not rendered correctly.

BMJ Open

Introduction

Over recent decades, there has been considerable progress in improving child survival¹ but child mortality remains high in sub-Saharan Africa relative to the rest of the world.² Paediatric deaths in hospitalized children mostly occur soon after admission,³ and are caused by common conditions such as malaria, pneumonia, and diarrhoeal diseases among others, which are readily treatable by cost-effective interventions.³⁻⁵ In low- and middle-income countries (LMIC), clinicians often use a set of clinical signs as recommended in the guidelines by World Health Organization (WHO) to identify patients at risk of deterioration while making decisions on appropriate treatment.⁶ Clinical criteria recommended by WHO were developed following expert recommendations based on review of evidence from studies reporting risk factors for mortality. Prognostic models, which use statistical equations to predict patients' risk based on the combination of prognostic factors, may improve clinicians' ability to identify high-risk patients and thus improve outcomes.⁷ BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Various clinical prediction models for hospitalised paediatric patients have been developed over the last 3 decades,⁸ however, there are doubts whether appropriate methodology has been used in their development.⁹ Notably, none are currently recommended for use in existing paediatric clinical practice guidelines in LMIC and systematic reviews of the methodology used in their development have been strongly recommended.¹⁰ This systematic review addresses this need and aims at identifying and summarizing existing studies reporting prognostic models for predicting in-hospital paediatric mortality in LMIC. Specifically, the research summarises the evidence from the published studies and appraises the methodological rigor of each existing model.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Methods

Protocol and registration

As recommended, a research protocol for this systematic review was published in a peerreviewed journal,¹¹ and we also registered at PROSPERO (International Prospective Register of Systematic Reviews) (CRD42018088599).¹² This work is reported as per guidelines by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).¹³

Eligibility criteria

Reports were eligible for inclusion if they met the following criteria:

- Study design: peer-reviewed studies whose design was either a randomized controlled trial, cohort (prospective or retrospective), cross-sectional, or case-control observational study.
- Outcome: studies fitting models predicting all-cause in-hospital mortality in a general paediatric ward were included. Studies predicting post-discharge mortality, trauma or operative mortality were excluded.
- 3. Target population and setting: studies on children aged over 1-month old admitted in general paediatric wards within LMIC as defined by the World Bank¹⁴ were included. Studies whose predictive models were targeting patients in intensive care unit (ICU) or high dependency unit (HDU) were excluded because these facilities are largely unavailable in low-resource settings. We also excluded studies whose predictive models targeted uncommon conditions in children e.g., chronic kidney disease, cancer, diabetes.

However, if a study focused on one of the common childhood illnesses such as malaria, pneumonia, meningitis, anaemia, and diarrhoea/dehydration³, then it was included.

- 4. Type of studies: we included studies whose main objective was deriving a predictive model(s) or scoring system(s). We excluded commentaries, editorials, expert views, conference proceedings, case reports, case-series, reviews and explanatory studies that mainly generate hypothesis¹⁵.
- 5. Models: studies that reported multivariable model with at least 2 variables/predictors were included.
- Full text and language: We excluded studies that were not available in full text. Non-English language studies were translated using Google Translate. Hence no language restriction was made.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Search strategy

As recommended by CHARMS (Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) checklist¹⁶, we came up with seven key items (supplementary file 1 Table 1) applicable to our study that guided the framing of the search strategy, review aim and eligibility criteria.

We used Medical Subject Headlines (MeSH) where appropriate and keywords to identify articles with prognostic models relevant for this review. A search of articles was conducted in MEDLINE, Google Scholar, and CINAHL (via EbscoHost) since inception to August 2019. We also performed a search in Web of Science to identify additional reports that cited the identified studies. Reference lists of all identified articles were searched manually to identify other potentially eligible studies.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

We manually searched reference lists of all relevant articles to identify additional eligible studies. Final search results were collated in EndNoteX7[™] bibliography tool. Detailed search terms and strategy are provided in supplementary file 1 Table 2.

Screening of articles

Prior to screening titles and abstracts, 2 reviewers (MO and LM) standardized the approach to be used in the process of screening. We used a sample of 30 search results to train and familiarize reviewers with the screening process. Titles and abstracts of the studies were screened by the two reviewers. Discrepancies were resolved via discussion and, when necessary, a final decision was adjudicated by a third reviewer (JA).

Data Extraction

Data were extracted from relevant articles in accordance with the CHARMS. From each study included, data were extracted on participant enrolment, study design, study population characteristics, location, sample size, number and selection of predictors, study dates, handling of continuous predictors, missing data, method of modelling (e.g. logistic regression, survival), verification of model assumptions, internal validation methods (e.g. random split of data, resampling techniques); model presentation (e.g. nomogram, score chart, or regression formula with coefficients); and model performance metrics including discrimination -area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI); calibration; classification measures such as sensitivity, specificity, positive, and negative predictive values. We further investigated from literature to determine if included models have been externally validated elsewhere. For articles that described development of multiple prognostic models, we treated each model separately whenever the predictor-outcome association produced different

model estimates. For each study, extracted data elements were compared between two reviewers (MO & LM), and any disagreements were resolved by discussion with the third reviewer (JA). No quantitative summary was conducted due to substantial heterogeneity that was observed after assessing studies included.

Assessment of methodological quality

The *risk of bias* (shortcomings in the predictive models that might lead to unreliable predictions) of the included studies was assessed based on the Prediction study Risk Of Bias Assessment Tool (PROBAST).^{17 18} We assessed the *risk of bias* (RoB) for each model in four domains: participant selection (e.g. study design), predictors (e.g. assessment of candidate and final model predictors), outcome, and analysis (e.g. handling of missing data, the handling of continuous predictors) see supplementary file 1 Table 3. For each domain, signalling questions had five possible answers: yes; probably yes; probably no; no; and no information. Any positive answer (yes, or probably yes) suggests low RoB. Each domain had three possible outcomes: low; high; or unclear RoB. Using these domain outcomes, we came up with an overall judgement of RoB for each model. As recommended by PROBAST, if a prediction model was judged as low on all four domains, we assigned it an overall judgment of "low RoB". If a model was rated as high at least in one domain, we judged it as having "high RoB". If at least one domain of the model was rated as unclear and the rest of the domains rated as low, it was judged as having "unclear RoB".

Patient and public involvement

No patient or public involvement.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Results

Characteristics of the included studies

Our search strategy identified a total of 4054 unique articles, 3545 articles were excluded after review of titles and abstracts as they reported non-relevant topics. Full texts of 509 articles were screened for eligibility, of which 15 primary studies reporting 21 developed models met the eligibility criteria (Figure 1). The eligible studies analysed data for patients who were below 15 years of age with median mortality being 6.7% (range 1.2% to 43.9%).^{19 20} While majority of the models were developed for general cases in paediatric wards (n=9), some were tailored for specific paediatric groups defined by common diagnoses such as febrile illness (n=1),²¹ malaria (n=2), ^{22 23} pneumonia (n=4),^{19 24-26} malnutrition (n=2) ^{27 28} and other infectious diseases (n=3) (see supplementary file 2).

Most of the included studies have been published post year 2000 (n = 20) except for one study²⁷ published in 1996. The latest data used in the models under review were from 2016 to 2017 by Rosman *et al.*²⁹ and the oldest data were utilized by Draimax *et al.*²⁷ from 1986 to 1988. Five reports of the 15 included studies utilized data from at least two hospitals of which 3 studies^{21 22 26} were conducted in multiple countries including sub-Saharan Africa and Asian countries (Figure 2). Of the reviewed studies, most of the information we were abstracting were either not reported or were partially reported, an indication of non-adherence to the TRIPOD (Transparent Reporting of a Multivariable Prognostic Model for Individual Prognosis or Diagnosis) guidelines.^{30 31}

Summary of issues in methodology of the reviewed models

Candidate predictors

There were 61 distinct predictors used in the final reported models (a median of 7 predictors in any one model). Initial selection of the candidate predictors was mostly based on univariable analysis except for three studies^{21 25 27} where the selection was based on literature reviews or clinical relevance. Backward stepwise selection method was used in 6 models in a multivariable analysis to determine final model predictors. Commonly included predictors in the final models included altered consciousness, malnutrition indicators, vital signs, and signs of respiratory distress (see Figure 3). Some models included predictors that were either not easy to obtain or required laboratory techniques. Of the 13 models including continuous predictors, 8 models categorized continuous predictors where a continuous scale would have been possible. Two out of 13 models applied other techniques such as fractional polynomial²¹ and restricted cubic splines²⁸ to determine the suitable functional form of the continuous predictors (see supplementary file 2).

Sample size, events per variable (EPV) and missing data

Sample size ranged from 168^{29} to 50249^{32} with a median of 1307. The median EPV was 21(IQR 8.3 – 32.5) of which 7 models had less than 10 EPVs, suggestive of insufficient sample sizes which is prone to over-fitting. For instance, 60 deaths were reported in the dataset used to develop *PEDIA-Immediate* score in the study by Berkley *et al*. In reference to the rule that a study developing a predictive model should have a minimum of 10 events for each independent predictor in a prognostic model,³³ a model with, at the most, 6 predictors should have been considered but 10 predictors were considered instead hence making EPV 6.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Proportions of missing data was not always reported. Handling of missing data varied across the reviewed studies as follows: 6 models did not report handling of missing data; 8 used complete case analysis; 4 used multiple imputations by chained equations; and one study²⁸ used single imputation.

Model development

Majority of the studies applied logistic regression, one study²¹ used Cox regression, one study²⁰ used Spiegelhalter/Knill-Jones method and another study²³ used a machine learning technique (classification and regression trees (CRT)) in model development. Verification of model assumptions was not reported in most of the studies. For instance, George *et al*²¹ despite utilizing Cox regression to develop their model, did not report the verification of proportional hazard assumption nor explore the possibility of competing risks as recommended³⁴. Other regression assumptions e.g. multicollinearity was equally not reported. However, since backward elimination method disregards redundant variables, we inferred the satisfaction of multicollinearity assumption if this method was applied.³⁵ Five studies developed models using data from different countries/centres but none of them clustered their analysis by source of data in a multilevel model to account for heterogeneity. Ignoring clustering leads to a biased predictor effect.³⁶

Model performance evaluation & presentation

Performance measures (both calibration and discrimination) were poorly reported in most of the studies and in most cases (n=20) AUC for discrimination was reported. Performance of the derived models was evaluated in 12 models using either split-sample, resampling methods, or separate datasets. Except for the model derived by George *et al*,²¹ all other models did not report both apparent discrimination (without any adjustment for optimism) and optimism-corrected

discrimination measures. Despite inadequate reporting of the models' performance, 16 models reported AUCs \geq 0.80, an indication of promising models. Apart from the following exceptions; *Lambarene Organ Dysfunction* (LOD) score,²² *Paediatric Early Death Index for Africa* (PEDIA) score,²⁰ *Signs of Inflammation in Children that Kill* (SICK) score,³⁷ *Respiratory Index of Severity in Children*(RISC) score,¹⁹ and *Modified Respiratory Index of Severity in Children* (mRISC) score,²⁴ other scores have not been externally validated (by independent investigators using diverse populations). Only 2 studies^{25 38} developing 4 models provided a full model formula (both coefficients and intercept/baseline function) in their results as recommended.^{30 31} While most of the models (n=17) were presented as simplified integer scores, only a few were assigned weights according to the regression coefficients.

Risk of bias (RoB) assessment

Based on the PROBAST tool, RoB was assessed in four domains; participants, predictors, outcome, and analyses. Figure 4 summarizes the RoB assessment across all models included in this review where the domain of outcome was deemed to be of low RoB in all models. The domain of statistical analyses was the main area of concern where 19 out of 21 models did not report comprehensive details of model development as expected to warrant a proper risk of bias assessment using the 9 signalling questions under analyses domain. As a result, these models were rated to be of unclear RoB under the domain of analyses (see Figure 5). Details on how models were scored against each of the PROBAST criterion (20 signalling questions) across four domains are provided in the supplementary file 3. In the overall judgement of RoB, 9 out of 21 models were rated as high RoB. The remaining models (12/21) were judged to be of unclear RoB on account of being rated low and unclear RoB in the domains. Two models^{24 26} were judged to

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

be of high RoB because at least one of the domains was rated high RoB. No model was rated low RoB in all four domains.

Discussion

Summary of key findings

We conducted a systematic review to identify published scores predicting in-hospital mortality for paediatrics in resource-limited countries. Fifteen studies that described the development of 21 prognostic models were identified. We describe characteristics of these studies as well as the methodological quality of the included models by using agreed recent guidelines applicable to predictive models. We have identified several important quality deficiencies such as inadequate reporting and other methodological concerns, including poor handling of missing data, automated selection of predictors, categorization of continuous predictors, inadequate EPV and the poor presentation of the proposed model for use. As a result, no model was found to be of good methodological quality and consequently judged to be potentially high or unclear risk of bias in predictions (Figure 5).

Our findings suggest that predictive models fail to meet recently agreed methodological criteria in various ways. Firstly, in this review we observed that univariable analysis was routinely used in 18 out of 21 models in the selection of candidate predictors to be used in a multivariable analysis. This strategy tends to leave out possibly important prognostic factors which might be insignificant in a univariable analysis but turn out to be significant when combined with other predictors.^{30 31} A priori selection of predictors using expert opinion, clinical intuition or literature is recommended for this purpose,^{39 40} however only three studies in this review employed this approach.^{21 25 27}

Page 15 of 61

BMJ Open

Small sample sizes in model development can lead to poor predictive performance, over-fitting, and biased effect estimates. Prognostic models must have a minimum of 10 events per candidate predictor, as this is the accepted norm⁴¹⁻⁴³ and underpowered models arising from inadequate events per variable (EPV) increases the possibility of spurious results.³³ In this review, 7/21 models had inadequate sample sizes (EPV<10) and there was no information on whether bootstrapping, which serves to reduce overfitting was used in these models.⁴⁴

Just like most of the epidemiological studies, missing data is a common problem which is solved using multiple imputation or other appropriate approaches, but this was rarely the case in the model development studies under this review. For instance, 8/21 models used complete case analysis (CCA), 4/21 used multiple imputation under the assumption of missing at random (MAR), and 6/21 models did not report how missing data were handled and therefore we assumed CCA was used. Following Harrell's guidelines,⁴⁵ CCA should only be used if the percentage of missingness is < 5% but the appropriateness of the CCA approach could not be ascertained as most of the included studies failed to report the proportion of missing data per variable. Inappropriate use of CCA results in use of only a small subset of the data which cannot be regarded as a random sample from the target population unless data are missing completely at random(MCAR).⁴⁶ a mechanism which is rare in practice.⁴⁷ Consequently, there are concerns about possible loss of precision in inferences and the potential biases of the estimated parameters⁴⁸ in the models employing CCA. While Multiple Imputation by Chained Equations (MICE) is the principled method of handling missing data, implementing this method when the data are not MAR could result in biased model estimates.⁴⁹ As a result, sensitivity analyses of the resultant imputations is recommended to investigate the departure from MAR assumption.⁵⁰ However, this was not the case in the studies that performed imputations on their data. Finally,

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

handling of continuous predictors was also a concern in this review. Of the 13 models including continuous predictors, 8 models^{19 20 24-27 37 51} categorized continuous predictors where a continuous scale would have been possible. While this approach is intuitive to most researchers, its simplicity comes at a considerable cost of predictive performance.⁵² The resulting prognostic models have been shown to have poor predictive accuracy because of the loss of statistical power and information. It is recommended that the nature of continuous data should be retained or be handled by using techniques e.g. regression splines, flexible parametrizations such as fractional polynomial, or apply non-parametric techniques such as locally estimated scatterplot smoothing (LOESS) functions.^{52 53} In this review, appropriate methods of transforming continuous data was done by only 2 studies^{21 28} which applied fractional polynomial and restricted cubic splines. Sixteen models attained the discrimination metric of above 80%, an indicator of promising models. However, given that the median mortality of the included studies was 6.7%, the performance reported should be interpreted with caution on account of heavily imbalanced data as a result of the rare nature of the outcome of interest. For instance, in a study with a mortality rate of 5%, a model predicting no deaths could easily attain 95% accuracy which could be potentially misleading^{34,54}. Therefore, authors should report additional measures of model performance such as model sensitivity, specificity, accuracy, positive and negative predictive values for models to be contextualized appropriately.

Comparison with Other Studies

Methods used to assess quality measures of the included models in the current study have been applied previously to critically evaluate the quality of predictive models in other specialties.⁵⁵⁻⁵⁷ Just like the findings of this review, other previous reviews ^{9 58-60} describing the development of prognostic models highlighted many flaws including inappropriate statistical analyses, poor

Page 17 of 61

BMJ Open

reporting of important clinical and methodological information needed for validation of the model, and lack of external validations. Detailed and transparent reporting of the methods used in model development is one of the core principles of integrity in research because this is the only way the research community is able to judge the reliability of research findings, and the assessment of risk of bias.⁶¹ Incomplete reporting of clinical models limits future studies on prognostic research from building on the information of already existing models. This has been marked as an important source of wasted research efforts.⁶² For example, external validation of prognostic models requires a full model formula to enable direct estimation of survival probabilities.³¹ However, this was presented in only 4 models . Five models ¹⁹ ²⁰ ²² ²⁴ ³⁷ that were reported to have undergone external validation did not report full model formula as required. It is therefore not clear whether authors of these external validation studies applied model coefficients to the external datasets, or they estimated new model coefficients (essentially model redevelopment). Thus, this review highlights the need for researchers to adhere to the TRIPOD guidelines that were created to help authors of prognostic models write complete and transparent reports. Of note, the quality of clinical predictive models does not appear to have improved over time as previous reviews from 1996,⁶³ 1997,⁶⁴ 2001,⁶⁵ 2005,⁶⁶ 2011,⁸ 2012,⁶⁷ 2016,^{68 69} 2017,⁷⁰ to 201971 have consistently identified suboptimal methodologies in the development of the predictive models especially in the domain of analysis. Poorly derived models may result in overoptimistic results and misleading performances. Presumably there are reasons why many prognostic models are of poor quality, including pressure to publish new predictive model regardless of the clinical value of the resultant model⁷², and inadequate biostatistical support to investigators. As observed by one of the reviewers of this study, some of the issues identified in this review such as absence of the details on the model development process can be corrected

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

during the review and the editorial process by the journals publishing the work. There is therefore a role for editorial process for promoting best practices and recommendations of developing predictive models stated in the TRIPOD statement and ensuring compliance by authors as part of checklist for submission.

Implications of this study

Prognostic model development pipeline include development, validation (internal and external), impact assessment and implementation. Most of the included models are still in the first step of the pipeline. This suggests that researchers focus more on deriving new models, often using similar prognostic factors, rather than validating and improving existing prognostic models. This leaves healthcare policy makers with doubts as to which model to recommend in their setting. It is now time to move the prognostic research to the next step (external validation). Large patientlevel datasets such as that of the Clinical Information Network (CIN)³ which has been collected over time from a number of referral hospitals now exist in Kenya and it has been used to answer a number of salient clinical questions relevant across a range of resource-limited setting⁷³⁻⁷⁵. Future studies on prognostic research should leverage such datasets to externally validate competing models identified in this review for comparative performances as recommended by Collins *et al*,⁷⁶ and if necessary, predictive performance of such models should be improved by addition of new prognostic factors. We also noted that most of the included models simplified the original predictor coefficients by rounding them to a nearest integer. This practice has an implication on model performance during external validation due to loss in predictive accuracy arising from rounding coefficients to nearest integers.⁴⁷

We now provide guidance on methodological concerns about the candidate predictors as noted in this review. While considering potential candidate predictors to include in the prediction model,

Page 19 of 61

BMJ Open

researchers should focus on the predictors that will be available at the time the prediction is made. We acknowledge that some predictors obtained from invasive procedures e.g. C-reactive protein, blood gas analyses, blood or cerebrospinal fluid culture, etc might have a higher predictive value for mortality compared to predictors derived from subjective clinical assessments, however in resource-limited settings results of such laboratory tests typically take days to be reported or resources might not available to perform such tests in many hospitals. Consequently, models utilising such variables might not be useful to clinicians to make a decision at typical emergency departments in LMIC. Screening of model candidate predictors based on the bivariate associations whereby predictors are selected if they meet some *p*-value threshold (commonly 0.05) have been strongly discouraged previously^{77 78}. Categorising continuous model predictors is a common practice by researchers however this practice discards a lot of information and its assumptions are rarely clinically plausible.³⁴ Finally, there is a risk of overfitting if the model includes more predictors than the dataset can support. The ratio of the number of outcomes to the number of predictors (events per variable) have been discussed extensively in methodological papers elsewhere^{79 80} and it has been recommended that ratio of the EPV should be at least 10.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Strengths and limitations

To our knowledge, this is the first review identifying models predicting in-hospital paediatric mortality in resource-limited settings. Our robust search strategy yielded a large number of potentially eligible studies, hence it is unlikely that any potentially eligible study was not included. The quality of included models was assessed based on recent reporting standards and

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

applied to the identified studies. For instance, if no mention was made of internal validation or even verification of the model assumptions, it could not be determined whether these crucial steps of model development were carried out or not. Thus, models that could have been otherwise rated as low risk of bias were rated as either unclear or high risk of bias in each domain. The PROBAST's analysis domain has most (9 out of 20) of the signalling questions and any given model in this domain had much higher chance to be defined as high risk as long as there was one negative (no or probably no) answer. This strict criterion led to all models being classified as either unclear or high risk of bias and therefore metanalysis was not performed. We acknowledge that if we somewhat relaxed this decision rule, our conclusion could change. Despite this, we still hold that authors should adhere to guidelines of transparent and complete reporting of any proposed prognostic model to facilitate its external validation and subsequent application in practice. Finally, we used Google Translate to interpret a study by Bitwe et al⁵¹ from French to English. It is possible that some statistical terminologies were not rendered correctly, or some model characteristics were lost in translation.

Conclusion

Rigorously developed and robustly validated promising predictive models have the potential for improving child survival in resource-limited countries. This review identified models predicting in-hospital mortality for paediatrics. However, none of them is of good quality. Our research highlights the need to improve on the identified quality deficiencies when developing prognostic models in the future by adhering to existing generally accepted standardized methodological criteria. Majority of the derived models have not been externally validated as required. Inadequate reporting observed in the included models hinders rigorous external validation by other researchers in addition to undermining their application in practice. Rather than developing

BMJ Open

new prognostic models, researchers should carry out comprehensive joint external validation of the identified models using large datasets ideally collected over extended time periods and different locations. This will allow head-to-head comparisons and adaptation of the competing models, if necessary, to ascertain their generalizability.

Funding

Funds from The Wellcome Trust (#207522) awarded to ME as a Senior Fellowship together with additional funds from a Wellcome Trust core grant awarded to the KEMRI-Wellcome Trust Research Programme (#092654 and #203077) supported this work. SA was supported by the Initiative to Develop African Research Leaders (IDeAL) Wellcome Trust award (#107769). The funders had no role in drafting or submitting this manuscript.

Author Statement

The roles of the contributors were as follows: ME, SA, and AA conceptualized the study. MO, LM and JA conducted electronic searches to identify eligible models and did analyses. MO drafted the initial manuscript with SA, NO, RS, AA, and ME contributed to its development. All authors read and approved the final manuscript.

Competing interests

The authors declare no conflicts of interest.

Data sharing statement

No additional data are available.

References

1 2 3

4 5 6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29

30

31 32

33

34

35

36

37

38

39

40

41 42

43

44

45

46

47

48

49

50 51

52

53

54

59

60

1. World Health Organization. Child mortality rates plunge by more than half since 1990 but global MDG target missed by wide margin: WHO; 2015 [Available from: http://www.who.int/mediacentre/news/releases/2015/child-mortality-report/en/ accessed 20 January 2018. 2. Lucia Hug DS, Danzhen You. Levels and Trends in Child Mortality: UNICEF; 2019 [Available from: https://data.unicef.org/resources/levels-and-trends-in-child-mortality/ accessed August 2019. 3. Ayieko P, Ogero M, Makone B, et al. Characteristics of admissions and variations in the use of basic investigations, treatments and outcomes in Kenyan hospitals within a new Clinical Information Network. Archives of disease in childhood 2015:archdischild-2015-309269. 4. World Health Organization. Serious childhood problems in countries with limited resources. Geneva2004. 5. World Health Organization. Children: reducing mortality: WHO; 2017 [Available from: http://www.who.int/mediacentre/factsheets/fs178/en/ accessed 20 January 2018. 6. World Health Organization. Handbook IMCI: integrated management of childhood illness. Geneva2005. 7. Vogenberg FR. Predictive and prognostic models: implications for healthcare decision-making in a modern recession. American health & drug benefits 2009;2(6):218. 8. Maguire JL, Kulik DM, Laupacis A, et al. Clinical prediction rules for children: a systematic review. Pediatrics 2011;128(3):e666-e77. doi: 10.1542/peds.2011-0043 9. Bouwmeester W, Zuithoff NP, Mallett S, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS medicine 2012;9(5):e1001221. 10. Altman DG. Systematic reviews in health care: Systematic reviews of evaluations of prognostic variables. BMJ: British Medical Journal 2001;323(7306):224. 11. Ogero M, Sarguta R, Malla L, et al. Methodological rigor of prognostic models for predicting inhospital paediatric mortality in low-and middle-income countries: a systematic review protocol. Wellcome Open Research 2020;5(106):106. 12. Ogero M, Malla L, Agweyu A, et al. Prognostic models predicting in-hospital mortality of paediatrics in resource-limited countries: systematic review. 2018 13. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. PLoS medicine 2009;6(7):e1000097. 14. WORLD BANK. World Bank Country and Lending Groups: WOLD BANK; 2019 [Available from: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-andlending-groups accessed September 2019. 15. Shmueli G. To explain or to predict? Statistical science 2010:289-310. 16. Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS medicine 2014;11(10) 17. Wolff RF, Moons KG, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Annals of internal medicine 2019;170(1):51-58. 18. Moons KG, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Annals of internal medicine 2019;170(1):W1-W33. 19. Reed C, Madhi SA, Klugman KP, et al. Development of the Respiratory Index of Severity in Children (RISC) score among young children with respiratory infections in South Africa. Plos One 2012;7(1):e27793-e93. doi: 10.1371/journal.pone.0027793 21 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2 3	
4	20. Berkley JA, Ross A, Mwangi I, et al. Prognostic indicators of early and late death in children admitted
5	to district hospital in Kenya: cohort study. <i>BMJ (Clinical Research Ed)</i> 2003;326(7385):361-61. 21. George EC, Walker AS, Kiguli S, et al. Predicting mortality in sick African children: the FEAST
6	Paediatric Emergency Triage (PET) Score. <i>BMC Medicine</i> 2015;13(1):1-12. doi: 10.1186/s12916-
7	015-0407-3
8 9	22. Helbok R, Kendjo E, Issifou S, et al. The Lambaréné Organ Dysfunction Score (LODS) is a simple
10	clinical predictor of fatal malaria in African children. Journal of Infectious Diseases
11	2009;200(12):1834-41. doi: 10.1086/648409
12	23. Erdman LK, Dhabangi A, Musoke C, et al. Combinations of host biomarkers predict mortality among
13	Ugandan children with severe malaria: a retrospective case-control study. Plos One
14	2011;6(2):e17440-e40. doi: 10.1371/journal.pone.0017440
15 16	24. Emukule GO, McMorrow M, Ulloa C, et al. Predicting mortality among hospitalized children with
17	respiratory illness in Western Kenya, 2009-2012. Plos One 2014;9(3):e92968-e68. doi:
18	10.1371/journal.pone.0092968
19	25. Hooli S, Colbourn T, Lufesi N, et al. Predicting Hospitalised Paediatric Pneumonia Mortality Risk: An
20	External Validation of RISC and mRISC, and Local Tool Development (RISC-Malawi) from Malawi.
21	<i>PLoS ONE</i> 2016;11(12):1-13. doi: 10.1371/journal.pone.0168126
22 23	26. Gallagher KE, Knoll MD, Prosperi C, et al. The Predictive Performance of a Pneumonia Severity Score
23	in Human Immunodeficiency Virus–negative Children Presenting to Hospital in 7 Low-and
25	Middle-income Countries. 2019
26	27. Dramaix M, Brasseur D, Donnen P, et al. Prognostic indices for mortality of hospitalized children in
27	central Africa. American Journal Of Epidemiology 1996;143(12):1235-43.
28	28. Olson D, Davis NL, Milazi R, et al. Development of a severity of illness scoring system (inpatient
29 30	triage, assessment and treatment) for resource-constrained hospitals in developing countries.
30 31	Tropical Medicine & International Health 2013;18(7):871-78. doi: 10.1111/tmi.12137
32	29. Rosman SL, Karangwa V, Law M, et al. Provisional validation of a pediatric early warning score for
33	resource-limited settings. <i>Pediatrics</i> 2019;143(5):e20183657. 30. Collins GSP, Reitsma JBMDP, Altman DGD, et al. Transparent Reporting of a multivariable prediction
34	model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Annals of Internal
35	Medicine 2015;162(1):55-63.
36 27	31. Moons KGMP, Altman DGD, Reitsma JBMDP, et al. Transparent Reporting of a multivariable
37 38	prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration.
39	Annals of Internal Medicine 2015;162(1):W1-W73.
40	32. Mpimbaza A, Sears D, Sserwanga A, et al. Admission Risk Score to Predict Inpatient Pediatric
41	Mortality at Four Public Hospitals in Uganda. <i>Plos One</i> 2015;10(7):e0133950-e50. doi:
42	10.1371/journal.pone.0133950
43 44	33. Concato J, Feinstein AR, Holford TR. The risk of determining risk with multivariable models. Annals of
44 45	internal medicine 1993;118(3):201-10.
46	34. Leisman DE, Harhay MO, Lederer DJ, et al. Development and reporting of prediction models:
47	guidance for authors from editors of respiratory, sleep, and critical care journals. Critical care
48	medicine 2020;48(5):623.
49	35. Vijay Kotu BD. Feature Selection. In: Vijay Kotu BD, ed. Data Science Concepts and Practice2019:467-
50	90.
51 52	36. Debray T, Moons KG, Ahmed I, et al. A framework for developing, implementing, and evaluating
52 53	clinical prediction models in an individual participant data meta-analysis. Statistics in medicine
54	2013;32(18):3158-80.
55	37. Kumar N, Thomas N, Singhal D, et al. Triage score for severity of illness. Indian pediatrics
56	2003;40(3):204-10.
57	
58	22
59	

60

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

- 38. Lowlaavar N, Larson CP, Kumbakumba E, et al. Pediatric in-Hospital Death from Infectious Disease in Uganda: Derivation of Clinical Prediction Models. *Plos One* 2016;11(3):e0150683-e83. doi: 10.1371/journal.pone.0150683
- 39. Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. *Annals of internal medicine* 1999;130(6):515-24.
- 40. Kattan MW, Harrell FE. We should not be so quick to abandon the use of domain experts and full models (letter commenting: J Clin Epidemiol. 2015; 71C: 76--85.). *Journal of clinical epidemiology* 2016;75:131.
- 41. Concato J, Peduzzi P, Holford TR, et al. Importance of events per independent variable in proportional hazards analysis I. Background, goals, and general strategy. *Journal of clinical epidemiology* 1995;48(12):1495-501.
- 42. Peduzzi P, Concato J, Feinstein AR, et al. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. *Journal of clinical epidemiology* 1995;48(12):1503-10.
- 43. Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. *Journal of clinical epidemiology* 1996;49(12):1373-79.
- 44. A bootstrapping approach to reduce over-fitting in genetic programming. Proceedings of the 15th annual conference companion on Genetic and evolutionary computation; 2013. ACM.
- 45. Harrell FE. Regression Modeling Strategies. BIOS 2014;330
- 46. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. *Stat Med* 2011;30(4):377-99. doi: 10.1002/sim.4067
- 47. Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. *PLoS medicine* 2014;11(10):e1001744.
- 48. Molenberghs G, Fitzmaurice G, Kenward MG, et al. Handbook of missing data methodology: CRC Press 2014.
- 49. Azur MJ, Stuart EA, Frangakis C, et al. Multiple imputation by chained equations: what is it and how does it work? *International journal of methods in psychiatric research* 2011;20(1):40-49.
- 50. Gachau S, Quartagno M, Njagi EN, et al. Handling missing data in modelling quality of clinicianprescribed routine care: Sensitivity analysis of departure from missing at random assumption. *Statistical Methods in Medical Research* 2020:0962280220918279.
- 51. Bitwe R, Dramaix M, Hennart P. Simplified prognostic model of overall intrahospital mortality of children in central Africa. *Tropical medicine & international health:* TM & IH 2006;11(1):73.
- 52. Collins GS, Ogundimu EO, Cook JA, et al. Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model. *Statistics in medicine* 2016;35(23):4124-35.
- 53. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. *Statistics in medicine* 2006;25(1):127-41.
- 54. Leisman DE. Rare events in the ICU: An emerging challenge in classification and prediction. *Critical Care Medicine* 2018;46(3):418-24.
- 55. Ensor J, Riley RD, Moore D, et al. Systematic review of prognostic models for recurrent venous thromboembolism (VTE) post-treatment of first unprovoked VTE. *BMJ open* 2016;6(5):e011190.
- 56. Smit HA, Pinart M, Antó JM, et al. Childhood asthma prediction models: a systematic review. *The Lancet Respiratory Medicine* 2015;3(12):973-84. doi: 10.1016/S2213-2600(15)00428-2
- 57. Hodgson LE, Sarnowski A, Roderick PJ, et al. Systematic review of prognostic prediction models for acute kidney injury (AKI) in general hospital populations. *BMJ open* 2017;7(9):e016591.

BMJ Open

58. Collins GS, de Groot JA, Dutton S, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. <i>BMC medical research</i>
methodology 2014;14(1):40.
59. Collins GS, Omar O, Shanyinde M, et al. A systematic review finds prediction models for chronic
kidney disease were poorly reported and often developed using inappropriate methods. <i>Journa of clinical epidemiology</i> 2013;66(3):268-77.
60. Fahey M, Crayton E, Wolfe C, et al. Clinical prediction models for mortality and functional outcome
following ischemic stroke: A systematic review and meta-analysis. <i>PloS one</i> 2018;13(1):e0185402.
61. Logullo P, MacCarthy A, Kirtley S, et al. Reporting guideline checklists are not quality evaluation forms: they are guidance for writing. <i>Health Science Reports</i> 2020;3(2)
62. Glasziou P, Altman DG, Bossuyt P, et al. Reducing waste from incomplete or unusable reports of biomedical research. <i>The Lancet</i> 2014;383(9913):267-76.
63. Kwakkel G, Wagenaar RC, Kollen BJ, et al. Predicting disability in stroke—a critical review of the literature. <i>Age and ageing</i> 1996;25(6):479-89.
64. Laupacis A, Sekar N. Clinical prediction rules: a review and suggested modifications of
methodological standards. <i>Jama</i> 1997;277(6):488-94.
65. Counsell C, Dennis M. Systematic review of prognostic models in patients with acute stroke. Cerebrovascular diseases 2001;12(3):159-70.
66. Jacob M, Lewsey JD, Sharpin C, et al. Systematic Review and Validation of Prognostic Models in Live
Transplantation. <i>Liver Transplantation</i> 2005;11(7):814-25.
67. Moons KGM, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External validation, model updating, and impact assessment. <i>Heart</i> 2012;98(9):691-98.
68. Damen JA, Hooft L, Schuit E, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. <i>Bmj</i> 2016;353:i2416.
69. Cruz GD, Strathe AB, Rossow HA, et al. Characterizing bovine adipocyte distribution and its
relationship with carcass and meat characteristics using a finite mixture model. J Anim Sci
2012;90(9):2995-3002. doi: 10.2527/jas.2011-4838
70. Singendonk MMJ, Tabbers MM, Benninga MA, et al. Pediatric Gastroesophageal Reflux Disease: Systematic Review on Prognosis and Prognostic Factors. <i>Journal Of Pediatric Gastroenterology</i>
And Nutrition 2017 doi: 10.1097/MPG.000000000000001697 71. Carrillo-Larco RM, Altez-Fernandez C, Pacheco-Barrios N, et al. Cardiovascular Disease Prognostic
Models in Latin America and the Caribbean: A Systematic Review. <i>Global heart</i> 2019;14(1):81- 93.
72. Vickers AJ, Cronin AM. Everything you always wanted to know about evaluating prediction models
(but were too afraid to ask). Urology 2010;76(6):1298-301.
73. Irimu G, Ogero M, Mbevi G, et al. Approaching quality improvement at scale: a learning health
system approach in Kenya. Archives of disease in childhood 2018;103(11):1013-19.
74. Ogero M, Akech S, Malla L, et al. Examining which clinicians provide admission hospital care in a hig mortality setting and their adherence to guidelines: an observational study in 13 hospitals.
Archives of Disease in Childhood 2020
75. Ogero M, Ayieko P, Boniface Makone TJ, et al. An observational study of monitoring of vital signs in children admitted to Kenyan hospitals: an insight into the quality of nursing care? <i>Journal of global health</i> 2018;8(1)
76. Collins GS, Moons KG. Comparing risk prediction models: British Medical Journal Publishing Group,
2012.
77. Sun G-W, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. <i>Journal of clinical epidemiology</i> 1996;49(8):907-16.
24

- 78. Wasserstein RL, Lazar NA. The ASA statement on p-values: context, process, and purpose: Taylor & Francis, 2016.
- 79. Austin PC, Allignol A, Fine JP. The number of primary events per variable affects estimation of the subdistribution hazard competing risks model. *Journal of clinical epidemiology* 2017;83:75-84.
- 80. Austin PC, Steyerberg EW. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. *Statistical methods in medical research* 2017;26(2):796-808.

Captions

Figure 1: PRISMA flow diagram showing the process used to identify prognostic models predicting in-hospital paediatric mortality included in this review.

Figure 2: Prognostic models predicting in-hospital paediatric mortality identified by country. Text highlighted in red are the names of the models with their corresponding discrimination measures (area under the curve). Key: PEWS-RL score=Paediatric Early Warning Score for Resource-Limited Settings; SICK score=Signs of Inflammation in Children that Kill; PET score= Paediatric Emergency Triage; mRISC score= Modified Respiratory Index of Severity in Children score; RISC score= Respiratory Index of Severity in Children score; PERCH severity score= Pneumonia Etiology Research for Child Health severity score; LOD score= Lambarene Organ Dysfunction score; CRT= Classification and Regression Trees; ITAT Score= Inpatient Triage Assessment and Treatment score; PEDIA score= Paediatric Early Death Index for Africa score.

Figure 3: Top four categories of predictors in the models of the reviewed reports: altered consciousness (coma, prostration, not alert, unconscious); malnutrition indicators (kwashiorkor, edema, weight-for-height z-score, weight-for-age z-score, mid-upper arm circumference-MUAC, wasting); vital signs (temperature, respiratory rate, heart rate, oxygen saturation); signs of respiratory distress (indrawing, lung crepitation, difficult breathing, grunting).

BMJ Open

Figure 4: Summary of the risk of bias of the included models using PROBAST (Prediction study Risk of Bias Assessment Tool).

Figure 5: Risk of bias assessment. Low means low risk of bias, High means a high risk of bias, and Unclear bias means it was not possible to assess the risk of bias. Key: PEWS-RL score=Paediatric Early Warning Score for Resource-Limited Settings; SICK score=Signs of Inflammation in Children that Kill; PET score= Paediatric Emergency Triage; mRISC score= Modified Respiratory Index of Severity in Children score; RISC score= Respiratory Index of Severity in Children score; PERCH severity score= Pneumonia Etiology Research for Child Health severity score; LOD score= Lambarene Organ Dysfunction score; CRT= Classification and Regression Trees; ITAT Score= Inpatient Triage Assessment and Treatment score; PEDIA score= Paediatric Early Death Index for Africa score.

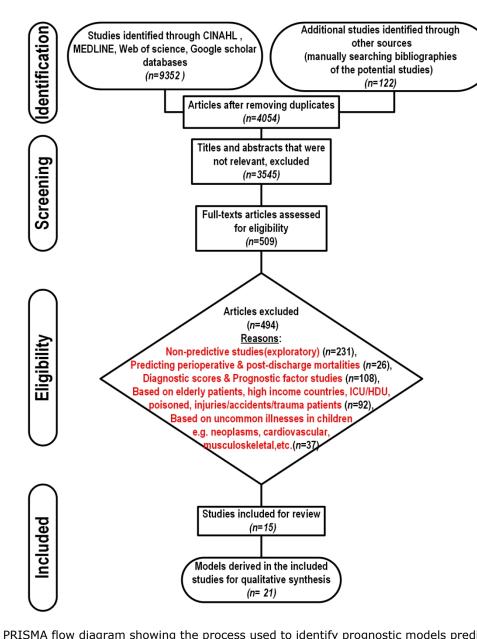


Figure 1: PRISMA flow diagram showing the process used to identify prognostic models predicting in-hospital paediatric mortality included in this review

127x164mm (300 x 300 DPI)

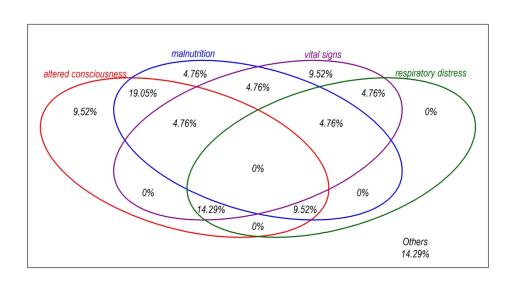
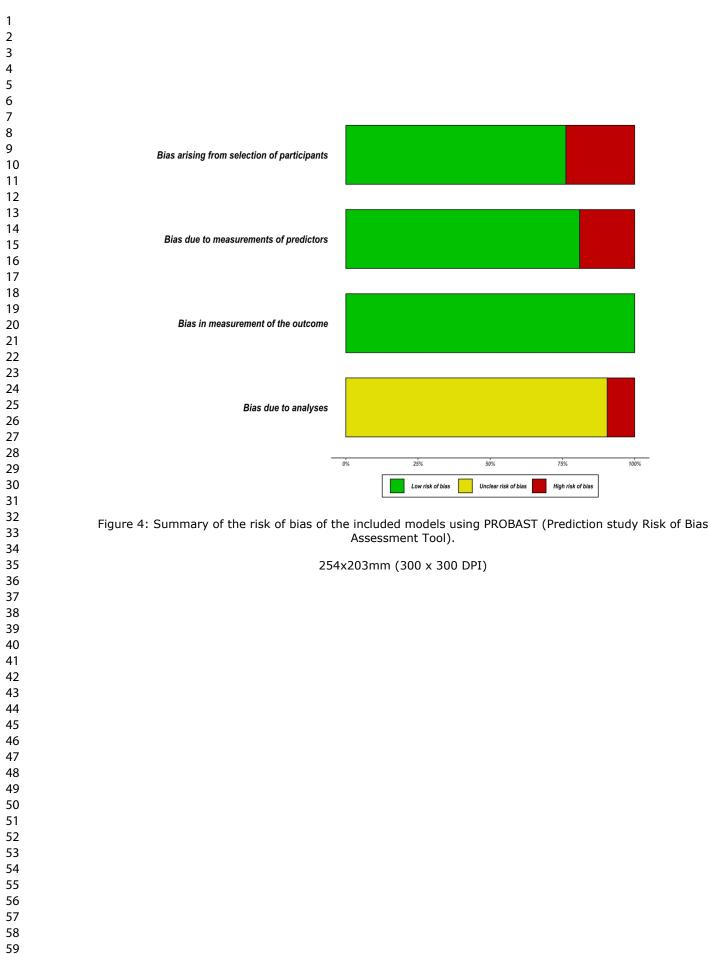



Figure 3: Top four categories of predictors in the models of the reviewed reports: altered consciousness (coma, prostration, not alert, unconscious); malnutrition indicators (kwashiorkor, edema, weight-for-height z-score, weight-for-age z-score, mid-upper arm circumference-MUAC, wasting); vital signs (temperature, respiratory rate, heart rate, oxygen saturation); signs of respiratory distress (indrawing, lung crepitation, difficult breathing, grunting).

228x127mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

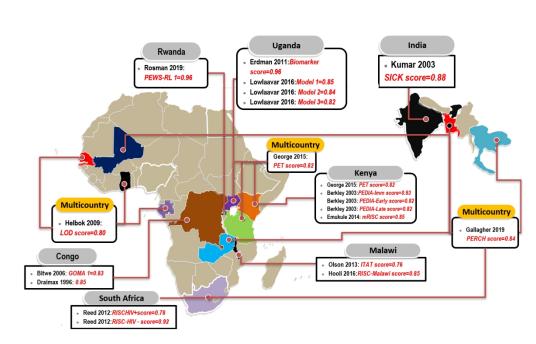


Figure 2: Prognostic models predicting in-hospital paediatric mortality identified by country. Text highlighted in red are the names of the models with their corresponding discrimination measures (area under the curve). Key: PEWS-RL score=Paediatric Early Warning Score for Resource-Limited Settings; SICK score=Signs of Inflammation in Children that Kill; PET score= Paediatric Emergency Triage; mRISC score= Modified Respiratory Index of Severity in Children score; RISC score= Respiratory Index of Severity in Children score; PERCH severity score= Pneumonia Etiology Research for Child Health severity score; LOD score= Lambarene Organ Dysfunction score; CRT= Classification and Regression Trees; ITAT Score= Inpatient Triage Assessment and Treatment score; PEDIA score= Paediatric Early Death Index for Africa score. BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

137x81mm (300 x 300 DPI)

		Risk of bias domains						
_		D1	D2	D3	D4	Overa	all	
	Berkley 2003 (PEDIA -Immediate score)	+	+	+	?	?		
	Berkley 2003(PEDIA -Early score)	+	+	+	?	?)	
	Berkley 2003(PEDIA -Late score)	+	+	+	?	?)	
	Bitwe 2006 (Goma score)	+	+	+	?	?)	
	Draimax 1996	+	X	+	?	X		
	Kumar 2003(SICK score)	+	+	+	?	?)	
	Geoge 2015 (PET score)	+	+	+	?	?)	
	Emukule 2014 (mRISC score)	X	X	+	X	X		
	Reed 2012 (RISC HIV+ score)	+	+	+	?	?)	
	Reed 2012 (RISC HIV- score)	+	+	+	?	?)	
	Hooli 2016(RISC-Score Malawi)	X	+	+	?	X		
	Gallagher 2019(PERCH Score)	+	+	+	X	X		
Ī	Helbok 2009(LOD score)	+	+	+	?	?)	
	Erdman 2011(logistic regression)	+	+	+	?	?)	
Ī	Erdman 2011(CRT)	+	+	+	?	?)	
Ī	Lowlaavar 2016 (Model 1)	+	X	+	?	X		
I	Lowlaavar 2016 (Model 2)	+	X	+	?	X		
I	Lowlaavar 2016 (Model 3)	+	+	+	?	?)	
I	Mpimbaza 2015	X	+	+	?	X		
I	Olson 2013(ITAT score)	X	+	+	?	X		
Ī	Rosman 2019(PEWS-RL score)	X	+	+	?	X		
Ĩ	Rosman 2019(PEWS-RL score) Domains: D1: Bias due to participants selection							
		D2: Bias due to pr	edictors measureme			8	High	
		D3: Bias due to de D4: Bias due to an	termination of outco alvsis.	ome.		?	Uncl	

Figure 5: Risk of bias assessment. Low means low risk of bias, High means a high risk of bias, and Unclear bias means it was not possible to assess the risk of bias. Key: PEWS-RL score=Paediatric Early Warning Score for Resource-Limited Settings; SICK score=Signs of Inflammation in Children that Kill; PET score= Paediatric Emergency Triage; mRISC score= Modified Respiratory Index of Severity in Children score; RISC score= Respiratory Index of Severity in Children score; PERCH severity score= Pneumonia Etiology Research for Child Health severity score; LOD score= Lambarene Organ Dysfunction score; CRT= Classification and Regression Trees; ITAT Score= Inpatient Triage Assessment and Treatment score; PEDIA score= Paediatric Early Death Index for Africa score.

199x219mm (300 x 300 DPI)

Table 1: Systematic review	framework as recommended b	y CHARMS checklist
----------------------------	----------------------------	--------------------

Item	Criteria
Prognostic or diagnostic model	Prognostic model predicting in-hospital mortality.
Scope	Prognostic models to inform clinicians about the risk of deterioration or death.
Type of prediction models	Prognostic models with and/or without external validation.
Prediction target population	Children aged > 1 month to 15 years admitted in pediatric wards in developing countries
Outcome of interest	All-cause in-hospital mortality.
Prediction period	Any
Intended moment to apply the prediction tool	Prognostic model to be used in primary prevention to assess risk of deterioration and thus guide prevention/treatment.
KEY:	
('HARMS- ('becklist for orit	tical Appraisal and data extraction for systematic Reviews of

KEY:

CHARMS= Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies

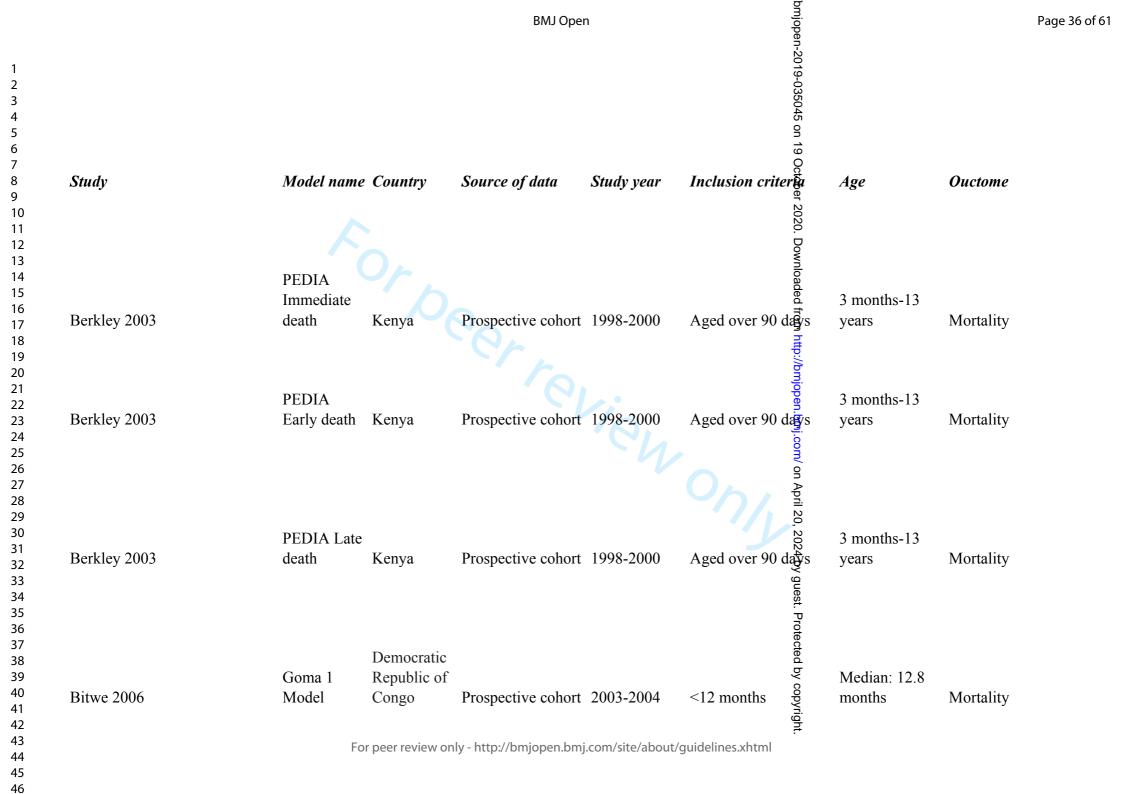
BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

2	
2	
-	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
г о	

59

60

1

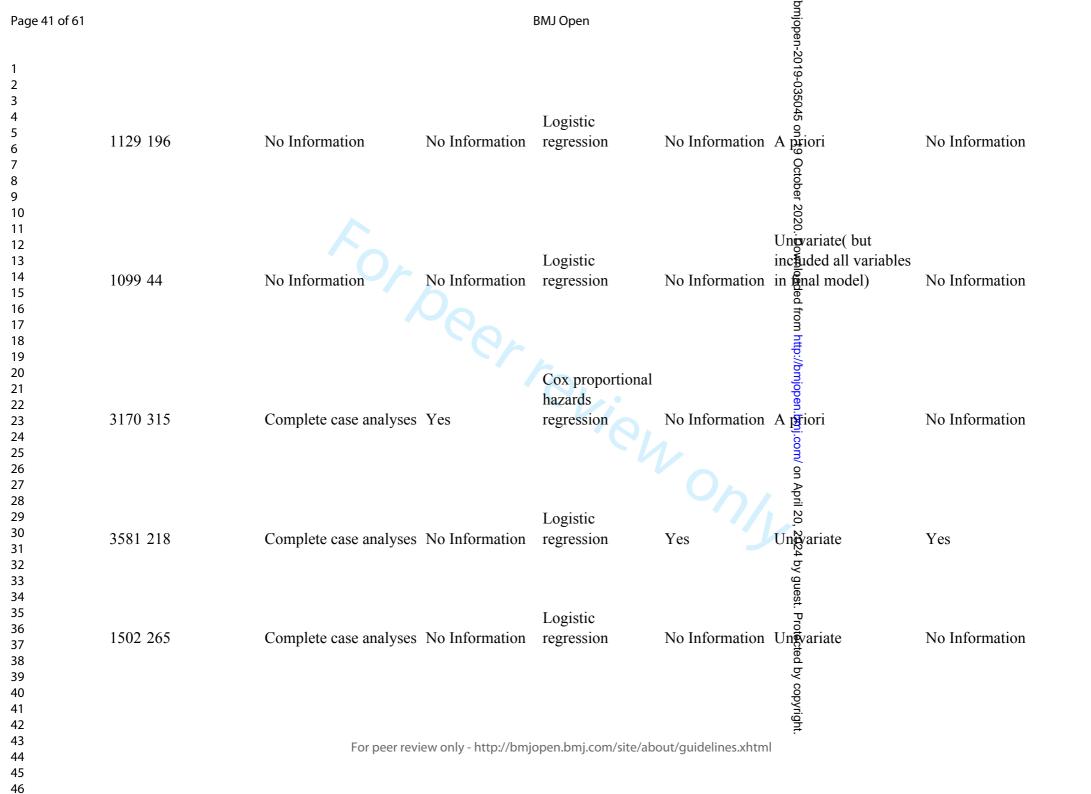

Table 2: Search terms for prognostic models

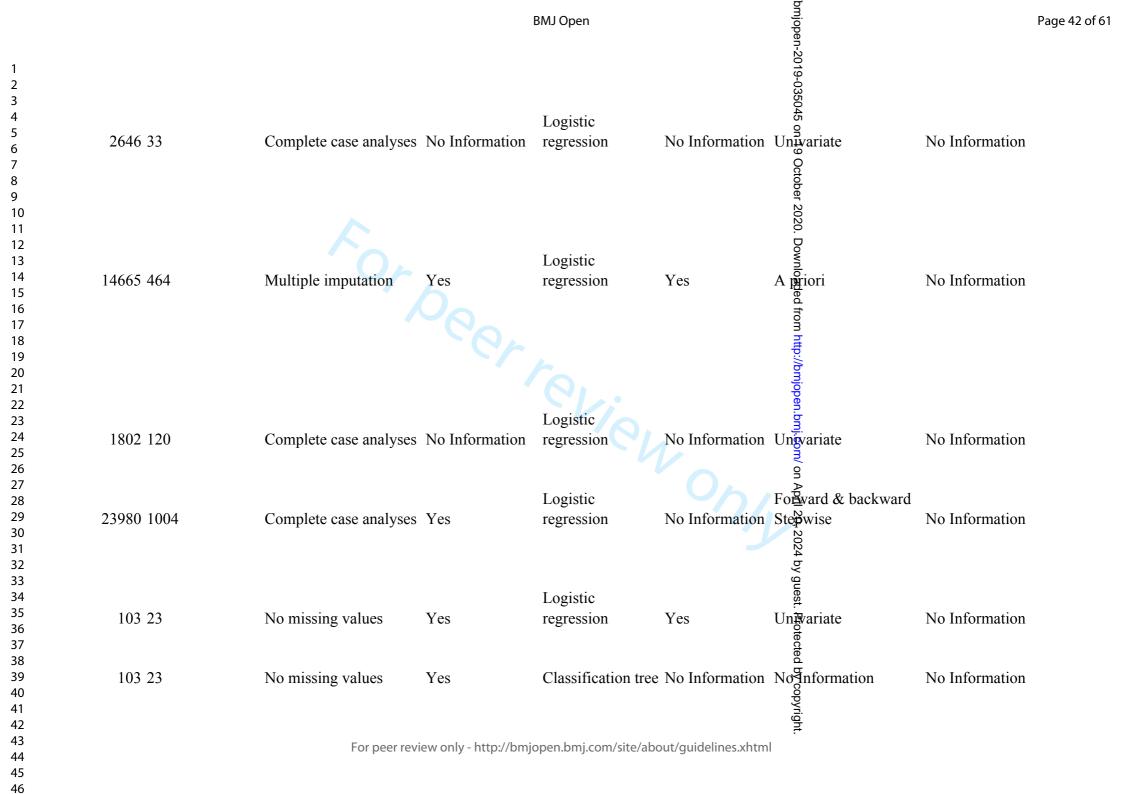
Search	Sub-heading	Search Terms				
ID						
S4						
	Children	paediatric* OR pediatric* OR (MH "Pediatrics+") OR child*				
S3						
	Hospital based	(MH "Hospitals+") OR hospital*				
S2		(MH "Developing Countries+") OR (MH "Africa+") OR TI				
	Low-income countries	("low income" OR "low and middle income" OR "LMIC"				
		OR "LIC" OR "limited resource*" OR "poor resource*" OR				
		"resource* poor" OR ("developing countries") OR				
		("developing nations") OR ("third world") OR "resource-				
		constrained" OR ("global south")				
S1		prognos* OR (MH "prognosis") OR				
		(Predict* AND (Outcome* OR Risk* OR Model* OR				
	Predictive models	Mortality OR Index OR Rule* OR decision* OR scor*))				
		OR "risk score" OR "scor* system" OR "logistic model*"				
		"risk prediction" OR "risk calculation" OR "risk				
		assessment" OR "c statistic" OR discrimination OR				
		calibration OR AUC OR "area under the curve" OR "area				
		under the receiver operator characteristic curve"				

Table 3: List of domains and signaling questions used for assessment of risk of bias according to the PROBAST tool.

Domain	Signalling question
	Were appropriate data sources used, e.g., cohort, RCT, or nested case-control study
Participants	data?
selection	Were all inclusions and exclusions of participants appropriate?
	Were predictors defined and assessed in a similar way for all participants?
Predictors	Were predictor assessments made without knowledge of outcome data?
	Are all predictors available at the time the model is intended to be used?
	Was the outcome determined appropriately?
	Was a prespecified or standard outcome definition used?
	Were predictors excluded from the outcome definition?
Outcome	Was the outcome defined and determined in a similar way for all participants?
	Was the outcome determined without knowledge of predictor information?
	Was the time interval between predictor assessment and outcome determination
	appropriate?
	Were there a reasonable number of participants with the outcome?
	Were continuous and categorical predictors handled appropriately?
	Were all enrolled participants included in the analysis?
	Were participants with missing data handled appropriately?
	Was selection of predictors based on univariable analysis avoided?
	Were complexities in the data (e.g., censoring, competing risks, sampling of control
	participants) accounted for appropriately?
Analysis	Were relevant model performance measures evaluated appropriately?
	Were model overfitting, underfitting, and optimism in model performance accounte
	for?
	Do predictors and their assigned weights in the final model correspond to the results
	from the
	reported multivariable analysis?
KEY:	

PROBAST= Prediction study Risk of Bias Assessment Tool




Page 37 o	of 61			BMJ Ope	n	bmjoper		
1 2 3 4 5 6 7 8 9 10	Draimax 1996		Congo	Prospective cohort	1986-1988	bmjopen-2019-035045 on 19 October 2020. Down	Median: 27 months	Mortality
11 12 13 14 15 16 17	Kumar 2003	SICK score	India	Prospective cohort	1998-1999	Paediatric patients	No Information	Mortality
18 19 20 21 22 23 24 25	Geoge 2015	PET Score	Kenya, Uganda, Tanzania	RCT	2009-2011	ed from http://bmjopen.bmj.com/	Median: 24 (IQR=13-38)	Mortality
26 27 28 29 30 31 32	Emukule 2014	mRISC	Kenya	Surveillance	2009-2012	Under 5 years hospitalized with severe acute respiratory illne	<59 months	Mortality
33 34 35 36 37 38 39	Reed 2012	RISC-HIV positive	South Africa	RCT	1998-2001	LRTI hospitalizations under 24 monthswith HIV infection		Mortality
40 41 42 43 44 45 46		Fc	r peer review on	ly - http://bmjopen.bm	j.com/site/about/	HIV infection for the by copyright.		

				BMJ Ope	n	LRTI hospitalizations			Page 38 of 61
1						n-2019-			
2 3						LRTI hospitalizations			
4 5	Reed 2012	RISC-HIV	South Africa	DCT	1998-2001	under 24 months without HIV infection		Mortality	
6 7	Reeu 2012	Negative	South Affica	KC1	1998-2001	9 (Mortality	
8 9						tober			
10 11						October 2020.			
12 13		RISC-		Retrospective observational		0-59 months p			
14 15	Hooli 2016	Malawi	Malawi	study	2011-2014	hospitalized wit	<59 months	Mortality	
16			Kenya,			ed from			
17 18			Zambia,			from http:			
19 20			South Africa, Mali,			1-59 months HI			
21 22			Gambia,			negative hospitagized			
23 24	Gallagher 2019	PERCH Score	Bangladesh, Thailand	Case-control study	2011–2014	with severe or very severe pneumonia	Median: 9(4- 19) months	In-hospita	
25 26	C		Gambia,Mal	5			,	1	
27 28			awi,Kenya, Ghana,Gabo			Hospitalized chitdren			
29 30	Helbok 2009	LOD score	n	Prospective cohort	2000-2005	with severe malaria	28(0-180)	Mortality	
31 32						2024 by gu			
33 34	Erdman 2011 (Logistic	Biomarker					6 months - 12		
35	regression)	score	Uganda	Retrospective neste	2007-2009	<u>ع</u> 6 months - 12 ye	years	Mortality	
36 37	Erdman 2011 (Classification					otected	6 months - 12		
38 39	tree)		Uganda	Retrospective neste	2007-2009	6 months - 12 years	years	Mortality	
40 41						copyright.			
42 43		Fo	r neer review on	y - http://bmjopen.bm	com/site/about/c				
44 45		FO	i heei ieviem olli	y - mtp.//omjopen.bmj		Juidennes.xiittiin			
46									


Page 39	of 61			BMJ Open	bmjopen-2		
1 2 3 4 5 6 7 8	Lowlaavar 2016	Model 1	Uganda	Prospective observa 2012-2013	6–60 months admitted with infectious illness 6–60 months	Median 18.2 (IQR 11.9–33.1) months Median 18.2 (IQR	Mortality
9 10 11 12 13	Lowlaavar 2016	Model 2	Uganda	Prospective observa 2012-2013	6–60 months admitted with infectious illness 6–60 months admitted with infectious illness	11.9–33.1) months Median 18.2 (IQR	Mortality
14 15 16 17 18 19 20	Lowlaavar 2016	Model 3	Uganda	Prospective observa 2012-2013	admitted with a infectious illness for http://bmjope	11.9–33.1) months	Mortality
21 22 23 24 25	Mpimbaza 2015		Uganda	Surveillance 2010-2013	General paediatizes age <15 years on the	18 months (IQI 9–36)	R Mortality
26 27 28 29 30 21	Olson 2013	ITAT score	Malawi	Nested case-control2010-2011	acute care and malnutrition wards	≤15 years	Mortality
31 32 33 34 35 36 37 38 39 40 41 42	Rosman 2019	PEWS-RL	Rwanda	Case-control study 2016-2017	admitted to pediatric department quest. Protected by copyright.	0-18 years	Mortality
43 44 45 46		Fc	or peer review o	nly - http://bmjopen.bmj.com/site/about/			

					BMJ Open		bmjoper	Page 40 of 61
1 2 3 4 5 6 7 8 9 10	Sample size	Number of outcome events	Missing data handling	Number of participant with missing data reported?	Regression method	Were model assumptions verified	bmjopen-2019-035045 on 19 Oct election	Was a shrinkage method used
11 12 13 14 15 16 17	429	9 60	No Information	No Information	Spiegelhalter/Kni ll-Jones method	Yes	2020. Downloaded fravariate	No Information
18 19 20 21 22 23 24	439	193	No Information	No Information	Spiegelhalter/Kni ll-Jones method	Yes	Unavariate	No Information
25 26 27 28 29 30 31 32	436	0 183	No Information	No Information	Spiegelhalter/Kni ll-Jones method	Yes	University of the second secon	No Information
33 34 35 36 37 38 39 40	414	- 66	No Information	No Information	Logistic regression	Yes	guest. Protected by Ungwariate & Stepwise	e No Information
41 42 43 44 45 46					open.bmj.com/site/abo		rright.	

Page 43 of 61				BMJ Open		bmjopen.	
1 2 3						bmjopen-2019-035045	
4 5 6 7	1307 65	Multiple imputation	No Information	Logistic regression	No Information	Univariate & Stepwise	e No Information
, 8 9 10	1207.65	Multiple immediate	No Information	Logistic	No Information	Ungvariate & Stepwise	No Information
11 12 13	1307 65	Multiple imputation	No Information	regression	No information		e No Information
14 15 16 17	1307 65	Multiple imputation	No Information	Logistic regression	No Information	Unevariate & Stepwise	e No Information
18 19 20						1 http://bmjope	
21 22				Logistic		oper	
23 24 25	50249 1742	Complete case analyses	Yes	regression	No Information	Bagkward	No Information
26 27				Logistic		on	
28 29 30	1606 54	Single imputation	Yes	regression	Yes	Unevariate	No Information
31 32				Logistic		024 b	
33	168 57	Complete case analyses	No Information	regression	No Information	Ungvariate	No Information
34 35						est. F	
36						rote	
37 38						cted	
39						by c	
40 41						Protected by copyright.	
42						ight.	
43 44		For peer rev	iew only - http://bmj	open.bmj.com/site/ab	out/guidelines.xhtm	l	
44 45							
46							

Page 45	of 61			BMJ Open			bmjopen-2
1 2 3 4 5 6 7 8 9	No Information	0.85(No information)	Positive predictive values 40% and negative predictive value of 97.9% Maximum discrimination was	Separate dataset	No	Yes	bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.
10 11 12 13 14 15 16	No Information	0.89	observed at a score of 2.5 with a sensitivity of 84.1% and of specificity 82.2%	No Information	Yes	Yes	2020. Downloaded fro No
17 18 19 20 21	Hogmor Lomoshow tost	0.82(0.77–0. 87)					om http://bmjop
22 23 24 25 26	Hosmer-Lemeshow test, P=0.30		No Information	Separate dataset	No	Yes	en.bmj.com/ on
27 28 29			A score of >6 has a sensitivity of 1.8%				April 20,
0 1 2	Calibration plot	0.85	and specificity 99.9%	Bootstrapping	Yes	Yes	No 2024 by
3 4 5 6	Hosmer-Lemeshow test,	_	Score of 7 has a sensitivity of 4% and				guest. Prot
7 8 9	P=0.95	0.78	specificity of 99%	Bootstrapping	No	Yes	No tected by c
0 1 2 3						.,	-
4 5			For peer review only - I	nttp://bmjopen.bmj.c	com/site/abou	ıt/guidelines.xh	itml

			BMJ Open			bmjopen-2	
Hosmer-Lemeshow te P=0.87		Score of 6 has a sensitivity: 16% 2 Specificity: 99%	Bootstrapping	Yes	Yes	bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright. No No No No No	5
Risk predictiveness cu	0.79 (95% CI: urve 0.76±0.82)	a score of 8 has sensitivity of 57% and specificity of 88%	No Information	No	Yes	r 2020. Downloaded from Yes	5
Calibration plot	0.84(No Information)	positive predictive value 23.6%, positive predictive value 95.8%	Bootstrapping &	sNo	Yes	http://bmjopen.bmj.com/ No	12
No Information Hosmer-Lemeshow te	80 (79–82)	LODS 7>=1, sensitivi ty was 85% and specif icity was 63% sensitivity of 95.7% (95% CI: 78.1–99.9) and specificity of	No Information	Yes	Yes	on April 20, 2024 by g	8
and calibration slope analysis	0.96(0.90–0. 99)	88.8% (79.7–94.7) predicting death 100% sensitivity and	Boostrappling	No	Yes	guest. Protecte	8
No Information	No Information	92.5% specificity for predicting outcome	10-fold cross vali	icNo	No	id by copyrig	3
		For peer review only - h	nttp://bmjopen.bmj.c	com/site/al	oout/guidelines.		

Page 46 of 61

Page 47 o	of 61			BMJ Open			bmjopen-2
1 2 3 4 5		0.85	Sensitive: 0.83 (0.74–0.92), Specificity: 0.76				bmjopen-2019-035045 on 19 October 2020. Yes
6 7 8 9	No Information	(0.80-0.89)	(0.73–0.78) Sensitive: 0.80 (0.70–0.90),	No Information	No	No	Yes 10 Octobe
10 11 12 13	No Information	0.84 (0.79–0.89)	Specificity: 0.76 (0.74–0.79) Sensitive: 0.82 (0.72–0.91),	No Information	No	No	
14 15 16 17 18	No Information	0.82 (0.72–0.91)	Specificity: 0.71 (0.68–0.73)	No Information	No	No	Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by gu No No No
19 20 21 22		0.76(No					ttp://bmjopen
23 24 25 26	General paediatrics	information) 0.76(No	No Information sensitivity: 0.44, specificity: 0.86, PPV: 0.18, NPV: 0.96	Separate dataset	No	Yes	.bmj.com/ on
27 28 29 30 31	No Information	information)	for a cut-off of 4 PEWS-RL of >=3, sensitivity was 96.2%,	No Information	No	Yes	April 20, 202 No
32 33 34 35 36	No Information	0.96 (95% CI 0.93–0.99).	and specificity was 87.3%	No Information	No	Yes	
37 38 39 40							est. Protected by copyright.
41 42 43 44 45			For peer review only - ł	nttp://bmjopen.bmj.c	.om/site/abou	ıt/guidelines.xh	-
45 46							

			BMJ Open
	y based predictor	continou s predictor	-
<i>Predictors in the final model</i> Severe anaemia, Jaundice, Subcostal indrawing, Deep breathing, Prostrated with seizures, Prostrated without seizures,	S	S	variable
Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary	0	6	6
temperature >39 °C Jaundice, Subcostal indrawing, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without	No	NA	24.125
seizures, Wasting, Kwashiorkor	No	NA	
History >7 days, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °C, Wasting, Kwashiorkor	No	Dichoto mized History	20.33333
Age(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), Infectious diagnosis(Acute respiratory infection, Malaria, Gastroenteritis, Septicemia / bacteremia, Other infections)		Dichoto mized Brachial perimeter & Age	8.25

44 45 46 bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1 2				
3 4	MUAC, edema, Serum albumin,			49
5 6	Transthyretin	Yes	MUAC	
7	Temperature(Normal, Abnormal), Heart			
8 9	rate(Normal, Abnormal), Respiratory rate(Normal, Abnormal), Systolic blood			
10	pressure(Normal, Abnormal), Capillary		Dichoto	4.888889
11 12	refill time(Normal, Abnormal),		mized	
13 14	Consciousness(Normal, Abnormal),		most	
14	Age(≥ 60 , ≥ 12 to < 60 , ≥ 1 to < 12 , < 1) Temperature(≤ 37 , >37), Heart rate(< 80	No	variables	
16 17	bpm, \geq 80 to <105 bpm, \geq 220 bpm),			
18	Capillary refill time(≥2sec, <2sec),		multivari	
19 20	Conscious level(prostrate, coma),		able	28.63636
21	Respiratory distress, Lung crepitations, Severe pallor, Weak pulse, Weight(<6 kg,		fractional polynomi	
22 23	6–8 kg), Deep breathing	No	als	
24 25	Lab confirmed malaria, Weight for			28.63636
26	age(Low, Very Low), Dehydration, Unconscious, Unable to drink/breastfeed,		Catagoria	· · · ·
27 28	Night sweats, Chest wall in-drawing,		Categoriz ed	24.22222
29	Interaction between malaria and chest		weight	
30 31	wall in-drawing, A.V.P.U scale - Not alert	Yes	for age	
32	Oxygen saturation <90%, Chest indrawing, Wheezing, Refusing feeds,			
33 34	HIV classification(Severe, Mild or			37.85714
35 36	moderate), IMCI age group(<2 months,			
37	3–12 months)	No		
38 39				
40				
41				

			BMJ Open
Oxygen saturation <90%, Chest indrawing, Wheezing, Refusing feeds, Weight for age(Low (<= -2 z-score),		Categoriz ed weight	BMJ Open 6.6 92.8 10 125.5 2.875 7.666667
Very Low (<= -3 z-score))	No	for age Categoriz ed	
Oxygen saturation(moderate, severe),		MUAC	
MUAC(moderate, severe), Gender,		and	92.8
Wheeze, Consciousness		Oxygen saturatio	
	No	n	
Age(1-11, 12-59), sex, Unresponsiveness and/or deep breathing(Deep breathing, but alert, Unresponsive but no deep breathing,			
Unresponsive and deep breathing), cough, grunting, hypoxemia, length of $(2, 2, 5, 5)$ Weight for height -		Catalania	10
illness $(0-2, 3-5, >5)$, Weight-for-height z-	•	Categoriz	
score(Very low (< -3), Low (≥ -3 to < -2), Normal-high (≥ -2)) Convulsion, vomiting, deep breathing,	No	ed most variables	10
intercostal recession, Coma, Prostration,hyperparastemia, severe			125.5
anemia	Yes	NA	
angiopoietin-2, soluble ICAM-1, soluble Flt-1, procalcitonin, IP-10, soluble TREM	-		2.875
1, age, parasitemia	Yes	NA	
			7.666667
IP-10, Ang-2, sICAM-1	Yes	NA	

of 61			BN
Abnormal BCS, Positive HIV diagnosis, Weight-age z-score	Yes	Treated as continuo us	21.66667
Abnormal BCS, HIV diagnosis, MUAC	1.00	Treated as	21.66667
Tonomia Deo, me augnosio, mome	Yes	continuo us Treated	21.00007
		as	22.5

No

No

Abnormal BCS, MUAC

Age, fever, difficulty breathing, altered consciousness, unable to drink or breastfeed, convulsions, temperature, unconsciousness, pallor, jaundice, deep breathing, meningeal signs, unable to sit No up Oxygen saturation, Temperature, Heart rate, Respiratory rate No

PEWS-RL score(0 to 6)

32.5 continuo

BMJ Open

NA

NA

us

Used splines

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Study	Participants	
-	Were appropriate data sources	Were all
	used, e.g., cohort, RCT, or	inclusions and
	nested	exclusions of
	case–control study data?	participants
	-	appropriate?
Berkley 2003 (PEDIA -Immediate)	Yes	Yes
Berkley 2003(PEDIA -Early)	Yes	Yes
Berkley 2003(PEDIA -Late)	Yes	Yes
Bitwe 2006 (Goma score)	Yes	Yes
Draimax 1996	Yes	Yes
Kumar 2003(SICK score)	Yes	Yes
Geoge 2015 (PET score)	Yes	Yes
Emukule 2014 (mRISC score)	No	Yes
Reed 2012 (RISC HIV+)	Yes	Yes
Reed 2012 (RISC HIV-)	Yes	Yes
Hooli 2016(RISC-Malawi)	No	Yes
Gallagher 2019(PERCH Score)	Yes	Yes
Helbok 2009(LOD score)	Yes	Yes
Erdman 2011(logistic regression)	Yes	Yes
Erdman 2011(CRT)	Yes	Yes
Lowlaavar 2016 (Model 1)	Yes	Yes
Lowlaavar 2016 (Model 2)	Yes	Yes
Lowlaavar 2016 (Model 3)	Yes	Yes
Mpimbaza 2015	No	Yes
Olson 2013(ITAT score)	Yes	Yes
Rosman 2019(PEWS-RL score)	No	Yes
``````````````````````````````````````		

1			יי ת		
2			Predictors		
3	Risk of Bias in	Were	Were predictor	Are all predictors	Risk of Bias in
4 5	participants	predictors	assessments	available at	predictors
6		defined and	made without	the time the	
7		assessed in a	knowledge of	model is intended	
8		similar way for	0 0	to be used?	
9		all participants			
10 11					
11	Low	Yes	Yes	Yes	Low
13	Low	Yes	Yes	Yes	Low
14	Low	Yes	Yes	Yes	Low
15 16	Low	Yes	Yes	Yes	Low
10	Low	Yes	Yes	No	High
18	Low	Yes	Yes	Yes	Low
19	Low	Yes	Yes	Yes	Low
20	High	Yes	Yes	No	High
21 22	Low	Yes	Yes	Yes	Low
22	Low	Yes	Yes	Yes	Low
24	High	Yes	Yes	Yes	Low
25	Low	Yes	Yes	Yes	Low
26 27	Low	Yes	Yes	Yes	Low
27 28	Low	Yes	Yes	Yes	Low
29	Low	Yes	Yes	Yes	Low
30	Low	Yes	Yes	No	High
31	Low	Yes	Yes	No	High
32 33	Low	Yes	Yes	Yes	Low
33 34	High	Yes	Yes	Yes	Low
35	Low	Yes	Yes	Yes	Low
36		Yes	Yes	Yes	Low
37	High	I es	res	res	LOW
20					



		(	Dutcome	
Was the outcome determined appropriately?	Was a prespecified or standard outcome definition used?	Were predictors excluded from the outcome definition?	Was the outcome defined and determined in a similar way for all	Was the outcome determined without knowledge of predictor information?
Yes	Yes	Yes	participants? Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes

## Outcome

Yes Yes Yes Yes Yes Y

Yes

Yes

Yes

## **BMJ** Open

2 3 4 5 6 7 8	Was the time interval between predictor assessment and outcome determination appropriate?	Risk of Bias in outcome	Were there a reasonable number of participants with the outcome?	Were continuous and categorical predictors handled appropriately?
9	appropriate?			appropriately?
10				
11 12	Yes	Low	No	Yes
12	Yes	Low	Yes	Yes
14	Yes	Low	Yes	No
15	Yes	Low	No	No
16	Yes	Low	Yes	No
17 18	Yes	Low	No	No
19	Yes	Low	Yes	Yes
20	Yes	Low	Yes	No
21	Yes	Low	Yes	Yes
22	Yes	Low	No	No
23 24	Yes			
25		Low	Yes	No
26	Yes	Low	Yes	No
27	Yes	Low	Yes	Yes
28	Yes	Low	No	Yes
29 30	Yes	Low	No	Yes
30 31	Yes	Low	Yes	Yes
32	Yes	Low	Yes	Yes
33	Yes	Low	Yes	Yes
34	Yes	Low	Yes	Yes
35	Yes	Low	Yes	Yes
36 37	Yes	Low	No	Yes
38				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			•
An	ด	VS	16
	u	<b>y</b> 8	IN IS

enrolled with missing predictors based on data participants data handled univariable analysis (e.g., censoring, comp included in the appropriately? avoided risks, sampling of cor			BMJ Open	
YesProbably NoNoNAYesProbably NoNoNAYesNo InformationNoNAYesNo InformationYesNAYesNo InformationNoNAYesNo InformationNoNAYesNo InformationNoNAYesNo InformationNoNAYesNo InformationNoNAYesNo InformationNoNAYesYesYesYesNo InformationNoNAYesYesYesNAYesYesYesNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNoYesYesNoNoYesYesNoNoYesYesNoNoYesYesNoNo<	enrolled participants included in the	with missing data handled	predictors based on univariable analysis	Were complexities in the data (e.g., censoring, competin risks, sampling of contro participants) accounted for
YesProbably NoNoNAYesProbably NoNoNAYesNo InformationNoNAYesNo InformationYesNAYesNo InformationNoNAYesNo InformationNoNAYesNo InformationNoNAYesNoYesNoYesNoNoNAYesNoNoNAYesNo InformationNoNAYesYesYesYesNo InformationNoNAYesYesYesNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNoYesNoNoNAYesYesNoNoYesYesNoNoYesYesNoNoYesYesNoNoYesYesNoNoYesYesNoNoYesYes <td< td=""><td>Yes</td><td>Probably No</td><td>No</td><td>NA</td></td<>	Yes	Probably No	No	NA
YesProbably NoNoNAYesNo InformationNoNAYesNo InformationYesNAYesNo InformationNoNAYesNo InformationNoNAYesNoYesNoYesNoNoNAYesNoNoNAYesNoInformationNoYesNo InformationNoNAYesYesYesYesNoInformationNoNAYesYesYesYesNoNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNA				
YesNo InformationNoNAYesNo InformationYesNAYesNo InformationNoNAYesNoYesNoYesNoNoNAYesNoNoNAYesNoNoNAYesNo InformationNoNAYesNo InformationNoNAYesYesYesYesNoNoNAYesYesYesYesNoNoYesYesNoYesYesNoYesYesNoYesYesNoYesYesNoYesYesNoYesYesNoYesYesNoYesYesNoYesYesNoYesYesNoYesYesNoYesYesYesNoNAYesYesNoYesYesNoYesYesNoYesYesNoYesNoNAYesYesNoYesYesNoYesYesNoYesYesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYe				
YesNo InformationYesNAYesNo InformationNoNAYesNoYesNoYesNoNoNAYesNo InformationNoNAYesYesYesYesYesNo InformationNoNAYesYesYesYesYesNoNoNAYesYesYesNoYesNoNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesProbably NoNoNA		-		
YesNo InformationNoNAYesNoYesNoYesNoNoNAYesNo InformationNoNAYesYesYesYesYesYesYesYesYesYesYesNAYesYesYesNAYesNoNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesProbably NoNoNA				
YesNoYesNoYesNoNoNAYesNo InformationNoNAYesNo InformationNoNAYesYesYesYesYesYesYesNAYesNoNoNAYesNoNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesNoNoNAYesNoNoNAYesNoNoNAYesProbably NoNoNA				
YesNoNoNAYesNo InformationNoNAYesNo InformationNoNAYesYesYesYesYesNoNoNAYesNoNoNAYesYesNoNoYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesNoNoNAYesNoNoNAYesProbably NoNoNA				
YesNo InformationNoNAYesNo InformationNoNAYesYesYesNAYesNoNoNAYesNoNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesNoNoNAYesNoNoNAYesProbably NoNoNA				
YesNo InformationNoNAYesYesYesNAYesNoNoNAYesNoNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesProbably NoNoNA				
YesYesYesNAYesNoNoNAYesNoNoNAYesYesNoNAYesYesNo InformationNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesProbably NoNoNA				
YesNoNoNAYesNoNoNAYesYesNoNAYesYesNo InformationNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesProbably NoNoNA				
YesNoNoNAYesYesNoNAYesYesNo InformationNAYesYesNoNAYesYesNoNAYesYesNoNAYesYesNoNAYesProbably NoNoNA	Yes			
YesYesNo InformationNAYesYesNoNAYesYesNoNAYesYesNoNAYesNoNoNAYesProbably NoNoNA	Yes	No	No	NA
YesYesNoNAYesYesNoNAYesYesNoNAYesNoNoNAYesProbably NoNoNA	Yes	Yes	No	NA
YesYesNoNAYesYesNoNAYesNoNoNAYesProbably NoNoNA	Yes	Yes	No Information	NA
YesYesNoNAYesNoNoNAYesProbably NoNoNA	Yes	Yes	No	NA
YesNoNoNAYesProbably NoNoNA	Yes	Yes	No	NA
Yes Probably No No NA	Yes	Yes	No	NA
	Yes	No	No	NA
Yes No No NA	Yes	Probably No	No	NA
	Yes	No	No	NA

Page 57 of	61		BMJ Open		
1					
2 3	<b>11</b> 7 <b>1</b>				
4	Were relevant model	Were model overfitting, underfitting, and	Do predictors and their	Risk of Bias in	
5	performance	optimism in model	assigned weights in the final model	analysis	
6 7	measures	performance accounted	correspond to the results from	unuiysis	
8	evaluated	for?	the reported multivariable		
9	appropriately?	<i>j</i> 0	analysis?		
10 11					
12	Probably No	No Information	Probably Yes	Unclear	
13	Probably No	No Information	Probably Yes	Unclear	
14 15	Probably No	No Information	Probably Yes	Unclear	
16	Yes	No Information	Yes	Unclear	
17	No No	No Information No Information	Probably No Yes	Unclear Unclear	
18 19	No	No Information	Yes	Unclear	
20	Yes	Yes	Yes	High	
21	Yes	Yes	Yes	Unclear	
22 23	Yes	Yes	Yes	Unclear	
24	Yes	No Information	Yes	Unclear	
25	Yes	Yes	Yes	High	
26 27	Probably No	No Information	Probably No	Unclear	
28	No	Yes	No Information	Unclear	
29	No Information	Yes	No Information	Unclear	
30 31	No	No Information	Yes	Unclear	
32	No	No Information	Yes	Unclear	
33	No	No Information	Yes	Unclear	
34 35	No Information	No Information	Yes	Unclear	
36	No No	No Information No Information	No	Unclear Unclear	
37	INO	No information	NO	Uncical	
38 39					
40					
41 42					
42					
44					
45 46					
40					
48					
49 50					
50					
52					
53 54					
55					
56					
57 58					
59					
60					
		For poor raviow only http://bm	nionen hmi com/site/about/quideline	s vhtml	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## Reporting checklist for systematic review and meta-analysis.

Based on the PRISMA guidelines.

## Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the PRISMAreporting guidelines, and cite them as:

Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred Reporting Items for

Systematic Reviews and Meta-Analyses: The PRISMA Statement

Page

# **Reporting Item** Number Title Identify the report as a systematic review, meta-analysis, or #1 both. Abstract

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	Structured	<u>#2</u>	Provide a structured summary including, as applicable:	2
3 4	summary		background; objectives; data sources; study eligibility criteria,	
5 6 7			participants, and interventions; study appraisal and synthesis	
7 8 9			methods; results; limitations; conclusions and implications of key	
10 11			findings; systematic review registration number	
12 13 14 15	Introduction			
16 17	Rationale	<u>#3</u>	Describe the rationale for the review in the context of what is	3
18 19			already known.	
20 21 22	Objectives	#1	Dravide an avaliait statement of questions being addressed with	3
23 24	Objectives	<u>#4</u>	Provide an explicit statement of questions being addressed with	3
25 26			reference to participants, interventions, comparisons, outcomes,	
27 28			and study design (PICOS).	
29 30 31	Methods			
32 33	Protocol and	<u>#5</u>	Indicate if a review protocol exists, if and where it can be	4
34 35 36	registration		accessed (e.g., Web address) and, if available, provide	
37 38 39			registration information including the registration number.	
40 41	Eligibility criteria	<u>#6</u>	Specify study characteristics (e.g., PICOS, length of follow-up)	4
42 43			and report characteristics (e.g., years considered, language,	
44 45 46			publication status) used as criteria for eligibility, giving rational	
47 48	Information	<u>#7</u>	Describe all information sources in the search (e.g., databases	N/A
49 50 51	sources		with dates of coverage, contact with study authors to identify	
52 53			additional studies) and date last searched.	
54 55	Saarah	#0	Dresent full electronic eserch strategy for at least one database	5
56 57	Search	<u>#8</u>	Present full electronic search strategy for at least one database,	5
58 59		[a:	including any limits used, such that it could be repeated. peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
60		ror		

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1 2	Study selection	<u>#9</u>	State the process for selecting studies (i.e., for screening, for	6
3 4			determining eligibility, for inclusion in the systematic review, and,	
5 6 7			if applicable, for inclusion in the meta-analysis).	
8 9 10 11 12	Data collection	<u>#10</u>	Describe the method of data extraction from reports (e.g., piloted	6
	process		forms, independently by two reviewers) and any processes for	
13 14			obtaining and confirming data from investigators.	
15 16				
17 18	Data items	<u>#11</u>	List and define all variables for which data were sought (e.g.,	6
19 20			PICOS, funding sources), and any assumptions and	
21 22			simplifications made.	
23 24				_
25	Risk of bias in	<u>#12</u>	Describe methods used for assessing risk of bias in individual	7
26 27 28 29	individual studies		studies (including specification of whether this was done at the	
			study or outcome level, or both), and how this information is to	
30 31 32			be used in any data synthesis.	
33 34 35	Summary	<u>#13</u>	State the principal summary measures (e.g., risk ratio, difference	N/A
36 37 38	measures		in means).	
39 40	Planned methods	<u>#14</u>	Describe the methods of handling data and combining results of	N/A
41 42	of analyis		studies, if done, including measures of consistency (e.g., I2) for	
43 44 45			each meta-analysis.	
46 47 48	Risk of bias	<u>#15</u>	Specify any assessment of risk of bias that may affect the	7
49 50	across studies		cumulative evidence (e.g., publication bias, selective reporting	
51 52 53			within studies).	
54 55	Additional	<u>#16</u>	Describe methods of additional analyses (e.g., sensitivity or	N/A
56 57 58	analyses		subgroup analyses, meta-regression), if done, indicating which	
59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2			were pre-specified.	
3 4 5	Results			
6 7 8 9	Study selection	<u>#17</u>	Give numbers of studies screened, assessed for eligibility, and	8
			included in the review, with reasons for exclusions at each stage,	
11 12 13			ideally with a <u>flow diagram</u> .	
14 15	Study	<u>#18</u>	For each study, present characteristics for which data were	8
16 17	characteristics		extracted (e.g., study size, PICOS, follow-up period) and provide	
18 19 20			the citation.	
21 22 23	Risk of bias	<u>#19</u>	Present data on risk of bias of each study and, if available, any	11
24 25 26	within studies		outcome-level assessment (see Item 12).	
27 28	Results of	<u>#20</u>	For all outcomes considered (benefits and harms), present, for	N/A
29 30	individual studies		each study: (a) simple summary data for each intervention group	
			and (b) effect estimates and confidence intervals, ideally with a	
34 35 36			forest plot.	
37 38	Synthesis of	<u>#21</u>	Present the main results of the review. If meta-analyses are	N/A
39 40	results		done, include for each, confidence intervals and measures of	
41 42 43			consistency.	
44 45 46	Risk of bias	<u>#22</u>	Present results of any assessment of risk of bias across studies	11
47 48	across studies		(see Item 15).	
49 50 51	Additional	<u>#23</u>	Give results of additional analyses, if done (e.g., sensitivity or	N/A
52 53 54	analysis		subgroup analyses, meta-regression [see Item 16]).	
55 56 57 58	Discussion			
59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1							
1 2	Summary of	<u>#24</u>	Summarize the main findings, including the strength of evidence	12			
3 4	Evidence		for each main outcome; consider their relevance to key groups				
5 6	(e.g., health care providers, users, and policy makers						
7 8							
9 10	Limitations	<u>#25</u>	Discuss limitations at study and outcome level (e.g., risk of bias),	15			
11 12			and at review level (e.g., incomplete retrieval of identified				
13 14			research, reporting bias).				
15							
16 17	Conclusions	<u>#26</u>	Provide a general interpretation of the results in the context of	16			
18 19 20			other evidence, and implications for future research.				
20 21							
22	Funding						
23 24							
25 26	Funding	<u>#27</u>	Describe sources of funding or other support (e.g., supply of	17			
27 28		data) for the systematic review; role of funders for the systematic					
29 30			review.				
31 32							
33 34	The PRISMA checklist is distributed under the terms of the Creative Commons Attribution License						
35 36	CC-BY. This checklist was completed on 15. October 2019 using https://www.goodreports.org/, a tool						
37	made by the EQU	ATOR	Network in collaboration with Penelope.ai				
38 39							
40 41							
42							
43 44							
45							
46 47							
48							
49 50							
50 51							
52							
53 54							
55							
56 57							
58							
59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				
00							

## **BMJ Open**

## **Prognostic models for predicting in-hospital paediatric mortality in resource-limited countries: a systematic review**

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035045.R2
Article Type:	Original research
Date Submitted by the Author:	03-Sep-2020
Complete List of Authors:	ogero, morris; KEMRI-Wellcome Trust Research Programme; University of Nairobi College of Biological and Physical Sciences, School of Mathematics Sarguta, Rachel ; University of Nairobi College of Biological and Physical Sciences, School of Mathematics Malla, Lucas; KEMRI-Wellcome Trust Research Programme Nairobi Aluvaala, Jalemba ; KEMRI-Wellcome Trust Research Programme Nairobi, Health Services Unit Agweyu, Ambrose; KEMRI-Wellcome Trust Research Programme Nairobi English, Mike; Oxford University, Nuffield Department of Medicine and Department of Paediatrics; KEMRI-Wellcome Trust Research Programme Nairobi Onyango, Nelson ; University of Nairobi College of Biological and Physical Sciences, School of Mathematics Akech, Samuel; KEMRI-Wellcome Trust Research Programme Nairobi
<b>Primary Subject Heading</b> :	Paediatrics
Secondary Subject Heading:	Research methods, Paediatrics, Health services research
Keywords:	STATISTICS & RESEARCH METHODS, PAEDIATRICS, Paediatric intensive & critical care < PAEDIATRICS

## SCHOLARONE[™] Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

## Prognostic models for predicting in-hospital paediatric mortality in resource-limited

## countries: a systematic review

Morris Ogero^{1, 2}, Rachel Sarguta², Lucas Malla¹, Jalemba Aluvaala¹, Ambrose Agweyu¹, Mike English^{1, 3}, Nelson Onyango², Samuel Akech¹

¹Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Nairobi, Kenya; ²School of Mathematics, University of Nairobi, Kenya; and ³Nuffield Department of Medicine, University of Oxford, UK.

Correspondence: Morris Ogero,

KEMRI / Wellcome Trust Research Programme,

P.O Box 43640-00100 Nairobi, Kenya.

mogero@kemri-wellcome.org 

## Abstract Objective

**Objectives**: To identify and appraise the methodological rigor of multivariable prognostic models predicting in-hospital paediatric mortality in low- and middle-income countries (LMIC).

**Design**: Systematic review of peer-reviewed journals.

**Data sources**: MEDLINE, CINAHL, Google Scholar, and Web of Science electronic databases since inception to August 2019.

Eligibility criteria: We included model development studies predicting in-hospital paediatric mortality in LMIC.

**Data extraction and synthesis:** This systematic review followed the CHARMS (Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) framework. The risk of bias assessment was conducted using PROBAST (Prediction model Risk of Bias Assessment Tool). No quantitative summary was conducted due to substantial heterogeneity that was observed after assessing the studies included.

**Results**: Our search strategy identified a total of 4054 unique articles. Among these, 3545 articles were excluded after review of titles and abstracts as they covered non-relevant topics. Full texts of 509 articles were screened for eligibility, of which 15 studies reporting 21 models met the eligibility criteria. Based on the PROBAST tool, risk of bias was assessed in four domains; participant, predictors, outcome, and analyses. The domain of statistical analyses was the main area of concern where none of the included models was judged to be of low risk of bias.

**Conclusion**: This review identified 21 models predicting in-hospital paediatric mortality in LMIC. However, most reports characterising these models are of poor quality when judged against recent reporting standards due to a high risk of bias. Future studies should adhere to

standardized methodological criteria and progress from identifying new risk scores to validating or adapting existing scores.

## Review registration number: CRD42018088599

## Article summary

## Strengths and limitations of this study

- This is the first review on methodological rigor of models predicting paediatric mortality in resource-limited settings.
- We used a robust search strategy with no language restriction yielding many potentially eligible studies.
- Due to substantial heterogeneity in the models included no meta-analyses was conducted.
- We relied on what was reported to determine the risk of bias in prognostic models included.
- Google Translate was used to translate one study from French to English.

### BMJ Open

## Introduction

Over recent decades, there has been considerable progress in improving child survival¹ but child mortality remains high in sub-Saharan Africa relative to the rest of the world.² Paediatric deaths in hospitalized children mostly occur soon after admission,³ and are caused by common conditions such as malaria, pneumonia, and diarrhoeal diseases among others, which are readily treatable by cost-effective interventions.³⁻⁵ In low- and middle-income countries (LMIC), clinicians often use a set of clinical signs as recommended in the guidelines by World Health Organization (WHO) to identify patients at risk of deterioration while making decisions on appropriate treatment.⁶ Clinical criteria recommended by WHO were developed following expert recommendations based on review of evidence from studies reporting risk factors for mortality. Prognostic/predictive models use statistical equations to predict high-risk patients based on the combination of risk factors. Use of these models by clinicians may improve patients' outcomes by enhancing clinicians' ability in identifying patients at the risk of deterioration.⁷ Several prognostic models for hospitalised children have been published over the last 3 decades,⁸ however, there are doubts as to whether authors of these models used the appropriate methodology in their development.⁹ Notably, in the current clinical practice guidelines, none of these models have been recommended for use in resource-limited setting and reviews of the methodology utilized in their development have been highly recommended.¹⁰ This systematic review addresses this need and aims at identifying and summarizing existing studies reporting prognostic models or scoring systems predicting in-hospital paediatric mortality in LMIC. Specifically, the research summarises the evidence from the published studies and appraises the methodological rigor of each existing model.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

## Methods

## **Protocol and registration**

As recommended, a research protocol for this review was published in a peer-reviewed journal,¹¹ and is also registered with the International Prospective Register of Systematic Reviews (PROSPERO) the registration number is CRD42018088599.¹² This study is reported as per guidelines by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).¹³

## **Eligibility criteria**

We used the following eligibility criteria for inclusion of articles:

- Study design: we included peer-reviewed studies whose study design was either a casecontrol, cohort (prospective or retrospective), cross-sectional, or randomized controlled trial.
- 2. Outcome: we included studies predicting all-cause in-hospital mortality. Studies predicting operative, trauma or post-discharge mortality were excluded.
- 3. Setting and target population: we focused on studies targeting over 1 month old children admitted in paediatric wards within resource-limited settings as specified by the World Bank¹⁴. Studies whose target population were children in HDU (High Dependency Unit) or ICU (Intensive Care Unit) were excluded because of limited availability of such facilities in LMIC. We also excluded studies whose target population included conditions not common in children, such as diabetes, cancer, chronic kidney disease, musculoskeletal disorders, etc. However, if a study focused on one of the common

childhood illnesses such as malaria, pneumonia, meningitis, anaemia, and diarrhoea/dehydration³, then it was included.

- 4. Prognostic research studies: we included studies whose main objective was deriving a predictive model(s) or scoring system(s). We excluded case-series, conference proceedings, editorials, commentaries, expert views, case reports, reviews and studies that mainly generate hypothesis such as explanatory studies¹⁵.
- 5. Predictors in the model: studies that reported multivariable model with at least 2 variables/predictors were included.
- Full text and language: no language restrictions were made, we used Google Translate to translate non-English language studies. We excluded studies that were not available in full text.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

## Search strategy of articles

Based on CHARMS (Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) checklist¹⁶, we identified seven core items (see supplementary file 1 Table 1) specific to our study that guided the formulation of the eligibility criteria, review aims, and the search strategy.

Where applicable, MeSH (Medical Subject Headlines) terms and keywords were used to identify research papers developing predictive models relevant for this review (see supplementary file 1 Table 2). We conducted a search of articles in CINAHL (via EbscoHost), Google Scholar,

MEDLINE, and Web of Science published since inception to August 2019. To identify other potentially eligible studies, we manually searched reference lists of the identified articles and collated the final search results in EndNoteX7TM bibliography tool.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

### Screening of articles for inclusion

Prior to screening titles and abstracts, 2 reviewers (MO and LM) standardized the approach to be used in the process of screening and a sample of 30 articles were used to familiarize and train reviewers (MO, LM, and JA) on the process of screening of articles and data abstraction. Two reviewers (MO and LM) screened articles' titles and abstracts. Disagreements were resolved via discussion and the third reviewer (JA) adjudicated the final decision where necessary.

## Data extraction from the included articles

For each of the study included, we used CHARMS guidelines to abstract the following data items; participant enrolment, study design, study population characteristics, location, sample size, number and selection of predictors, study dates, handling of continuous predictors, missing data, method of modelling (e.g. logistic regression, or survival), verification of model assumptions, internal validation methods (e.g. resampling techniques such as cross validations and bootstrapping, or random split of data); model presentation (e.g. full regression formula with coefficients, score chart, or nomogram); and model performance metrics including discrimination -area under the curve (AUC) accompanied with 95% CI (confidence intervals); calibration; classification metrics including specificity, sensitivity, positive, and negative predictive values. We further explored literature to determine if included models have been externally validated elsewhere. We treated each model separately for articles that developed multiple prognostic models. Data extracted from articles by the two reviewers (MO & LM) were compared and disagreements were resolved via discussion with the third reviewer (JA). Due to substantial heterogeneity that was observed after assessing studies included, we did not conduct a quantitative summary of the identified models.

#### **BMJ** Open

## Assessment of methodological rigor of the identified prognostic models

Based on PROBAST (Prediction study Risk Of Bias Assessment Tool) a Cochrane tool for assessing risk of bias(RoB) in predictive models,^{17 18} we assessed the RoB for each model in four domains: selection of the study participant, predictors domain (e.g. selection of the candidate predictors), statistical analysis domain (e.g. sample size, continuous predictors, missing data), and outcome domain. See Table 3 in supplementary file 1 for details. In each domain there were a set of signalling questions each with five possible answers: yes; probably yes; probably no; no; and no information. Any positive answer (yes, or probably yes) suggests low RoB. There were three possible outcomes per domain namely: low; high; or unclear RoB. Using these outcomes, we came up with an overall rating of RoB for each model. As recommended by PROBAST, a prognostic model was rated to be of "low RoB" if all four domains had an outcome of "low". A prognostic model was rated as "unclear RoB" if at least one domain had an outcome of "unclear" and the rest of the domains had an outcome of "low".

## Patient and public involvement

No patient or public involvement.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

## Results

## Characteristics of the included studies

Our search strategy identified a total of 4054 unique articles, 3545 articles were excluded after review of titles and abstracts as they reported non-relevant topics. Full texts of 509 articles were assessed for eligibility, of which 15 primary studies reporting 21 developed models met the eligibility criteria (Figure 1). The eligible studies analysed data for patients who were below 15 years of age with median mortality being 6.7% (range 1.2% to 43.9%).^{19 20} While majority of the models were developed for general cases in paediatric wards (n=9), some were tailored for specific paediatric groups defined by common diagnoses such as febrile illness (n=1),²¹ malaria (n=2), ^{22 23} pneumonia (n=4),^{19 24-26} malnutrition (n=2) ^{27 28} and other infectious diseases (n=3) (see supplementary file 2).

Most of the included studies have been published post year 2000 (n = 20) except for one study²⁷ published in 1996. The latest data used in the models under review were from 2016 to 2017 by Rosman *et al.*²⁹ and the oldest data were utilized by Draimax *et al.*²⁷ from 1986 to 1988. Five reports of the 15 included studies utilized data from at least two hospitals of which 3 studies^{21 22 26} were conducted in multiple countries including sub-Saharan Africa and Asian countries (Figure 2). Of the reviewed studies, most of the information we were abstracting were either not reported or were partially reported, an indication of non-adherence to the Transparent Reporting of a Multivariable Prognostic Model for Individual Prognosis or Diagnosis guidelines (TRIPOD).^{30 31}

## Summary of issues in methodology of the reviewed models

## Candidate predictors

There were 61 distinct predictors used in the final reported models with a median of 7 predictors in any one model. Initial selection of the independent candidate predictors was mostly based on univariable analyses except for three studies^{21 25 27} where the selection was based on literature reviews or clinical relevance. Backward stepwise selection method was used in 6 models in a multivariable analysis to determine final model predictors. Commonly included predictors in the final models included altered consciousness, malnutrition indicators, vital signs, and signs of respiratory distress (see Figure 3). Some models included predictors that were either not easy to obtain or required laboratory techniques. Of the 13 models that used continuous predictors, 8 models categorized these continuous predictors where a continuous scale would have been possible. Two out of 13 models applied other techniques such as fractional polynomial²¹ and restricted cubic splines²⁸ to determine the suitable functional form of the continuous predictors (see supplementary file 2).

## Sample size, events per variable (EPV) and missing data

Sample size ranged from  $168^{29}$  to  $50249^{32}$  with a median of 1307. The median EPV was 21(IQR 8.3 – 32.5) of which 7 models had less than 10 EPVs, suggestive of insufficient sample sizes which is prone to over-fitting. For instance, 60 deaths were reported in the dataset used to develop *PEDIA-Immediate* score in the study by Berkley *et al.* In reference to the rule that a study developing a predictive model should have a minimum of 10 events (deaths) for each independent candidate predictor in a predictive model,³³ a model with a maximum of 6

predictors should have been considered but 10 predictors were considered instead hence making EPV to be 6.

Proportions of missing data was not always reported. Handling of missing data varied across the reviewed studies as follows: 6 models did not report handling of missing data; 8 used complete case analysis; 4 used multiple imputations by chained equations; and one study²⁸ used single imputation.

## Model development

Majority of the studies applied logistic regression, one study²¹ used Cox regression, one study²⁰ used Spiegelhalter/Knill-Jones method, and another study²³ used a machine learning technique (classification and regression trees) in model development. Verification of model assumptions was not reported in most of the studies. For instance, George *et al*²¹ despite utilizing Cox regression to develop their model, did not report the verification of proportional hazard assumption nor explore the possibility of competing risks as recommended³⁴. Other regression assumptions e.g. multicollinearity was equally not reported. However, since backward elimination method disregards redundant variables, we inferred the satisfaction of multicollinearity assumption if this method was applied.³⁵ Five studies developed models using data from different countries/centres but none of them clustered their analysis by source of data in a multilevel model to account for heterogeneity. Ignoring clustering leads to a biased predictor effect.³⁶

## Model performance evaluation & presentation

Performance measures (both calibration and discrimination) were poorly reported in most of the studies and in most cases (n=20) AUC for discrimination was reported. Performance of the derived models was evaluated in 12 models using either split-sample, resampling methods, or

Page 13 of 56

#### **BMJ** Open

separate datasets. Except for the model derived by George *et al*,²¹ all other models did not report both apparent discrimination (without any adjustment for optimism) and optimism-corrected discrimination measures. Despite inadequate reporting of the models' performance, 16 models reported AUCs  $\geq$  0.80, an indication of promising models. Apart from the following exceptions; *Lambarene Organ Dysfunction* (LOD) score,²² *Paediatric Early Death Index for Africa* (PEDIA) score,²⁰ *Signs of Inflammation in Children that Kill* (SICK) score,³⁷ *Respiratory Index of Severity in Children*(RISC) score,¹⁹ and *Modified Respiratory Index of Severity in Children* (mRISC) score,²⁴ other prognostic models in this review have not been externally validated (by independent investigators using diverse populations). Only 2 studies^{25 38} developing 4 models provided a full model formula (both coefficients and intercept/baseline function) in their results as recommended.^{30 31} While most of the models (n=17) were presented as simplified integer scores, only a few were assigned weights according to the regression coefficients. BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

## **Risk of bias (RoB)**

Based on the PROBAST tool, RoB was assessed in four domains; participants, predictors, outcome, and analyses. Figure 4 summarizes the RoB assessment across all models included in this review where the domain of outcome was deemed to be of low RoB in all models. The domain of statistical analyses was the main area of concern where 19 out of 21 models did not report comprehensive details of model development as expected to warrant a proper risk of bias assessment using the 9 signalling questions under the analyses domain. As a result, these models were judged to be of unclear RoB under this domain (see Figure 5). Details on how models were scored against each of the PROBAST criterion (20 signalling questions) across the four domains are provided in the supplementary file 3. In the overall judgement of RoB, 9 out of 21 models were judged to be of high risk of bias because at least one out of four domains in these models

were rated as high RoB. The remaining models (12/21) were judged to be of unclear RoB on account of being rated low and unclear RoB in the domains. No model was rated low RoB in all four domains.

## Discussion

## Summary of key findings

We conducted a systematic review to identify scores predicting in-hospital mortality for paediatrics in resource-limited countries. Fifteen studies that described the development of 21 prognostic models were identified. We describe characteristics of these studies as well as the methodological quality of the included models by using agreed recent guidelines applicable to predictive models. We have identified several important quality deficiencies such as inadequate reporting and other methodological concerns, including poor handling of missing data, automated selection of predictors, categorization of continuous predictors, inadequate EPV and the poor presentation of the proposed model for use. As a result, no model was found to be of good methodological quality and consequently judged to be potentially high or unclear risk of bias in predictions (Figure 5).

Our findings suggest that predictive models fail to meet recently agreed methodological criteria in various ways. Firstly, in this review we observed that univariable analysis was routinely used in 18 out of 21 models in the selection of candidate predictors to be used in a multivariable analysis. This strategy tends to leave out possibly important prognostic factors which might be insignificant in a univariable analysis but turn out to be significant when combined with other predictors.^{30 31} *A priori* selection of predictors using expert opinion, clinical intuition or literature is recommended for this purpose,^{39 40} however only three studies in this review employed this approach.^{21 25 27}

Page 15 of 56

#### **BMJ** Open

Small sample sizes in model development can lead to poor predictive performance, over-fitting, and biased effect estimates. Prognostic models must have a minimum of ten events per candidate independent predictor, as this is the accepted norm⁴¹⁻⁴³ and underpowered models arising from inadequate events per variable (EPV) increases the possibility of spurious results.³³ In this review, 7/21 models had inadequate sample sizes (EPV<10) and there was no information on whether bootstrapping, which serves to reduce overfitting was used in these models.⁴⁴

Just like most of the epidemiological studies, missing data is a common problem which is solved using multiple imputation or other appropriate approaches, but this was rarely the case in the model development studies under this review. For instance, 8/21 models used Complete Case Analysis (CCA), 4/21 used multiple imputation under the MAR (Missing at Random) assumption, and 6/21 models did not report handling of missing data and therefore we assumed CCA was used. Following Harrell's guidelines,⁴⁵ CCA should only be used if the percentage of missingness is < 5% but the appropriateness of the CCA approach could not be ascertained as most of the included studies failed to report the proportion of missing data per variable. Inappropriate use of CCA results in use of only a small subset of the data which cannot be regarded as a random sample from the target population unless data are MCAR (Missing Completely At Random),⁴⁶ a mechanism which is rare in practice.⁴⁷ Consequently, there are concerns about possible loss of precision in inferences and the potential biases of the estimated parameters⁴⁸ in the models employing CCA. While Multiple Imputation by Chained Equations (MICE) is the principled method of imputing missing data, implementing this method when the data are not missing at random could result in biased model quantities.⁴⁹ As a result, sensitivity analyses of the resultant imputations is recommended to investigate the departure from MAR assumption.⁵⁰ However, this was not the case in the studies that performed imputations on their

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

data. Finally, handling of continuous predictors was also a concern in this review. Of the 13 models including continuous predictors, 8 models^{19 20 24-27 37 51} categorized continuous predictors where a continuous scale would have been possible. While this approach is intuitive to most researchers, its simplicity comes at a considerable cost of predictive performance.⁵² The resulting prognostic models have been shown to have poor predictive accuracy because of the loss of statistical power and information. It is recommended that the nature of continuous data should be reserved or be handled by appropriate techniques e.g. flexible parametrizations such as fractional polynomial, regression splines, or apply non-parametric techniques such as locally estimated scatterplot smoothing (LOESS) functions.^{52 53} In this review, appropriate methods of transforming continuous data was done by only 2 studies^{21 28} which applied restricted cubic splines and fractional polynomial.

Sixteen models attained the discrimination metric of above 80%, an indicator of promising models. However, given that the median mortality of the included studies was 6.7%, the performance reported should be interpreted with caution on account of heavily imbalanced data as a result of the rare nature of the outcome of interest. For instance, in a study with a mortality rate of 5%, a model predicting no deaths could easily attain 95% accuracy which could be potentially misleading^{34 54}. Therefore, authors should report additional measures of model performance such as model specificity, sensitivity, accuracy, positive and negative predictive values for models to be contextualized appropriately.

#### **BMJ** Open

## **Comparison with Other Studies**

Methods used to assess quality measures of the included models in the current study have been applied previously to critically evaluate the quality of predictive models in other specialties.⁵⁵⁻⁵⁷ Just like the findings of this review, other previous reviews ^{9 58-60} describing the development of prognostic models highlighted many flaws including inappropriate statistical analyses, poor reporting of key methodological information necessary for model validation, and lack of external validations in general. Detailed and transparent reporting of the methods used in model development is one of the core principles of integrity in research because this is the only way the research community is able to evaluate study findings, and the assessment of risk of bias.⁶¹ Incomplete reporting of clinical models limits future studies on prognostic research from building on the information of already existing models. This has been marked as an important source of wasted research efforts.⁶² For example, external validation of prognostic models requires a full model formula to enable direct estimation of survival probabilities.³¹ However, this was presented in only 4 models. Five models ¹⁹ ²⁰ ²² ²⁴ ³⁷ that were reported to have undergone external validation did not report full model formula as required. It is therefore not clear whether authors of these external validation studies applied model coefficients to the external datasets, or they estimated new model coefficients (essentially model redevelopment). Thus, this review highlights the need for researchers to adhere to the TRIPOD guidelines that were created to help authors of prognostic models write complete and transparent reports. Of note, the quality of clinical predictive models does not appear to have improved over time as previous reviews from 1996,⁶³ 1997,⁶⁴ 2001,⁶⁵ 2005,⁶⁶ 2011,⁸ 2012,⁶⁷ 2016,^{68 69} 2017,⁷⁰ to 2019⁷¹ have consistently identified suboptimal methodologies in the development of the score/predictive models especially in the domain of analysis. Poorly derived models may result

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

in overoptimistic results and misleading performances. Presumably there are reasons why many prognostic models are of poor quality, including pressure to publish new predictive model regardless of the clinical value of the resultant model⁷², and inadequate biostatistical support to investigators. As observed by one of the reviewers of this study, some of the issues identified in this review such as absence of the details on the model development process can be corrected during the review and the editorial process by the journals publishing the work. There is therefore a role for editorial process for promoting best practices and recommendations of developing predictive models stated in the TRIPOD statement and ensuring compliance by authors as part of checklist for submission.

## Implications of this study

Prognostic model development pipeline include development, validation (internal and external), impact assessment and implementation. Most of the included models are still in the first step of the pipeline. This suggests that researchers focus more on deriving new models, often using similar prognostic factors, rather than validating and improving existing prognostic models. This leaves healthcare policy makers with doubts as to which model to recommend in their setting. It is now time to move the prognostic research to the next step (external validation). Large patientlevel datasets such as that of the Clinical Information Network (CIN)³ which has been collected over time from a number of referral hospitals now exist in Kenya and it has been used to answer a number of salient clinical questions relevant across a range of resource-limited setting⁷³⁻⁷⁵. Future studies on prognostic research should leverage such datasets to externally validate competing models identified in this review for comparative performances as recommended by Collins *et al*,⁷⁶ and if necessary, predictive performance of such models should be improved by addition of new prognostic factors. We also noted that most of the included models simplified

Page 19 of 56

#### **BMJ** Open

the original predictor coefficients by rounding them to a nearest integer. This practice has an implication on model performance during external validation due to loss in predictive accuracy arising from rounding coefficients to nearest integers.⁴⁷

We now provide guidance on methodological concerns about the candidate predictors as noted in this review. While considering potential candidate predictors to include in the prediction model, researchers should focus on the predictors that will be available at the time the prediction is made. We acknowledge that some predictors obtained from invasive procedures e.g. C-reactive protein, blood gas analyses, blood or cerebrospinal fluid culture, etc might have a higher predictive value for mortality compared to predictors derived from subjective clinical assessments, however in resource-limited settings results of such laboratory tests typically take days to be reported or resources might not available to perform such tests in many hospitals. Consequently, models utilising such variables might not be useful to clinicians to make a decision at typical emergency departments in LMIC. Screening of model candidate predictors based on the bivariate associations whereby predictors are selected if they meet some *p*-value threshold (commonly 0.05) have been strongly discouraged previously^{77 78}. Categorising continuous model predictors is a common practice by researchers however this practice discards a lot of information and its assumptions are rarely clinically plausible.³⁴ Finally, there is a risk of overfitting if the model includes more predictors than the dataset can support. The ratio of the events (deaths) to the number of independent candidate predictors have been discussed extensively in methodological papers elsewhere^{79 80} and it has been recommended that ratio of the EPV should be at least 10.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

## Strengths and limitations

To our knowledge, this is the first systematic review identifying prognostic models and scoring systems predicting in-hospital all-cause paediatric mortality in low-and-middle income settings. Our robust search strategy yielded a number of potentially eligible studies, hence it is unlikely that any potentially eligible study was not included. The quality of included models was assessed based on recent reporting standards and applied to the identified studies. For instance, if no mention was made of internal validation or even verification of the model assumptions, we could determine whether these crucial steps of model development were carried out or not. Thus, models that could have been otherwise rated as low risk of bias were rated as either unclear or high risk of bias in each domain. The PROBAST's analysis domain has most (9 out of 20) of the signalling questions and any given model in this domain had much higher chance to be defined as high risk as long as there was one negative (no or probably no) answer. This strict criterion led to all models being classified as either unclear or high risk of bias and therefore metanalysis was not performed. We acknowledge that if we somewhat relaxed this decision rule, our conclusion could change. Despite this, we still hold that authors should adhere to guidelines of transparent and complete reporting of any proposed prognostic model to facilitate its external validation and subsequent application in practice. Finally, we used Google Translate to interpret a study by Bitwe et al⁵¹ from French to English. It is possible that some statistical terminologies were not rendered correctly, or some model characteristics were lost in translation.

## Conclusion

Rigorously developed and robustly validated promising predictive models have the potential for improving child survival in resource-limited countries. This review identified models predicting in-hospital mortality for paediatrics. However, none of them is of good quality. Our research

#### **BMJ** Open

highlights the need to improve on the identified quality deficiencies when developing prognostic models in the future by adhering to existing generally accepted standardized methodological criteria. Majority of the derived models have not been externally validated as required. Inadequate reporting observed in the included models hinders rigorous external validation by other researchers in addition to undermining their application. Rather than developing new prognostic models, researchers should carry out comprehensive joint external validation of the identified models using large datasets ideally collected over extended time periods and different locations. This will allow model comparisons and adaptation of the competing models, if necessary, to ascertain their generalizability.

## Funding

Funds from The Wellcome Trust (#207522) awarded to ME as a Senior Fellowship together with additional funds from a Wellcome Trust core grant awarded to the KEMRI-Wellcome Trust Research Programme (#092654 and #203077) supported this work. SA was supported by the Initiative to Develop African Research Leaders (IDeAL) Wellcome Trust award (#107769). The funders had no role in drafting or submitting this manuscript.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

## **Author Statement**

The roles of the contributors were as follows: ME, SA, and AA conceptualized the study. MO, LM and JA conducted electronic searches to identify eligible models and did analyses. MO drafted the initial manuscript with SA, NO, RS, AA, and ME contributed to its development. All authors read and approved the final manuscript.

### **Competing interests**

The authors declare no conflicts of interest.

## 

Data availability statement

All data are provided within the manuscript and supplementary files.

<text>

## **References**

	http://www.who.int/mediacentre/news/releases/2015/child-mortality-report/en/ accessed 2
	January 2018.
2. Luc	ia Hug DS, Danzhen You. Levels and Trends in Child Mortality: UNICEF; 2019 [Available from: https://data.unicef.org/resources/levels-and-trends-in-child-mortality/ accessed August 2019
3. Ayi	eko P, Ogero M, Makone B, et al. Characteristics of admissions and variations in the use of basic investigations, treatments and outcomes in Kenyan hospitals within a new Clinical Informatio Network. Archives of disease in childhood 2015:archdischild-2015-309269.
4. Wo	rld Health Organization. Serious childhood problems in countries with limited resources. Geneva2004.
5. Wo	rld Health Organization. Children: reducing mortality: WHO; 2017 [Available from: http://www.who.int/mediacentre/factsheets/fs178/en/ accessed 20 January 2018.
6. Wo	rld Health Organization. Handbook IMCI: integrated management of childhood illness. Geneva2005.
7. Vo	genberg FR. Predictive and prognostic models: implications for healthcare decision-making in a modern recession. American health & drug benefits 2009;2(6):218.
8. Ma	guire JL, Kulik DM, Laupacis A, et al. Clinical prediction rules for children: a systematic review. <i>Pediatrics</i> 2011;128(3):e666-e77. doi: 10.1542/peds.2011-0043
9. Boı	uwmeester W, Zuithoff NP, Mallett S, et al. Reporting and methods in clinical prediction researcl systematic review. <i>PLoS medicine</i> 2012;9(5):e1001221.
10. Al	tman DG. Systematic reviews in health care: Systematic reviews of evaluations of prognostic variables. <i>BMJ: British Medical Journal</i> 2001;323(7306):224.
11. 0	gero M, Sarguta R, Malla L, et al. Methodological rigor of prognostic models for predicting in- hospital paediatric mortality in low-and middle-income countries: a systematic review protoc Wellcome Open Research 2020;5(106):106.
12. 0	gero M, Malla L, Agweyu A, et al. Prognostic models predicting in-hospital mortality of paediatri in resource-limited countries: systematic review. 2018
13. M	oher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta- analyses: the PRISMA statement. <i>PLoS medicine</i> 2009;6(7):e1000097.
14. W	ORLD BANK. World Bank Country and Lending Groups: WOLD BANK; 2019 [Available from: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-ar
	lending-groups accessed September 2019.
	Imueli G. To explain or to predict? Statistical science 2010:289-310. oons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systemat reviews of prediction modelling studies: the CHARMS checklist. PLoS medicine 2014;11(10)
17. W	olff RF, Moons KG, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. <i>Annals of internal medicine</i> 2019;170(1):51-58.
18. M	oons KG, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. <i>Annals of internal medicine</i> 2019;170(1):W1-W33.
19. Re	eed C, Madhi SA, Klugman KP, et al. Development of the Respiratory Index of Severity in Childre (RISC) score among young children with respiratory infections in South Africa. <i>Plos One</i> 2012;7(1):e27793-e93. doi: 10.1371/journal.pone.0027793

- 20. Berkley JA, Ross A, Mwangi I, et al. Prognostic indicators of early and late death in children admitted to district hospital in Kenya: cohort study. *BMJ (Clinical Research Ed)* 2003;326(7385):361-61.
- 21. George EC, Walker AS, Kiguli S, et al. Predicting mortality in sick African children: the FEAST Paediatric Emergency Triage (PET) Score. BMC Medicine 2015;13(1):1-12. doi: 10.1186/s12916-015-0407-3
- Helbok R, Kendjo E, Issifou S, et al. The Lambaréné Organ Dysfunction Score (LODS) is a simple clinical predictor of fatal malaria in African children. *Journal of Infectious Diseases* 2009;200(12):1834-41. doi: 10.1086/648409
- Erdman LK, Dhabangi A, Musoke C, et al. Combinations of host biomarkers predict mortality among Ugandan children with severe malaria: a retrospective case-control study. *Plos One* 2011;6(2):e17440-e40. doi: 10.1371/journal.pone.0017440
- 24. Emukule GO, McMorrow M, Ulloa C, et al. Predicting mortality among hospitalized children with respiratory illness in Western Kenya, 2009-2012. *Plos One* 2014;9(3):e92968-e68. doi: 10.1371/journal.pone.0092968
- 25. Hooli S, Colbourn T, Lufesi N, et al. Predicting Hospitalised Paediatric Pneumonia Mortality Risk: An External Validation of RISC and mRISC, and Local Tool Development (RISC-Malawi) from Malawi. *PLoS ONE* 2016;11(12):1-13. doi: 10.1371/journal.pone.0168126
- 26. Gallagher KE, Knoll MD, Prosperi C, et al. The Predictive Performance of a Pneumonia Severity Score in Human Immunodeficiency Virus–negative Children Presenting to Hospital in 7 Low-and Middle-income Countries. 2019
- 27. Dramaix M, Brasseur D, Donnen P, et al. Prognostic indices for mortality of hospitalized children in central Africa. *American Journal Of Epidemiology* 1996;143(12):1235-43.
- 28. Olson D, Davis NL, Milazi R, et al. Development of a severity of illness scoring system (inpatient triage, assessment and treatment) for resource-constrained hospitals in developing countries. Tropical Medicine & International Health 2013;18(7):871-78. doi: 10.1111/tmi.12137
- 29. Rosman SL, Karangwa V, Law M, et al. Provisional validation of a pediatric early warning score for resource-limited settings. *Pediatrics* 2019;143(5):e20183657.
- 30. Collins GSP, Reitsma JBMDP, Altman DGD, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Annals of Internal Medicine 2015;162(1):55-63.
- 31. Moons KGMP, Altman DGD, Reitsma JBMDP, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. *Annals of Internal Medicine* 2015;162(1):W1-W73.
- Mpimbaza A, Sears D, Sserwanga A, et al. Admission Risk Score to Predict Inpatient Pediatric Mortality at Four Public Hospitals in Uganda. *Plos One* 2015;10(7):e0133950-e50. doi: 10.1371/journal.pone.0133950
- 33. Concato J, Feinstein AR, Holford TR. The risk of determining risk with multivariable models. *Annals of internal medicine* 1993;118(3):201-10.
- 34. Leisman DE, Harhay MO, Lederer DJ, et al. Development and reporting of prediction models: guidance for authors from editors of respiratory, sleep, and critical care journals. *Critical care medicine* 2020;48(5):623.
- 35. Vijay Kotu BD. Feature Selection. In: Vijay Kotu BD, ed. Data Science Concepts and Practice2019:467-90.
- 36. Debray T, Moons KG, Ahmed I, et al. A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis. *Statistics in medicine* 2013;32(18):3158-80.
- 37. Kumar N, Thomas N, Singhal D, et al. Triage score for severity of illness. *Indian pediatrics* 2003;40(3):204-10.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

38. Lowlaavar N, Larson CP, Kumbakumba E, et al. Pediatric in-Hospital Death from Infectious Disease in
Uganda: Derivation of Clinical Prediction Models. Plos One 2016;11(3):e0150683-e83. doi:
10.1371/journal.pone.0150683
39. Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Annals of
internal medicine 1999;130(6):515-24.
40. Kattan MW, Harrell FE. We should not be so quick to abandon the use of domain experts and full
models (letter commenting: J Clin Epidemiol. 2015; 71C: 7685.). Journal of clinical
epidemiology 2016;75:131.
41. Concato J, Peduzzi P, Holford TR, et al. Importance of events per independent variable in
proportional hazards analysis I. Background, goals, and general strategy. Journal of clinical
epidemiology 1995;48(12):1495-501.

42. Peduzzi P, Concato J, Feinstein AR, et al. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. *Journal of clinical epidemiology* 1995;48(12):1503-10.

- 43. Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. *Journal of clinical epidemiology* 1996;49(12):1373-79.
- 44. A bootstrapping approach to reduce over-fitting in genetic programming. Proceedings of the 15th annual conference companion on Genetic and evolutionary computation; 2013. ACM.
- 45. Harrell FE. Regression Modeling Strategies. BIOS 2014;330
- 46. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. *Stat Med* 2011;30(4):377-99. doi: 10.1002/sim.4067
- 47. Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. *PLoS medicine* 2014;11(10):e1001744.
- 48. Molenberghs G, Fitzmaurice G, Kenward MG, et al. Handbook of missing data methodology: CRC Press 2014.
- 49. Azur MJ, Stuart EA, Frangakis C, et al. Multiple imputation by chained equations: what is it and how does it work? *International journal of methods in psychiatric research* 2011;20(1):40-49.
- 50. Gachau S, Quartagno M, Njagi EN, et al. Handling missing data in modelling quality of clinicianprescribed routine care: Sensitivity analysis of departure from missing at random assumption. *Statistical Methods in Medical Research* 2020:0962280220918279.
- 51. Bitwe R, Dramaix M, Hennart P. Simplified prognostic model of overall intrahospital mortality of children in central Africa. *Tropical medicine & international health: TM & IH* 2006;11(1):73.
- 52. Collins GS, Ogundimu EO, Cook JA, et al. Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model. *Statistics in medicine* 2016;35(23):4124-35.
- 53. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. *Statistics in medicine* 2006;25(1):127-41.
- 54. Leisman DE. Rare events in the ICU: An emerging challenge in classification and prediction. *Critical Care Medicine* 2018;46(3):418-24.
- 55. Ensor J, Riley RD, Moore D, et al. Systematic review of prognostic models for recurrent venous thromboembolism (VTE) post-treatment of first unprovoked VTE. *BMJ open* 2016;6(5):e011190.
- 56. Smit HA, Pinart M, Antó JM, et al. Childhood asthma prediction models: a systematic review. *The Lancet Respiratory Medicine* 2015;3(12):973-84. doi: 10.1016/S2213-2600(15)00428-2
- 57. Hodgson LE, Sarnowski A, Roderick PJ, et al. Systematic review of prognostic prediction models for acute kidney injury (AKI) in general hospital populations. *BMJ open* 2017;7(9):e016591.

- 58. Collins GS, de Groot JA, Dutton S, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. *BMC medical research methodology* 2014;14(1):40.
- 59. Collins GS, Omar O, Shanyinde M, et al. A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriate methods. *Journal of clinical epidemiology* 2013;66(3):268-77.
- 60. Fahey M, Crayton E, Wolfe C, et al. Clinical prediction models for mortality and functional outcome following ischemic stroke: A systematic review and meta-analysis. *PloS one* 2018;13(1):e0185402.
- 61. Logullo P, MacCarthy A, Kirtley S, et al. Reporting guideline checklists are not quality evaluation forms: they are guidance for writing. *Health Science Reports* 2020;3(2)
- 62. Glasziou P, Altman DG, Bossuyt P, et al. Reducing waste from incomplete or unusable reports of biomedical research. *The Lancet* 2014;383(9913):267-76.
- 63. Kwakkel G, Wagenaar RC, Kollen BJ, et al. Predicting disability in stroke—a critical review of the literature. *Age and ageing* 1996;25(6):479-89.
- 64. Laupacis A, Sekar N. Clinical prediction rules: a review and suggested modifications of methodological standards. *Jama* 1997;277(6):488-94.
- 65. Counsell C, Dennis M. Systematic review of prognostic models in patients with acute stroke. *Cerebrovascular diseases* 2001;12(3):159-70.
- 66. Jacob M, Lewsey JD, Sharpin C, et al. Systematic Review and Validation of Prognostic Models in Liver Transplantation. *Liver Transplantation* 2005;11(7):814-25.
- 67. Moons KGM, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External validation, model updating, and impact assessment. *Heart* 2012;98(9):691-98.
- 68. Damen JA, Hooft L, Schuit E, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. *Bmj* 2016;353:i2416.
- 69. Cruz GD, Strathe AB, Rossow HA, et al. Characterizing bovine adipocyte distribution and its relationship with carcass and meat characteristics using a finite mixture model. *J Anim Sci* 2012;90(9):2995-3002. doi: 10.2527/jas.2011-4838
- 70. Singendonk MMJ, Tabbers MM, Benninga MA, et al. Pediatric Gastroesophageal Reflux Disease: Systematic Review on Prognosis and Prognostic Factors. *Journal Of Pediatric Gastroenterology And Nutrition* 2017 doi: 10.1097/MPG.00000000001697
- 71. Carrillo-Larco RM, Altez-Fernandez C, Pacheco-Barrios N, et al. Cardiovascular Disease Prognostic Models in Latin America and the Caribbean: A Systematic Review. *Global heart* 2019;14(1):81-93.
- 72. Vickers AJ, Cronin AM. Everything you always wanted to know about evaluating prediction models (but were too afraid to ask). *Urology* 2010;76(6):1298-301.
- 73. Irimu G, Ogero M, Mbevi G, et al. Approaching quality improvement at scale: a learning health system approach in Kenya. *Archives of disease in childhood* 2018;103(11):1013-19.
- 74. Ogero M, Akech S, Malla L, et al. Examining which clinicians provide admission hospital care in a high mortality setting and their adherence to guidelines: an observational study in 13 hospitals. *Archives of Disease in Childhood* 2020
- 75. Ogero M, Ayieko P, Boniface Makone TJ, et al. An observational study of monitoring of vital signs in children admitted to Kenyan hospitals: an insight into the quality of nursing care? *Journal of global health* 2018;8(1)
- 76. Collins GS, Moons KG. Comparing risk prediction models: British Medical Journal Publishing Group, 2012.
- 77. Sun G-W, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. *Journal of clinical epidemiology* 1996;49(8):907-16.

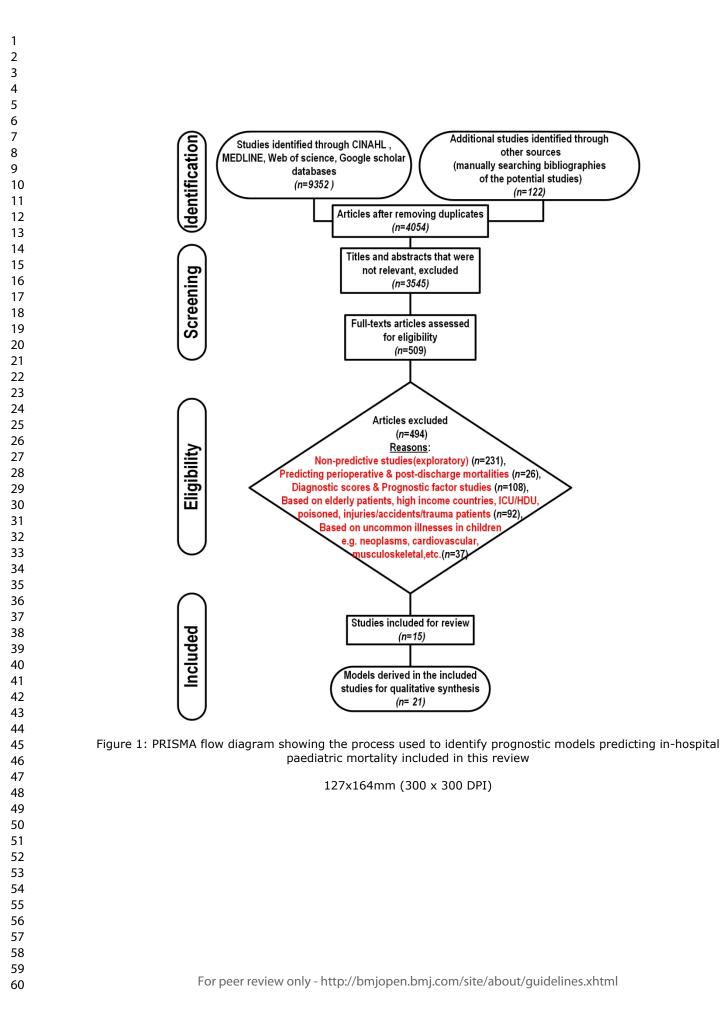
78. Wasserstein RL, Lazar NA. The ASA statement on p-values: context, process, and purpose: Taylor & Francis, 2016.

79. Austin PC, Allignol A, Fine JP. The number of primary events per variable affects estimation of the subdistribution hazard competing risks model. *Journal of clinical epidemiology* 2017;83:75-84.

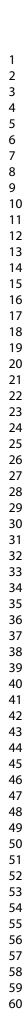
80. Austin PC, Steyerberg EW. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. *Statistical methods in medical research* 2017;26(2):796-808.

#### **Captions**

**Figure 1:** PRISMA flow diagram showing the process used to identify prognostic models predicting in-hospital paediatric mortality included in this review.


**Figure 2:** Prognostic models predicting in-hospital paediatric mortality identified by country. Text highlighted in red are the names of the models with their corresponding discrimination measures (area under the curve). Key: PEWS-RL score=Paediatric Early Warning Score for Resource-Limited Settings; SICK score=Signs of Inflammation in Children that Kill; PET score= Paediatric Emergency Triage; mRISC score= Modified Respiratory Index of Severity in Children score; RISC score= Respiratory Index of Severity in Children score; PERCH severity score= Pneumonia Etiology Research for Child Health severity score; LOD score= Lambarene Organ Dysfunction score; CRT= Classification and Regression Trees; ITAT Score= Inpatient Triage Assessment and Treatment score; PEDIA score= Paediatric Early Death Index for Africa score. BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

**Figure 3:** Top four categories of predictors in the models of the reviewed reports: altered consciousness (coma, prostration, not alert, unconscious); malnutrition indicators (kwashiorkor, edema, weight-for-height z-score, weight-for-age z-score, mid-upper arm circumference-MUAC, wasting); vital signs (temperature, respiratory rate, heart rate, oxygen saturation); signs of respiratory distress (indrawing, lung crepitation, difficult breathing, grunting).


**Figure 4:** Summary of the risk of bias of the included models using PROBAST (Prediction study Risk of Bias Assessment Tool).

**Figure 5:** Risk of bias assessment. Low means low risk of bias, High means a high risk of bias, and Unclear bias means it was not possible to assess the risk of bias. Key: PEWS-RL score=Paediatric Early Warning Score for Resource-Limited Settings; SICK score=Signs of Inflammation in Children that Kill; PET score= Paediatric Emergency Triage; mRISC score= Modified Respiratory Index of Severity in Children score; RISC score= Respiratory Index of Severity in Children score; PERCH severity score= Pneumonia Etiology Research for Child Health severity score; LOD score= Lambarene Organ Dysfunction score; CRT= Classification and Regression Trees; ITAT Score= Inpatient Triage Assessment and Treatment score; PEDIA score= Paediatric Early Death Index for Africa score.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright



BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.



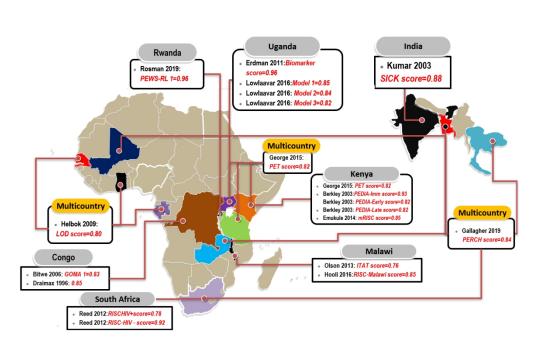



Figure 2: Prognostic models predicting in-hospital paediatric mortality identified by country. Text highlighted in red are the names of the models with their corresponding discrimination measures (area under the curve). Key: PEWS-RL score=Paediatric Early Warning Score for Resource-Limited Settings; SICK score=Signs of Inflammation in Children that Kill; PET score= Paediatric Emergency Triage; mRISC score= Modified Respiratory Index of Severity in Children score; RISC score= Respiratory Index of Severity in Children score; PERCH severity score= Pneumonia Etiology Research for Child Health severity score; LOD score= Lambarene Organ Dysfunction score; CRT= Classification and Regression Trees; ITAT Score= Inpatient Triage Assessment and Treatment score; PEDIA score= Paediatric Early Death Index for Africa score.

137x81mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 31 of 56

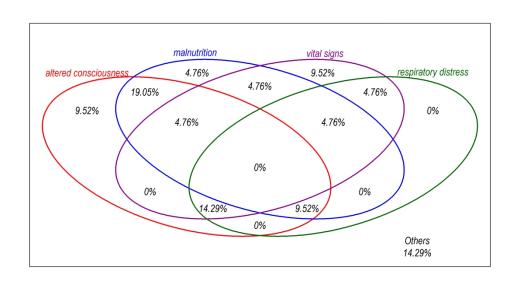
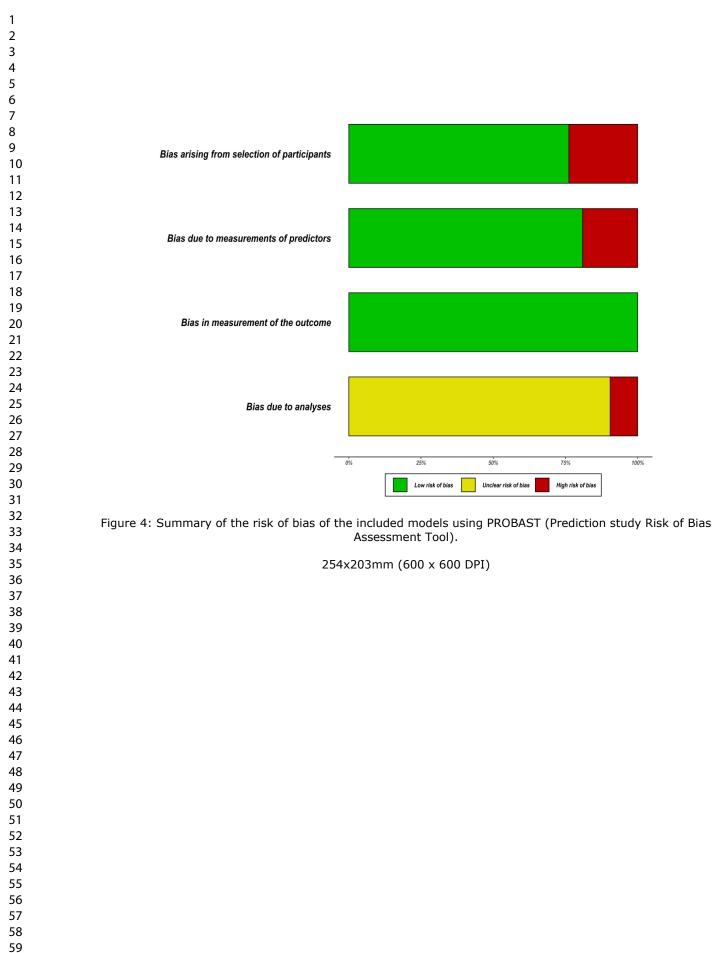




Figure 3: Top four categories of predictors in the models of the reviewed reports: altered consciousness (coma, prostration, not alert, unconscious); malnutrition indicators (kwashiorkor, edema, weight-for-height z-score, weight-for-age z-score, mid-upper arm circumference-MUAC, wasting); vital signs (temperature, respiratory rate, heart rate, oxygen saturation); signs of respiratory distress (indrawing, lung crepitation, difficult breathing, grunting).

228x127mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.



		D1	D2	D3	D4	Overa	all
Berkley 2003 (	PEDIA -Immediate score)	+	+	+	?	?	)
Berkley 200	03(PEDIA -Early score)	+	+	+	?	?	)
Berkley 20	03(PEDIA -Late score)	+	+	+	?	?	)
Bitwe 2	2006 (Goma score)	+	+	+	?	?	)
D	raimax 1996	+	X	+	?	X	)
Kumar	2003(SICK score)	+	+	+	?	?	)
Geoge	2015 (PET score)	+	+	+	?	?	)
Emukule	2014 (mRISC score)	×	X	+	X	X	)
Reed 201	2 (RISC HIV+ score)	+	+	+	?	?	)
Reed 2012 (I	2 (RISC HIV- score)	+	+	+	?	?	)
Hooli 2016	ô(RISC-Score Malawi)	×	+	+	?	X	)
	2019(PERCH Score)	+	+	+	X	X	)
Helbok	2009(LOD score)	+	+	+	?	?	)
Erdman 201	11( logistic regression)	+	+	+	?	?	)
Erdi	man 2011(CRT)	+	+	+	?	?	)
Lowlaa	var 2016 (Model 1)	+	X	+	?	X	
Lowlaa	var 2016 (Model 2)	+	X	+	?	X	
Lowlaa	var 2016 (Model 3)	+	+	+	?	?	)
M	pimbaza 2015	X	+	+	?	X	
Olson	2013(ITAT score)	X	+	+	?	X	
Rosman 2	019(PEWS-RL score)	X	+	+	?	X	)
		D2: Bias due to	participants selecti predictors measure determination of ou	ements.		Judg	ement High Unclea

Figure 5: Risk of bias assessment. Low means low risk of bias, High means a high risk of bias, and Unclear bias means it was not possible to assess the risk of bias. Key: PEWS-RL score=Paediatric Early Warning Score for Resource-Limited Settings; SICK score=Signs of Inflammation in Children that Kill; PET score= Paediatric Emergency Triage; mRISC score= Modified Respiratory Index of Severity in Children score; RISC score= Respiratory Index of Severity in Children score; PERCH severity score= Pneumonia Etiology Research for Child Health severity score; LOD score= Lambarene Organ Dysfunction score; CRT= Classification and Regression Trees; ITAT Score= Inpatient Triage Assessment and Treatment score; PEDIA score= Paediatric Early Death Index for Africa score.

199x219mm (600 x 600 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

# Table 1: Systematic review framework as recommended by CHARMS checklist

Item	Criteria
Prognostic or diagnostic model	Prognostic model predicting in-hospital mortality.
Scope	Prognostic models to inform clinicians about the risk of deterioration or death.
Type of prediction models	Prognostic models with and/or without external validation.
Prediction target population	Children aged > 1 month to 15 years admitted in pediatric wards in developing countries
Outcome of interest	All-cause in-hospital mortality.
Prediction period	Any
Intended moment to apply the prediction tool	Prognostic model to be used in primary prevention to assess risk of deterioration and thus guide prevention/treatment.
KEY:	
CILADMS - Chaptelist for anit	ical Appreciation for systematic Pavianus of

#### KEY:

CHARMS= Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies

1	
2	
3	
4	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
6	
7	
8	
9	
10	
11	
17	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
<u>_</u>	
2- <del>1</del> 25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
34 35 36 37 38	
37	
27	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

60

# Table 2: Search terms for prognostic models

Search	Sub-heading	Search Terms
ID		
S4		
	Children	paediatric* OR pediatric* OR (MH "Pediatrics+") OR child*
S3		
	Hospital based	(MH "Hospitals+") OR hospital*
S2		(MH "Developing Countries+") OR (MH "Africa+") OR TI
	Low-income countries	("low income" OR "low and middle income" OR "LMIC"
		OR "LIC" OR "limited resource*" OR "poor resource*" OR
		"resource* poor" OR ("developing countries") OR
		("developing nations") OR ("third world") OR "resource-
	C.	constrained" OR ("global south")
S1		prognos* OR (MH "prognosis") OR
		(Predict* AND (Outcome* OR Risk* OR Model* OR
	Predictive models	Mortality OR Index OR Rule* OR decision* OR scor*))
		OR "risk score" OR "scor* system" OR "logistic model*"
		"risk prediction" OR "risk calculation" OR "risk
		assessment" OR "c statistic" OR discrimination OR
		calibration OR AUC OR "area under the curve" OR "area
		under the receiver operator characteristic curve"

~	
2	
3	
3	
4	
5	
6	
6	
7	
<i>.</i>	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
	ź
1	9
h	0
2	υ
2	1
-	1
2	2
2	3
2	4
2	5
_	
2	6
2	7
2	8
2	9
2	0
3	1
3	
- 3	2
3	
3	3
3 3	3 4
3 3	3 4
3 3 3	3 4 5
3 3 3	3 4
3 3 3 3	3 4 5 6
3 3 3 3 3	3 4 5 6 7
3 3 3 3 3	3 4 5 6 7
3 3 3 3 3 3	3 4 5 6 7 8
3 3 3 3 3 3	3 4 5 6 7
3 3 3 3 3 3 3	3 4 5 6 7 8 9
3 3 3 3 3 3 4	3 4 5 6 7 8 9 0
3 3 3 3 3 3 4	3 4 5 6 7 8 9 0
3 3 3 3 3 3 4 4	3 4 5 6 7 8 9 0 1
3 3 3 3 3 3 4	3 4 5 6 7 8 9 0 1
3 3 3 3 3 3 4 4 4	3456789012
3 3 3 3 3 4 4 4 4	34567890123
3 3 3 3 3 4 4 4 4	34567890123
3 3 3 3 3 3 4 4 4 4 4 4	345678901234
3 3 3 3 3 3 4 4 4 4 4 4	345678901234
3 3 3 3 3 3 4 4 4 4 4 4 4	3456789012345
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4	34567890123456
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4	34567890123456
3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4	345678901234567
3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4	34567890123456
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4	3456789012345678
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	34567890123456789
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	34567890123456789
3 3 3 3 3 4 4 4 4 4 4 4 4 5	345678901234567890
3 3 3 3 3 4 4 4 4 4 4 4 4 5	34567890123456789
3 3 3 3 3 4 4 4 4 4 4 4 4 5 5	3456789012345678901
3 3 3 3 3 4 4 4 4 4 4 4 4 5	3456789012345678901
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5	34567890123456789012
3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	345678901234567890123
3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	34567890123456789012
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5	3456789012345678901234
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5	345678901234567890123
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5	34567890123456789012345
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5	3456789012345678901234
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5	34567890123456789012345
3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5	3456789012345678901234567
3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	34567890123456789012345678
3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	34567890123456789012345678
3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	345678901234567890123456789
3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	34567890123456789012345678

# Table 3: List of domains and signaling questions used for assessment of risk of bias according to the PROBAST tool.

Domain	Signalling question
	Were appropriate data sources used, e.g., cohort, RCT, or nested case-control study
Participants	data?
selection	Were all inclusions and exclusions of participants appropriate?
	Were predictors defined and assessed in a similar way for all participants?
Predictors	
Fredictors	Were predictor assessments made without knowledge of outcome data?
	Are all predictors available at the time the model is intended to be used?
	Was the outcome determined appropriately?
	Was a prespecified or standard outcome definition used?
	Were predictors excluded from the outcome definition?
Outcome	Was the outcome defined and determined in a similar way for all participants?
	Was the outcome determined without knowledge of predictor information?
	Was the time interval between predictor assessment and outcome determination
	appropriate?
	Were there a reasonable number of participants with the outcome?
	Were continuous and categorical predictors handled appropriately?
	Were all enrolled participants included in the analysis?
	Were participants with missing data handled appropriately?
	Was selection of predictors based on univariable analysis avoided?
	Were complexities in the data (e.g., censoring, competing risks, sampling of control
	participants) accounted for appropriately?
Analysis	Were relevant model performance measures evaluated appropriately?
	Were model overfitting, underfitting, and optimism in model performance accounted
	for?
	Do predictors and their assigned weights in the final model correspond to the results
	from the
	reported multivariable analysis?
KEY:	

# PROBAST= Prediction study Risk of Bias Assessment Tool

Page 37 of 56

 bmjopen-20

PEDIA Immediate Berkley 2003         PEDIA Early         Prospective cohort         1998-2000         Aged over 90 days         3 months-13 years         Mort           Berkley 2003         death         Kenya         Prospective cohort         1998-2000         Aged over 90 days         3 months-13 years         Mort           Berkley 2003         death         Kenya         Prospective cohort         1998-2000         Aged over 90 days         3 months-13 years         Mort           Berkley 2003         death         Kenya         Prospective cohort         1998-2000         Aged over 90 days         3 months-13 years         Mort           Berkley 2003         death         Kenya         Prospective cohort         1998-2000         Aged over 90 days         3 months-13 years         Mort           Bitwe 2006         Model         Republic of Congo         Prospective cohort         1998-198         Malnutrition         Median: 27.8         Mort           1996         Congo         Prospective cohort         1998-1999         Paediatric patients         No Information         Mort           Geoge 2015         PET Score         Tanzania         RCT         2009-2011         Malaria         (IQR=13-38)         Mort           Emukule         Kenya         Surveillance         2009-	Ctudy	Model	Country	Source of data	Study yoar	019-03 5045 c	4.00	Outc
Immediate death         Kenya         Prospective cohort         1998-2000         Aged over 90 days         3 months-13 years         Mort Mort           Berkley 2003         death         Kenya         Prospective cohort         1998-2000         Aged over 90 days         3 months-13 years         Mort           Berkley 2003         death         Kenya         Prospective cohort         1998-2000         Aged over 90 days         3 months-13 years         Mort           Berkley 2003         death         Kenya         Prospective cohort         1998-2000         Aged over 90 days         3 months-13 years         Mort           Berkley 2003         death         Kenya         Prospective cohort         1998-2000         Aged over 90 days         3 months-13 years         Mort           Bitwe 2006         Model         Republic of Congo         Prospective cohort         1998-2001         Aged over 90 days         3 months-13 years         Mort           1996         Congo         Prospective cohort         1998-1999         Paediatric patients         No Information         Mort           Cageg 2015         PET Score         Tanzania         RCT         2009-2011         Malaria         Nort         Score         Nort           Emukule         NRISC-HIV         Kenya, Uganda, <td>Study</td> <td>name</td> <td>Country</td> <td>Source of data</td> <td>Study year</td> <td><u> </u></td> <td>Age</td> <td>Outc</td>	Study	name	Country	Source of data	Study year	<u> </u>	Age	Outc
Berkley 2003       death       Kenya       Prospective cohort       1998-2000       Aged over 90 days       3       months-13 years       Mort         Berkley 2003       death       Kenya       Prospective cohort       1998-2000       Aged over 90 days       3       months-13 years       Mort         Berkley 2003       death       Kenya       Prospective cohort       1998-2000       Aged over 90 days       3       months-13 years       Mort         Berkley 2003       death       Kenya       Prospective cohort       1998-2000       Aged over 90 days       3       months-13 years       Mort         Berkley 2003       death       Kenya       Prospective cohort       1998-2000       Aged over 90 days       3       months-13 years       Mort         Berkley 2006       Model       Republic of Congo       Prospective cohort       1998-2000       Aged over 90 days       4       months       Mort       <						19		
1996CongoProspective cohort1986-1988MalnutritionMedian: 27 monthsMontKumar 2003SICK scoreIndiaProspective cohort1998-1999Paediatric patientsNo InformationMortGeoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24Median: 24Median: 24Geoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24MortEmukuleKenyaKenyaKenyaLRTMortSurveillance2009-2012illness<59 months	Parklay 2002		Konya	Brospostivo cohort	1008 2000		2 months 12 years	Mort
1996CongoProspective cohort1986-1988MalnutritionMedian: 27 monthsMontKumar 2003SICK scoreIndiaProspective cohort1998-1999Paediatric patientsNo InformationMortGeoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24Median: 24Median: 24Geoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24MortEmukuleKenyaKenyaKenyaLRTMortSurveillance2009-2012illness<59 months	Berkley 2005		Кепуа	Prospective conort	1998-2000	Aged over 90 days	5 months-15 years	IVIOIT
1996CongoProspective cohort1986-1988MalnutritionMedian: 27 monthsMontKumar 2003SICK scoreIndiaProspective cohort1998-1999Paediatric patientsNo InformationMortGeoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24Median: 24Median: 24Geoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24MortEmukuleKenyaKenyaKenyaLRTMortSurveillance2009-2012illness<59 months						r 20		
1996CongoProspective cohort1986-1988MalnutritionMedian: 27 monthsMontKumar 2003SICK scoreIndiaProspective cohort1998-1999Paediatric patientsNo InformationMortGeoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24Median: 24Median: 24Geoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24MortEmukuleKenyaKenyaKenyaLRTMortSurveillance2009-2012illness<59 months	Berkley 2003		Kenva	Prospective cohort	1998-2000	Aged over 90 days	3 months-13 years	Mort
1996CongoProspective cohort1986-1988MalnutritionMedian: 27 monthsMontKumar 2003SICK scoreIndiaProspective cohort1998-1999Paediatric patientsNo InformationMortGeoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24Median: 24Median: 24Geoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24MortEmukuleKenyaKenyaKenyaLRTMortSurveillance2009-2012illness<59 months	Derkiey 2005		Kenya		1998 2000			101010
1996CongoProspective cohort1986-1988MalnutritionMedian: 27 monthsMontKumar 2003SICK scoreIndiaProspective cohort1998-1999Paediatric patientsNo InformationMortGeoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24Median: 24Median: 24Geoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24MortEmukuleKenyaKenyaKenyaLRTMortSurveillance2009-2012illness<59 months	Berkley 2003		Kenva	Prospective cohort	1998-2000	Aged over 90 days	3 months-13 years	Mort
1996CongoProspective cohort1986-1988MalnutritionMedian: 27 monthsMontKumar 2003SICK scoreIndiaProspective cohort1998-1999Paediatric patientsNo InformationMortGeoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24Median: 24Median: 24Geoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24MortEmukuleKenyaKenyaKenyaLRTMortSurveillance2009-2012illness<59 months	Derricy 2005				1550 2000			101010
1996CongoProspective cohort1986-1988MalnutritionMedian: 27 monthsMontKumar 2003SICK scoreIndiaProspective cohort1998-1999Paediatric patientsNo InformationMortGeoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24Median: 24Median: 24Geoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24MortEmukuleKenyaKenyaKenyaLRTMortSurveillance2009-2012illness<59 months	Bitwe 2006			Prospective cohort	2003-2004	<12 months		Morta
1996CongoProspective cohort1986-1988MalnutritionMedian: 27 monthsMontKumar 2003SICK scoreIndiaProspective cohort1998-1999Paediatric patientsNo InformationMortGeoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24Median: 24Median: 24Geoge 2015PET ScoreTanzaniaRCT2009-2011MalariaMedian: 24MortEmukuleKenyaKenyaKenyaLRTMortSurveillance2009-2012illness<59 months			hepdone er eenge		2000 2001			
Geoge 2015PET ScoreKenya, Uganda, TanzaniaRCT2009-2011MalariaMedian: 24 (IQR=13-38)MortEmukule<			Congo	Prospective cohort	1986-1988		Median: 27 months	Morta
Geoge 2015PET ScoreKenya, Uganda, TanzaniaRCT2009-2011MalariaMedian: 24 (IQR=13-38)MortEmukule<		SICK score	•			Paediatric patients		
Emukule 2014mRISCKenyaSurveillance2009-2012Under 5 years hospitalized with severe acute respiratory illness<59 monthsMort2014mRISCKenyaSurveillance2009-2012illness<59 months						<u></u>		
Emukule 2014mRISCKenyaSurveillance2009-2012Under 5 years hospitalized with severe acute respiratory illness<59 monthsMort2014mRISCKenyaSurveillance2009-2012illness<59 months	Geoge 2015	PET Score		RCT	2009-2011	Malaria	(IQR=13-38)	Mort
2014mRISCKenyaSurveillance2009-2012illnessMortRISC-HIVSouth AfricaRCT1998-2001months with HIV infections<24 months	0							
Risc-HIV positiveSouth AfricaRCT1998-2001LRTI hospitalizations undeg 24 months with HIV infection<24 monthsMortReed 2012NegativeSouth AfricaRCT1998-2001LRTI hospitalizations undeg 24 months with HIV infection<24 months	Emukule					with severe acute respiratory		
Reed 2012positiveSouth AfricaRCT1998-2001months with HIV infection<24 monthsMortRISC-HIVNegativeSouth AfricaRCT1998-2001LRTI hospitalizations under 24 months without HIV infection<24 months	2014	mRISC	Kenya	Surveillance	2009-2012	illness	<59 months	Morta
Reed 2012RISC-HIV NegativeSouth AfricaRCT1998-2001LRTI hospitalizations under 24 months without HIV infection<24 monthsMortRISC- Hooli 2016Retrospective Malawi0-59 months hospitalized with pneumonia<59 months		RISC-HIV				LRTI hospitalizations undeg 24		
Reed 2012NegativeSouth AfricaRCT1998-2001months without HIV infection<24 monthsMortRISC-Retrospective observational study0-59 months hospitalized with pneumonia<59 months	Reed 2012	positive	South Africa	RCT	1998-2001	months with HIV infection	<24 months	Morta
RISC- MalawiRetrospective observational study0-59 months hospitalized with pneumonia<59 monthsMortHooli 2016MalawiMalawiMalawiObservational study2011-2014D-59 months hospitalized with pneumonia<59 months		RISC-HIV				LRTI hospitalizations undeनुः 24		
Hooli 2016MalawiMalawiobservational study2011-2014pneumoniaMortHooli 2016Kenya, Zambia, South Africa, Mali, Gambia,Kenya, Zambia, Gambia,In- Hooli 2014In- Hooli 2014	Reed 2012	Negative	South Africa	RCT	1998-2001	months without HIV infection	<24 months	Morta
Kenya, Zambia,In-South Africa, Mali,Mali,Gambia,1–59 months HIV negativesGallagherPERCHBangladesh,Case-control study2019ScoreThailandCase-control study2011–2014very severe pneumoniaMedian: 9(4-19)post-South Africa, Mali,South Africa, Mali,GallagherPERCHBangladesh,Nedian: 9(4-19)ScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScoreScore </td <td></td> <td>RISC-</td> <td></td> <td>Retrospective</td> <td></td> <td>0-59 months hospitalized with</td> <td></td> <td></td>		RISC-		Retrospective		0-59 months hospitalized with		
GallagherPERCHBangladesh,hospitalized with severe of nospitalized with severe of monthsMedian: 9(4-19)days2019ScoreThailandCase-control study2011–2014very severe pneumoniamonthspost-	Hooli 2016	Malawi	Malawi	observational study	2011-2014		<59 months	Morta
GallagherPERCHBangladesh,hospitalized with severe of nospitalized with severe of monthsMedian: 9(4-19)days2019ScoreThailandCase-control study2011–2014very severe pneumoniamonthspost-						gu		In-
GallagherPERCHBangladesh,hospitalized with severe of nospitalized with severe of monthsMedian: 9(4-19)days2019ScoreThailandCase-control study2011–2014very severe pneumoniamonthspost-			• • •			est.		hospi
GallagherPERCHBangladesh,hospitalized with severe of nospitalized with severe of monthsMedian: 9(4-19)days2019ScoreThailandCase-control study2011–2014very severe pneumoniamonthspost-						Pro		morta
2019 Score Thailand Case-control study 2011–2014 very severe pneumonia g months post-			-			1–59 months HIV negativ쯍		
2019 Score Thailand Case-control study 2011–2014 very severe pneumonia g months post-	-		•			hospitalized with severe of		
	2019	Score	Thailand	Case-control study	2011–2014	very severe pneumonia ್ರ್ರ	months	post-

Page 38 of 56
---------------

Gambia, Malawi, Kenya, Ghana, Gabon Uganda	Prospective cohort		bmjopen-2019-035045 on		discharg
Kenya, Ghana, Gabon	•		<u> </u>		discharg
Kenya, Ghana, Gabon	•				mortalit
	•		Hospitalized children with		
Uganda		2000-2005	severe malaria	28(0-180)	Mortali
	Retrospective nested case-control study	2007-2009	severe malaria o ق و 6 months - 12 years	6 months - 12 years	Mortalit
Uganda	Retrospective nested case-control study	2007-2009	6 months - 12 years	6 months - 12 years	Mortali
Ogaliua	Prospective	2007-2009	6 60 months admitted with	Median 18.2 (IQR	WUItali
Uganda	observational study	2012-2013	infectious illness	11.9–33.1) months	Mortali
0501100	Prospective	2012 2013	6–60 months admitted with	Median 18.2 (IQR	Wortan
Uganda	observational study	2012-2013	infectious illness	11.9–33.1) months	Mortali
	Prospective		6–60 months admitted with	Median 18.2 (IQR	
Uganda	observational study	2012-2013	infectious illness	11.9–33.1) months	Mortali
Uganda	Surveillance	2010-2013	General paediatrics	18 months (IQR 9– 36)	Mortali
Malawi	Nested case–control	2010-2011	age <15 years on the acute care and malnutrition wards	≤15 years	Mortali
Rwanda	Case-control study	2016-2017	0-18 years patients admit to pediatric department ≥	0-18 years	Mortali
				alawi         Nested case-control         2010-2011         care and malnutrition wards           0-18 years patients admitted	alawi       Nested case–control       2010-2011       care and malnutrition wargs       ≤15 years         vanda       0-18 years patients admitted       0-18 years patients admitted       0-18 years         vanda       Case-control study       2016-2017       to pediatric department admitted       0-18 years

Study	Number of Sample size outcome events		Missing data handling	Number of participants with missing data reported?	by guest. Pagression method	Were model assumptions verified	
					Spiege		
Berkley 2003	429	60	No Information	No Information	Jones r <mark>a</mark> ethod	Yes	
					by copyright.		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 39 of 56

### BMJ Open

					bmjopen-2019-03:	
Darklay 2002	439	102	No Information	No Information	Spiege的alter/Knill- Jones ซี่ethod	Vac
Berkley 2003	459	193			Spiegelhalter/Knill-	Yes
Berkley 2003	436	183	No Information	No Information	Jones method	Yes
Bitwe 2006	414	66	No Information	No Information	Logistigregression	Yes
Draimax 1996	1129	196	No Information	No Information	Logistieregression	No Informatio
Kumar 2003	1099	44	No Information	No Information	Logistigregression	No Informatio
			Complete case		Cox proportional	
Geoge 2015	3170	315	analyses	Yes	hazard	No Informatio
		Jh	Complete case			
Emukule 2014	3581	218	analyses	No Information	Logisti	Yes
			Complete case		d fr	
Reed 2012	1502	265	analyses	No Information	Logistieregression	No Informatio
			Complete case		http	
Reed 2012	2646	33	analyses	No Information	Logisticregression	No Informatio
			Multiple		mjo	
Hooli 2016	14665	464	imputation	Yes	Logisticregression	Yes
			Complete case		ı.bn	
Gallagher 2019	1802	120	analyses	No Information	Logisticregression	No Informatio
			Complete case		om/	
Helbok 2009	23980	1004	analyses	Yes	Logistigregression	No Informatio
Erdman 2011 (Logistic			No missing		Apr	
regression)	103	23	values	Yes	Logisticregression	Yes
Erdman 2011			No missing		5, 20	
(Classification tree)	103	23	values	Yes	Classification tree	No Informatio
			Multiple		by	
Lowlaavar 2016	1307	65	imputation	No Information	Logistieregression	No Informatio
			Multiple		est.	
Lowlaavar 2016	1307	65	imputation	No Information	Logisti	No Informatio
			Multiple		fect	
Lowlaavar 2016	1307	65	imputation	No Information	Logistieregression	No Informatio
					by copyright	

				BMJ Open				bmjopen-2019-03	
				olete case				<del>5</del> 04	
Mpimbaza 2015	50249	1742	analy		Yes	es Logist		မ္ခ်regression	No Information
Olson 2013 1606 54		impu	Single Inputation Yes Logist		Logisti	စ် တူregression	Yes		
Rosman 2019	168	57	Complete caseanalysesNo InformationLog		Logisti	eregression	No Information		
	7	0r	Was a sh	rinkage met	hod			)20. Downloa	]
Study	Predictor s	election	used	- <b>J</b>		Calibration method	1	Discrimination	
Berkley 2003 Univariate			No Information		No Information		∄.93(0.92-0.94)		
Berkley 2003 Univariate		No Inforn	nation		No Information		0.82(0.80-0.83)		
Berkley 2003 Univariate		No Inforn	nation		No Information		<b>.</b> 82(0.81-0.84)		
Bitwe 2006 Univariate & Stepwise		& Stepwise	No Information		Yes		<u>9</u> .83 (0.78-0.88)		
Draimax 1996 A priori			No Information		No Information		.85(No informat	ion)	
Univariate( but included all variables in finalKumar 2003model)		No Inforn	No Information		No Information		9.89		
Geoge 2015	A priori		No Information		Hosmer-Lemeshow test, P=0.30		9 9.82(0.77–0.87)		
Emukule 2014 Univariate		Yes		Calibration plot		<u>\$</u> 9.85			
Reed 2012	Univariate		No Inforn	nation		Hosmer-Lemeshow P=0.95		20.78	
Reed 2012	Univariate			No Information		Hosmer-Lemeshow test, P=0.87		¥ ₹9.92	
Hooli 2016	A priori		No Inforn			Risk predictiveness curve		.79 (95% CI: 0.76	
Gallagher 2019	Univariate		No Inforn	nation		Calibration plot		<u>0</u> .84(No Informat	ion)
Helbok 2009	Forward & Stepwise	backward	No Inforn	nation		No Information		င္နဲ့ နွာ0 (79–82)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

by copyright.

				BMJ Open			njopen		
							טווושטפוו-בט ו פ-טס	- 2014 0- 0	
		1			Hosme	r-Lemeshow		2	
Erdman 2011 (I	Logistic				and cal	libration slope	e o		
regression)	-	Univariate	No Informat	tion	analysi	S		0.96(0.9	0–0.99)
Erdman 2011 (	Classification							$\tilde{c}$	
tree)		No Information	No Informat	tion	No Info	ormation	ניסנ	No Infor	mation
Lowlaavar 2016	5	Univariate & Stepwise	No Informat	tion	No Information		et .	9.85 (0.80–0.89)	
Lowlaavar 2016	6	Univariate & Stepwise No Informati		tion	No Information		202	ğ.84 (0.7	79–0.89)
Lowlaavar 2016	5	Univariate & Stepwise No Informati		tion	No Information			වු.82 (0.72–0.91)	
Mpimbaza 201	5	Backward	No Informat	tion	General paediatrics			2.76(No information)	
Olson 2013		Univariate 🕖 🦾 🛛 No Informa		tion No Information			के.76(No information)		
Rosman 2019		Univariate 🦯 🖊	No Informat	tion	No Info	ormation	a de	9.96 (95	% CI 0.93–0.99).
			· Cr	ro.			Was a		
Study	Classifi	ication measures reported	-07	Method used	-	External	Was a simplit model	jed	(including inter of the regression
Study Berkley 2003		<i>ication measures reported</i>	· 67	internal valid	ation	validation	Was a simplig model presen	ied ted	(including inter of the regression model present
Berkley 2003	No Info	ormation	- 07	<i>internal valid</i> Separate data	<b>ation</b> aset	<b>validation</b> Yes	Was a simpli model presen	ied ited	(including inter of the regression model present NA
Berkley 2003 Berkley 2003	No Info No Info	-	- 07	internal valid Separate data Separate data	<b>ation</b> iset iset	validationYesYes	Was a simplit model presen Yes	jed ted	(including inter of the regression model presenter NA NA
Berkley 2003	No Info No Info No Info	ormation	- 07	<i>internal valid</i> Separate data	ation aset aset aset	<b>validation</b> Yes	Was a simpli model present Yes Yes	jed	(including inter of the regression model present NA
Berkley 2003 Berkley 2003 Berkley 2003	No Info No Info No Info No Info	ormation ormation ormation ormation	d negative	internal valid Separate data Separate data Separate data	ation aset aset aset	validationYesYesYes	Was a simplit mode present Yes Yes Yes	ied	(including inter of the regression model present NA NA NA
Berkley 2003 Berkley 2003 Berkley 2003	No Info No Info No Info No Info Positive	ormation ormation ormation	d negative	internal valid Separate data Separate data Separate data	ation aset aset aset on	validationYesYesYes	Was a simplity model present Yes Yes Yes Yes	ied	(including inter of the regression model present NA NA NA
Berkley 2003 Berkley 2003 Berkley 2003 Bitwe 2006	No Info No Info No Info No Info Positivo predict	ormation ormation ormation ormation e predictive values 40% and	-	internal valid Separate data Separate data Separate data No Informatio	ation aset aset aset on	validationYesYesYesNo	Was a simplity model present Yes Yes Yes Yes	ied	(including inter of the regression model presenter NA NA NA NA NO
Berkley 2003 Berkley 2003 Berkley 2003 Bitwe 2006	No Info No Info No Info No Info Positivo predict Maxim	ormation ormation ormation ormation e predictive values 40% and tive value of 97.9%	erved at a	internal valid Separate data Separate data Separate data No Informatio	ation aset aset aset on	validationYesYesYesNo	Was a simplity model present Yes Yes Yes Yes	ied	(including inter of the regression model presenter NA NA NA NA NO
Berkley 2003 Berkley 2003 Berkley 2003 Bitwe 2006 Draimax 1996 Kumar 2003	No Info No Info No Info No Info Positivo predict Maxim score o specifio	ormation ormation ormation ormation e predictive values 40% and tive value of 97.9% oum discrimination was obse of 2.5 with a sensitivity of 84 city 82.2%	erved at a	internal valid Separate data Separate data Separate data No Informatic Separate data	ation aset aset on aset on	validationYesYesYesNo	Was a simplify model present Yes Yes Yes Yes Yes Yes	ied	(including inter of the regression model presenter NA NA NA NA NO
Berkley 2003 Berkley 2003 Berkley 2003 Bitwe 2006 Draimax 1996	No Info No Info No Info Positive predict Maxim score o specific No Info	ormation ormation ormation ormation e predictive values 40% and tive value of 97.9% oum discrimination was obse of 2.5 with a sensitivity of 84 city 82.2% ormation	erved at a 4.1% and of	internal valid Separate data Separate data Separate data No Informatic Separate data	ation aset aset on aset on	validationYesYesYesNoNo	Was a       simplify       model       present       Yes       Yes       Yes       Yes       Yes       Yes       Yes       Yes       Yes	ied	(including inter of the regression model presented NA NA NA NA NO
Berkley 2003 Berkley 2003 Berkley 2003 Bitwe 2006 Draimax 1996 Kumar 2003 Geoge 2015	No Info No Info No Info Positive predict Maxim score o specifio No Info	ormation ormation ormation ormation e predictive values 40% and tive value of 97.9% ormation was obsected of 2.5 with a sensitivity of 84 city 82.2% ormation e of >6 has a sensitivity of 1.	erved at a 4.1% and of	internal valid Separate data Separate data Separate data No Informatic Separate data No Informatic	ation aset aset on aset on aset	validationYesYesYesNoNoYesNo	Was a       simplify       model       present       Yes       Yes       Yes       Yes       Yes       Yes       Yes       Yes       Yes	ied	(including inter of the regression model presenter NA NA NA NA NO NO NO
Berkley 2003 Berkley 2003 Berkley 2003 Bitwe 2006 Draimax 1996 Kumar 2003	No Info No Info No Info No Info Positive predict Maxim score o specifio No Info A score specifio	ormation prmation prmation ormation e predictive values 40% and tive value of 97.9% num discrimination was obsect of 2.5 with a sensitivity of 84 city 82.2% prmation e of >6 has a sensitivity of 1 city 99.9%	erved at a 4.1% and of .8% and	internal valid Separate data Separate data Separate data No Informatic Separate data	ation aset aset on aset on aset	validationYesYesNoNoYes	Was a       simplify       model       present       Yes       Yes       Yes       Yes       Yes       Yes       Yes       Yes       Yes	ied	(including inter of the regression model present NA NA NA NA NO NO
Berkley 2003 Berkley 2003 Berkley 2003 Bitwe 2006 Draimax 1996 Kumar 2003 Geoge 2015	No Info No Info No Info No Info Positive predict Maxim score o specifio No Info A score specifio	ormation ormation ormation ormation e predictive values 40% and tive value of 97.9% orum discrimination was obse of 2.5 with a sensitivity of 84 city 82.2% ormation e of >6 has a sensitivity of 1 city 99.9% of 7 has a sensitivity of 4% a	erved at a 4.1% and of .8% and	internal valid Separate data Separate data Separate data No Informatic Separate data No Informatic	ation aset aset on aset on aset	validationYesYesYesNoNoYesNo	Was a simplify model present Yes Yes Yes Yes Yes Yes Yes	ied	NA NA No No No No

bmjopen-2019-

Page	42	of	56	
rayc	72	UI.	50	

Reed 2012	Score of 6 has a sensitivity: 16% Specificity: 99%	Bootstrapping	Yes	Yes	5045	No
	a score of 8 has sensitivity of 57% and				50	
Hooli 2016	specificity of 88%	No Information	No	Yes	n 19	Yes
	positive predictive value 23.6%, positive	Bootstrapping &				
Gallagher 2019	predictive value 95.8%	separate dataset	No	Yes	Octob	No
	LODS >=1, sensitivity was 85% and specificity				ē	
Helbok 2009	was 63%	No Information	Yes	Yes	202	No
	sensitivity of 95.7% (95% CI: 78.1–99.9) and				о. П	
Erdman 2011	specificity of 88.8% (79.7–94.7) predicting				Dow	
(Logistic regression)	death 🛛 🖉 👝	Boostrappling	No	Yes	nlo	No
Erdman 2011	100% sensitivity and 92.5% specificity for	10-fold cross			Downloaded frpm	
(Classification tree)	predicting outcome	validation	No	No	d fr	No
	Sensitive: 0.83 (0.74–0.92), Specificity: 0.76				-	
Lowlaavar 2016	(0.73–0.78)	No Information	No	No	http://b	Yes
	Sensitive: 0.80 (0.70–0.90), Specificity: 0.76	6			p://b	
Lowlaavar 2016	(0.74–0.79)	No Information	No	No	omjopen	Yes
	Sensitive: 0.82 (0.72–0.91), Specificity: 0.71				per	
Lowlaavar 2016	(0.68–0.73)	No Information	No	No	h.br	Yes
Mpimbaza 2015	No Information	Separate dataset	No	Yes	ı.brnj.c	No
	sensitivity: 0.44, specificity: 0.86,PPV: 0.18,				/md	
Olson 2013	NPV: 0.96 for a cut-off of 4	No Information	No	Yes	on	No
	PEWS-RL of >=3, sensitivity was 96.2%, and		UA		April 20	
Rosman 2019	specificity was 87.3%	No Information	No	Yes	⊒. N	No

Study	Number of predictors in final model	Predictors in the final model	Are there laboratory- based predictors	Handling of continuous predictors	Eventa per lest variable
•		Severe anaemia, Jaundice,		-	rote
		Subcostal indrawing, Deep			tected by
		breathing, prostrated with			с d
Berkley 2003	10	seizures, prostrated without	No	NA	y c

Berkley 2003       9       Seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature >39 °C         Berkley 2003       8       Kwashiorkor       No         History >7 days, Prostrated with seizures, Impaired consciousness with seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Impaired consciousness without seizures, Impaired consciousness without seizures, Impaired consciousness without seizures, Wasting, Kwashiorkor       No         Berkley 2003       8       History >7 days, Prostrated with seizures, Impaired consciousness without seizures, Axillary temperature >39 °C, Wasting, Kwashiorkor       No         Berkley 2003       9       Wasting, Kwashiorkor       No	BMJ Open					
Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °CJaundice, Subcostal indrawing, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Wasting, KwashiorkorBerkley 20038KwashiorkorNoHistory >7 days, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Prostrated with seizures, Wasting, KwashiorkorBerkley 20038KwashiorkorNoHistory >7 days, Prostrated without seizures, Impaired consciousness without seizures, Impaired consciousness without seizures, Impaired consciousnessBerkley 20039Wasting, KwashiorkorNoBerkley 20039Wasting, KwashiorkorNoBerkley 20039Wasting, KwashiorkorNoAge(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), Infectious		24.12				
Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °CJaundice, Subcostal indrawing, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Wasting, KwashiorkorBerkley 20038KwashiorkorNoHistory >7 days, Prostrated with seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Impaired consciousness without seizures, Impaired consciousness without seizures, Impaired consciousness without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature <39 °C,Berkley 20039Wasting, KwashiorkorNoBerkley 20039Wasting, KwashiorkorNoPerimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousNo						
without seizures, Axillary temperature <36 °C, Axillary temperature >39 °CJaundice, Subcostal indrawing, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Wasting, KwashiorkorBerkley 20038KwashiorkorNoHistory >7 days, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Prostrated without seizures, Prostrated without seizures, Reserved without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °C,Berkley 20039Wasting, KwashiorkorNoAge(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), Infectious						
temperature <36 °C, Axillary temperature >39 °CJaundice, Subcostal indrawing, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures,Wasting,Berkley 20038KwashiorkorNoHistory >7 days, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Prostrated without seizures,Wasting,Berkley 20038Berkley 20039Berkley 20039<						
Lemperature >39 °CJaundice, Subcostal indrawing, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures,Wasting,Berkley 20038KwashiorkorNoHistory >7 days, Prostrated without seizures, Impaired consciousness with seizures, without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °C,Berkley 20039Wasting, KwashiorkorNoBerkley 20039Wasting, KwashiorkorNoAge(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousNo						
Jaundice, Subcostal indrawing, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures,Wasting, KwashiorkorBerkley 20038KwashiorkorNoHistory >7 days, Prostrated with seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature <39 °C, Wasting,KwashiorkorNoBerkley 20039Age(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), Infectious						
indrawing, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures,Wasting, KwashiorkorNoBerkley 20038KwashiorkorNoHistory >7 days, Prostrated with seizures, Impaired consciousness with seizures, Axillary temperature <36 °C, Axillary temperature >39 °C,Berkley 20039Wasting, KwashiorkorNoAge(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousNo						
seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures,Wasting, KwashiorkorNoBerkley 20038KwashiorkorNoHistory >7 days, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature <39 °C,						
Seizures, Impaired consciousness with seizures, Impaired consciousness without seizures,Wasting, KwashiorkorNoBerkley 20038KwashiorkorNoHistory >7 days, Prostrated with seizures, Impaired consciousness with seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °C,NoBerkley 20039Wasting, KwashiorkorNoBerkley 20039Wasting, KwashiorkorNoPerimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousNo						
Berkley 20038consciousness with seizures, Impaired consciousness without seizures,Wasting, KwashiorkorNoBerkley 20038KwashiorkorNoHistory >7 days, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °C,NoBerkley 20039Wasting, KwashiorkorNoBerkley 20039Wasting, KwashiorkorNoAge(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousNo						
Berkley 20038Impaired consciousness without seizures,Wasting, KwashiorkorNoBerkley 20038History >7 days, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °C,NoBerkley 20039Wasting, KwashiorkorNoBerkley 20039Age(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousNo		24.12				
Berkley 20038without seizures, Wasting, KwashiorkorNoBerkley 20038History >7 days, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °C,8Berkley 20039Wasting, KwashiorkorNoBerkley 20039Age(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousNo						
Berkley 20038KwashiorkorNoHistory >7 days, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °C,NoBerkley 20039Wasting, KwashiorkorNoAge(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousNo						
History >7 days, Prostrated with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °C,Berkley 20039Wasting, KwashiorkorNoAge(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousNo						
with seizures, Prostrated without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °C,Berkley 20039Wasting, KwashiorkorNoAge(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousI	NA					
without seizures, Impaired consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °C,Berkley 20039Wasting, KwashiorkorNoAge(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousImpaired consciousness (Unconscious, Aware), Infectious						
consciousness with seizures, Impaired consciousness without seizures, Axillary temperature <36 °C, Axillary temperature >39 °C,Berkley 20039Wasting, KwashiorkorNoAge(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousImpaired conscious temperature						
Impaired consciousnessImpaired consciousnesswithout seizures, Axillarytemperature <36 °C, Axillary	•					
without seizures, Axillary temperature <36 °C, Axillary temperature >39 °C,Berkley 20039Wasting, KwashiorkorNoAge(<12, >=12months), BrachialAge(<12, >=12months), BrachialAge(<12, >=12months), BrachialPerimeter(<=115mm, >>115mm), State of consciousness(Unconscious, Aware), InfectiousAware), Infectious						
temperature <36 °C, Axillary temperature >39 °C,Berkley 20039Wasting, KwashiorkorNoAge(<12, >=12months), BrachialAge(<12, >=12months), BrachialAge(<12, >=12months), BrachialPerimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousAware), Infectious	$\mathbf{N}$	20.33				
Berkley 20039temperature >39 °C, Wasting, KwashiorkorNoBerkley 20039Age(<12, >=12months), BrachialAge(<12, >=12months), BrachialPerimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), InfectiousAware), Infectious		tomized ry				
Berkley 20039Wasting, KwashiorkorNoAge(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of 						
Age(<12, >=12months), Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), Infectious		tomized				
Brachial Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), Infectious	Histor	γ				
Perimeter(<=115mm, >115mm), State of consciousness(Unconscious, Aware), Infectious						
>115mm), State of consciousness(Unconscious, Aware), Infectious						
consciousness(Unconscious, Aware), Infectious						
Aware), Infectious						
		8.25				
diagnosis(Acute respiratory		tomized ial neter &				
infection, Malaria,	Brachi	ial				
Gastroenteritis, Septicemia /	-	neter &				
Bitwe 2006 8 bacteremia, Other infections) No	Age					

Page 44 of 56

		BMJ Or	ben		
					49
		MUAC, edema, Serum			49
Draimax 1996	4	albumin, Transthyretin	Yes	MUAC	49
		Temperature(Normal,			
		Abnormal), Heart			4.888
		rate(Normal, Abnormal),			
		Respiratory rate(Normal,			
		Abnormal), Systolic blood			
		pressure(Normal, Abnormal),			4.888
		Capillary refill time(Normal,			
		Abnormal),			
		Consciousness(Normal,		Dichotomized	
		Abnormal), Age(≥60, ≥12 to		most	
Kumar 2003	9	<60, ≥1to<12, <1)	No	variables	
		Temperature(≤37, >37),			28.63
		Heart rate(<80 bpm, ≥80 to			
		<105 bpm, ≥220 bpm),			
		Capillary refill time(≥2sec,			
		<2sec), Conscious			28.63
		level(prostrate, coma),			20.00
		Respiratory distress, Lung			
		crepitations, Severe pallor,		multivariable	
		Weak pulse, Weight(<6 kg,		fractional	
Geoge 2015	11	6–8 kg), Deep breathing	No	polynomials	
		Lab confirmed malaria,			
		Weight for age(Low, Very		_	
		Low), Dehydration,			
		Unconscious, Unable to			
		drink/breastfeed, Night			24.22
		sweats, Chest wall in-			
		drawing, Interaction			
		between malaria and chest		Categorized	
F     0011		wall in-drawing, A.V.P.U		weight for	
Emukule 2014	9	scale - Not alert	Yes	age	

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 45 of 56

	BMJ Open					
		Oxygen saturation <90%, Chest indrawing, Wheezing, Refusing feeds, HIV classification(Severe, Mild or			37.85	
		moderate), IMCI age group(<2 months, 3–12			37.85	
Reed 2012	7	months) Oxygen saturation <90%,	No			
		Chest indrawing, Wheezing, Refusing feeds, Weight for age(Low (<= -2 z-score), Very		Categorized weight for	6.6	
Reed 2012	5	Low (<= -3 z-score))	No	age		
Hooli 2016	5	Oxygen saturation(moderate, severe), MUAC(moderate, severe), Gender, Wheeze, Consciousness	No	Categorized MUAC and Oxygen saturation	92.8	
		Age(1-11, 12-59), sex, Unresponsiveness and/or deep breathing(Deep breathing, but alert, Unresponsive but no deep breathing, Unresponsive and deep breathing), cough, grunting, hypoxemia, length of illness(0–2, 3–5, >5), Weight-for-height z-	191	200	6.6 92.8 10	
Gallagher 2019	12	score(Very low (< -3), Low (≥ -3 to < -2), Normal-high (≥ - 2))	No	Categorized most variables		
		Convulsion, vomiting, deep breathing, intercostal			125.5	
Helbok 2009	8	recession, Coma,	Yes	NA		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	46	of	56
------	----	----	----

	BMJ Open				
		Prostration, hyperparastemia, severe anemia angiopoietin-2, soluble			
Erdman 2011 (Logistic regression)	8	ICAM-1, soluble Flt-1, procalcitonin, IP-10, soluble TREM-1, age, parasitemia	Yes	NA	2.875 7.666
Erdman 2011 (Classification tree)	3	IP-10, Ang-2, sICAM-1	Yes	NA	7.666
Lowlaavar 2016	3	Abnormal BCS, Positive HIV diagnosis, Weight-age z- score	Yes		21.66
Lowlaavar 2016	3	Abnormal BCS, HIV diagnosis, MUAC	Yes	Treated as continuous	21.66
Lowlaavar 2016	2	Abnormal BCS, MUAC	No	Treated as continuous	32.5
		Age, fever, difficulty breathing, altered consciousness, unable to drink or breastfeed,	Vie,		134 13.5 9.5
Mpimbaza 2015	13	convulsions, temperature, unconsciousness, pallor, jaundice, deep breathing, meningeal signs, unable to sit up	No	NA	134
		Oxygen saturation, Temperature, Heart rate,			13.5
Olson 2013	4	Respiratory rate	No	Used splines	
Rosman 2019	6	PEWS-RL score(0 to 6)	No	NA	9.5

 Protected by copyright.

		BMJ Open g	
		BMJ Open 501 Participant Domain 45	
		19-03	
		Participant Domain	
Study		<u> </u>	
	Were appropriate data sources	Were all inclusions and exclusions of participants	-
	used, e.g., cohort, RCT, or nested	appropriate?	ir
	case-control study data?	Yes e	partici
Berkley 2003 (PEDIA -Immediate)	Yes		Lo
Berkley 2003(PEDIA -Early)	Yes	Yes No	Lo
Berkley 2003(PEDIA -Late)	Yes		Lo
Bitwe 2006 (Goma score)	Yes	Yes     Yes       Yes     Yes       Yes     Yes       Yes     Yes       Yes     Yes	Lo
Draimax 1996	Yes	Yes o	Lo
Kumar 2003(SICK score)	Yes	Yes 👼	Lo
Geoge 2015 (PET score)	Yes	Yes =	Lo
Emukule 2014 (mRISC score)	No	Yes B	Hig
Reed 2012 (RISC HIV+)	Yes	Yes 🚦	Lo
Reed 2012 (RISC HIV-)	Yes	Yes 😽	Lo
Hooli 2016(RISC-Malawi)	No	Yes 🗧	Hig
Gallagher 2019(PERCH Score)	Yes	Yes g	Lov
Helbok 2009(LOD score)	Yes	Yes g	Lo
Erdman 2011(logistic regression)	Yes	Yes	Lo
Erdman 2011(CRT)	Yes	Yes 💐	Lo
Lowlaavar 2016 (Model 1)	Yes	Yes g	Lo
Lowlaavar 2016 (Model 2)	Yes	Yes	Lo
	Yes	Yes	Lo
Lowiaavar 2016 (iviodel 3)	No		Hig
Lowlaavar 2016 (Model 3) Mpimbaza 2015	NO		
Mpimbaza 2015 Olson 2013(ITAT score)	Yes	Yes No.	Lov

bmjopen-201

lictors defined ed in a similar I participants Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Were predictor assessments made without knowledge of outcome data? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Are all predictors available at the time the model is intended to be used? Yes Yes Yes Yes Yes Yes No Yes No Yes No Yes Yes Yes Yes Yes	Risk of Bias in predictors
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes No Yes No Yes No Yes Yes	Low Low High Low Low High Low Low Low
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	No       Yes       Yes       No       Yes       Yes	Low Low High Low Low High Low Low Low
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes SYes No SYes Yes No Yes Yes Yes Yes	Low Low High Low Low High Low Low Low
Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes No Yes No No Yes Yes Yes	Low High Low Low High Low Low Low
Yes Yes Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes Yes Yes	No Pres Tyes No Pres Pres Pres Pres Pres	High Low Low High Low Low Low
Yes Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes Yes	Agyes →Yes →No →Yes →Yes →Yes →Yes	Low Low High Low Low Low
Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes	Yes No Yes Yes	Low High Low Low Low
Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes	BNO FYes FYes FYes	High Low Low Low
Yes Yes Yes Yes	Yes Yes Yes Yes	Yes Yes	Low Low Low
Yes Yes Yes	Yes Yes Yes	eres eres eres eres eres eres eres eres	Low Low
Yes Yes	Yes Yes		Low
Yes	Yes		-
		gres	LOW
Tes		SYes	Low
Yes	Yes	<u>a</u> ies <u>o</u> Yes	Low
			Low
			High
			High
			Low
	/es /es /es /es /es /es	Yes	YesNoYesYesYesYesYesYesYesYesYesYesYesYesYesYes

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 49 of 56

			BMJ Open			bmjopen-2019-035045	
						'n-2(	
						019-	
						035	
						045	
			0	tcome Domain		<u>on</u>	
Study			04			19	
	Was the	Was a	Were	Was the	Was the	Was the time	Ris
	outcome	prespecified	predictors	outcome	outcome	^b interval	Bia
	determined	or standard	excluded	defined and	determined		outo
	appropriately?	outcome	from	determined	without	Sbetween	
		definition	the	in a similar	knowledge	gssessment	
		used?	outcome	way for all	of predictor	and outcome	
			definition?	participants?	information?	determination	
		$\mathbf{h}$				appropriate?	
Berkley 2003 (PEDIA -Immediate	Yes 🗸	Yes	Yes	Yes	Yes	fr Yes	Lo
Berkley 2003(PEDIA -Early)	Yes	Yes	Yes	Yes	Yes	Yes	Lo
Berkley 2003(PEDIA -Late)	Yes	Yes	Yes	Yes	Yes	Yes	Lo
Bitwe 2006 (Goma score)	Yes	Yes	Yes	Yes	Yes	Yes	Lo
Draimax 1996	Yes	Yes	Yes	Yes	Yes	PYes	Lo
Kumar 2003(SICK score)	Yes	Yes	Yes	Yes	Yes	Yes	Lo
Geoge 2015 (PET score)	Yes	Yes	Yes	Yes	Yes	🚊 Yes	Lo
Emukule 2014 (mRISC score)	Yes	Yes	Yes	Yes	Yes	Se Yes	Lo
Reed 2012 (RISC HIV+)	Yes	Yes	Yes	Yes	Yes	o Yes	Lo
Reed 2012 (RISC HIV-)	Yes	Yes	Yes	Yes	Yes	Yes	Lc
Hooli 2016(RISC-Malawi)	Yes	Yes	Yes	Yes	Yes	Ti Yes	Lo
Gallagher 2019(PERCH Score)	Yes	Yes	Yes	Yes	Yes	, ^N Yes	Lo
Helbok 2009(LOD score)	Yes	Yes	Yes	Yes	Yes	No. Yes	Lo
Erdman 2011(logistic regression)	Yes	Yes	Yes	Yes	Yes	🛱 Yes	Lc
Erdman 2011(CRT)	Yes	Yes	Yes	Yes	Yes	ې س Yes	Lc
Lowlaavar 2016 (Model 1)	Yes	Yes	Yes	Yes	Yes	Yes	Lo
Lowlaavar 2016 (Model 2)	Yes	Yes	Yes	Yes	Yes	Tes	Lo
Lowlaavar 2016 (Model 3)	Yes	Yes	Yes	Yes	Yes	of Yes	Lc
Mpimbaza 2015	Yes	Yes	Yes	Yes	Yes	e Yes	Lo
Olson 2013(ITAT score)	Yes	Yes	Yes	Yes	Yes	ੁੱਚ Yes	Lc
Rosman 2019(PEWS-RL score)	Yes	Yes	Yes	Yes	Yes	copyright.	Lo

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		bmjopen-2019-035045			
Study					
· · ·	Were there a reasonable	Were continuous and		Were participants	Was selection o
	number	categorical	participants	with missing	predictors base
	of participants with the	predictors handled	included in the	data handled	on univariable
	outcome?	appropriately?	analysis?	appropriately?	analysis
				30	avoided
Berkley 2003 (PEDIA -Immediate)	No	Yes	Yes	Probably No	No
Berkley 2003(PEDIA -Early)	Yes	Yes	Yes	Probably No	No
Berkley 2003(PEDIA -Late)	Yes	No	Yes	Probably No	No
Bitwe 2006 (Goma score)	No	No	Yes	No Information	No
Draimax 1996	Yes	No	Yes	No Information	Yes
Kumar 2003(SICK score)	No	No	Yes	No Information	No
Geoge 2015 (PET score)	Yes	Yes	Yes	No	Yes
Emukule 2014 (mRISC score)	Yes	No	Yes	No	No
Reed 2012 (RISC HIV+)	Yes	Yes	Yes	No Information	No
Reed 2012 (RISC HIV-)	No	No	Yes	No Information	No
Hooli 2016(RISC-Malawi)	Yes	No	Yes	Yes	Yes
Gallagher 2019(PERCH Score)	Yes	No	Yes	No	No
Helbok 2009(LOD score)	Yes	Yes	Yes	No	No
Erdman 2011(logistic regression)	No	Yes	Yes	Yes	No
Erdman 2011(CRT)	No	Yes	Yes	Yes	No Information
Lowlaavar 2016 (Model 1)	Yes	Yes	Yes	Yes	No
Lowlaavar 2016 (Model 2)	Yes	Yes	Yes	Yes	No
Lowlaavar 2016 (Model 3)	Yes	Yes	Yes	Yes	No
Mpimbaza 2015	Yes	Yes	Yes	2 No	No
Olson 2013(ITAT score)	Yes	Yes		Probably No	No
Rosman 2019(PEWS-RL score)	No	Yes	Yes	u No	No

Page 51 of 56

			- 2017		
Study					
	Were complexities in the data (e.g., censoring, competing risks, sampling of control participants) accounted for appropriately?	Were relevant model performance measures evaluated appropriately?	Were model overfitting, underfitting, and optimism in model performance accounted for?	Do predictors and their assigned weights in the final	Risk of Bias analysis
Berkley 2003 (PEDIA -Immediate)	NA	Probably No	No Information	analysis? Probably Yes	Unclear
Berkley 2003(PEDIA -Early)	NA	Probably No	No Information	Probably Yes	Unclear
Berkley 2003(PEDIA -Late)	NA	Probably No	No Information	Probably Yes	Unclear
Bitwe 2006 (Goma score)	NA	Yes	No Information	Yes	Unclear
Draimax 1996	NA	No	No Information	Probably No	Unclear
Kumar 2003(SICK score)	NA	No	No Information	Yes	Unclear
Geoge 2015 (PET score)	No	No	No Information	Yes	Unclear
Emukule 2014 (mRISC score)	NA	Yes	Yes	Yes	High
Reed 2012 (RISC HIV+)	NA	Yes	Yes	Yes	Unclear
Reed 2012 (RISC HIV-)	NA	Yes	Yes	Yes	Unclear
Hooli 2016(RISC-Malawi)	NA	Yes	No Information 문	Yes	Unclear
Gallagher 2019(PERCH Score)	NA	Yes	Yes	Yes	High
Helbok 2009(LOD score)	NA	Probably No	No Information	Probably No	Unclear
Erdman 2011(logistic regression)	NA	No	Yes	No Information	Unclear
Erdman 2011(CRT)	NA	No Information	Yes	No Information	Unclear
Lowlaavar 2016 (Model 1)	NA	No	No Information		Unclear
Lowlaavar 2016 (Model 2)	NA	No	No Information	Yes	Unclear
Lowlaavar 2016 (Model 3)	NA	No	No Information	Yes	Unclear
Mpimbaza 2015	NA	No Information	No Information		Unclear
Olson 2013(ITAT score)	NA	No	No Information		Unclear
Rosman 2019(PEWS-RL score)	NA	No	No Information	NU NU	Unclear



# Reporting checklist for systematic review and meta-analysis.

Based on the PRISMA guidelines.

# Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the PRISMAreporting guidelines, and cite them as:

Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred Reporting Items for

Systematic Reviews and Meta-Analyses: The PRISMA Statement

Page

**Reporting Item** Number Title #1 Identify the report as a systematic review, meta-analysis, or both.

Abstract

BMJ Open: first published as 10.1136/bmjopen-2019-035045 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1 2	Structured	<u>#2</u>	Provide a structured summary including, as applicable:	2
3 4	summary		background; objectives; data sources; study eligibility criteria,	
5 6 7			participants, and interventions; study appraisal and synthesis	
7 8 9			methods; results; limitations; conclusions and implications of key	
10 11			findings; systematic review registration number	
12 13 14 15	Introduction			
16 17	Rationale	<u>#3</u>	Describe the rationale for the review in the context of what is	3
18 19			already known.	
20 21 22				0
22 23	Objectives	<u>#4</u>	Provide an explicit statement of questions being addressed with	3
24 25			reference to participants, interventions, comparisons, outcomes,	
26 27 28			and study design (PICOS).	
29 30 31	Methods			
32 33	Protocol and	<u>#5</u>	Indicate if a review protocol exists, if and where it can be	4
34 35 36	registration		accessed (e.g., Web address) and, if available, provide	
37 38			registration information including the registration number.	
39 40 41	Eligibility criteria	<u>#6</u>	Specify study characteristics (e.g., PICOS, length of follow-up)	4
42 43			and report characteristics (e.g., years considered, language,	
44 45 46			publication status) used as criteria for eligibility, giving rational	
47 48 49	Information	<u>#7</u>	Describe all information sources in the search (e.g., databases	N/A
50 51	sources		with dates of coverage, contact with study authors to identify	
52 53			additional studies) and date last searched.	
54 55 56	Search	<u>#8</u>	Present full electronic search strategy for at least one database,	5
57 58 59 60		For	including any limits used, such that it could be repeated. peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Study selection	<u>#9</u>	State the process for selecting studies (i.e., for screening, for	6
3 4			determining eligibility, for inclusion in the systematic review, and,	
5 6 7			if applicable, for inclusion in the meta-analysis).	
8 9 10	Data collection	<u>#10</u>	Describe the method of data extraction from reports (e.g., piloted	6
11 12	process		forms, independently by two reviewers) and any processes for	
13 14 15			obtaining and confirming data from investigators.	
16 17	Data items	<u>#11</u>	List and define all variables for which data were sought (e.g.,	6
18 19 20			PICOS, funding sources), and any assumptions and	
20 21 22 23			simplifications made.	
24 25	Risk of bias in	<u>#12</u>	Describe methods used for assessing risk of bias in individual	7
26 27	individual studies		studies (including specification of whether this was done at the	
28 29			study or outcome level, or both), and how this information is to	
30 31 32			be used in any data synthesis.	
33 34 35	Summary	<u>#13</u>	State the principal summary measures (e.g., risk ratio, difference	N/A
36 37 38	measures		in means).	
39 40	Planned methods	<u>#14</u>	Describe the methods of handling data and combining results of	N/A
41 42 43	of analyis		studies, if done, including measures of consistency (e.g., I2) for	
44 45			each meta-analysis.	
46 47 48	Risk of bias	<u>#15</u>	Specify any assessment of risk of bias that may affect the	7
49 50	across studies		cumulative evidence (e.g., publication bias, selective reporting	
51 52 53			within studies).	
54 55 56	Additional	<u>#16</u>	Describe methods of additional analyses (e.g., sensitivity or	N/A
57 58	analyses		subgroup analyses, meta-regression), if done, indicating which	
59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

8

11

N/A

N/A

11

N/A

1 2			were pre-specified.
3 4 5	Results		
6 7 8 9 10 11 12	Study selection	<u>#17</u>	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a <u>flow diagram</u> .
13 14 15 16 17 18 19 20	Study characteristics	<u>#18</u>	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citation.
21 22 23 24 25	Risk of bias within studies	<u>#19</u>	Present data on risk of bias of each study and, if available, any outcome-level assessment (see Item 12).
26 27 28 29 30 31 32 33 34 35	Results of individual studies	<u>#20</u>	For all outcomes considered (benefits and harms), present, for each study: (a) simple summary data for each intervention group and (b) effect estimates and confidence intervals, ideally with a forest plot.
36 37 38 39 40 41 42 43	Synthesis of results	<u>#21</u>	Present the main results of the review. If meta-analyses are done, include for each, confidence intervals and measures of consistency.
44 45 46 47 48	Risk of bias across studies	<u>#22</u>	Present results of any assessment of risk of bias across studies (see Item 15).
49 50 51 52 53 54 55	Additional analysis	<u>#23</u>	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).
56 57 58 59 60	Discussion	For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	Summary of	<u>#24</u>	Summarize the main findings, including the strength of evidence	12
3 4 5	Evidence		for each main outcome; consider their relevance to key groups	
5 6 7			(e.g., health care providers, users, and policy makers	
8 9 10	Limitations	<u>#25</u>	Discuss limitations at study and outcome level (e.g., risk of bias),	15
11 12			and at review level (e.g., incomplete retrieval of identified	
13 14 15			research, reporting bias).	
16 17 18	Conclusions	<u>#26</u>	Provide a general interpretation of the results in the context of	16
19 20			other evidence, and implications for future research.	
21 22 23	Funding			
24 25 26	Funding	<u>#27</u>	Describe sources of funding or other support (e.g., supply of	17
27 28			data) for the systematic review; role of funders for the systematic	
29 30 31			review.	
32 33	The PRISMA ch	ecklist is	distributed under the terms of the Creative Commons Attribution Lice	nse
34 35 36	CC-BY. This che	ecklist wa	as completed on 15. October 2019 using <u>https://www.goodreports.org/</u>	<u>/</u> , a tool
37 38	made by the <u>EC</u>	UATOR	Network in collaboration with Penelope.ai	
39 40 41				
41 42 42				
43 44				
45 46				
47 49				
48 49				
50 51				
51 52				
53				
54 55				
56				
57 58				
59		_		
60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	