

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Traffic related particle matter exposure, lung function effects and potential interactions in a cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-034136
Article Type:	Original research
Date Submitted by the Author:	06-Sep-2019
Complete List of Authors:	Carlsen, Hanne Krage; University of Gothenburg Sahlgrenska Academy, Occupational and Environmental Medicine Nyberg, Fredrik; AstraZeneca R&D Mölndal; University of Gothenburg Sahlgrenska Academy, Occupational and Environmental Medicine Torén, Kjell; University of Gothenburg Sahlgrenska Academy, Occupational and Environmental Medicine Segersson, David; Sveriges meteorologiska och hydrologiska institut Olin, Anna-Carin; University of Gothenburg Sahlgrenska Academy, Occupational and Environmental Medicine
Keywords:	EPIDEMIOLOGY, GENETICS, PARTICLE MATTER, SURFACTANT PROTEIN A, glutathione S-transferase, LUNG FUNCTION

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1		Manuscript	20190507	Lung function and PM species data from SCAC
1 2				
3	1	Title page		
4 5				
6	2	Traffic related particle	matter exposure, lung functior	n effects and potential interactions in a cohort
7 8	0			
9	3	study		
10 11				
12	4			
13 14	_			
15 16	5	Authors		
16 17				
18 19	6	Carlsen HK ¹ , <u>Hanne.kra</u>	ge.carlsen@amm.gu.se,*	
20	_			
21	7	Nyberg F ^{1,2} , <u>fredrik.nyb</u>	perg@astrazeneca.se	
22 23				
24 25	8	Torén K, <u>kjell.toren@ar</u>	<u>nm.gu.se</u> ,	
26				
27 28	9	Segersson David ³ , <u>davic</u>	l.segersson@smhi.se	
28 29				
30 31	10	Olin A-C ¹ , anna-carin.ol	in@amm.gu.se	
32				
33 34	11	Affiliations		
35				
36 37	12	¹ Occupational and Env	vironmental Medicine, Departn	nent of Public Health & Community Medicine,
38	13	Institute of Medicine, S	ahlgrenska Academy, University	y of Gothenburg, Gothenburg, Sweden
39 40				0
41	14	² Medical Evidence & O	bservational Research, Global N	Aedical Affairs, AstraZeneca, Mölndal, Sweden.
42 43				
44 45	15	³ Swedish Meteorologic	al and Hydrological Institute, N	orrköping, Sweden.
45 46		-		
47	16	*Corresponding author	, telephone number 0046 7662	38918
48 49			•	
50 51	17	Word count: 3506		
52				
53 54	18	Keywords:		
55				
56 57	19	PM size fractions, PM s	ources, lung function, GST, SP-A	A, gene-environment interaction
58				-
59 60				
-				

Manuscript

BMJ Open

ABSTRACT objectives: To investigate the long-term effects of source-specific particle matter (PM) on lung function, effects of genetic variants of Surfactant Protein A (SP-A) and glutathione S-transferase (GST) genes GSTP1 and GSTT1, and effect modification by single nucleotide polymorphism (SNP) genotype. design: Cohort study with address-based annual PM exposure assigned from annual estimates of size (PM₁₀, PM_{2.5} and PM_{BC}) and source-specific (traffic, industry, marine traffic and wood burning) dispersion modelling. setting: Gothenburg, Sweden. participants: The ADONIX study had 6685 participants recruited from the general population, of which 5216 (78%) were eligible for inclusion in the current study with European ancestry and information on all variables of interest. Mean age was 51.4 years (range 24-76) and 2427 (46.5%) were males. primary and secondary outcome measures: The primary outcome was forced vital capacity (FVC) and forced expiratory flow in 1 second (FEV₁). The secondary outcome measure was effects and gene-environment interactions of SP-A and GSTT1 and GSTP1 genotypes. results: Exposure to traffic-related PM_{10} and PM_{25} was associated with decreases in percent-predicted FEV, by -0.48% (95%CI -0.89% to -0.07%) and -0.47% (95%CI -0.88% to -0.07%) per interquartile range (IQR), respectively, and with decreases in percent-predicted FVC by -0.46% (95%CI -0.83% to -0.08%) and -0.47% (95%CI -0.83% to -0.10%). Total and traffic-related PM_{BC} was strongly associated with both FEV, and FVC by -0.53 (95%CI -0.94 to -0.13%) and -0.43% (95%CI -0.77 to -0.09%), respectively, for FVC, and similarly for FEV, Minor allele carrier status

for two GSTP1 SNPs and the GSTT1 null genotype were associated with decreases in percent-predicted lung function. Three SP-A SNPs showed effect modification with exposure to PM₂₅ from industry and marine traffic.

BMJ Open

Lung function and PM species data from SCAC

47 conclusions: PM exposure, specifically traffic-related, was associated with FVC and FEV,
48 reductions and not modified by genotype. Genetic effect modification was suggested for industry
49 and marine traffic PM₂₅.

50 Article summary: Strength and limitations of this study

Manuscript

- An extensive dispersion model of source-specific PM was assigned to a large, general
 population cohort of adults in a single urban region
 - The cohort was designed with focus on respiratory health and many covariates were collected as well as genotyping for genes with known associations with respiratory health
 - Data collection was performed according to a standardized maneuver by trained personnel although spirometry was not performed with reversibility test
 - Residential history was not available, so exposure is only assigned for the time of inclusion
 - into the study, which also does not take indoor or occupational air pollution into account.

reliez onz

INTRODUCTION

Exposure to air pollution, especially traffic-related air pollution, is associated with reduced lung function¹² and accelerated lung function decline.³ However, evidence on specific importance of different particle sizes and sources is still limited,⁴ and are to date addressed in only few epidemiological studies of respiratory health effects with non-conclusive results.^{2 5 6} In panel studies, high levels of traffic PM had stronger association than total PM with short term increases in Club Cell protein CC16 (a marker of increased lung permeability) concentration in urine⁷, and in controlled experiments, *in vitro* exposure of human BEAS-2B lung cells to PM from different sources triggered very different pulmonary cell and DNA damage outcomes.⁸ A deepened knowledge about effects of specific particle pollution sources is thus of particular interest to prioritize public health measures to reduce health effects of ambient air pollution, and this field of research is expanding rapidly.⁹

It is only in rare cases that pollution sources be definitely identified by specific chemicals, as individual chemicals may be present in more than one source. Rather, profiles are built from particle size distributions and the relative concentrations of specific chemicals. Traffic pollution is for example characterized by NOx and ultrafine particles, whereas particles from petrochemical industries are characterized by trace elements such as nickel, cobalt, caesium and lanthanum.¹⁰ Particles from other industry is characterized by high levels of trace metals vanadium and nickel,^{10 11} but are of course sector-dependent. Similarly, PM from marine traffic is subject to large uncertainties as fuel types and fleet types vary across the world, rendering study results ungeneralizable.¹²

Beyond the importance of exposure composition and source, individual susceptibility to air pollution is modified by many factors, including genotype. Susceptibility related to genetic variability may improve our understanding of the physiological mechanisms underlying health effects of air pollution.^{13 14} Glutathione S-transferase (GST) enzymes are involved in metabolizing reactive oxygen species to reduce oxidative stress.¹⁵ GSTP1 SNPs have been reported to modify the risk of cardiovascular disease associated with exposure to NO₂¹⁶ and modify the association between NO₂ and

BMJ Open

lung function decline in adults,¹⁷ but findings are inconsistent and no meta-analysis has been performed.¹⁸ ¹⁹ Surfactant protein A (SP-A) is found in the surfactant fluid which lines the lung alveoli and has important functions in the innate immune system of the lungs, especially for opsonizing inhaled material.²⁰ SNPs in SP-A coding regions have been associated with multiple respiratory diseases,¹³ ²¹ and suggested gene-environment interactions for smoking and chronic obstructive pulmonary disease.²²

Many questions remain as to what components of air pollution are harmful in a general population, in particular at relatively low pollution exposures, and if such associations are modified by genetic factors. Thus, the aim of the current study was to investigate the effects of different PM sources on lung function in a general population cohort using epidemiological methods and to investigate lung function effects of genotype and gene-environment interaction with source-specific particle exposures.

METHODS

Study population

The study population originates from the ADONIX (ADult-Onset asthma and NItric oXide) cohort, a random sample of subjects aged 24-76 years who were invited to participate in a clinical examination between 2001-2008 as previously described.^{16 23-26} In brief, the overall participation rate was 46%, all participants provided data on residential address, lifestyle factors and education, presence of allergic airway inflammation and respiratory health, as well as clinical measurements of lung function, such as spirometry (single manoeuver) and nitric oxide in exhaled air (FENO). Blood samples were collected for DNA extraction and subsequently genotyped for selected SNPs from the SP-A, GSTP1, and GSTT1 genes.

Exposure assessment

As a part of the involvement in the Swedish Clean Air and Climate project (SCAC), the Swedish Meteorological and Hydrological Institute (SMHI) modelled source-specific, annual particulate matter

Page 7 of 56

BMJ Open

(PM) concentrations for different size fractions for each calendar year in the period 1990 to 2011 using dispersion modelling described in detail in Segersson and colleagues.²⁷ PM₁₀ and PM_{2.5} represent particles smaller than 10 and 2.5 micrometers (µm) respectively, whereas black carbon particles, PM_{BC}, are soot particles from combustion, notably vehicle exhaust. The specific sources were traffic (exhaust and road wear for PM₁₀ and PM_{2.5}, exhaust only for PM_{BC}), residential heating (predominantly house heating using wood assessed as area sources), marine traffic (averaged description from a bottom-up calculation using actual positions of ships in port, manoeuvring and cruising), and industrial sources (point sources, in Gothenburg dominated by refineries, energy plants, and other industry).²⁸ Background concentration (long-range transport particles), was also provided, but was estimated indirectly as the difference between total modelled local contribution and monitoring data from a central urban background station. Consequently, it showed no spatial variation and was not used for analyses. To refine the estimated contribution of traffic, an increment due to reduced ventilation in the street canyons was added for the busiest streets. The increment was estimated as the difference between simulations with and without buildings using the OSPM model.²⁹ For each study participant's residential address at the date of clinical examination, annual mean values of pollutants were calculated separately for five source categories and modelled exposure grid values of all PM fractions were matched to the year of the participant's clinical examination.

Outcome definitions

Dynamic spirometry including FEV₁ and FVC was performed with the subject in a sitting position using a nose clip without bronchodilation. In all measurements, a Jaeger Master Screen PFT (Vyaire, Mettawa, IL, US) was used. All procedures were performed according to ATS/ERS standards.³⁰ A local reference material was used for calculation of percent predicted (% predicted) of FEV₁ and FVC and lower limit of normal, (LLN, the lower 5th percentile in healthy individuals) for FEV₁ and FVC.^{31 32} Asthma was defined as reporting having had at least one asthma attack in the previous 12 months,

BMJ Open

and atopy was defined as having a positive phadiatop test. We used FEV₁, FVC and FEV₁/FVC below LLN as an indicator of clinically significant lung function reductions or air flow limitation.

Based on questionnaire replies, smoking status was categorised into current, former (no smoking during the last year) and never smoking. Upon inspection of the distribution of total and traffic particles within residential regions, postcodes were categorised into four regions: Inner city, non-central city, suburban, and outer suburb or rural. Education was categorised in six categories: elementary school, lower secondary school, training or girls' school, grammar school, university, and "other" or not reported. Individuals who did not have information on the variables of interest were excluded, except for genotype, where analyses were run separately for each SNP. For this study we used genotype data on four GSTP1 SNPs, a SNP marker for the GSTT1 null genotype, four SP-A1 SNPs and three SP-A2 SNPs. All SNPs were coded using a dominant model for the minor (least common) allele. Individuals with self-reported non-European background were excluded from the analysis (n=315).

Statistical methods

First, descriptive statistics were calculated for the cohort and exposure data, and correlations between the total and source-specific exposure estimates for all PM size fractions were determined.

We estimated the association between each PM size fraction for each PM source, with FEV₁ and FVC, in linear models. First, lung function effects associated with PM size fractions and sources were analysed with exposure as a continuous variable, and estimated for an interquartile increase in exposure. Second, we investigated the effects of the highest exposure values by setting high exposure cutoff for PM above the 90th percentile of population exposure, medium exposure at 50-90th percentile, with exposure at or below 50th percentile as the reference, and tested these for linear trends. To investigate clinically significant effects, we modelled increased risk of low lung function in logistic models with LLN as a cut-off. To assess confounding, covariates were added to regression models and were retained if the estimate of the main effect was altered by more than 10% by their inclusion. The covariates included in the final models were age, sex, weight, education, residential

BMJ Open

postcode region, smoking status, and exposure to passive smoking in the last 12 months. For genetic markers, we assessed Hardy-Weinberg equilibrium, then analysed the association between genotypes and lung function for all available SNPs in single-SNP linear models. To evaluate effect modification, we tested for interaction of the effects of exposure to different PM size fractions and sources on lung function by genotype, using a likelihood ratio tests comparing the model with interaction term to the model without this term. Similarly, the analyses of PM effects were also stratified by sex and respiratory health status as well as smoking status, asthma status, atopic status, BMI, age categories to evaluate possible confounding from any of these characteristics.

All regression results for change in lung function were reported as increment or decrement in % predicted. Odds ratios were obtained from the logistic model analyses. All results are presented as point estimates with 95% confidence intervals, and with p-values as appropriate. Analyses were performed in R studio³³ using the package "phia" (post-hoc interaction analysis).³⁴

RESULTS

The ADONIX cohort includes 6685 individuals, of which 5216 were included with information on the variables related to exposure and health outcomes used in this study and self-reported European ancestry. The mean age of the study population was 51.6 \pm 11.4 years and 46.5% were males, 46.1% had never smoked, 16.5% were current smokers and 10.2% were exposed to passive smoking. A total of 9.5% of individuals had FEV₁ below lower limit of normal and 9.5% had FVC below LLN. The most common highest education level was university education (37.1%), followed by grammar school (23.0%) (Table 1).

N=5216	
Age, mean (SD)	51.6 (11.4)
Males, n (%)	2427 (46.5%)
Females	2789 (53.5%)
Respiratory health	

FEV_1 (% of predicted*), mean (SD)	96.6 (13.7)
FVC (% of predicted*), mean (SD)	97.9 (12.4)
Below LLN of predicted FEV ₁ , n (%)	656 (12.6%)
Below LLN of predicted FVC, n (%)	494 (9.5%)
Below LLN of FEV ₁ /FVC, n (%)	548 (10.5%)
Smoking	
Current smokers, n (%)	860 (16.5%)
Former smokers, n (%)	1951 (37.4%)
Never smokers, n (%)	2405 (46.1%)
Passive smoking (last 12 months)	534 (10.2%)
Education	
Elementary school, n (%)	639 (12.2%)
Lower secondary School, n (%)	175 (3.3%)
Training/girls school, n (%)	389 (7.5%)
Grammar school, n (%)	1205 (23.1%)
University, n (%)	1954 (37.5%)
Other or not reported, n (%)	853 (16.4%)
Residential area	
Inner city, n (%)	945 (18.1%)
Non-central urban, n (%)	922 (17.7)
Suburban, n (%)	2178 (41.7%)
Outer suburb or rural, n (%)	1171 (22.4%)

*Lung function predicted from age, height and sex (Brisman et al., 2017) FEV₁, forced expiratory volume in 1 second.

FVC, forced vital capacity.

LLN, lower limit of normal, the fifth percentile of a healthy population, according to formula from Brisman et al., 2017.

The mean annual air pollution levels at the residential addresses in the study population at study entry were moderate, at 15.7 μ g/m³ PM₁₀, 9.3 μ g/m³ PM_{2.5}, and 0.76 μ g/m³ PM_{BC} (Table 2). Background long-range transport constituted the main source of exposure, contributing to 75% and 76% of PM₁₀ and

 $PM_{2.5}$ levels respectively. The local emission source that contributed most to total PM_{10} was traffic, whereas residential heating contributed most to $PM_{2.5}$ (Table 2).

TABLE 2 DESCRIPTIVE STATISTICS OF EXPOSURE PARAMETERS IN THE STUDY POPULATION

PM species and	Mean (standard	50 th	90 th percentile	IQR
sources	deviation)	percentile		
<u>PM₁₀total</u>	15.7 (2.49)	15.47	18.80	3.05
Traffic (μg/m ³)	2.32 (1.75)	1.78	4.41	1.64
Residential	1.22 (0.48)	1.17	1.88	0.62
heating (µg/m³)				
Marine traffic	0.03 (0.05)	0.02	0.08	0.03
(µg/m³)				
Industry	0.11 (0.09)	0.09	0.23	0.10
(µg/m³)				
<u>PM_{2.5} total</u>	9.33 (1.75)	9.36	11.80	2.47
(µg/m³)				
Traffic (µg/m³)	0.74 (0.56)	0.57	1.41	0.52
Residential	1.22 (0.48)	1.17	1.88	0.62
heating (µg/m ³)				
Marine traffic	0.03 (0.05)	0.05	0.08	0.03
(µg/m³)				
Industry	0.07 (0.05)	0.06	0.12	0.06
(μg/m³)				
<u>PM_{BC} total</u>	0.76 (0.32)	0.71	1.13	0.33
(μg/m³)				
Traffic (μg/m³)	0.36 (0.29)	0.27	0.69	0.25
Residential	0.14 (0.06)	0.13	0.23	0.06
heating(µg/m³)				
Marine traffic	0.01 (0.01)	0.00	0.02	0.01
(μg/m³)				
Industry	0.01 (0.01)	0.01	0.01	0.01
(µg/m³)				

Traffic was the largest contributor to PM_{BC} , and for PM_{BC} the contribution from long-range sources was considerably lower than for PM_{10} and $PM_{2.5}$, 26%. Traffic sources were originally divided into exhaust and road wear, but as these were highly correlated (r>0.98), we refrained from separating the two in the analyses, using instead a single variable for traffic exposure. The correlation between total and traffic-related exposure was very high for PM_{BC} (r=.99), whereas it was high for PM_{10} (r=.75) and moderate for $PM_{2.5}$ (r=.40) (Table S3).

Effects of PM exposure

Most PM sources were negatively associated with percent predicted lung function, and estimates for PM_{BC} overall and from traffic, and for $PM_{2.5}$ and PM_{10} from traffic, reached statistical significance for reductions in FEV₁ and FVC. The effect estimates for particles from residential heating, marine traffic or industry indicated no strong or consistent adverse effects in the linear models (Table 3).

TABLE 3 CHANGE IN FEV1 AND FVC PER IQR CHANGE IN PM FROM DIFFERENT SOURCES

	De	lta % pre	dicted FI	EV1	4	Delta % pi	redicted F	VC
	В	95%	6 CI		В	95%	6 CI	
		Lower	Upper	p-		Lower	Upper	p-value
				value				
PM₁₀ Total	-0.16	-0.64	0.33	0.53	-0.37	-0.81	0.07	0.10
Traffic	-0.48	-0.89	-0.07	0.02	-0.46	-0.83	-0.08	0.02
Residential								
heating	-0.30	-0.80	0.20	0.23	-0.03	-0.48	0.43	0.91
Marine traffic	0.00	-0.24	0.24	1.00	-0.05	-0.27	0.17	0.66
Industry	-0.33	-0.78	0.11	0.14	-0.40	-0.80	0.01	0.05
PM_{2.5} Total	0.00	-0.53	0.53	1.00	-0.47	-0.95	0.01	0.05
Traffic	-0.47	-0.88	-0.07	0.02	-0.47	-0.83	-0.10	0.01
Residential	-0.30	-0.80	0.20	0.23	-0.03	-0.48	0.43	0.91

heating								
Marine traffic	0.00	-0.89	0.89	1.00	-0.05	-0.85	0.75	0.66
Industry	-0.34	-0.86	0.18	0.21	-0.32	-0.80	0.15	0.18
РМ_{вс} Total	-0.56	-1.01	-0.12	0.01	-0.53	-0.94	-0.13	0.01
Traffic	-0.41	-0.78	-0.03	0.03	-0.43	-0.77	-0.09	0.01
Residential								
heating	-0.38	-0.89	0.12	0.14	0.00	-0.46	0.45	0.99
Marine traffic	-0.01	-0.25	0.23	0.94	-0.05	-0.27	0.16	0.62
Industry	-0.40	-0.92	0.12	0.13	-0.38	-0.85	0.09	0.11

Parameter coefficients from in separate, single-pollutant models adjusted for age, weight, education, area of residence, smoking status, and exposure to environmental tobacco smoke in the last 12 months.

IQR, interquartile range.

In models with exposure categorized (low, medium, and high exposure), there was a consistent trend across categories for traffic-related exposure to all particulate measures for both FVC and FEV₁ (*p* for trend<0.05; for FEV₁ and PM_{BC} traffic p=0.09; the trend was slightly less strong and consistent for total exposure. There were no significant negative associations between exposure to particles of any size from residential heating, marine traffic or industrial sources and lung function (Figure 1), nor were there consistent trends (Table S4). For the odds of having FEV₁ and FVC below LLN, we observed a very similar pattern, with high exposure to all particle measures from traffic showing an increased risk of having reduced FEV₁ and FVC (p<0.05; except p=0.08 for FEV₁ and PM_{BC}) (Table S5). FEV₁/FVC below LLN was not associated with any exposure (data not shown).

Genetic main effects

The frequency of the dominant minor allele carrier genotype varied from 12.6% to 68.0%. (Table S1). In a main effect genetic analysis without considering environmental exposure, minor allele carrier status of three GST SNPs was associated with lung function outcomes. The two GSTP1 SNPs rs762803 and rs1695 were significantly associated with FEV₁ reductions by -0.80% (p=0.044) and -0.90% (p=0.017), respectively, and FVC reductions were seen in minor allele carriers of the same GSTP1 SNP rs762803 (-0.74%, p=0.042) and the GSTT1 null genotype assessed with SNP rs2266637 (-1.434%, p=0.001). No main effect associations were found with SP-A SNPs (Table S1).

Effect modification of PM effects

PM_{2.5}, which had marginally more consistent effects for traffic-related exposure, was used for interaction analyses. The effect of genotype and exposure to PM_{2.5} from all sources was analysed in interaction models, and SNPs with exposure-interaction p-values lower than 0.1 are shown in Table S2. The number of significant interactions was higher than expected by chance. The most plausible statistically significant patterns of interaction were seen for industry-related exposure (Figure 2). Two SNPs from SP-A1, rs1136451 and rs1059057 had significant interaction effects on both FEV₁ and FVC, and on FVC only, respectively, suggesting variable susceptibility at high exposures. This result should, however, be seen as highly exploratory. Stratifying data by smoking status, atopy, asthma status, and BMI category showed no effect modification on the estimates for air pollution effects in both linear and logistic analysis (data not shown).

 In a general population cohort exposed to moderate levels of PM air pollution in a global perspective, modelled exposure to PM₁₀ and PM_{2.5} from traffic, as well as PM_{BC} were associated with reductions in FVC and FEV₁ in linear models, a pattern also consistently shown for high exposure in analyses with categorized exposure, and for risk of reduced FEV₁ or FVC (below LLN) in logistic regression. We observed no associations for airflow limitation (FEV₁/FVC below LLN). In this study, efforts were made to create source-specific exposure estimates, but it should be recognized that these are associated with different levels of uncertainty. Observing consistent associations between traffic-related exposure, and similar effect estimates for total exposure, but not for other sources of PM we speculate involvement of source-specific effects. However, these observations could be due to the more accurate spatial estimation of traffic, whereas the exposure estimates for both marine traffic, industry and residential heating may be less accurate.²⁷

In the current study, we found the most consistent associations between both FEV₁ and FVC and traffic related particles, which is not surprising as the traffic-related pollutants with the street canyon have a higher degree of accuracy than the other pollutant sources. No obvious associations were seen between any fraction of PM from residential heating, marine traffic or industry on lung function, but their relative contribution to total PM was modest.

Although there were no associations between PM_{2.5} from residential heating, marine traffic or industry on FEV₁ and FVC, we saw some exploratory but potentially interesting interaction patterns for some genotypes with industrial PM exposure, indicating that effects from industrial exposure may be less general than that of traffic particles, being concentrated within individuals with genetic susceptibilities.¹³ Industrial exposure in Gothenburg is concentrated along the Götaälv river and is dominated by a power plant and oil refineries.

In spite moderate to high correlations between the three traffic related PM fractions (Table S3), total PM_{10} and $PM_{2.5}$ were not significantly associated with FVC and FEV₁, although the direction of effect

BMJ Open

was consistent with that from traffic PM_{10} and $PM_{2.5}$. Residential heating is the second largest local contribution to total PM, and we observed negative correlations between PM from residential heating and total PM as well as PM from other sources. PM from residential heating might thus be interpreted as an indicator of low exposure to other sources of air pollution which might contribute to explaining the few suggested inverse (positive) associations seen in some categorical analyses between PM from residential heating and FEV₁ and FVC (e.g. Figure 1).

In a previous study of the same cohort material, short distance to the nearest road was found to be associated with decreases in FEV₁ and FVC.³⁵ The pollution levels found in the current study were moderate compared to those presented in the study from Adam and colleagues.⁶ In a meta-analysis of the ESCAPE data, that study found significant associations for both FEV₁ and FVC in adults related to long-term exposure to NO₂, NOx and PM₁₀, but not PM_{2.5} or coarse PM. In our data, modelled annual averages of NOx and NO₂ were available for parts of the cohort for some years, and both were highly correlated with traffic PM₁₀, PM_{2.5} and PM_{BC} (all correlations r>0.79).

Effects specifically of exposure to industrial emissions has not been widely studied, and industry emissions are often pooled with other sources,²⁷ or considered negligible as high stacks disperse the emissions.³⁶ Studies of respiratory health with source specific results generally find associations mainly with traffic: In the study of Jacquemin and colleagues,⁷ only traffic, and not industry-specific particles were associated with the lung damage marker CC16. Krall and colleagues⁹ observed only effects from tailpipe exhaust on lung function and eNO. Billet and colleagues⁸ exposed cells *in-vitro* to particles from a highly industrialized environment and found that ultrafine particles with higher concentrations of polyaromatic hydrocarbons induced more oxidative DNA damage adducts and DNA damage response. Peng and colleagues⁵ observed that PM from vehicle emissions, diesel engines and wood burning were associated with the largest increases in emergency hospital admissions for CVD and respiratory disease.⁵ In a multi-city European study³⁷ there were negative associations between FEV₁ and PM from

Page 17 of 56

BMJ Open

nickel and sulphur, however results were not consistent between cities, perhaps reflecting the heterogeneity in particle compositions in different cities in the study.³⁸

For the two SP-A1 SNPs that had potential interactions of interest with industry PM in our study, other studies have found rs1059057 to be associated with lung injury³⁹ and cystic fibrosis,⁴⁰ and rs1136451 with susceptibility to COPD,²² but only gene-environment effects from tobacco smoking were addressed in these studies. GSTP1 SNP rs1695 was previously associated with possible increased asthma risk of air pollution exposure,¹⁸ and we found a main effect associated with lower FEV₁ in the current study of adults. These genetic results should be seen as exploratory and be interpreted with caution.

The cohort data used in this study were collected to study respiratory health, and provides a rich dataset containing a large number of variables of interest. In the model selection, adding additional covariates as potential confounders did not affect the regression estimates substantially. Nonparticipation analysis was previously reported for the earliest collected cohort data (gathered 2001–2003) and showed that women, the elderly, and individuals with university educated were more likely to participate.²⁶ As we adjusted for these covariates and as exposure was unknown to participants, this is not very likely to bias the current results.

The number of individuals who fell below the lower limit of normal for both FEV_1 and FVC was rather high, as this value is defined as the 5th percentile in a healthy, non-smoking population. It is possible that individuals with respiratory issues are more likely to take part in a study such as ADONIX. On the other hand, with clinical outcome measures and an exposure which was not known to the participants, this is an unlikely source of important bias.

In this study, complete residential histories, including duration of residence, were not available. Instead, we used a single modelled value for residential exposure that was matched by year of participation for each individual, rather than a complete longitudinal exposure history over multiple years. We consider this a reasonable approach, as the between-year correlation in air pollution concentrations and emissions in a certain location is very high.

As people spend a sizable proportion of their time outside the home, our results are based on modelled air pollution data, and thus represents an approximation of the real exposure although this is an established method. The resulting misclassification of exposure would, however, then to reduce risk estimates. The model was developed using new emissions inventories, updated information on vehicle composition, and had been further verified by measurements.²⁷ However, for residential heating, the source assignment is based on proxies such as building type, as no actual source inventory was available.

The very high correlations between traffic-related PM_{10} , $PM_{2.5}$ and PM_{BC} (Table S3) mean that it is difficult to assign the observed effect to a certain size fraction with any certainty. The moderate to high correlations between the various PM source measures also meant we had to refrain from using multi-pollutant models, meaning that interpretation of estimates associated with each exposure type must be interpreted cautiously. Nevertheless, traffic-related PM exposure showed clear and consistent associations with FEV₁ and FVC, whereas the other source-specific exposures did not.

CONCLUSION

In this large study of clinically measured outcomes in a general population sample we found that exposure to traffic particles of all three studied size fractions was associated with reductions in FEV₁ and FVC and increased risk of low FEV₁ and FVC (below LLN), supporting the need for measures to reduce urban pollution from traffic to protect urban populations. Furthermore, we found intriguing suggestions that the SP-A1 gene may play a part in susceptibility to air pollution from industrial sources, possibly due to its very different composition.

Author contribution

HKC analysed the data and drafted the manuscript. FN and A-CO provided the cohort and genetic data, contributed to essential parts of the introduction and discussion and the final manuscript. DS provided and documented the PM exposure data. All authors approved the final version of the manuscript.

Data statement

Additional data from the ADONIX study exist and are held by the authors.

Funding

Funding from this study from Swedish Heart and Lung Foundation, The Swedish Research Council Formas, The Swedish Society for Medical Research and the Swedish Environmental Protection Agency.

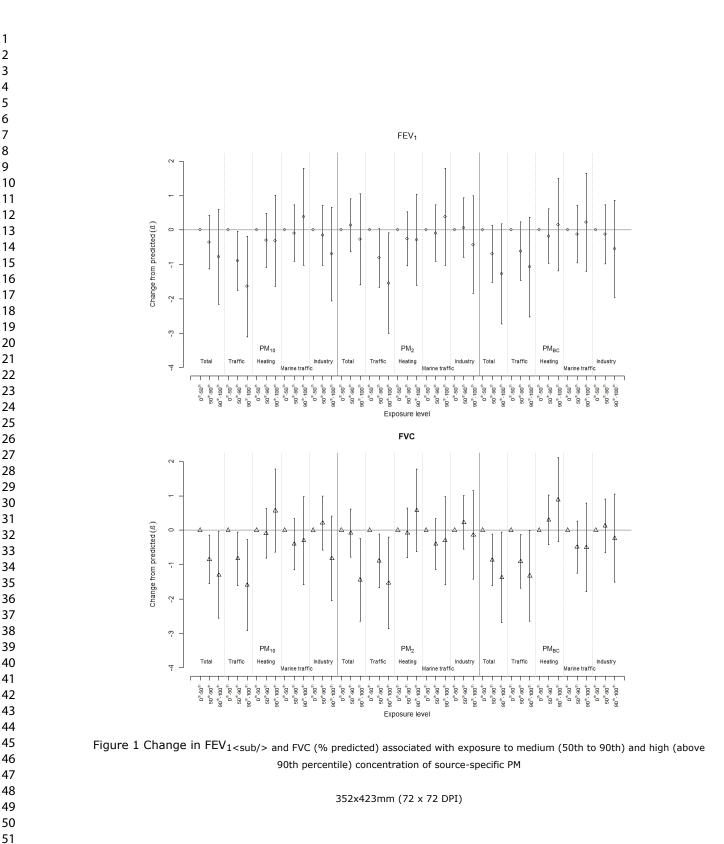
Competing interests

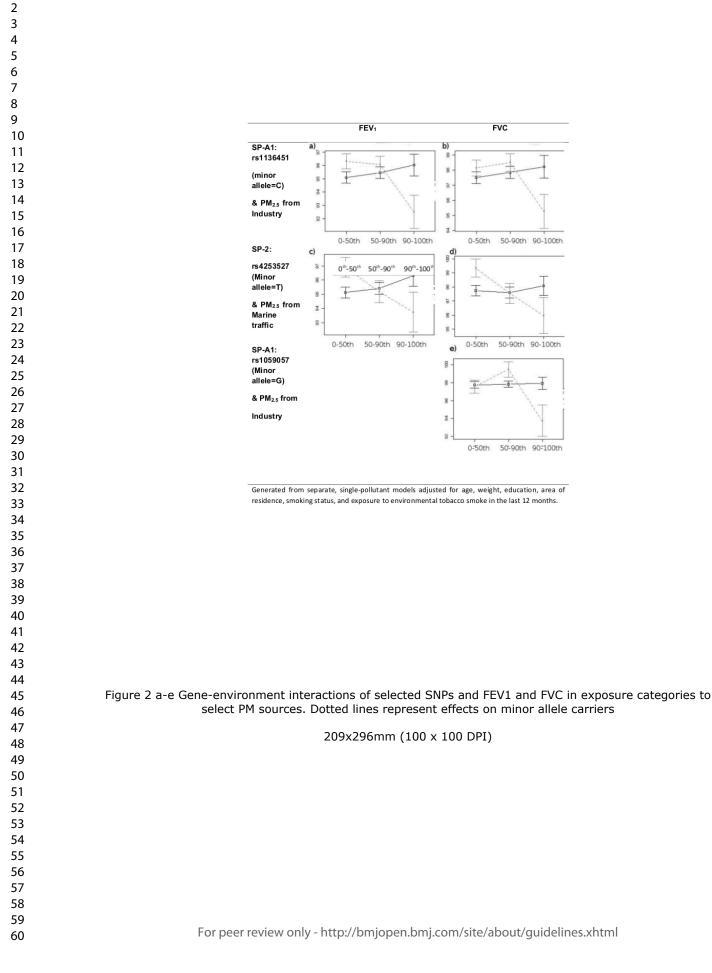
None declared.

Legends

Figure 1 Change in FEV₁ and FVC (% predicted) associated with exposure to medium (50th to 90th) and high (above 90th percentile) concentration of source-specific PM

Figure 2 a-e Gene-environment interactions of selected SNPs and FEV1 and FVC in exposure categories to select PM sources. Dotted lines represent effects on minor allele carriers


REFERENCES


- 1. Abbey DE, Burchette RJ, Knutsen SF, et al. Long-term particulate and other air pollutants and lung function in nonsmokers. *American journal of respiratory and critical care medicine* 1998;158(1):289-98.
- 2. Rice MB, Ljungman PL, Wilker EH, et al. Long-term exposure to traffic emissions and fine particulate matter and lung function decline in the Framingham heart study. *American Journal of Respiratory and Critical Care Medicine* 2015;191(6):656-64.
- Ackermann-Liebrich U, Kuna-Dibbert B, Probst-Hensch NM, et al. Follow-up of the Swiss Cohort Study on Air Pollution and Lung Diseases in Adults (SAPALDIA 2) 1991–2003: methods and characterization of participants. *Sozial-und Präventivmedizin/Social Preventive Medicine* 2005;50(4):245-63.
- 4. Cassee FR, Héroux M-E, Gerlofs-Nijland ME, et al. Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission. *Inhalation toxicology* 2013;25(14):802-12.
- 5. Peng RD, Bell ML, Geyh AS, et al. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. *Environmental health perspectives* 2009;117(6):957-63.
- 6. Adam M, Schikowski T, Carsin AE, et al. Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis. *European respiratory journal* 2015;45(1):38-50.
- 7. Jacquemin B, Lanki T, Yli-Tuomi T, et al. Source category-specific PM2. 5 and urinary levels of Clara cell protein CC16. The ULTRA study. *Inhalation toxicology* 2009;21(13):1068-76.
- 8. Billet S, Landkocz Y, Martin PJ, et al. Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. *Journal of Environmental Sciences* 2018;71:168-78.
- 9. Krall JR, Strickland MJ. Recent approaches to estimate associations between source-specific air pollution and health. *Current environmental health reports* 2017;4(1):68-78.
- Querol X, Viana M, Alastuey A, et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. *Atmospheric Environment* 2007;41(34):7219-31.
- 11. Viana M, Kuhlbusch T, Querol X, et al. Source apportionment of particulate matter in Europe: a review of methods and results. *Journal of aerosol science* 2008;39(10):827-49.
- 12. Viana M, Amato F, Alastuey As, et al. Chemical tracers of particulate emissions from commercial shipping. *Environmental science & technology* 2009;43(19):7472-77.
- 13. Peden DB. The epidemiology and genetics of asthma risk associated with air pollution. *Journal of Allergy and Clinical Immunology* 2005;115(2):213-19. doi: 10.1016/j.jaci.2004.12.003
- 14. Sacks JD, Stanek LW, Luben TJ, et al. Particulate matter–induced health effects: Who is susceptible? *Environmental health perspectives* 2010;119(4):446-54.
- 15. Raza H. Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease. *The FEBS journal* 2011;278(22):4243-51.
- 16. Levinsson A, Olin A-C, Modig L, et al. Interaction effects of long-term air pollution exposure and variants in the GSTP1, GSTT1 and GSTCD genes on risk of acute myocardial infarction and hypertension: a case-control study. *PLoS One* 2014;9(6):e99043.
- 17. Bowatte G, Lodge CJ, Knibbs LD, et al. Traffic-related air pollution exposure is associated with allergic sensitization, asthma, and poor lung function in middle age. *Journal of Allergy and Clinical Immunology* 2017;139(1):122-29. e1.
- 18. Dai X, Bowatte G, Lowe AJ, et al. Do Glutathione S-Transferase Genes Modify the Link between Indoor Air Pollution and Asthma, Allergies, and Lung Function? A Systematic Review. *Current allergy and asthma reports* 2018;18(3):20.
- 19. Minelli C, Wei I, Sagoo G, et al. Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: a HuGE review. *American journal of epidemiology* 2011;173(6):603-20.

BMJ Open

3	
4	
5	
6	
7	
8	
9	
	0
1	
1	
1	
1	
1	
1	6
1	7
	8
1	9
	0
2	
2	
2	
	4
2	
2	
2	
	8
2	
	0
3	
3	
3	3
_	4
3	5
3	6
3	7
	8
	9
	0
4	
4	
4	_
4	
4 4	
4	-
4	
4	
4	
5	
5	1
5	2
5	3
5	4
5	5
5	6
5	7
-	8
5	

- 20. Vieira F, Kung JW, Bhatti F. Structure, genetics and function of the pulmonary associated surfactant proteins A and D: The extra-pulmonary role of these C type lectins. *Annals of Anatomy* 2017;211:184-201. doi: 10.1016/j.aanat.2017.03.002 [published Online First: 2017/03/30]
- Malik S, Greenwood CM, Eguale T, et al. Variants of the SFTPA1 and SFTPA2 genes and susceptibility to tuberculosis in Ethiopia. *Human genetics* 2006;118(6):752-9. doi: 10.1007/s00439-005-0092-y [published Online First: 2005/11/18]
- 22. Guan J, Liu X, Xie J, et al. Surfactant protein a polymorphism is associated with susceptibility to chronic obstructive pulmonary disease in Chinese Uighur population. *Journal of Huazhong University of Science and Technology* 2012;32(2):186-89.
- 23. Mehlig K, Berg C, Björck L, et al. Cohort Profile: The INTERGENE Study. *International journal of epidemiology* 2017;46(6):1742-43h.
- 24. Dahgam S, Modig L, Naluai ÅT, et al. Haplotypes of the inducible nitric oxide synthase gene are strongly associated with exhaled nitric oxide levels in adults: a population-based study. *Journal of medical genetics* 2014;51(7):449-54.
- 25. Olin A-C, Rosengren A, Thelle DS, et al. Height, age, and atopy are associated with fraction of exhaled nitric oxide in a large adult general population sample. *Chest* 2006;130(5):1319-25.
- 26. Strandhagen E, Berg C, Lissner L, et al. Selection bias in a population survey with registry linkage: potential effect on socioeconomic gradient in cardiovascular risk. *Eur J Epidemiol* 2010;25(3):163-72. doi: 10.1007/s10654-010-9427-7 [published Online First: 2010/02/04]
- 27. Segersson D, Eneroth K, Gidhagen L, et al. Health Impact of PM10, PM2.5 and Black Carbon Exposure Due to Different Source Sectors in Stockholm, Gothenburg and Umea, Sweden. Int J Environ Res Public Health 2017;14(7) doi: 10.3390/ijerph14070742 [published Online First: 2017/07/08]
- 28. Andersson S, Arvelius J, Brodl L, et al. Metod- och kvalitetsbeskrivning för geografiskt fördelade emissioner till luft Norrköping Länsstyrelsen, 2018.
- 29. Berkowicz R. OSPM-A parameterised street pollution model. *Environmental monitoring and assessment* 2000;65(1-2):323-31.
- 30. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. *European respiratory journal* 2005;26(2):319-38.
- 31. Brisman J, Kim JL, Olin AC, et al. Spirometric reference equations for Swedish adults. *Clinical physiology and functional imaging* 2017;37(6):640-45.
- 32. Brisman J, Kim JL, Olin AC, et al. A physiologically based model for spirometric reference equations in adults. *Clinical physiology and functional imaging* 2016;36(1):77-84.
- 33. R Core Team R. R: A language and environment for statistical computing: R foundation for statistical computing Vienna, Austria, 2013.
- 34. De Rosario-Martinez H. phia: Post-hoc interaction analysis. R package version 02-1 2015
- 35. Carlsen HK, Modig L, Levinsson A, et al. Exposure to traffic and lung function in adults: a general population cohort study. *BMJ open* 2015;5(6):e007624.
- 36. Soares J, Kousa A, Kukkonen J, et al. Refinement of a model for evaluating the population exposure in an urban area. *Geosci Model Dev* 2014;7(5):1855-72. doi: 10.5194/gmd-7-1855-2014
- 37. Eeftens M, Hoek G, Gruzieva O, et al. Elemental composition of particulate matter and the association with lung function. *Epidemiology* 2014;25(5):648-57.
- Tsai M-Y, Hoek G, Eeftens M, et al. Spatial variation of PM elemental composition between and within 20 European study areas—results of the ESCAPE project. *Environment international* 2015;84:181-92.
- 39. Silveyra P, Floros JJFibaj. Genetic variant associations of human SP-A and SP-D with acute and chronic lung injury. *Frontiers in bioscience: a journal virtual library* 2012;17:407.
- 40. Lin Z, Thorenoor N, Wu R, et al. Genetic Association of Pulmonary Surfactant Protein Genes, SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD With Cystic Fibrosis. *Frontiers in immunology* 2018;9:2256.

	Manuscript	20190507	Lung function and PM species data from SCAC
1	Title page		
2	Traffic related particle matter exp	osure, lung function	effects and potential interactions in a cohort
3	study		
4			
5	Authors		
6	Carlsen HK ¹ , <u>Hanne.krage.carlsen@</u>	amm.gu.se,*	
7	Nyberg F ^{1,2} , <u>fredrik.nyberg@astraz</u>	eneca.se	
8	Torén K, <u>kjell.toren@amm.gu.se</u> ,		
9	Segersson David ³ , <u>david.segersson</u> (<u>@smhi.se</u>	
10	Olin A-C ¹ , anna-carin.olin@amm.gu	J.se	
11	Affiliations		
12	¹ Occupational and Environmental	Medicine, Departmo	ent of Public Health & Community Medicine,
13	Institute of Medicine, Sahlgrenska	Academy, University	of Gothenburg, Gothenburg, Sweden
14	² Medical Evidence & Observationa	l Research, Global M	edical Affairs, AstraZeneca, Mölndal, Sweden.
15	³ Swedish Meteorological and Hydr	ological Institute, No	rrköping, Sweden.
16	*Corresponding author, telephone	number 0046 76623	8918
17	Word count: 3506		
18	Keywords:		
19	PM size fractions, PM sources, lung	g function, GST, SP-A,	gene-environment interaction
20			

Manuscript

ABSTRACT

BMJ Open

objectives: To investigate the long-term effects of source-specific particle matter (PM) on lung function, effects of genetic variants of Surfactant Protein A (SP-A) and glutathione S-transferase (GST) genes GSTP1 and GSTT1, and effect modification by single nucleotide polymorphism (SNP) genotype. design: Cohort study with address-based annual PM exposure assigned from annual estimates of size (PM₁₀, PM_{2.5} and PM_{BC}) and source-specific (traffic, industry, marine traffic and wood burning) dispersion modelling. setting: Gothenburg, Sweden. participants: The ADONIX study had 6685 participants recruited from the general population, of which 5216 (78%) were eligible for inclusion in the current study with European ancestry and information on all variables of interest. Mean age was 51.4 years (range 24-76) and 2427 (46.5%) were males. primary and secondary outcome measures: The primary outcome was forced vital capacity (FVC) and forced expiratory flow in 1 second (FEV₁). The secondary outcome measure was effects and gene-environment interactions of SP-A and GSTT1 and GSTP1 genotypes. results: Exposure to traffic-related PM₁₀ and PM₂₅ was associated with decreases in percent-predicted FEV, by -0.48% (95%CI -0.89% to -0.07%) and -0.47% (95%CI -0.88% to -0.07%) per

interquartile range (IQR), respectively, and with decreases in percent-predicted FVC by -0.46%
(95%CI -0.83% to -0.08%) and -0.47% (95%CI -0.83% to -0.10%). Total and traffic-related PM_{BC}
was strongly associated with both FEV, and FVC by -0.53 (95%CI -0.94 to -0.13%) and -0.43%
(95%CI -0.77 to -0.09%), respectively, for FVC, and similarly for FEV, Minor allele carrier status
for two GSTP1 SNPs and the GSTT1 null genotype were associated with decreases in percentpredicted lung function. Three SP-A SNPs showed effect modification with exposure to PM₂₅ from
industry and marine traffic.

BMJ Open

conclusions: PM exposure, specifically traffic-related, was associated with FVC and FEV,

Lung function and PM species data from SCAC

48 reductions and not modified by genotype. Genetic effect modification was suggested for industry

49 and marine traffic PM_{25} .

Manuscript

- 50 Article summary: Strength and limitations of this study
- An extensive dispersion model of source-specific PM was assigned to a large, general
 population cohort of adults in a single urban region
 - The cohort was designed with focus on respiratory health and many covariates were collected as well as genotyping for genes with known associations with respiratory health
 - Data collection was performed according to a standardized maneuver by trained personnel although spirometry was not performed with reversibility test
 - Residential history was not available, so exposure is only assigned for the time of inclusion
 - into the study, which also does not take indoor or occupational air pollution into account.

reliez onz

bmjopen-2019-034136

pyright.

INTRODUCTION

Exposure to air pollution, especially traffic-related air pollution, is associated with reduced lung function¹² and accelerated lung function decline.³ However, evidence on specific importance of different particle sizes and sources is still limited,⁴ and are to date addressed in only few epidemiological studies of respiratory health effects with non-conclusive results.²⁵⁶ In panel studies, high levels of traffic PM had stronger association than total PM with short term increases in Club Cell protein CC16 (a marker of increased lung permeability) concentration in urine⁷, and in contrelled experiments, in vitro exposure of human BEAS-2B lung cells to PM from different sources triggered very different pulmonary cell and DNA damage ou gomes.⁸ A deepened knowledge about effects of specific particle pollution sources is thus of particular interest to prioritize public health measures to reduce health effects of ambient air pollution, and this field of research is expanding rapidly.⁹ It is only in rare cases that pollution sources be definitely identified by specific chemicals, as individual chemicals may be present in more than one source. Rather, profiles are built from particle size distributions and the relative concentrations of specific chemicals. Traffic pollution is for example characterized by NOx and ultrafine particles, whereas particles from petrochemical industries are characterized by trace elements such as nickel, cobalt, caesium and lanthanum.¹⁰ Particles from other industry is characterized by high levels of trace metals vanadium and nickel,¹⁰ $\overset{[4]}{\longrightarrow}$ but are of course sector-dependent. Similarly, PM from marine traffic is subject to large uncertainties as fuel types and fleet types vary across the world, red dering study results ungeneralizable.¹²

Beyond the importance of exposure composition and source, individual susceptibility to air pollution is modified by many factors, including genotype. Susceptibility related to genetic variability may improve our understanding of the physiological mechanisms under bing health effects of air pollution.^{13 14} Glutathione S-transferase (GST) enzymes are involved in metabolizing reactive oxygen species to reduce oxidative stees.¹⁵ GSTP1 SNPs have been reported

BMJ Open but findings are inconsistent and no meta-analysis has been performed.¹⁸ ¹⁹ Surfactant protein A (SP-A) is found in the surfactant fluid which lines the lung alveoli and has important functions in the innate immune system of the lungs, especially for opsonizing inhaled mater al. 20 SNPs in SP-A coding regions have been associated with multiple respiratory diseases,¹³ ²¹ and suggested gene-environment interactions for smoking and chronic obstructive pulmonary disease.22

Many questions remain as to what components of air pollution are harmful in a general population, in particular at $r \frac{1}{2}$ atively low pollution exposures, and if such associations are modified by genetic factors. Thus, the aim of the current study was to investigate the effects of different PM sources on lung function in a general population cohort using epidemiological methods and to investigate lung function effects of genotype and gene-environment interaction with open.bmj.com/ on April 20, source-specific particle exposures.

METHODS

Study population

The study population originates from the ADONIX (ADult-Onset asthma and NItric oXide) cohort, a random sample of subjects aged 24-76 years who were invited to participate in a clinical examination between 2001-2008 as previously described.^{16 23-26} In brief, the overall participation rate was 46%, all participants provided data on residential address, lifestyle factors and education, presence of allergic airway inflammation and respiratory health, as well as clinical

cted by copyright

 19 October 202

ed by copyright

BMJ Open and subsequently genotyped for selected SNPs from the SP-A, GSTP1, and GSTT1 genes. **Exposure assessment** As a part of the involvement in the Swedish Clean Air and Climate project (SCAC), the Swedish Meteorological and Hydrological Institute (SMHI) modelled source-specific, annual particulate matter (PM) concentrations for different size fractions for each calendar year in the period 1990 to 2011 using dispersion modelling described in detail in Segersson and colleagues.²⁷ PM₁₀ and PM_{2.5} represent particles smaller than 10 a $\frac{1}{2}$ d 2.5 micrometers (um) respectively. whereas black carbon particles, PM_{BC}, are soot particles from combustion, notably vehicle exhaust. The specific sources were traffic (exhaust and road wear for PM₁₀ and PM_{2.5}, exhaust only for PM_{BC}), residential heating (predominantly house heating using wood assessed as reasources), marine traffic (averaged description from a bottom-up calculation using actual positions of ships in port, manoeuvring and cruising), and industrial sources (point sources, in Gothenburg dominated by refineries, energy plants, and other industry).²⁸ Background concentration (long-range transport particles), was also provided, but was estimated indirectly as the difference between total modelled local contribution and monitoring data from? a central urban background station. Consequently, it showed no spatial variation and was not used for analyses. To refine the estimated contribution of traffic, an increment due to reduced ventilation in the street canyons was added for the busiest streets. The increment was estimated as the difference between simulations with and without buildings using the OSPM model.²⁹ For each study participant's residential address at the date of clinical examination, Annual mean values of pollutants were calculated separately for five source categories and modelled exposure grid values of all PM fractions were matched to the year of the participant's clinical examination.

BMJ Open

bmjopen-2019-034136

Outcome definitions

 Dynamic spirometry including FEV₁ and FVC was performed with the subject in a sitting position using a nose clip withou bronchodilation. In all measurements, a Jaeger Master Screen PFT (Vyaire, Mettawa, IL, US) was used. All procedures were performed according to ATS/ERS tandards.³⁰ A local reference material was used for calculation of percent predicted (% predicted) of FEV1 and FVC and lower limit of normal, (LLN, the lover 5th percentile in healthy individuals) for FEV₁ and FVC.^{31 32} Asthma was defined as reporting having had at least one asthma attack in the previous 12 months, and atopy was defined as having a positive phadiatop test. We used FEV₁, FVC and FEV₁/FVC below LLN as an indicator of clinically significant lung function reductions or air flow limitation. Based on questionnaire replies, smoking status was categorised into current, former (no smoking during the last year) and never smoking. Upon inspection of the distribution of total and traffic particles within residential regions, postcodes were categorised into four regions and outer suburb or rural. Education was categorised in six categories: elementary school, lower secondary school, training or girls' school, grammar school, university, and "other" or not reported. Individuals who did not have information on the variables of interest were excluded, except for genotype, where analyses were run separately for each SNP. For this study we used genotype data on four GSTP1 SNPs, a SNP marker 🎝 r the GSTT1 null genotype, four SP-A1 SNPs and three SP-A2 SNPs. All SNPs were coded using a dominant model for the minor (least common) allele. Individuals with self-reported non-European 024 by guest. Protected by copyright background were excluded from the analysis (n=315).

Statistical methods

BMJ Open all PM size fractions were determined.

We estimated the association between each PM size fraction for each PM source, with FEV1 and FVC, in linear model First, lung function effects associated with PM size fractions and sources were analysed with exposure as a continuous variable, and estimated for an interquartile increase in exposure. Second, we investigated the effects of the highest exposure values by setting high exposure cutoff for PM above the 90th percentile of population exposure, medium exposure at 50-90th percentile, with exposure at or below 50th percentile as the reference, and tested these for linear transferds. To investigate clinically significant effects, we modelled increased risk of low lung function in logistic models with LLN as a cut-off. To assess confounding, covariates were added to regression models and were retained if the estimate of the main effect was altered by more than 10% by their inclusion. The covariates included in the final models were age, sex, weight, education, residential postcode region, smoking status, and exposure to passive smoking in the last 12 months. For genetic markers, we assessed Hardy-Weinberg equilibrium, then analysed the association between genotypes and lung function for all available SNPs in single-SNP linear models. To evaluate effect modification, we tested for interaction of the effects of exposure to different PM size fractions an & sources on lung function by genotype, using a likelihood ratio tests comparing the model with interaction term to the model without this term. Similarly the analyses of PM effects were also stratified by sex and respiratory health status as well as smoking status, asthma status, atopic status, BMI, age categories to evaluate possible confounding by guest. Protected by copyright from any of these characteristics.

BMJ Open BMJ Open All regression results for change in lung function were reported as increment or decrement in % predicted. Odds ratio were obtained from the logistic model analyses. All results are presented as point estimates with 95% confidence intervals, and with p-values as appropriate. Analyses were performed in R studio³³ October 2020. Dov using the package "phia" (post-hoc interaction analysis).³⁴

RESULTS

 The ADONIX cohort includes 6685 individuals, of which 5216 were included with information on the variables related $\frac{3}{80}$ exposure and health outcomes used in this study and self-reported European ancestry. The mean age of the study population was 51.6 ±11.4 years and 46.5% were males, 46.1% had never smoked, 16.5% were current smokers and 10.2% were exposed to passive smoking. A total of 9.5% of individuals had FEV1 below lower limit of normal and 9.5% had FVC below LLN. The most common highest education level was university education (37.1%), followed by grammar school (23.0%) (Table 1).

TABLE 1 CHARACTERISTICS OF THE STUDY POPULATION

N=5216		
Age, mean (SD)	51.6 (11.4)	
Males, n (%)	2427 (46.5%)	
Females	2789 (53.5%)	
Respiratory health		
FEV_1 (% of predicted *), mean (SD)	96.6 (13.7)	
FVC (% of predicted*), mean (SD)	97.9 (12.4)	
Below LLN of predicted FEV1, n (%)	656 (12.6%)	
Below LLN of predicted FVC, n (%)	494 (9.5%)	

en.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Below LLN of FEV1/FVC, n (%)	548 (10.5%)	
Smoking		
Current smokers, n (%)	860 (16.5%)	
Former smokers, n (%)	1951 (37.4%)	
Never smokers, n (%)	2405 (46.1%)	
Passive smoking (last 12 months)	534 (10.2%)	
Education		
Elementary school, n (%)	639 (12.2%)	
Lower secondary School, n (%)	175 (3.3%)	
Training/girls school, n (%)	389 (7.5%)	
Grammar school, n (%)	1205 (23.1%)	
University, n (%)	1954 (37.5%)	
Other or not reported, n (%)	853 (16.4%)	
Residential area	1205 (23.1%) 1954 (37.5%) 853 (16.4%) 945 (18.1%) 922 (17.7)	
Inner city, n (%)	945 (18.1%)	
Non-central urban, n (%)	922 (17.7)	
Suburban, n (%)	2178 (41.7%)	
Outer suburb or rural, n (%)	1171 (22.4%)	
*Lung function predicted from age, height ar	d sex (Brisman et al., 2017) FEV ₁ , forced	
expiratory volume in 1 second.		
FVC, forced vital capacity.		
	10	
Fo	r peer review only - http://bmjopen.bmj.com/site/about/guidel	lines.xhtml

bmjopen-2019-034136 on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

 BMJ Open
 BMJ Open

 LLN, lower limit of normal, the fifth percentile of a healthy population, according to formula from Brisman et al., 2017.
 BMJ Open

 The mean annual air pollution levels at the residential addresses in the study population at study entry were moderate, at 15.7 µg/m³ PM₁₀, 9.3 µg/m³ PM_{2.5},

 and 0.76 µg/m³ PM_{BC} (Table 2). Background long-range transport constituted the main source of exposure, contribuging to 75% and 76% of PM₁₀ and PM_{2.5} levels respectively. The local emission source that contributed most to total PM₁₀ was traffic, whereas residential heating contributed most to PM_{2.5} (Table 2).

TABLE 2 DESCRIPTIVE STATISTICS OF EXPOSURE PARAMETERS IN THE STUDY POPULATION

M species and sources	Mean (standard deviation)	50 th percentile	90 th percentile	
PM ₁₀ total	15.7 (2.49)	15.47	18.80	
Traffic (µg/m ³)	2.32 (1.75)	1.78	4.41	
Residential heating	1.22 (0.48)	1.17	1.88	3.05 1.64 0.62 0.03 20 0.10
μg/m³)				m/ o
Marine traffic (µg/m ³)	0.03 (0.05)	0.02	0.08	Apr 0.03
Industry (µg/m³)	0.11 (0.09)	0.09	0.23	
<u>PM_{2.5} total (</u> μg/m ³)	9.33 (1.75)	9.36	11.80	2024 2.47
Traffic (μg/m ³)	0.74 (0.56)	0.57	1.41	
Residential heating	1.22 (0.48)	1.17	1.88	by 0.52 guest 0.62
μg/m³)				
Marine traffic (µg/m ³)	0.03 (0.05)	0.05	0.08	Protected 0.03
Industry (µg/m³)	0.07 (0.05)	0.06	0.12	1 by copyright

Industry (μg/m³) IQR, interquartile range.	0.01 (0.01)	0.01	0.01	0. 0.01
heating(μg/m³) Marine traffic (μg/m³)	0.01 (0.01)	0.00	0.02	19 Осторег 2020 0.01 0.01
Residential	0.14 (0.06)	0.13	0.23	¹⁹ 0.06
Traffic (µg/m ³)	0.36 (0.29)	0.27	0.69	<u> </u>
<u>PM_{BC}total (</u> μg/m³)	0.76 (0.32)	0.71	1.13	bmjopen-2019-034136
e 35 of 56		BMJ Ope	n	bmjope

Traffic was the largest contributor to PM_{BC} , and for PM_{BC} the contribution from long-range sources was considerably lower than for PM_{10} and $PM_{2.5}$, 26%. Traffic sources were originally divided into exhaust and road wear, but as these were highly correlated (r>0.98), we refrained from separating the two in the analyses, using instead a single variable for traffic exposure. The correlation between total and traffic-related exposure variable for PM_{BC} (r=.99), whereas it was high for PM₁₀ (r=.75) and moderate for PM_{2.5} (r=.40) (Table S3). Effects of PM exposure Most PM sources were negatively associated with percent predicted lung function, and estimates for PM_{BC} overall and from traffic, and for PM_{2.5} and PM₁₀

from traffic, reached statistical significance for reductions in FEV1 and FVC. The effect estimates for particles from residential heating, marine traffic or industry Protected by copyright. indicated no strong or consistent adverse effects in the linear models (Table 3).

					019		
					bmjopen-2019-034136 S		
					0		
	-		/1	B			
Б	Lower	Upper	p-value	D	Lower	Upper	p-value
-0.16	-0.64	0.33	0.53	-0.37	-0.81 💦	0.07	0.10
-0.48	-0.89	-0.07	0.02	-0.46	ة. 2 -0.83	-0.08	0.02
-0.30	-0.80	0.20	0.23	-0.03	-0.48 ov	0.43	0.91
0.00	-0.24	0.24	1.00	-0.05	-0.27 ed	0.17	0.66
-0.33	-0.78	0.11	0.14	-0.40	-0.80 frog	0.01	0.05
					http:/		
0.00	-0.53	0.53	1.00	-0.47	-0.95 J	0.01	0.05
-0.47	-0.88	-0.07	0.02	-0.47	-0.83 Per	-0.10	0.01
-0.30	-0.80	0.20	0.23	-0.03	-0.48	0.43	0.91
0.00	-0.89	0.89	1.00	-0.05	-0.85	0.75	0.66
-0.34	-0.86	0.18	0.21	-0.32	ع چ 0.80-	0.15	0.18
					ril 20,		
-0.56	-1.01	-0.12	0.01	-0.53	- 0.94 202	-0.13	0.01
-0.41	-0.78	-0.03	0.03	-0.43	-0.77 ⁴	-0.09	0.01
-0.38	-0.89	0.12	0.14	0.00	-0.46 st	0.45	0.99
-0.01	-0.25	0.23	0.94	-0.05	-0.27 p	0.16	0.62
-0.40	-0.92	0.12	0.13	-0.38	-0.85 e	0.09	0.11
					d by c		
					opyri		
	B -0.16 -0.48 -0.30 0.00 -0.33 0.00 -0.33 0.00 -0.47 -0.30 0.00 -0.34 -0.34 -0.56 -0.41 -0.38 -0.01	Delta % pred B 95% Lower Lower -0.16 -0.64 -0.48 -0.89 -0.30 -0.80 0.00 -0.24 -0.33 -0.78 0.00 -0.53 -0.47 -0.88 -0.30 -0.80 0.00 -0.53 -0.47 -0.88 -0.30 -0.80 0.00 -0.53 -0.47 -0.88 -0.30 -0.80 -0.31 -0.53 -0.47 -0.88 -0.30 -0.80 -0.31 -0.78 -0.32 -0.80 -0.33 -0.78 -0.34 -0.80 -0.41 -0.78 -0.38 -0.89 -0.38 -0.89 -0.38 -0.89 -0.38 -0.89	B 95% CI Lower Upper -0.16 -0.64 0.33 -0.48 -0.89 -0.07 -0.30 -0.80 0.20 0.00 -0.24 0.24 -0.33 -0.78 0.11 -0.30 -0.53 0.53 -0.31 -0.78 0.11 -0.33 -0.78 0.11 -0.30 -0.88 -0.07 -0.30 -0.53 0.53 -0.47 -0.88 -0.07 -0.30 -0.80 0.20 0.00 -0.53 0.53 -0.32 -0.78 0.13 -0.33 -0.80 0.20 0.00 -0.89 0.89 -0.34 -0.86 0.18 -0.35 -1.01 -0.12 -0.41 -0.78 -0.03 -0.38 -0.89 0.12 -0.38 -0.89 0.12 -0.31 -0.25 0.23 <	Delta % predicted FEV. B 95% CI Lower Upper p-value -0.16 -0.64 0.33 0.53 -0.48 -0.89 -0.07 0.02 -0.30 -0.80 0.20 0.23 -0.00 -0.24 0.24 1.00 -0.33 -0.78 0.11 0.14 -0.00 -0.53 0.53 1.00 -0.33 -0.78 0.11 0.14 -0.00 -0.53 0.53 1.00 -0.30 -0.80 0.20 0.23 0.00 -0.53 0.53 1.00 -0.31 -0.80 0.20 0.23 0.00 -0.89 0.89 1.00 -0.34 -0.86 0.18 0.21 -0.56 -1.01 -0.12 0.01 -0.41 -0.78 -0.03 0.03 -0.38 -0.89 0.12 0.14 -0.38 -0.89 0.23	B 95% -// B -0.16 -0.64 0.33 0.53 -0.37 -0.48 -0.89 -0.07 0.02 -0.46 -0.30 -0.80 0.20 0.23 -0.03 -0.00 -0.24 0.24 1.00 -0.05 -0.33 -0.78 0.11 0.14 -0.40 -0.00 -0.53 0.53 1.00 -0.47 -0.33 -0.78 0.11 0.14 -0.40 -0.01 -0.53 0.53 1.00 -0.47 -0.33 -0.78 0.12 0.23 -0.31 0.00 -0.53 0.53 1.00 -0.47 -0.30 -0.80 0.20 0.23 -0.33 0.00 -0.89 0.89 1.00 -0.47 -0.34 -0.86 0.18 0.21 -0.32 -0.47 -0.36 0.18 0.21 -0.32 -0.34 -0.78 -0.03 0.03 -0.	Delta % predicted FEV: B 95% CI $Lower 0$ $p-value$ $Lower 0$ $Lower 0$ $Lower 0$ $P-value$ $Lower 0$ $Lowe 0$	Delta % predicted FEV Delta % predicted FVC B 95% CI B 0000 CI Lower Upper p-value Lower Upper -0.16 -0.64 0.33 0.53 -0.37 -0.81 000 0.07 -0.48 -0.89 -0.07 0.02 -0.46 -0.83 0 -0.08 -0.30 -0.80 0.20 0.23 -0.03 -0.48 0.43 0.00 -0.24 0.24 1.00 -0.05 -0.27 66 0.17 -0.33 -0.78 0.11 0.14 -0.40 -0.80 00 0.01 -0.01 -0.53 0.53 1.00 -0.47 -0.95 00 0.01 -0.03 -0.53 0.53 1.00 -0.47 -0.95 00 0.01 -0.47 -0.88 -0.07 0.02 -0.47 -0.83 0.43 0.43 0.00 -0.89 0.89 1.00 -0.05 -0.80 00 0.15 -0.34 -0.86 0.18

TABLE 3 CHANGE IN FEV1 AND FVC PER IOR CHANGE IN PM FROM DIFFERENT SOURCES

 _

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

bmjopen-2019-03

ijopen.bmj.com

Parameter coefficients from in separate, single-pollutant models adjusted for age, weight, education, area of residence, smoking status, and exposure to environmental tobacco smoke in the last 12 months. 19 Octobe IQR, interquartile range. In models with exposure categorized (low, medium, and high exposure), there was a consistent trend across categorizes for traffic-related exposure to all particulate measures for both FVC and FEV₁ (p for trend<0.05; for FEV₁ and PM_{BC} traffic p=0.09; the trend was slightly less strong and consistent for total exposure. There were no significant negative associations between exposure to particles of any size from residen a leating, marine traffic or industrial sources and lung function (Figure 1), nor were there consistent trends (Table S4). For the odds of having FEV₁ and FV Gbelow LLN, we observed a very similar pattern, with high exposure to all particle measures from traffic showing an increased risk of having reduced FEV₁ and FVC (p<0.05; except p=0.08 for FEV₁

and PM_{BC}) (Table S5). FEV₁/FVC below LLN was not associated with any exposure (data not shown).

Genetic main effects

The frequency of the dominant minor allele carrier genotype varied from 12.6% to 68.0%. (Table S1). In a main effect genetic analysis without considering environmental exposure, minor allele carrier status of three GST SNPs was associated with lung function outcomes. The two GSTP1 SNPs rs762803 and rs1695 were significantly associated with FEV₁ reductions by -0.80% (p=0.044) and -0.90% (p=0.017), respectively, and FV \hat{G} reductions were seen in minor allele carriers of the same GSTP1 SNP rs762803 (-0.74%, p=0.042) and the GSTT1 null genotype assessed with SNP rs2266 37 (-1.434%, p=0.001). No main effect Protected by copyright associations were found with SP-A SNPs (Table S1).

Effect modification of PM effects

BMJ Open BMJ Open PM_{2.5}, which had marginally more consistent effects for traffic-related exposure, was used for interaction analyses. PM_{2.5} from all sources was analysed in interaction models, and SNPs with exposure-interaction p-values lower than $0.\overline{1}$ are shown in Table S2. The number of significant interactions was higher than expected by chance. The most plausible statistically significant patterns of int graction were seen for industry-related exposure (Figure 2). Two SNPs from SP-A1, rs1136451 and rs1059057 had significant interaction effects on both FEV1 and FVC, and on FVC only, respectively, suggesting variable susceptibility at high exposures. This result should, however, be seen as highly exploratory. Stratifying data by smoking status, atopy, asthma status, and BMI category showed no effect modification on the estimates for air pollution effects in both linea and logistic analysis (data not shown).

from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

bmjopen-2019-034136

DISCUSSION

In a general population cohort exposed to moderate levels of PM air pollution in a global perspective, modelled $exp \overline{G}$ ure to PM₁₀ and PM_{2.5} from traffic, as

well as PM_{BC} were associated with reductions in FVC and FEV₁ in linear models, a pattern also consistently shown for high exposure in analyses with categorized exposure, and for risk of reduced FEV₁ or FVC (below LLN) in logistic regression. We observed no associations for airt with limitation (FEV₁/FVC below LLN). In this study, efforts were made to create source-specific exposure estimates, but it should be recognized that these associated with different levels of uncertainty. Observing consistent associations between traffic-related exposure, and similar effect estimates for totagexposure, but not for other sources of PM we speculate involvement of source-specific effects. However, these observations could be due to the more accurate spatial estimation of traffic, whereas the exposure estimates for both marine traffic, industry and residential heating may be less accurate.²⁷ In the current study, we found the most consistent associations between both FEV1 and FVC and traffic related particles, which is not surprising as the trafficrelated pollutants with the street canyon have a higher degree of accuracy than the other pollutant sources. No obvious associations were seen between any fraction of PM from residential heating, marine traffic or industry on lung function, but their relative contribution to tatal PM was modest. Although there were no associations between PM_{2.5} from residential heating, marine traffic or industry on FEV₁ abd FVC, we saw some exploratory but potentially interesting interaction patterns for some genotypes with industrial PM exposure, indicating that effect from industrial exposure may be less general than that of traffic particles, being concentrated within individuals with genetic susceptibilities.¹³ Industrial exposure in Gothenburg is concentrated tected by copyright along the Götaälv river and is dominated by a power plant and oil refineries.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

FVC and FEV₁, although the direction of effect was consistent with that from traffic PM₁₀ and PM_{2.5}. Residential heating is the second largest local contribution to total PM, and we observed negative correlations between PM from residential heating and total PM as well as PM from other sources. PM from residential heating might thus be interpreted as an indicator of low exposure to other sources of air pollution which might convibibute to explaining the few suggested inverse (positive) associations seen in some categorical analyses between PM from residential heating and FEV₁ and FQC (e.g. Figure 1). In a previous study of the same cohort material, short distance to the nearest road was found to be associated with degreases in FEV1 and FVC.³⁵ The pollution levels found in the current study were moderate compared to those presented in the study from Adam and colleagues In a meta-analysis of the ESCAPE data, that study found significant associations for both FEV₁ and FVC in adults related to long-term exposure to NO₂, NOx and PM₁₀, but not PM_{2.5} or coarse PM. In our data, modelled annual averages of NOx and NO₂ were available for parts of the cohort for some years, and both were highly correlated with traffic PM₁₀, $PM_{2.5}$ and PM_{BC} (all correlations r>0.79). Effects specifically of exposure to industrial emissions has not been widely studied, and industry emissions are often pogled with other sources,²⁷ or considered negligible as high stacks disperse the emissions.³⁶ Studies of respiratory health with source specific results generally find associations mainly with traffic: In the study of Jacquemin and colleagues,⁷ only traffic, and not industry-specific particles were associated with the dung damage marker CC16. Krall and colleagues⁹ observed only effects from tailpipe exhaust on lung function and eNO. Billet and colleagues⁸ exposed $\overline{\mathbb{R}}$ ells *in-vitro* to particles from a highly industrialized environment and found that ultrafine particles with higher concentrations of polyaromatic hydrocarbor induced more oxidative DNA damage adducts and DNA damage response. Peng and colleagues⁵ observed that PM from vehicle emissions, diesel engines add wood burning were associated with copyright

BMJ Open

bmjopen-2019-03

by copyright

the largest increases in emergency hospital admissions for CVD and respiratory disease.⁵ In a multi-city European stady³⁷ there were negative associations between FEV₁ and PM from nickel and sulphur, however results were not consistent between cities, perhaps reflecting the heterogeneity in particle compositions in different cities in the study.³⁸

For the two SP-A1 SNPs that had potential interactions of interest with industry PM in our study, other studies have bund rs1059057 to be associated with lung injury³⁹ and cystic fibrosis,⁴⁰ and rs1136451 with susceptibility to COPD,²² but only gene-environment effects from tobacco smoking were addressed in these studies. GSTP1 SNP rs1695 was previously associated with possible increased asthma risk of air pollution effects from tobacco smoking were feet associated with lower FEV₁ in the current study of adults. These genetic results should be seen as exploratory and be been as exploratory and be been as exploratory and be been as exploratory.

The cohort data used in this study were collected to study respiratory health, and provides a rich dataset containing a large number of variables of interest. In the model selection, adding additional covariates as potential confounders did not affect the regression estimates is ubstantially. Nonparticipation analysis was previously reported for the earliest collected cohort data (gathered 2001–2003) and showed that women, the educated were more likely to participate.²⁶ As we adjusted for these covariates and as exposure was unknown to participates, this is not very likely to bias the current results.

The number of individuals who fell below the lower limit of normal for both FEV_1 and FVC was rather high, as this value is defined as the 5th percentile in a healthy, non-smoking population. It is possible that individuals with respiratory issues are more likely to take part in a study such as ADONIX. On the other hand, with clinical outcome measures and an exposure which was not known to the participants, this is an unlikely source of important bias.

bmjopen-2019-03

024 by gues

copyright

In this study, complete residential histories, including duration of residence, were not available. Instead, we used $\frac{4}{2}$ single modelled value for residential exposure that was matched by year of participation for each individual, rather than a complete longitudinal exposure $\frac{9}{100}$ story over multiple years. We consider this a reasonable approach, as the between-year correlation in air pollution concentrations and emissions in a certain ocation is very high.

As people spend a sizable proportion of their time outside the home, our results are based on modelled air pellution data, and thus represents an approximation of the real exposure although this is an established method. The resulting misclassification of exposure would, however, then to reduce risk estimates. The model was developed using new emissions inventories, updated information on vehicle composition, and had been further verified by measurements.²⁷ However, for residential heating, the source assignment is based on proxies such as building type, as no actual source inventory was available.

The very high correlations between traffic-related PM_{10} , $PM_{2.5}$ and PM_{BC} (Table S3) mean that it is difficult to assign the goserved effect to a certain size fraction with any certainty. The moderate to high correlations between the various PM source measures also meant we have to refrain from using multi-pollutant models, meaning that interpretation of estimates associated with each exposure type must be interpreted cautigusly. Nevertheless, traffic-related PM exposure showed clear and consistent associations with FEV₁ and FVC, whereas the other source-specific exposures did not.

CONCLUSION

In this large study of clinically measured outcomes in a general population sample we found that exposure to traffic particles of all three studied size fractions was associated with reductions in FEV₁ and FVC and increased risk of low FEV₁ and FVC (below LLN), supporting the need for measures to reduce urban

 BMJ Open pollution from traffic to protect urban populations. Furthermore, we found intriguing suggestions that the SP-A1 gender may play a part in susceptibility to air , we foun. on 19 October 2020. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright pollution from industrial sources, possibly due to its very different composition.

bmjopen-2019-034136

from

Author contribution

HKC analysed the data and drafted the manuscript. FN and A-CO provided the cohort and genetic data, gontributed to essential parts of the introduction and discussion and the final manuscript. DS provided and documented the PM exposure data. An authors approved the final version of the manuscript. er 2020. Downloaded

Data statement

Additional data from the ADONIX study exist and are held by the authors.

Funding

 Funding from this study from Swedish Heart and Lung Foundation, The Swedish Research Council Formas, The Swedish Society for Medical eview o Research and the Swedish Environmental Protection Agency. bmjopen.bmj.com/ on April

Competing interests

None declared.

Legends

Figure 1 Change in FEV1 and FVC (% predicted) associated with exposure to medium (50th to 90th) and high gabove 90th percentile) concentration 024 by guest of source-specific PM

Figure 2 a-e Gene-environment interactions of selected SNPs and FEV1 and FVC in exposure categories to select PM sources. Dotted lines cted by copyright represent effects on minor allele carriers

4 5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

43

44 45 46 BMJ Open

REFERENCES

- 1. Abbey DE, Burchette RJ, Knutsen SF, et al. Long-term particulate and other air pollutants and lung function in nonsmokers. American journal of respiratory and critical care medicine 1998;158(1):289-98.
- 2. Rice MB, Ljungman PL, Wilker EH, et al. Long-term exposure to traffic emissions and fine particulate matter and lung function decline in the Framingham heart study. American Journal of Respiratory and Critical Care Medicine 2015;191(6):656-64.
- 3. Ackermann-Liebrich U, Kuna-Dibbert B, Probst-Hensch NM, et al. Follow-up of the Swiss Cohort Study on Air Pollution and Lung Diseases in Adults (SAPALDIA 2) 1991 2003: methods and characterization of participants. Sozial-und Präventivmedizin/Social Preventive Medicine 2005;50(4):245-63.
- 4. Cassee FR, Héroux M-E, Gerlofs-Nijland ME, et al. Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhalation toxicology 2013;25(14):802-12.
- 5. Peng RD, Bell ML, Geyh AS, et al. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. *Environmental health perspectives* 2009;117(6):957-63.
- 6. Adam M, Schikowski T, Carsin AE, et al. Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis. *European respiratory journal* 2015;45(1):38-50.
- 7. Jacquemin B, Lanki T, Yli-Tuomi T, et al. Source category-specific PM2. 5 and urinary levels of Clara cell protein CC16. The ULTRA study. Inhalation toxicology 2009;21(13):1068-76.
- 8. Billet S, Landkocz Y, Martin PJ, et al. Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. Journal of Environmental Sciences 2018;71:168-78.
- 9. Krall JR, Strickland MJ. Recent approaches to estimate associations between source-specific air pollution and health. Current environmental health reports 2017;4(1):68-78.
- 10. Querol X, Viana M, Alastuey A, et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment 2007;41(34):7219-31.
- 11. Viana M, Kuhlbusch T, Querol X, et al. Source apportionment of particulate matter in Europe: a review of methods and results. Journal of aerosol science 2008;39(10):827-49.
- 12. Viana M, Amato F, Alastuey As, et al. Chemical tracers of particulate emissions from commercial shipping. Environmental science & technology 2009:43(19):7472-77.
- 13. Peden DB. The epidemiology and genetics of asthma risk associated with air pollution. Journal of Allergy and Clinical Immunology 2005;115(2):213-19. doi: 10.1016/j.jaci.2004.12.003
- 14. Sacks JD, Stanek LW, Luben TJ, et al. Particulate matter Induced health effects: Who is susceptible? Environmental health perspectives 2010;119(4):446-54.
 - 5 🛛 🖾 6 🛛 Otoxic Div Indi disease. In ha rees 🖾 \boxtimes journal 2011;278(22):4243-51.
- 16. Levinsson A, Olin A-C, Modig L, et al. Interaction effects of long-term air pollution exposure and variants in the GSTP1, GSTT1 and GSTCD genes on risk of acute myocardial infarction and hypertension: a case-control study. PLoS One 2014;9(6):e99043.

- 17. Bowatte G, Lodge CJ, Knibbs LD, et al. Traffic-related air pollution exposure is associated with allergic sensitization, asthma, and poor lung function in middle age. *Journal of Allergy and Clinical Immunology* 2017;139(1):122-29. e1.
- 18. Dai X, Bowatte G, Lowe AJ, et al. Do Glutathione S-Transferase Genes Modify the Link between Indoor Air Pollution and Asthma, Allergies, and Lung Function? A Systematic Review. *Current allergy and asthma reports* 2018;18(3):20.
- 19. Minelli C, Wei I, Sagoo G, et al. Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: a HuGE review. *American journal of epidemiology* 2011;173(6):603-20.
- 20. Vieira F, Kung JW, Bhatti F. Structure, genetics and function of the pulmonary associated surfactant proteins A and D: The extra-pulmonary role of these C type lectins. *Annals of Anatomy* 2017;211:184-201. doi: 10.1016/j.aanat.2017.03.002 [published Online First: 2017/03/30]
- 21. Malik S, Greenwood CM, Eguale T, et al. Variants of the SFTPA1 and SFTPA2 genes and susceptibility to tuberculosis in Ethiopia. *Human genetics* 2006;118(6):752-9. doi: 10.1007/s00439-005-0092-y [published Online First: 2005/11/18]
- 22. Guan J, Liu X, Xie J, et al. Surfactant protein a polymorphism is associated with susceptibility to chronic obstructive pulmonary disease in Chinese Uighur population. *Journal of Huazhong University of Science and Technology* 2012;32(2):186-89.
- 23. Mehlig K, Berg C, Björck L, et al. Cohort Profile: The INTERGENE Study. International journal of epidemiology 2017;46(6):1742-43h.
- 24. Dahgam S, Modig L, Naluai ÅT, et al. Haplotypes of the inducible nitric oxide synthase gene are strongly associated with exhaled nitric oxide levels in adults: a population-based study. *Journal of medical genetics* 2014;51(7):449-54.
- 25. Olin A-C, Rosengren A, Thelle DS, et al. Height, age, and atopy are associated with fraction of exhaled nitric oxide in a large adult general population sample. *Chest* 2006;130(5):1319-25.
- 26. Strandhagen E, Berg C, Lissner L, et al. Selection bias in a population survey with registry linkage: potential effect on socioeconomic gradient in cardiovascular risk. *Eur J Epidemiol* 2010;25(3):163-72. doi: 10.1007/s10654-010-9427-7 [published Online First: 2010/02/04]
- 27. Segersson D, Eneroth K, Gidhagen L, et al. Health Impact of PM10, PM2.5 and Black Carbon Exposure Due to Different Source Sectors in Stockholm, Gothenburg and Umea, Sweden. *Int J Environ Res Public Health* 2017;14(7) doi: 10.3390/ijerph14070742 [published Online First: 2017/07/08]
- 28. Andersson S, Arvelius J, Brodl L, et al. Metod- och kvalitetsbeskrivning för geografiskt fördelade emissioner till luft Norrköping Länsstyrelsen, 2018.
- 29. Berkowicz R. OSPM-A parameterised street pollution model. *Environmental monitoring and assessment* 2000;65(1-2):323-31.
- 30. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. *European respiratory journal* 2005;26(2):319-38.
- 31. Brisman J, Kim JL, Olin AC, et al. Spirometric reference equations for Swedish adults. *Clinical physiology and functional imaging* 2017;37(6):640-45.
- 32. Brisman J, Kim JL, Olin AC, et al. A physiologically based model for spirometric reference equations in adults. *Clinical physiology and functional imaging* 2016;36(1):77-84.
- 33. R Core Team R. R: A language and environment for statistical computing: R foundation for statistical computing Vienna, Austria, 2013.
- 34. De Rosario-Martinez H. phia: Post-hoc interaction analysis. R package version 02-1 2015

- 35. Carlsen HK, Modig L, Levinsson A, et al. Exposure to traffic and lung function in adults: a general population cohort study. BMJ open 2015;5(6):e007624.
- 36. Soares J, Kousa A, Kukkonen J, et al. Refinement of a model for evaluating the population exposure in an urban area. *Geosci Model Dev* 2014;7(5):1855-72. doi: 10.5194/gmd-7-1855-2014
- 37. Eeftens M, Hoek G, Gruzieva O, et al. Elemental composition of particulate matter and the association with lung function. *Epidemiology* 2014;25(5):648-57.

 BMJ Open

- 38. Tsai M-Y, Hoek G, Eeftens M, et al. Spatial variation of PM elemental composition between and within 20 European study areas Aresults of the ESCAPE project. Environment international 2015;84:181-92.
 - 39. Silveyra P, Floros JJFibaj. Genetic variant associations of human SP-A and SP-D with acute and chronic lung injury. Frontiers in bioscience: a journal virtual library 2012;17:407.
- 40. Lin Z, Thorenoor N, Wu R, et al. Genetic Association of Pulmonary Surfactant Protein Genes, SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD With Cystic Fibrosis. Frontiers in immunology 2018;9:2256.

..mut. .s of human SP-A anc. spizzote.

Supplementary tables

Table S1 Changes in FEV1 and FVC in minor allele carriers relative to major allele carriers of GSTP, GSTT and SP-A SNPs

			FE	EV1				FVC	
	N (%)	β	95% Lower	6 CI Upper	р	β	95% Lower	% CI Upper	p
GSTP									
rs1138272									
(TT+CT)	707 (14.3)								
vs CC	4250 (85.7)	0.513	-0.539	1.565	0.339	0.790	-0.161	1.741	0.103
rs596603									
(TT+GT)	3363 (68.0)								
vs GG	1581 (32.0)	-0.336	-1.126	0.455	0.405	-0.216	-0.931	0.499	0.554
rs762803									
(AA+AC)	3309 (67.0)								
vs CC	1633 (33.0)	-0.802	-1.583	-0.02	0.044	-0.736	-1.443	-0.028	0.042
rs1695									
(AG+GG)	2683 (54.4)								
vs AA	2244 (45.5)	-0.902	-1.643	-0.16	0.017	-0.575	-1.246	0.095	0.093
<u>GSTT</u>									
rs2266637									
GG	1005 (23.8)								
vs CC	3219 (76.2)	-0.378	-1.331	0.575	0.437	-1.431	-2.293	-0.57	0.001
<u>SP-A 1</u>									
rs1136450									
(CC+GC)	2926 (63.8)								
vs GG	1660 (36.2)	-0.106	-0.899	0.704	0.807	-0.106	-0.832	0.62	0.774
rs1136451	· · · ·								
(GG+GA)	1352 (29.7)								
					25				
		For	peer review	only - http://	bmjopen.bmj	j.com/site/about/guide	lines.xhtml		

1										
2										
3	vs AA	3195 (70.3)	0.498	-0.348	1.345	0.248	0.257	-0.51	1.023	0.511
4	rs1059057	(<i>'</i>								
5	(GG +	579 (12.6)								
6	GA)	, , , , , , , , , , , , , , , , , , ,								
7	vs AA	4018 (87.4)	0.155	-1.003	1.313	0.793	0.073	-0.977	1.124	0.891
8	rs4253527									
9 10	(TT+TC)	848 (18.5)								
11	vs CC	3735 (81.5)	0.479	-0.513	1.471	0.344	0.508	-0.392	1.408	0.269
12	<u>SP-A 2</u>									
13	rs1059046									
14	(GG+GT)	2814 (61.8)								
15	vs TT	1741 (38.2)	0.070	-0.724	0.865	0.862	0.038	-0.682	0.759	0.917
16	rs1965707	0400 (40.0)								
17	(AA+AG)	2103 (46.2)	0.005	0.000	0.050	0.000	0.055	0.440	0.050	0.470
18	<i>vs</i> GG rs1965708)	2449 (53.8)	0.085	-0.686	0.856	0.829	0.255	-0.446	0.956	0.476
19 20	(TT+TG)	1551 (33.8)								
20	vs GG	3041 (66.2)	-0.583	-1.397	0.231	0.160	-0.342	-1.08	0.396	0.364
22							and exposure to env			
23	12 months.	ago, worgin, o	adoation, a			ining otatuo, e				
24										
25										
26										
27 28										
28										
30										
31										
32										
33										
34										
35										
36 37										
37										
39										
40										
41										
42						26				
43			For	peer review	only - http://	/bmjopen.bmj.o	com/site/about/guideli	nes.xhtml		
44						,	2			
45 46										
46										

BMJ Open

1 2 3 4 5 6	
7 8 9	
10 11 12 13	
14 15 16 17	
18 19 20 21	
21 22 23 24 25	
26 27 28 29	
30 31 32 33	
34 35 36 37	
38 39 40 41	
42 43 44 45	
46	

		INTERACT	'ION (p)*			
Gene	SNP	Total	Traffic	Residential heating	Marine traffic	Industry
FEV ₁						
GSTP1	rs1138272	P>0.1	P>0.1	P>0.1	P>0.1 0.05	
GSTP1	rs596603	P>0.1	P>0.1	P>0.1	P>0.1	0.06
GSTP1	rs762803	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
GSTP1	rs1695	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
GSTT1	rs2266637	0. 01	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs1136450	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs1136451	P>0.1	P>0.1	P>0.1	0.04	0.01
SP-A1	rs1059057	0. 05	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs4253527	P>0.1	P>0.1	P>0.1	0.02	P>0.1
SP-A2	rs1059046	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A2	rs1965707	P>0.1	P>0.1	P>0.1	0.06	P>0.1
SP-A2	rs1965708	P>0.1	P>0.1	P>0.1	0.08	P>0.1
<u>FVC</u>						
GSTP1	rs1138272	P>0.1	P>0.1	P>0.1	P>0.1	0.06
GSTP1	rs596603	P>0.1	P>0.1	P>0.1	P>0.1	0.07
GSTP1	rs762803	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
GSTP1	rs1695	P>0.1	P>0.1	P>0.1	P>0.1	0.03
GSTT1	rs2266637	0.048	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs1136450	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs1136451	P>0.1	P>0.1	P>0.1	P>0.1	0.03
SP-A1	rs1059057	P>0.1	0.07	0.08	P>0.1	0.01
SP-A1	rs4253527	P>0.1	P>0.1	P>0.1	0.03	P>0.1
SP-A2	rs1059046	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A2	rs1965707	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A2	rs1965708	P>0.1	P>0.1	P>0.1	0.03	P>0.1

		PM ₁₀	0				PM _{2.5}	5				РМвс	;			
		Total	Traffic	Res. heating	Marine traffic	Industry		Traffic	Res. heating	Marine traffic	Industry	Total	Traffic	Res. heating	Marine traffic	Industr
PM ₁₀	Total	1														
	Traffic	0.75*	1													
	Residential heating	-0.43	-0.70*	1												
	Marine traffic	0.06	0.44	-0.83*	1											
	Industry	-0.32	0.30	-0.60*	0.63*	1										
PM _{2.5}	Total	0.89*	0.37	-0.12	-0.22	-0.66*	1									
	Traffic	0.77*	1*	-0.70*	0.43	0.27	0.40	1								
	Residential heating	-0.43	-0.70*	1*	-0.83*	-0.60*	-0.12	-0.70*	1							
	Marine traffic	0.06	0.44	-0.83*	1*	0.63*	-0.22	0.43	-0.83*	1						
	Industry	-0.23	0.29	-0.70*	0.72*	0.94*	-0.54*	0.27	-0.70*	0.72*	1					
РМвс	Total	0.83*	0.98*	-0.59*	0.32*	0.13	0.49	0.99*	-0.59*	0.32	0.13	1				
	Traffic	0.83*	0.99*	-0.69*	0.40*	0.19	0.48	1*	-0.69*	0.40	0.21	0.99*	1			
	Residential heating	-0.41	-0.69*	1*	-0.83*	-0.62*	-0.09	-0.69*	1*	-0.83*	-0.73*	-0.58*	-0.68*	1		
	Marine traffic	0.08	0.45	-0.83*	1*	0.62*	-0.20	0.44	-0.83*	1*	0.71*	0.33	0.41	-0.83*	1	
	Industry	-0.24	0.29	-0.70*	0.72*	0.94*	-0.54*	0.27	-0.70*	0.72*	1*	0.13	0.21	-0.72*	0.70*	1

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	FE	EV ₁			F	VC		
	β	95%	6 CI	р	β	95%	6 CI	р
		Lower	Upper	•		Lower	Upper	
PM ₁₀								
Total	-0.37	-0,97	0,22	0.22	-0.73	-1,27	-0,19	0.01
Traffic Residential	-0.85	-1,51	-0,19	0.01	-0.81	-1,40	-0,21	0.01
heating	-0.21	-0,79	0,37	0.47	0.15	-0,38	0,67	0.59
Marine traffic	0.08	-0,54	0,71	0.32	-0.24	-0,81	0,32	0.29
Industry	-0.29	-0,91	0,33	0.36	-0.22	-0,79	0,35	0.45
PM _{2.5}								
Total	-0.03	-0,60	0,54	0.92	-0.47	-0,98	0,05	0.08
Traffic Residential	-0.79	-1,45	-0,13	0.02	-0.81	-1,41	-0,21	0.01
heating	-0.18	-0,77	0,40	0.53	0.15	-0,37	0,68	0.57
Marine traffic	0.08	-0,54	0,71	0.32	-0.24	-0,81	0,32	0.29
Industry	-0.12	-0,76	0,53	0.72	0.03	-0,55	0,62	0.29
РМвс								
Total	-0.66	-1,30	-0,01	0.05	-0.75	-1,34	-0,17	0.01
Traffic Residential	-0.57	-1,22	0,09	0.09	-0.75	-1,34	-0,16	0.01
heating	-0.02	-0,61	0,58	0.95	0.39	-0,15	0,93	0.16
Marine traffic	0.03	-0,61	0,67	0.33	-0.34	-0,91	0,24	0.30
Industry	-0.22	-0,86	0,42	0.49	-0.03	-0,61	0,55	0.92

Table S4 Trends in change in FEV₁ and FVC (% predicted) across exposure strata from low (0-50th percentile) to high (above 90th percentile) concentrations of source-specific PM (Figure 1)

 ORs from regression models adjusted for age, weight, education, area of residence, smoking status and exposure to environmental tobacco smoke in the last 12 months.

Page 53 of 56

 BMJ Open

		LLN FE	EV1			LL	N FVC			
			95%	% CI		95% CI				
Model	Percentile	OR	lower	upper	р	OR	lower	upper	р	
PM 10										
Total	0-50 th	-	-	-	-					
	50 th -90 th	1.05	0.87	1.26	0.61	1.23	1.00	1.51	0.05	
	90 th -100 th	1.18	0.86	1.62	0.31	1.40	0.98	1.99	0.06	
Traffic	0-50 th	ref	-	-		ref	-	-		
	50 th -90 th	1.12	0.92	1.36	0.28	1.16	0.93	1.45	0.18	
	90 th -100 th	1.46	1.06	2.02	0.02	1.45	1.00	2.08	0.05	
Residential	0-50 th		6			-				
heating		ref		-			ref	-	-	
	50 th -90 th	1.04	0.87	1.25	0.65	1.02	0.83	1.25	0.87	
	90 th -100 th	0.90	0.66	1.25	0.54	0.69	0.47	1.01	0.06	
Marine traffic	0-50 th	ref	_			ref	-	-		
	50 th -90 th	0.98	0.81	1.18	0.82	1.01	0.82	1.26	0.89	
	90 th -100 th	0.83	0.59	1.17	0.29	0.91	0.62	1.33	0.64	
Industry	0-50 th	ref	-	-		ref	-	-		
	50 th -90 th	0.99	0.81	1.22	0.95	1.03	0.82	1.30	0.79	
	90 th -100 th	0.97	0.71	1.32	0.85	1.13	0.79	1.61	0.49	
PM _{2.5}		0.01	••••		0.00		••		••••	
Total	0-50 th									
	50 th -90 th	0.97	0.81	1.16	0.76	1.03	0.84	1.26	0.77	
	90 th -100 th	1.07	0.79	1.46	0.66	1.31	0.94	1.82	0.11	
Traffic	0-50 th	ref	-	-	-	nor			0111	
Tranio	50 th -90 th	1.13	0.93	1.38	0.22	1.21	0.97	1.51	0.09	
	90 th -100 th	1.47	1.06	2.03	0.02	1.54	1.07	2.21	0.02	
Residential	0-50 th				0.01				0.02	
heating	0.00	ref	-	-	-	ref	-	-		
noading	50 th -90 th	1.03	0.85	1.23	0.79	1.02	0.83	1.25	0.87	
	90 th -100 th	0.90	0.65	1.23	0.50	0.69	0.47	1.01	0.06	
Marine traffic	0-50 th	ref	-	-	0.00	ref	-	-	0.00	
	50 th -90 th	0.98	0.81	1.18	0.82	1.01	0.82	1.26	0.89	
	90 th -100 th	0.83	0.59	1.17	0.29	0.91	0.62	1.33	0.64	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Industry	0-50 th					ref	-	-	
•	50 th -90 th	0.91	0.74	1.12	0.38	1.03	0.82	1.30	0.79
	90 th -100 th	0.97	0.71	1.33	0.83	1.13	0.79	1.61	0.49
Ивс									
Total	0-50 th					ref	-	-	
	50 th -90 th	1.08	0.89	1.31	0.44	1.07	0.86	1.32	0.56
	90 th -100 th	1.34	0.97	1.86	0.08	1.46	1.02	2.09	0.04
Traffic	0-50 th	ref	-	-	-				
	50 th -90 th	1.17	0.96	1.42	0.12	1.19	0.95	1.48	0.13
	90 th -100 th	1.37	0.98	1.90	0.06	1.55	1.08	2.23	0.02
Residential	0-50 th	ref	_	_	_	ref	_	_	
heating						101			
	50 th -90 th	1.09	0.90	1.30	0.38	0.94	0.76	1.15	0.54
	90 th -100 th	0.80	0.57	1.11	0.18	0.64	0.44	0.94	0.02
Marine	0-50 th	ref				ref	-	-	
traffic									
	50 th -90 th	1.00	0.82	1.21	0.96	1.00	0.81	1.25	0.98
	90 th -100 th	0.89	0.64	1.26	0.52	0.94	0.64	1.37	0.75
Industry	0-50 th					ref	-	-	
	50 th -90 th	0.96	0.78	1.17	0.67	1.05	0.84	1.32	0.6
	90 th -100 th	0.99	0.72	1.35	0.95	1.09	0.77	1.56	0.62

 ORs from regression models adjusted for age, weight, education, area of residence, smoking status and exposure to environmental tobacco smoke in the last 12 months.FEV₁, forced expiratory volume in 1 second, FVC, forced vital capacity, LLN, lower limit of normal, the fifth percentile of a healthy population, according to formula from Brisman et al., 2017.

	Item No	Recommendation	
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	Ok, page 1
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Introduction pages 4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 5, last introduction paragraph
Methods			
Study design	4	Present key elements of study design early in the paper	In the abstract, title and aims (last paragraph of introduction)
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Methods, pages 5,6,7
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	Page 5 and references
		(<i>b</i>) For matched studies, give matching criteria and number of exposed and unexposed	Does not apply
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Page 6-7, heading "outcome definitions".
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Page 6-7
Bias	9	Describe any efforts to address potential sources of bias	Excluding individuals with missing data, adjusting for variables (methods p 5-8
Study size	10	Explain how the study size was arrived at	Page 5," study population"
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Pages 5 and 6 about exposure assessment and deinitions
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	Page 7
		(<i>b</i>) Describe any methods used to examine subgroups and interactions	Page 8

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		(d) If applicable, explain how loss to follow-up was addressed (e) Describe any sensitivity analyses	Does not apply Page 8
		(<u>e</u>) Describe any sensitivity analyses	I age 8
Results	124		D 0
Participants	13*	(a) Report numbers of individuals at each stage of study—eg	Page 8
		numbers potentially eligible, examined for eligibility,	
		confirmed eligible, included in the study, completing follow-	
		up, and analysed	
		(b) Give reasons for non-participation at each stage	-
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	Page 8, exposure
		clinical, social) and information on exposures and potential	page 8-9.
		confounders	
		(b) Indicate number of participants with missing data for each	Does not apply
		variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	Does not apply
Outcome data	15*	Report numbers of outcome events or summary measures	See table 1
		over time	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-	Only adjusted
		adjusted estimates and their precision (eg, 95% confidence	estimates are
		interval). Make clear which confounders were adjusted for	reported,
		and why they were included	unadjusted
			estimates can be
			provided upon
			request.
		(b) Report category boundaries when continuous variables	Table 2
		were categorized	
		(c) If relevant, consider translating estimates of relative risk	Does not apply
		into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and	Page 10.
e ther unary see	1,	interactions, and sensitivity analyses	1460 10.
Diamarian			
Discussion Key results	18	Summarise key results with reference to study objectives	Page 11.
Key results			
Limitations	19	Discuss limitations of the study, taking into account sources	Pages 13-14
		of potential bias or imprecision. Discuss both direction and	
T / / /*	20	magnitude of any potential bias	D 14
Interpretation	20	Give a cautious overall interpretation of results considering	Page 14,
		objectives, limitations, multiplicity of analyses, results from	conclusions
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study	Pages 13-14
		results	
Other information			
Funding	22	Give the source of funding and the role of the funders for the	Reported on
		present study and, if applicable, for the original study on	manuscript centra
		which the present article is based	and statements.

*Give information separately for exposed and unexposed groups.

BMJ Open

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Exposure to traffic related particle matter and effects on lung function and potential interactions in a cross-sectional analysis of a cohort study in West Sweden

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-034136.R1
Article Type:	Original research
Date Submitted by the Author:	16-Apr-2020
Complete List of Authors:	Carlsen, Hanne Krage; University of Gothenburg Sahlgrenska Academy, Occupational and Environmental Medicine Nyberg, Fredrik; Sahlgrenska Academy, Register Epidemiology, School of Public Health and Community Medicine; University of Gothenburg Sahlgrenska Academy, Occupational and Environmental Medicine Torén, Kjell; University of Gothenburg Sahlgrenska Academy, Occupational and Environmental Medicine Segersson, David; Sveriges meteorologiska och hydrologiska institut Olin, Anna-Carin; University of Gothenburg Sahlgrenska Academy, Occupational and Environmental Medicine
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Respiratory medicine, Public health
Keywords:	EPIDEMIOLOGY, GENETICS, PARTICLE MATTER, SURFACTANT PROTEIN A, glutathione S-transferase, LUNG FUNCTION

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		Manuscript	2020	Lung function and PM species data from SCAC
2				
3 4 5	1	Title page		
6 7	2	Exposure to traffic related p	particle matter and effect	ts on lung function and potential interactions in a
8 9 10	3	cross-sectional analysis of a	cohort study in West Sv	veden
11 12 13	4			
14 15 16	5	Authors		
17 18 19	6	Carlsen HK ¹ , <u>hanne.krage.ca</u>	arlsen@amm.gu.se,*	
20 21 22	7	Nyberg F ^{1,2} , <u>fredrik.nyberg</u>	@astrazeneca.se	
23 24 25	8	Torén K, <u>kjell.toren@amm.</u> ք	gu.se,	
26 27 28	9	Segersson David ³ , <u>david.seg</u>	ersson@smhi.se	
29 30 31	10	Olin A-C ¹ , anna-carin.olin@a	amm.gu.se	
32 33 34	11	Affiliations		
35 36 37	12	¹ Occupational and Environ	mental Medicine, Depa	rtment of Public Health & Community Medicine,
38 39 40	13	Institute of Medicine, Sahlg	renska Academy, Univer	sity of Gothenburg, Gothenburg, Sweden
41 42 43	14	² Register Epidemiology, So	chool of Public Health a	and Community Medicine, Institute of Medicine,
44 45	15	Sahlgrenska Academy, Univ	ersity of Gothenburg, Go	othenburg, Sweden
46 47 48	16	³ Swedish Meteorological a	nd Hydrological Institute	, Norrköping, Sweden.
49 50 51	17	*Corresponding author, tele	ephone number 0046 76	6238918
52 53 54	18	Word count: 3506		
55 56 57	19	Keywords:		
58 59 60	20	PM size fractions, PM sourc	es, lung function, GST, S	P-A, gene-environment interaction

~ .

Manuscript

21	ABSTRACT
22	objectives: To investigate the long-term effects of source-specific particle matter (PM) on lung
23	function, effects of Surfactant Protein A (SP-A) and glutathione S-transferase (GST) genes GSTP1
24	and GSTT1 gene variants and effect modification by single nucleotide polymorphism (SNP)
25	genotype.
26	design: Cohort study with address-based annual PM exposure assigned from annual estimates of
27	size (PM_{10} , $PM_{2.5}$ and PM_{BC}) and source-specific (traffic, industry, marine traffic and wood burning)
28	dispersion modelling.

setting: Gothenburg, Sweden.

participants: The ADONIX study had 6685 participants recruited from the general population,
 of which 5216 (78%) were included in the current study with information on all variables of
 interest. Mean age at the time of enrolment was 51.4 years (range 24-76) and 2427 (46.5%)
 were males.

primary and secondary outcome measures: The primary outcome was forced vital capacity
(FVC) and forced expiratory flow in 1 second (FEV₁). Secondary outcome measure were effects
and gene-environment interactions of SP-A and GSTT1 and GSTP1 genotypes.

results: Exposure to traffic-related PM_{10} and PM_{25} was associated with decreases in percentpredicted FEV₁ by -0.48% (95%CI -0.89% to -0.07%) and -0.47% (95%CI -0.88% to -0.07%) per interquartile range (IQR) 3.05 and 2.47 µg/m³, respectively, and with decreases in percent-predicted FVC by -0.46% (95%CI -0.83% to -0.08%) and -0.47% (95%CI -0.83% to -0.10%). Total and traffic-related PM_{BC} was strongly associated with both FEV₁ and FVC by -0.53 (95%CI -0.94 to -0.13%) and -0.43% (95%CI -0.77 to -0.09%) per IQR, respectively, for FVC, and similarly for FEV₁. Minor allele carrier status for two GSTP1 SNPs and the GSTT1 null genotype were associated with decreases in percent-predicted lung function. Three SP-A SNPs showed effect modification with exposure to PM₂₅ from industry and marine traffic.

Lung function and PM species data from SCAC

BMJ	Open
-----	------

2020

3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	
60	

1 2 3 Manuscript

46	
47	conclusions: PM exposure, specifically traffic-related, was associated with FVC and FEV,
48	reductions and not modified by genotype. Genetic effect modification was suggested for industry
49	and marine traffic PM ₂₅ .
50	Article summary: Strength and limitations of this study
51	• An extensive dispersion model of source-specific PM was assigned to a large, general
52	population cohort of adults in a single urban region
53	• The cohort was designed with focus on respiratory health and a broad range of covariates

- 54 were collected as well as genotyping for genes with known associations with respiratory 55 health
- Spirometry was performed according to a standardized maneuver by trained personnel
 although not with reversibility test
- Full residential history was not available, so exposure is only assigned for the time of inclusion
 into the study, which also does not take indoor or occupational air pollution into account.
 Nevertheless, the population is known to be relatively stable and home address exposure is
 commonly used as the main exposure measure for air pollution since this is where people
 spend most of their time.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3

63 INTRODUCTION

Exposure to air pollution, especially traffic-related air pollution, is associated with reduced lung function¹⁻³ and accelerated lung function decline.⁴ However, there is little evidence of the relevance of particles of different sizes and from specific sources to respiratory health on a population level.⁵ To date particle sources have only been addressed in few epidemiological studies of respiratory health effects with non-conclusive results.^{2 6 7} In panel studies, there were stronger associations between short term increases in Club Cell protein CC16 (a marker of increased lung permeability) concentration in urine and high levels of traffic PM than total PM.⁸ In controlled experiments *in vitro*, exposing human lung cells to PM from different sources triggered very different pulmonary cell and DNA damage outcomes.⁹ A deepened knowledge about effects of specific particle pollution sources is of particular interest to prioritize public health measures to reduce health effects of ambient air pollution.

In epidemiological studies, air pollution is most often assigned to certain sources by building exposure profiles from particle size distributions and relative concentrations of specific chemicals in the particles. Traffic pollution is for example characterized by NOx and ultrafine particles.⁷ Particles from petrochemical industries are characterized by trace elements such as nickel, cobalt, caesium and lanthanum,¹⁰ and particles from other industry is characterized by high levels of trace metals vanadium and nickel,¹⁰¹¹ but are of course sector-dependent. Similarly, PM from marine traffic is subject to large uncertainties as fuel types and fleet types vary across the world.¹² However, this field of research is expanding rapidly as exposure science evolves with more sophisticated source specific models.¹³ Beyond the importance of exposure composition and source, individual susceptibility to air pollution is modified by many factors, including genetic differences. Susceptibility related to genetic variability may improve our understanding of the physiological mechanisms underlying health effects of air pollution.^{14 15} Glutathione S-transferase (GST) are involved in metabolizing reactive oxygen species to reduce oxidative stress.¹⁶ GSTP1 SNPs have been reported to modify the risk of cardiovascular disease associated with exposure to NO₂¹⁷ and to modify the association between NO₂ and lung function

decline in adults,¹⁸ but findings are inconsistent and no meta-analysis has been performed.^{19,20} Surfactant protein A (SP-A) is found in the surfactant fluid which lines the lung alveoli and has important functions in the innate immune system of the lungs, especially for opsonizing inhaled material.²¹ SP-A gene polymorphisms are associated with development of serious pulmonary disease and are involved in the pulmonary defence against pathogens.²² SNPs in SP-A coding regions have been associated with multiple respiratory diseases,¹⁴ ²³ as well as gene-environment interactions for smoking and chronic obstructive pulmonary disease.²⁴

Many questions remain as to what components of air pollution are harmful in a general population, in particular at relatively low pollution exposures, and if such associations are modified by genetic factors. Thus, the aim of the current study was to investigate the effects of different PM sources determined from a state-of the arts dispersion model on lung function in a general population cohort, and to investigate lung function effects of genotype and gene-environment interaction with particle erien exposures types.

METHODS

Study population

The study population originates from the ADONIX (ADult-Onset asthma and NItric oXide) cohort, a random sample of subjects aged 24-76 years who were invited to participate in a clinical examination between 2001-2008, as previously described.^{17 25-28} In brief, the overall participation rate was 46%, all participants provided data on residential address, lifestyle factors and education, presence of allergic airway inflammation and respiratory health, as well as clinical measurements of lung function, such as spirometry (single manoeuver) and nitric oxide in exhaled air (FENO). Blood samples were collected for DNA extraction and subsequently genotyped for selected SNPs from the SP-A, GSTP1, and GSTT1 genes.

Exposure assessment Page 7 of 37

BMJ Open

As a part of the involvement in the Swedish Clean Air and Climate project (SCAC), the Swedish Meteorological and Hydrological Institute (SMHI) modelled source-specific, annual particulate matter (PM) concentrations for different size fractions for each calendar year in the period 1990 to 2011 using dispersion modelling described in detail by Segersson and colleagues, 2017, including a detailed map of the area.²⁹ PM_{10} and $PM_{2.5}$ represent particles smaller than 10 and 2.5 micrometers (µm) respectively, whereas black carbon particles, PM_{BC}, are soot particles from combustion, notably vehicle exhaust. The specific sources that were investigated were traffic (exhaust and road wear for PM_{10} and $PM_{2.5}$, exhaust only for PM_{BC}), residential heating (predominantly house heating using wood assessed as area sources), marine traffic (averaged description from a bottom-up calculation using actual positions of ships in port, manoeuvring and cruising), and industrial sources (point sources, in Gothenburg dominated by refineries, energy plants, and other industry).³⁰ Background concentration (long-range transport particles), was also provided, but was estimated indirectly as the difference between total modelled local contribution and monitoring data from a central urban background station. Consequently, it showed no spatial variation and was not used for analyses. To refine the estimated contribution of traffic, an increment due to reduced ventilation in street canyons was added for the busiest streets. The increment was estimated as the difference between simulations with and without buildings using the OSPM model.³¹ For each study participant's residential address at the date of clinical examination, annual mean values of pollutants were calculated separately for the five source categories and modelled exposure grid values of all PM fractions were matched to the year of the participant's clinical examination.

9 132 Outcome definitions

133Dynamic spirometry including FEV1 and FVC was performed with the subject in a sitting position using134a nose clip without bronchodilation. In all measurements, a Jaeger Master Screen PFT (Vyaire,135Mettawa, IL, US) was used. All procedures were performed according to ATS/ERS standards.³² A local136reference material was used for calculation of percent predicted (% predicted) of FEV1 and FVC and

lower limit of normal, (LLN, the lower 5th percentile in healthy individuals) for FEV₁ and FVC.^{33 34} Asthma
was defined as reporting having had at least one asthma attack in the previous 12 months, and atopy
was defined as having a positive phadiatop test. We used FEV₁, FVC and FEV₁/FVC below LLN as an
indicator of clinically significant lung function reductions or air flow limitation.

Based on questionnaire replies, smoking status was categorised into current, former (no smoking during the last year) and never smoking. Upon inspection of the distribution of total and traffic particles within residential regions, postcodes were categorised into four residential areas: Inner city, non-central city, suburban, and outer suburb or rural. Education was categorised in six categories: elementary school, lower secondary school, training or girls' school, grammar school, university, and "other" or not reported. Individuals who did not have information on all variables of interest were excluded, except for genotype, where analyses were run separately for each SNP. For this study we used genotype data on four GSTP1 SNPs, a SNP marker for the GSTT1 null genotype, four SP-A1 SNPs and three SP-A2 SNPs. All SNPs were coded using a dominant model for the minor (least common) allele.

151 Statistical methods

152 First, descriptive statistics were calculated for the cohort and exposure data, and correlations between
153 the total and source-specific exposure estimates for all PM size fractions were determined.

We estimated the association between each PM size fraction for each PM source, with predicted FEV_1 and FVC, in linear models. First, percent predicted lung function effects associated with PM size fractions and sources were analysed with exposure as a continuous variable, and estimated for an interquartile increase in exposure (additionally, the analysis was repeated for lung function in Litres). Second, we investigated the effects of the highest exposure values by setting high exposure cut-off for PM above the 90th percentile of population exposure, medium exposure at 50-90th percentile, with exposure at or below 50th percentile as the reference, and tested these for linear trends. To investigate clinically significant effects, we modelled increased risk of low lung function with LLN as a cut-off in

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
50 59	
60	

logistic models. To assess confounding, covariates were added to regression models one at a time and
were retained in the model if the coefficient of PM was altered by more than 10% by their inclusion.
The covariates included in the final models were age, sex, weight, education, residential area, smoking
status, and exposure to passive smoking in the last 12 months.

For genetic markers, we assessed Hardy-Weinberg equilibrium, then analysed the association between genotypes and lung function for all available SNPs in single-SNP linear models coded as minor allele dominant effects. We present nominal p-values for these exploratory analyses. To evaluate effect modification, we tested for interaction of the effects of exposure to different PM size fractions and sources on lung function by genotype, and report the adjusted means of a fitted model adjusted for all covariate variables. The significance of the interaction terms was evaluated using a likelihood ratio tests comparing the model with interaction term to the model without this term.

In sensitivity analysis, the effects of PM were analysed in models stratified by sex, smoking status,
 asthma status, atopic status, BMI categories, and age categories to evaluate possible confounding from
 any of these characteristics.

All regression results for change in lung function were reported as increment or decrement in %
 predicted. Change in mL is reported in the supplement. Odds ratios were obtained from the logistic
 model analyses. All results are presented as point estimates with 95% confidence intervals, and with
 p-values as appropriate. Analyses were performed in R studio.³⁵

180 **RESULTS**

The ADONIX cohort includes 6685 individuals. After excluding individuals with missing data on explanatory variables such as smoking status (25), environmental tobacco smoke (76), and who had missing, or very low quality of lung function (532), there were 6006 individuals, further 333 had a missing postcode, 315 did not have a European background, and 457 were outside the catchment area leaving 5216 for the main analysis. In the genetic analysis, up to 276 individuals had missing data.

Finally, 5216 were included with information on the variables related to exposure and health outcomes used in this study and self-reported European ancestry. The mean age of the study population was 51.6 ±11.4 years and 46.5% were males, 46.1% had never smoked, 16.5% were current smokers and 10.2% were exposed to passive smoking. A total of 12.6% (n=656) of the study population had FEV₁ below lower limit of normal and 9.5% (n=494) had FVC below LLN. The most common highest education level was university education (37.1%), followed by grammar school (23.0%) (Table 1).

TABLE 1 CHARACTERISTICS OF THE STUDY POPULATION

N=5216	
Age, mean (SD)	51.6 (11.4)
Males, n (%)	2427 (46.5%)
Females	2789 (53.5%)
Respiratory health	
FEV ₁ (% of predicted*), mean (SD)	96.6 (13.7)
FVC (% of predicted*), mean (SD)	97.9 (12.4)
Below LLN of predicted FEV ₁ , n (%)	656 (12.6%)
Below LLN of predicted FVC, n (%)	494 (9.5%)
Below LLN of FEV ₁ /FVC, n (%)	548 (10.5%)
Smoking	
Current smokers, n (%)	860 (16.5%)
Former smokers, n (%)	1951 (37.4%)
Never smokers, n (%)	2405 (46.1%)
Passive smoking (last 12 months)	534 (10.2%)
Education	

2		
3	Elementary school, n (%)	639 (12.2%)
4		055 (12.276)
5		
6	Lower secondary School, n (%)	175 (3.3%)
7		
8	Training/girls school, n (%)	389 (7.5%)
9		389 (7.378)
10		
11	Grammar school, n (%)	1205 (23.1%)
12		
13	University, n (%)	1954 (37.5%)
14		1994 (97.970)
15		
16	Other or not reported, n (%)	853 (16.4%)
17		
18	Residential area	
19		
20		
21	Inner city, n (%)	945 (18.1%)
22		
23	Non-central urban, n (%)	922 (17.7)
24		322 (17.7)
25		
26	Suburban, n (%)	2178 (41.7%)
27		
28	Outer suburb or rural, n (%)	1171 (22.4%)
29		11/1 (22.1/0)
30		
31	Self-reported respiratory health**	
32		
33	Current asthma, n (%)	462/4698 (9.0%)
34		
35		
36	MD diagnosed asthma, n (%)	348/4828 (6.9%)
37		
38	Allergy***, n (%)	1220/3887 (23.9%)
39		
40		
41	BMI, mean (standard deviation)	26.1 (4.1)
42		
43	*Lung function predicted from age, height and	sex. ³³ FEV ₁ , forced expiratory volume
44		
45	in 1 second. FVC, forced vital capacity. LLN, low	ver limit of normal, the fifth percentile
46	of a healthy population.	
47		
48		
49	**Adapted from questionnaire data asking abo	out, have you had an asthma attack in
50	the least 12 meanths	

the last 12 months,

***Allergy was determined by a positive phadiatop test (IgE >0.35 IU/mL)

The mean annual air pollution levels at the residential addresses in the study population at study entry

were moderate, at 15.7 μ g/m³ PM₁₀, 9.3 μ g/m³ PM_{2.5}, and 0.76 μ g/m³ PM_{BC} (Table 2). Background long-

1	1	1	1		2	2
- 3 4	5 6 7	7 8 9	10 11 12 13 14 15 16 17 18 19 20 21 22 32 42 52 62 7 82 930 31 22 33 34 536 37 839 40 41 42 43 44 546 47 89 50 51	52 53 54	55 56 57	58 59

195	range transported particle matter constituted the larger proportion of exposure, contributing t75%
196	and 76% of the total PM_{10} and $PM_{2.5}$ levels, respectively. The local emission source that contributed
197	mostly to total PM_{10} was traffic, whereas residential heating contributed most to $PM_{2.5}$ (Table 2).

198 TABLE 2 DESCRIPTIVE STATISTICS OF EXPOSURE PARAMETERS IN THE STUDY 199 POPULATION

32 (1.75) 22 (0.48) 03 (0.05) 11 (0.09) 33 (1.75)	15.47 1.78 1.17 0.02 0.09 9.36	ercentile 18.80 4.41 1.88 0.08 0.23 11.80	3.09 1.64 0.62 0.03 0.10 2.41
32 (1.75) 22 (0.48) 03 (0.05) 11 (0.09) 33 (1.75)	1.78 1.17 0.02 0.09 9.36	4.411.880.080.23	1.6 0.6 0.0 0.1
22 (0.48) 03 (0.05) 11 (0.09) 33 (1.75)	1.17 0.02 0.09 9.36	1.88 0.08 0.23	0.6 0.0 0.1
03 (0.05) 11 (0.09) 33 (1.75)	0.02 0.09 9.36	0.08 0.23	0.0 0.1
11 (0.09) 33 (1.75)	0.09 9.36	0.23	0.1
33 (1.75)	9.36		
		11.80	2.4
74 (0.56)			
	0.57	1.41	0.5
22 (0.48)	1.17	1.88	0.6
03 (0.05)	0.05	0.08	0.0
07 (0.05)	0.06	0.12	0.0
76 (0.32)	0.71	1.13	0.3
36 (0.29)	0.27	0.69	0.2
14 (0.06)	0.13	0.23	0.0
01 (0.01)	0.00	0.02	0.0
01 (0.01)	0.01	0.01	0.0
eviation.			
	03 (0.05) 07 (0.05) 76 (0.32) 36 (0.29) 14 (0.06) 01 (0.01) 01 (0.01) eviation.	03 (0.05) 0.05 07 (0.05) 0.06 76 (0.32) 0.71 36 (0.29) 0.27 14 (0.06) 0.13 01 (0.01) 0.00 01 (0.01) 0.01	03 (0.05)0.050.0807 (0.05)0.060.1276 (0.32)0.711.1336 (0.29)0.270.6914 (0.06)0.130.2301 (0.01)0.000.0201 (0.01)0.010.01

⁶⁰ 202 considerably lower than for PM₁₀ and PM_{2.5}, at 26%. Traffic sources were originally divided into exhaust

4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

and road wear, but as these were highly correlated (r>0.98) we combined the two into a single variable for traffic exposure and used that in the analyses. The correlation between total and traffic-related exposure was very high for PM_{BC} (r=0.99), whereas it was high for PM_{10} (r=0.75) and moderate for $PM_{2.5}$ (r=.040) (Table S1).

207 Effects of PM exposure

Percent predicted lung function were negatively associated with PM_{10} and $PM_{2.5}$ from traffic, and with PM_{BC} in linear models with continuous exposure. The effect estimates for particles from residential heating, marine traffic or industry indicated no strong or consistent adverse effects in the linear models (Table 3).

212TABLE 3 ESTIMATED CHANGE IN FEV1 AND FVC PER IQR CHANGE IN PM FROM213DIFFERENT SOURCES

	Del	ta % preo	dicted F	EV ₁	0	Delta % predicted FVC					
	В	95%	CI		В	95% CI					
		Lower	Uppe r	p- value		Lower	Upper	p-value			
PM₁₀ Total	-0.16	-0.64	0.33	0.53	-0.37	-0.81	0.07	0.10			
Traffic	-0.48	-0.89	-0.07	0.02	-0.46	-0.83	-0.08	0.02			
Residential											
heating	-0.30	-0.80	0.20	0.23	-0.03	-0.48	0.43	0.91			
Marine traffic	0.00	-0.24	0.24	1.00	-0.05	-0.27	0.17	0.66			
Industry	-0.33	-0.78	0.11	0.14	-0.40	-0.80	0.01	0.05			
PM_{2.5} ⊺otal	0.00	-0.53	0.53	1.00	-0.47	-0.95	0.01	0.05			
Traffic	-0.47	-0.88	-0.07	0.02	-0.47	-0.83	-0.10	0.01			

1 2										
2 3		Residential								
4 5		heating	-0.30	-0.80	0.20	0.23	-0.03	-0.48	0.43	0.91
6										
7 8		Marine traffic	0.00	-0.89	0.89	1.00	-0.05	-0.85	0.75	0.66
9			0.24	0.00	0.40	0.24	0.00	0.00	0.45	0.40
10 11		Industry	-0.34	-0.86	0.18	0.21	-0.32	-0.80	0.15	0.18
12										
13 14										
15		PM_{BC} Total	-0.56	-1.01	-0.12	0.01	-0.53	-0.94	-0.13	0.01
16 17										
18		Traffic	-0.41	-0.78	-0.03	0.03	-0.43	-0.77	-0.09	0.01
19 20		Residential								
21		heating	-0.38	-0.89	0.12	0.14	0.00	-0.46	0.45	0.99
22 23		neating	-0.38	-0.85	0.12	0.14	0.00	-0.40	0.45	0.99
24		Marine traffic	-0.01	-0.25	0.23	0.94	-0.05	-0.27	0.16	0.62
25 26										
27		Industry	-0.40	-0.92	0.12	0.13	-0.38	-0.85	0.09	0.11
28 29		Parameter coefficier	ate from	in cono	rato ciu		tant mode		d for ago	woight
30				-				-	-	
31 32		education, area of re	sidence, s	moking s	tatus, ar	na exposu	re to enviro	nmental t	obacco sm	oke in the
33		last 12 months.								
34 35		IQR, interquartile ran	Øe.							
36			0							
37 38										
39							. 0			
40 41	214	In models with catego	rical expo	sure (low	i, mediu	m, and hi	gh exposure	e), there v	vas a consis	stent trend
42 43	215	across categories for	traffic-rela	ated expo	osure in	all particu	ılate meası	ires for bo	oth percent	t predicted
45 44	040						0.00) (1)		Palat Lass	
45 46	216	FVC and FEV ₁ (<i>p</i> for tre	na<0.05;	for FEV ₁ a	and Pivi _{Bo}	_c traffic p=	0.09); the t	rend was s	slightly less	strong and
40 47	217	consistent for total PN	/l exposur	e (Figure	1). Ther	re were no	significant	negative	associatior	is between
48	040		C				()))			
49 50	218	percent predicted lung	g function	and expo	osure to	particles of	of any size f	rom reside	ential heati	ng, marine
51 52	219	traffic or industrial s	ources (F	igure 1),	nor we	ere there	statistically	significa	nt trends	(Table S2).
52 53	000			• • • • • • •						
54 55	220	Estimating effects on	lung tunct	ion in m	L rather	than % pr	edicted we	observed	significant	decreases
55 56	221	of FEV_1 and FVC associ	ated with	PM ₁₀ tra	ffic, PM ₂	5 total and	d traffic as i	n the perc	ent predict	ed analysis
57 58	222	(Table C) and Table 2		vr in +6:-	analusi			a inductor.	wore de-	
58 59	222	(Table S3 and Table 3	j. noweve	er, in this	anaiysis	s Pivi ₁₀ and	a pivi _{bc} tron	industry	were also	associated
60	223	with decreased FEV ₁ a								

BMJ Open

4	
5	
6 7	
6 7 8	2
9	
10	
11 12	4
13	
11 12 13 14 15 16 17	2
15 16	
17	4
18	
19 20	
20	2
22	
23 24	4
24 25	-
26	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	2
29	
30	4
31 32	
33	2
34	
35 36	
30 37	
38	2
39 40	
40 41	4
42	
43 44	
45	2
46	
47 48	4
49	
50	
51 52	2
53	
54	4
55 56	2
50 57	-
58	
59	

224 from traffic were associated with increased odds ratio of having clinically significant reductions in FEV₁ 225 and FVC (below LLN) (p<0.05; except p=0.08 for FEV₁ and PM_{BC}) (Table S4). The ratio FEV₁/FVC below 226 LLN was not associated with any exposure (data not shown).

227 **Genetic main effects**

228 All SNPs were in Hardy-Weinberg equilibrium except rs1136450, which has one very rare genotype 229 (n=12). The frequency of the dominant minor allele carrier genotype varied from 12.6% to 68.0%. 230 (Table S5). In a main effect analysis without considering environmental exposure, minor allele carrier 231 status of three GST SNPs was associated with lung function outcomes in minor allele dominant genetic models. The two GSTP1 SNPs rs762803 and rs1695 were significantly associated with FEV₁ reductions 232 233 by -0.80% (p=0.044) and -0.90% (p=0.017), respectively, and FVC reductions were seen in minor allele 234 carriers of the same GSTP1 SNP rs762803 (-0.74%, p=0.042) and the GSTT1 null genotype assessed with 235 SNP rs2266637 (-1.434%, p=0.001). No main effect associations were found with SP-A SNPs (Table S5).

236 **Effect modification of PM effects**

237 PM_{2.5}, which had marginally more consistent effects for traffic-related exposure, was used for 238 exploratory interaction analyses. The effect of genotype and exposure to PM_{2.5} from all sources was 239 analysed in interaction models, and SNPs with exposure-interaction p-values below 0.1 are shown in 240 Table S6. The number of significant interactions was higher than expected by chance. The most 241 plausible statistically significant patterns of interaction were seen for industry-related exposure (Figure 242 2). Two SNPs from SP-A1, rs1136451 and rs1059057 had significant interaction effects on both FEV_1 243 and FVC, and on FVC only, respectively, suggesting variable susceptibility at high exposures. This result 244 should, however, be seen as highly exploratory. Stratifying data by smoking status, atopy, asthma 245 status, and BMI category showed no significant effect modification on the estimates for air pollution 246 effect on lung function in either linear or logistic analysis (data not shown).

DISCUSSION

In a general population cohort we observed significant associations between lung function and modelled exposure to PM₁₀ and PM_{2.5} from traffic as well as PM_{BC}. The association between FEV₁ and FVC was consistently present in 1) linear models with continuous exposure (Table 3), and 2) in models in which exposure was expressed as categories, high exposure (above the 90th percentile) compared to low exposure (<50th percentile) with significant trends across three exposure strata (Figure 1, Table S2). In the analyses, the observed average decreases were numerically small and without individual-level clinical significance, but in logistic regression models with binary outcomes, FEV₁ below LLN was associated with high exposure to PM₁₀ and PM_{2.5} traffic particles, and FVC below LLN was associated with traffic particles in all size fractions as well as total PM_{BC} (Table S4). This pattern was also found when exposure was expressed categorically for a continuous outcome (Figure 1). We observed no associations with airflow limitation, rather the negative associations with exposure means that such effects, which could possibly explained by the parallel reduction of both FEV_1 and FVC.

Because we observed significant associations between percent predicted lung function and most traffic-related exposure metrics on a population level, and no obvious associations were found between any fractions of PM from residential heating, marine traffic or industry, our results indicate that exposure to PM from traffic is particularly detrimental to lung function. However, we cannot rule out that we observed the lack of associations to other sources were due to a lower accuracy in exposure assessment for these sources. Furthermore, the relative contribution of marine traffic, industry and residential heating to total PM was modest (Table 2), which could also lead to inaccurate or low estimates without statistical significance. There are hypotheses postulating that exposure to newly formed particles, such as from traffic close to the domestic address, may be more potent and reactive, but so far there seem to be no consensus.^{29 36} Interestingly, in the analysis of crude lung function (in mL, rather than percent of predicted) we also observed associations with particles of

industrial origin, suggesting that they could be modified by factors related to age, height and sex whichare accounted for in the percent predicted value.

In spite of there being moderate to high correlations (0.75, 0.42 and 0.99) between total PM and traffic related PM in any of the three fractions (Table S1), total PM_{10} and $PM_{2.5}$ were not significantly associated with reductions in percent predicted FVC and FEV₁. Residential heating is the second largest local contribution to total PM, and we observed negative correlations between PM from residential heating and total PM as well as PM from other sources. PM from residential heating could thus be interpreted as an indicator of low exposure to other sources of air pollution which might contribute to explaining the few suggested inverse (positive) associations seen in some categorical analyses between PM from residential heating and FEV₁ and FVC (e.g. Figure 1).

For GSTP and GSTT genotypes, where carrying the minor or null allele, were associated with decreased percent predicted FEV₁ and FVC, whereas no direct effects of SP-ASNPS were found (Table S4). Gene-environment interactions were tested for all SNPs and all PM sources and size fraction, but significant and biologically plausible interactions were only observed between specific SP-A SNPs and exposure to PM_{2.5} from marine traffic and industrial sources, and not for traffic or total PM, where most direct effects where observed. We thus infer that it is possible that detrimental effects from marine traffic and industry PM t may affect specific individuals with genetic susceptibilities.¹⁴ Industrial exposure in Gothenburg is concentrated along the northern mouth of the Göta Älv River and is dominated by a power plant and oil refineries. PM from marine traffic is also concentrated along the river.

⁴⁸ 290 During initial analysis and covariate selection, we found that residential region was an effect modifier,
⁵⁰ 291 and included this as a covariate in the study. Other studies of lung function within a single region have
⁵² adjusted for municipality to avoid confounding of the results which is likely due socio-economic
⁵⁴ 293 distribution of the study population in some urban areas, where high-exposed areas also have a high
⁵⁶ 294 proportion of individuals with high socio-economic status which entails other risk factor panorama and
⁵⁹ 295 health behaviours.³⁷

In a previous study on the same cohort population, short distance to the nearest road was found to be associated with decreases in FEV₁ and FVC.³⁸ Comparing with other studies, the size of the estimated change in lung function in our study are similar and within confidence intervals of those reported from the UK biobank.³ The pollution levels found in the current study were moderate compared to those presented in the study from Adam and colleagues, reporting significant associations for both FEV₁ and FVC in adults related to long term exposure to NO₂, NOx and PM₁₀, but not PM_{2.5} or coarse PM in a meta-analysis of the ESCAPE data.⁷ In our study, both of NOx and NO₂ were highly correlated with traffic PM_{10} , $PM_{2.5}$ and PM_{BC} (all correlations r>0.79), for the years that both NOx and NO₂ and source specific PM estimates were available.

Effects specifically of exposure to industrial emissions have not been widely studied, and industry emissions are often pooled with other sources,²⁹ or considered negligible as high stacks disperse the emissions.³⁹ Studies of respiratory health with source specific results generally find associations mainly with traffic: In the study of Jacquemin and colleagues,⁸ only traffic, and not industry-specific particles were associated with the lung damage marker CC16. Krall and colleagues¹³ observed only effects from tailpipe exhaust on lung function and eNO. Billet and colleagues⁹ exposed cells *in-vitro* to particles from a highly industrialized environment and found that ultrafine particles with higher concentrations of polyaromatic hydrocarbons induced more oxidative DNA damage adducts and DNA damage response. Peng and colleagues⁶ observed that PM from vehicle emissions, diesel engines and wood burning were associated with the largest increases in emergency hospital admissions for CVD and respiratory disease.⁶ In a multi-city European study⁴⁰ there were negative associations between FEV₁ and PM from nickel and sulphur, however results were not consistent between cities, perhaps reflecting the heterogeneity in particle compositions in different cities in the study.⁴¹

SP-A has the ability to bind and help clear pathogens but also particle matter from the lungs by opsonisation²² and is activated in response to exposure to Ozone, another major air pollutant⁴² Previous literature suggest that SNPs of SP-A are associated with defect opsonisation, and hence

BMJ Open

increased risk for viral infections,⁴³ but likely also for adverse effects of particle exposure (as well as
volatile exposures.²² We found a significant interaction between polymorphisms of two SP-A1 SNPs
and the association between exposure to PM from industrial sources and lung function. Other studies
have found rs1059057 to be associated with acute lung injury²² and cystic fibrosis,⁴⁴ and rs1136451
with susceptibility to COPD and analysed gene-environment effects from tobacco smoking.²⁴ The SP-A
2 SNP rs4253527 has been associated with tuberculosis.²²

We observed no gene-environment interactions with any GSTT or GSTP SNPS. The GSTP SNP rs1695 has been associated with possible increased asthma risk of air pollution exposure,¹⁹ whereas we found a main effect with lower FEV₁ in the current study of adults, but no interactions. These genetic interactions results should be seen as exploratory and be interpreted with caution.

⁷ 331 **Strengths and limitations**

The cohort data used in this study were collected to study respiratory health, and provides a rich dataset containing a large number of variables of interest. In the model selection, adding additional covariates as potential confounders did not affect the regression estimates substantially. Nonparticipation analysis was previously reported for the earliest collected cohort data (gathered 2001–2003) and showed that women, the elderly, and individuals with university education were more likely to participate.²⁸ As we adjusted for these covariates and as exposure was unknown to participants, this is not likely to bias the current results.

The number of individuals who fell below the lower limit of normal for both FEV₁ and FVC was rather high, as this value is defined as the 5th percentile in a healthy, non-smoking population. It is possible that individuals with respiratory issues, as well as past and present smokers, are more likely to take part in a study such as ADONIX.²⁸ On the other hand, with clinical outcome measures and an exposure which was not known to the participants, this is an unlikely source of important bias.

344 In this study, complete residential histories, including duration of residence, were not available.
 345 Instead, we used a single modelled value for residential exposure that was matched by year of

participation for each individual, rather than a complete longitudinal exposure history over multiple
 years. We consider this a reasonable approach, as the between-year correlation in air pollution
 concentrations and emissions in a certain location is very high.

As people spend a fair proportion of their time outside their home, and our results are based on modelled air pollution data at the place of residence, the exposure represents an approximation of the real exposure. However, this is an established method which provides a fair picture of the actual exposure. The resulting, and likely nondifferential, misclassification of exposure would, however, then to shrink risk estimates towards the null. The model was developed using new emissions inventories, updated information on vehicle composition, and had been further verified by measurements.²⁹ However, for residential heating, the source assignment is based on proxies such as building type, as no actual source inventory was available, and may have a poorer performance.

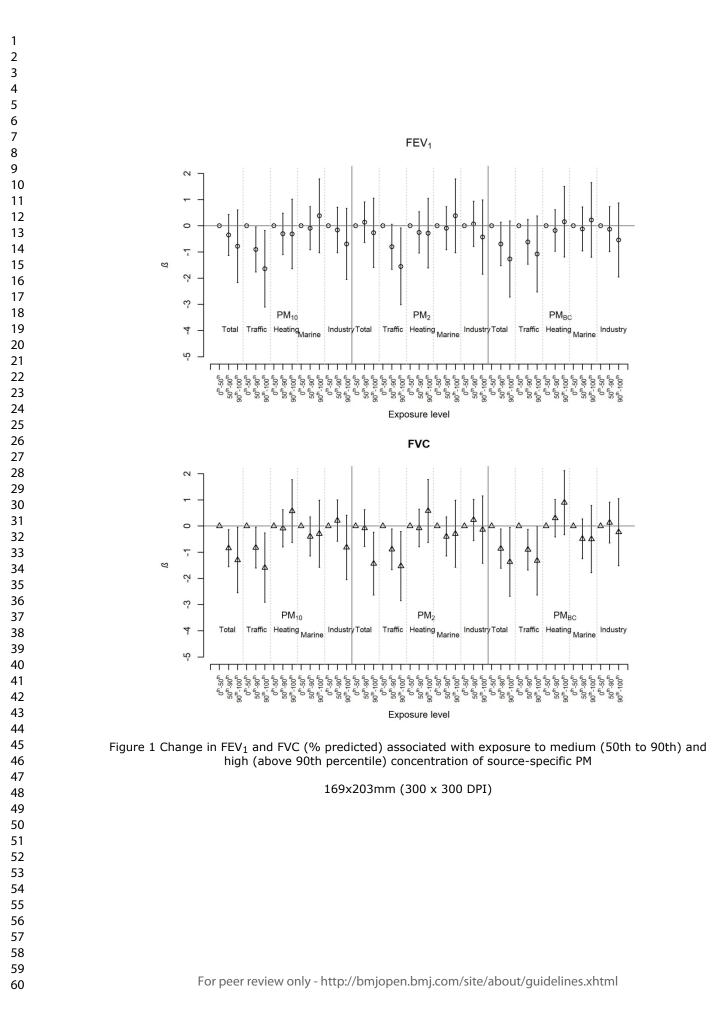
The very high correlations between traffic-related PM_{10} , $PM_{2.5}$ and PM_{BC} (Table S1) mean that it is difficult to assign the observed effect to a certain size fraction with any certainty. The moderate to high correlations between the various PM source measures also meant we had to refrain from using multi-pollutant models, meaning that f estimates associated with each exposure type must be interpreted cautiously. Nevertheless, traffic-related PM exposure showed clear and consistent associations with FEV₁ and FVC, whereas the other source-specific exposures did not.

363 CONCLUSION

In this large study of clinically measured outcomes in a general population sample we found that exposure to traffic particles of all three studied PM species and size fractions were associated with reductions in FEV₁ and FVC and increased risk of low FEV₁ and FVC (below LLN), supporting the need for measures to reduce urban pollution from traffic to protect urban populations. Furthermore, we found intriguing suggestions in our exploratory analysis that the SP-A1 gene may play a part in susceptibility to air pollution from industrial sources, possibly due to its very different composition.

1 2		
2 3 4	370	Author Contributions
5 6	371	HKC analysed the data and drafted the manuscript. FN, KT, and A-CO provided the cohort
7	372	and genetic data, contributed to essential parts of the introduction and discussion and the final
8 9	373	manuscript. DS provided and documented the PM exposure data. All authors approved the
10 11	374	final version of the manuscript and contributed to the discussion.
12 13 14	375	Data statement
15 16	376	Additional data from the ADONIX study exist and are held by the authors.
17 18 19	377	Funding
20	378	This work was supported by the Swedish Heart and Lung Foundation, The Swedish Research
21 22	379	Council Formas, The Swedish Society for Medical Research and the Swedish Environmental
23 24	380	Protection Agency.
25 26 27	381	Competing interests
28 29	382	None declared.
30 31	383	Ethics approval: The Västra Götaland Region ethical review board approved of the study (ref
32 33	384	no. Ö 092-01) and participants gave informed consent.
34 35	385	Legends
36 37	386	Figure 1 Change in FEV1 and FVC (% predicted) associated with exposure to medium (50th to
38 39	387	90th) and high (above 90th percentile) concentration of source-specific PM
40 41 42	388	
43	389	Figure 2 a-e Unadjusted gene-environment interactions between selected SNPs and FEV1 and
44 45	390	FVC in exposure categories to select PM sources. Dotted lines represent effects on minor
46 47	391	allele carriers
48	392	
49 50	552	
51		
52 53		
54		
55 56		
57		
58 59		
60		

REFERENCES


- 394 1. Abbey DE, Burchette RJ, Knutsen SF, et al. Long-term particulate and other air pollutants and lung
 395 function in nonsmokers. *American journal of respiratory and critical care medicine* 396 1998;158(1):289-98.
- 397 2. Rice MB, Ljungman PL, Wilker EH, et al. Long-term exposure to traffic emissions and fine
 398 particulate matter and lung function decline in the Framingham heart study. *American Journal* 399 of *Respiratory and Critical Care Medicine* 2015;191(6):656-64.
- 3. Doiron D, de Hoogh K, Probst-Hensch N, et al. Air pollution, lung function and COPD: results from
 the population-based UK Biobank study. *European Respiratory Journal* 2019;54(1):1802140.
- 402 4. Ackermann-Liebrich U, Kuna-Dibbert B, Probst-Hensch NM, et al. Follow-up of the Swiss Cohort
 403 Study on Air Pollution and Lung Diseases in Adults (SAPALDIA 2) 1991–2003: methods and
 404 characterization of participants. *Sozial-und Präventivmedizin/Social Preventive Medicine*405 2005;50(4):245-63.
- 406 5. Cassee FR, Héroux M-E, Gerlofs-Nijland ME, et al. Particulate matter beyond mass: recent health
 407 evidence on the role of fractions, chemical constituents and sources of emission. *Inhalation* 408 *toxicology* 2013;25(14):802-12.
- 6. Peng RD, Bell ML, Geyh AS, et al. Emergency admissions for cardiovascular and respiratory diseases
 and the chemical composition of fine particle air pollution. *Environmental health perspectives*2009;117(6):957-63.
- 412 7. Adam M, Schikowski T, Carsin AE, et al. Adult lung function and long-term air pollution exposure.
 413 ESCAPE: a multicentre cohort study and meta-analysis. *European respiratory journal* 2015;45(1):38-50.
- 8. Jacquemin B, Lanki T, Yli-Tuomi T, et al. Source category-specific PM2. 5 and urinary levels of Clara cell protein CC16. The ULTRA study. *Inhalation toxicology* 2009;21(13):1068-76.
- 9. Billet S, Landkocz Y, Martin PJ, et al. Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. *Journal of Environmental Sciences* 2018;71:168-78.
 10. Querol X, Viana M, Alastuey A, et al. Source origin of trace elements in PM from regional
 - Querol X, Viana M, Alastuey A, et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. *Atmospheric Environment* 2007;41(34):7219-31.
 - 11. Viana M, Kuhlbusch T, Querol X, et al. Source apportionment of particulate matter in Europe: a review of methods and results. *Journal of aerosol science* 2008;39(10):827-49.
- 425 12. Viana M, Amato F, Alastuey As, et al. Chemical tracers of particulate emissions from commercial shipping. *Environmental science & technology* 2009;43(19):7472-77.
 427 13. Krall JR. Strickland MJ. Recent approaches to estimate associations between source-specific air
 - 13. Krall JR, Strickland MJ. Recent approaches to estimate associations between source-specific air pollution and health. *Current environmental health reports* 2017;4(1):68-78.
- 429 14. Peden DB. The epidemiology and genetics of asthma risk associated with air pollution. *Journal of* 430 *Allergy and Clinical Immunology* 2005;115(2):213-19. doi: 10.1016/j.jaci.2004.12.003
- 431 15. Sacks JD, Stanek LW, Luben TJ, et al. Particulate matter–induced health effects: Who is susceptible?
 432 *Environmental health perspectives* 2010;119(4):446-54.
- 433 16. Raza H. Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications
 434 in oxidative stress, toxicity and disease. *The FEBS journal* 2011;278(22):4243-51.
 435 17. Levinsson A. Olin A-C. Modig L. et al. Interaction effects of long-term air pollution exposure and
- 435 17. Levinsson A, Olin A-C, Modig L, et al. Interaction effects of long-term air pollution exposure and
 436 variants in the GSTP1, GSTT1 and GSTCD genes on risk of acute myocardial infarction and
 437 hypertension: a case-control study. *PLoS One* 2014;9(6):e99043.
- 438 18. Bowatte G, Lodge CJ, Knibbs LD, et al. Traffic-related air pollution exposure is associated with
 439 allergic sensitization, asthma, and poor lung function in middle age. *Journal of Allergy and* 440 *Clinical Immunology* 2017;139(1):122-29. e1.
- 440 Clinical Immunology 2017;139(1):122-29. e1.
 441 19. Dai X, Bowatte G, Lowe AJ, et al. Do Glutathione S-Transferase Genes Modify the Link between Indoor Air Pollution and Asthma, Allergies, and Lung Function? A Systematic Review. Current allergy and asthma reports 2018;18(3):20.

3	444	20. Minelli C, Wei I, Sagoo G, et al. Interactive effects of antioxidant genes and air pollution on
4 5	445	respiratory function and airway disease: a HuGE review. American journal of epidemiology
6	446	2011;173(6):603-20.
7	447 448	21. Vieira F, Kung JW, Bhatti F. Structure, genetics and function of the pulmonary associated surfactant
8	440 449	proteins A and D: The extra-pulmonary role of these C type lectins. <i>Annals of Anatomy</i> 2017;211:184-201. doi: 10.1016/j.aanat.2017.03.002 [published Online First: 2017/03/30]
9	449	22. Silveyra P, Floros J. Genetic variant associations of human SP-A and SP-D with acute and chronic
10	451	lung injury. Front Biosci (Landmark Ed) 2012;17:407-29. doi: 10.2741/3935 [published Online
11	452	First: 2011/12/29]
12	453	23. Malik S, Greenwood CM, Eguale T, et al. Variants of the SFTPA1 and SFTPA2 genes and
13 14	454	susceptibility to tuberculosis in Ethiopia. <i>Human genetics</i> 2006;118(6):752-9. doi:
14	455	10.1007/s00439-005-0092-y [published Online First: 2005/11/18]
16	456	24. Guan J, Liu X, Xie J, et al. Surfactant protein a polymorphism is associated with susceptibility to
17	457	chronic obstructive pulmonary disease in Chinese Uighur population. Journal of Huazhong
18	458	University of Science and Technology 2012;32(2):186-89.
19	459	25. Mehlig K, Berg C, Björck L, et al. Cohort Profile: The INTERGENE Study. International journal
20	460	of epidemiology 2017;46(6):1742-43h.
21	461	26. Dahgam S, Modig L, Naluai ÅT, et al. Haplotypes of the inducible nitric oxide synthase gene are
22	462	strongly associated with exhaled nitric oxide levels in adults: a population-based study. Journal
23	463	of medical genetics 2014;51(7):449-54.
24 25	464	27. Olin A-C, Rosengren A, Thelle DS, et al. Height, age, and atopy are associated with fraction of
25 26	465	exhaled nitric oxide in a large adult general population sample. Chest 2006;130(5):1319-25.
20 27	466	28. Strandhagen E, Berg C, Lissner L, et al. Selection bias in a population survey with registry linkage:
27	467	potential effect on socioeconomic gradient in cardiovascular risk. Eur J Epidemiol
29	468	2010;25(3):163-72. doi: 10.1007/s10654-010-9427-7 [published Online First: 2010/02/04]
30	469	29. Segersson D, Eneroth K, Gidhagen L, et al. Health Impact of PM10, PM2.5 and Black Carbon
31	470	Exposure Due to Different Source Sectors in Stockholm, Gothenburg and Umea, Sweden. Int J
32	471	Environ Res Public Health 2017;14(7) doi: 10.3390/ijerph14070742 [published Online First:
33	472	2017/07/08]
34	473	30. Andersson S, Arvelius J, Brodl L, et al. Metod- och kvalitetsbeskrivning för geografiskt fördelade
35	474 475	emissioner till luft Norrköping Länsstyrelsen, 2018.
36	475 476	31. Berkowicz R. OSPM-A parameterised street pollution model. <i>Environmental monitoring and</i>
37 38	470	assessment 2000;65(1-2):323-31. 32. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. <i>European respiratory</i>
30 39	478	journal 2005;26(2):319-38.
40	479	33. Brisman J, Kim JL, Olin AC, et al. Spirometric reference equations for Swedish adults. <i>Clinical</i>
41	480	physiology and functional imaging 2017;37(6):640-45.
42	481	34. Brisman J, Kim JL, Olin AC, et al. A physiologically based model for spirometric reference
43	482	equations in adults. <i>Clinical physiology and functional imaging</i> 2016;36(1):77-84.
44	483	35. R Core Team R. R: A language and environment for statistical computing: R foundation for
45	484	statistical computing Vienna, Austria, 2013.
46	485	36. Janssen NA, Yang A, Strak M, et al. Oxidative potential of particulate matter collected at sites with
47	486	different source characteristics. Science of the Total Environment 2014;472:572-81.
48	487	37. Schultz ES, Gruzieva O, Bellander T, et al. Traffic-related air pollution and lung function in children
49 50	488	at 8 years of age: a birth cohort study. American journal of respiratory and critical care
51	489	medicine 2012;186(12):1286-91.
52	490	38. Carlsen HK, Modig L, Levinsson A, et al. Exposure to traffic and lung function in adults: a general
53	491	population cohort study. BMJ open 2015;5(6):e007624.
54	492	39. Soares J, Kousa A, Kukkonen J, et al. Refinement of a model for evaluating the population exposure
55	493	in an urban area. Geosci Model Dev 2014;7(5):1855-72. doi: 10.5194/gmd-7-1855-2014
56	494	40. Eeftens M, Hoek G, Gruzieva O, et al. Elemental composition of particulate matter and the
57	495	association with lung function. <i>Epidemiology</i> 2014;25(5):648-57.
58	496	41. Tsai M-Y, Hoek G, Eeftens M, et al. Spatial variation of PM elemental composition between and
59	497	within 20 European study areas—results of the ESCAPE project. Environment international
60	498	2015;84:181-92.

- 499 42. Wang G, Umstead TM, Hu S, et al. Differential Effects of Human SP-A1 and SP-A2 on the BAL
 500 Proteome and Signaling Pathways in Response to Klebsiella pneumoniae and Ozone Exposure.
 501 *Front Immunol* 2019;10:561. doi: 10.3389/fimmu.2019.00561 [published Online First: 2019/04/12]
 - 43. Herrera-Ramos E, López-Rodríguez M, Ruíz-Hernández JJ, et al. Surfactant protein A genetic variants associate with severe respiratory insufficiency in pandemic influenza A virus infection.
 505 Critical Care 2014;18(3):R127.
 - 44. Lin Z, Thorenoor N, Wu R, et al. Genetic Association of Pulmonary Surfactant Protein Genes,
 SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD With Cystic Fibrosis. *Frontiers in immunology* 2018;9:2256.

to peet teriew only

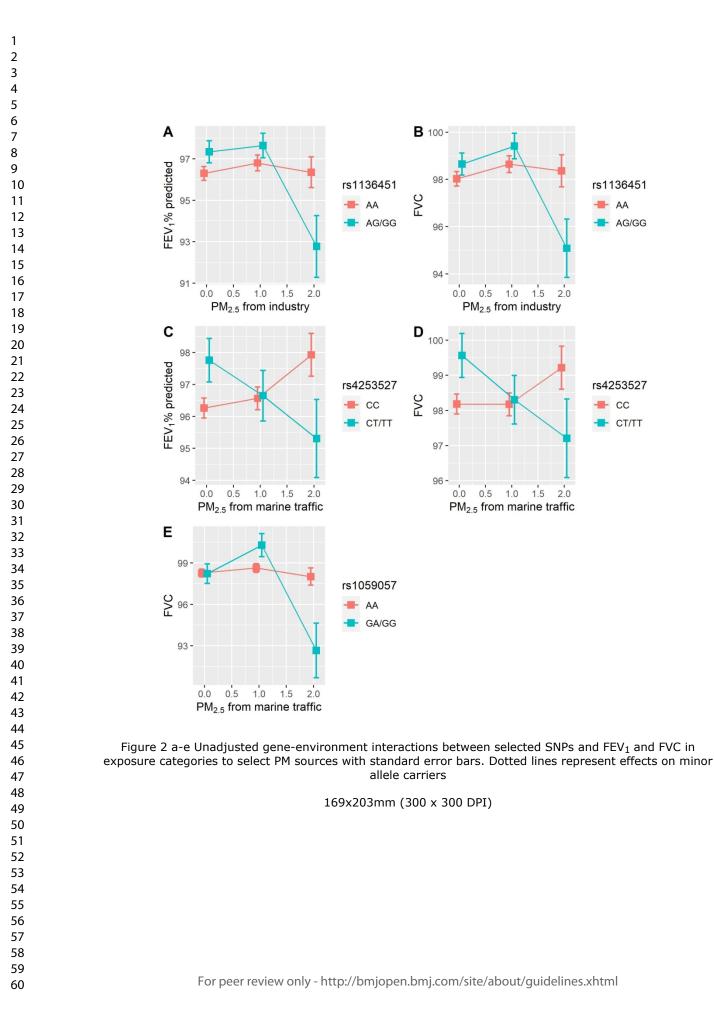
> For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

rs1136451

AG/GG

rs4253527

CT/TT


- cc

🗕 AA

2.0

2.0

BMJ Open

Page 27 of 37

BMJ Open

Supplementary tables for ADONIX: Lung function and source specific PM

		PM_{10})				$PM_{2.5}$	5				PM_{BC}	2			
		Total	Traffic	Res. heating	Marine traffic	Industry		Traffic	Res. heating	Marine traffic	Industry	Total	Traffic	Res. heating	Marine traffic	Industr
PM ₁₀	Total	1														
	Traffic	0.75*	1													
	Residential heating	-0.43	-0.70*	1												
	Marine traffic	0.06	0.44	-0.83*	1											
	Industry	-0.32	0.30	-0.60*	0.63*	1										
PM _{2.5}	Total	0.89*	0.37	-0.12	-0.22	-0.66*	1									
	Traffic	0.77*	1*	-0.70*	0.43	0.27	0.40	1								
	Residential heating	-0.43	-0.70*	1*	-0.83*	-0.60*	-0.12	-0.70*	1							
	Marine traffic	0.06	0.44	-0.83*	1*	0.63*	-0.22	0.43	-0.83*	1						
	Industry	-0.23	0.29	-0.70*	0.72*	0.94*	-0.54*	0.27	-0.70*	0.72*	1					
PM _{BC}	Total	0.83*	0.98*	-0.59*	0.32*	0.13	0.49	0.99*	-0.59*	0.32	0.13	1				
	Traffic	0.83*	0.99*	-0.69*	0.40*	0.19	0.48	1*	-0.69*	0.40	0.21	0.99*	1			
	Residential heating	-0.41	-0.69*	1*	-0.83*	-0.62*	-0.09	-0.69*	1*	-0.83*	-0.73*	-0.58*	-0.68*	1		
	Marine traffic	0.08	0.45	-0.83*	1*	0.62*	-0.20	0.44	-0.83*	1*	0.71*	0.33	0.41	-0.83*	1	
	Industry	-0.24	0.29	-0.70*	0.72*	0.94*	-0.54*	0.27	-0.70*	0.72*	1*	0.13	0.21	-0.72*	0.70*	1
* p<0.05																

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Supplementary tables for ADONIX: Lung function and source specific PM

For peer review only

Supplementary tables for ADONIX: Lung function and source specific PM

Table S2 Trends in change in FEV ₁ and FVC (% predicted) across e	xposure strata from low (0-50 th percentile) to high (above
90th percentile) concentrations of source-specific PM (Figure 1)	

	FE	EV ₁			F	FVC		
	β	-	6 CI	р	β	95%	6 CI	р
	•	Lower	Upper	•		Lower	Upper	
PM ₁₀								
Total	-0.37	-0,97	0,22	0.22	-0.73	-1,27	-0,19	0.01
Traffic	-0.85	-1,51	-0,19	0.01	-0.81	-1,40	-0,21	0.01
Residential								
heating	-0.21	-0,79	0,37	0.47	0.15	-0,38	0,67	0.59
Marine traffic	0.08	-0,54	0,71	0.32	-0.24	-0,81	0,32	0.29
Industry	-0.29	-0,91	0,33	0.36	-0.22	-0,79	0,35	0.45
PM _{2.5}								
Total	-0.03	-0,60	0,54	0.92	-0.47	-0,98	0,05	0.08
Traffic	-0.79	-1,45	-0,13	0.02	-0.81	-1,41	-0,21	0.01
Residential		,						
heating	-0.18	-0,77	0,40	0.53	0.15	-0,37	0,68	0.57
Marine traffic	0.08	-0,54	0,71	0.32	-0.24	-0,81	0,32	0.29
Industry	-0.12	-0,76	0,53	0.72	0.03	-0,55	0,62	0.91
	••••=	0,10	0,00			•,•••	•,•=	
РМ _{вс}								
Total	-0.66	-1,30	-0,01	0.05	-0.75	-1,34	-0,17	0.01
Traffic	-0.57	-1,22	0,09	0.09	-0.75	-1,34	-0,16	0.01
Residential								
heating	-0.02	-0,61	0,58	0.95	0.39	-0,15	0,93	0.16
Marine traffic	0.03	-0,61	0,67	0.33	-0.34	-0,91	0,24	0.30
Industry	-0.22	-0,86	0,42	0.49	-0.03	-0,61	0,55	0.92

ORs from regression models adjusted for age, weight, education, area of residence, smoking status and exposure to environmental tobacco smoke in the last 12 months.

 Supplementary tables for ADONIX: Lung function and source specific PM

			FEV1			FVC	
			95%	6 CI		95	% CI
	IQR (µg/m³)	β	Lower	Upper	β	Lower	Upper
PM ₁₀							
Total	3.05	-23	-46	0	-11	-30	8
Traffic	1.64	-23	-43	-4	-20	-36	-4
Residential heating	0.62	4	-20	28	-7	-27	12
Marine traffic	0.03	4	-8	16	4	-6	13
Industry	0.10	-26	-47	-5	-18	-35	-1
PM _{2.5}							
Total	2.47	-28	-54	-3	-5	-26	15
Traffic	0.52	-24	-43	-5	-20	-36	-4
Residential heating	0.62	4	-20	28	-7	-27	12
Marine traffic	0.03	4	-38	46	4	-30	38
Industry	0.06	-24	-49	0	-18	-38	2
РМ _{вс}							
Total	0.33	-29	-50	-8	-25	-42	-7
Traffic	0.25	-24	-42	-6	-18	-33	-4
Residential heating	0.07	4	-21	28	-11	-31	8
Marine traffic	0.01	3	-8	15	3	-6	13
Industry	0.01	-27	-51	-2	-20	-40	0

Change estimated from linear regression models adjusted for age, weight, education, area of residence, smoking status and exposure to environmental tobacco smoke in the last 12 months

BMJ Open

Supplementary tables for ADONIX: Lung function and source specific PM

		LLN FE	EV₁	LI	LN FVC				
			959	% CI			95%	∕₀ CI	
Model	Percentile	OR	lower	upper	р	OR	lower	upper	р
P M 10									
Total	0-50 th	-	-	-	-				
	50 th -90 th	1.05	0.87	1.26	0.61	1.23	1.00	1.51	0.05
	90 th -100 th	1.18	0.86	1.62	0.31	1.40	0.98	1.99	0.06
Traffic	0-50 th	ref	-	-		ref	-	-	
	50 th -90 th	1.12	0.92	1.36	0.28	1.16	0.93	1.45	0.18
	90 th -100 th	1.46	1.06	2.02	0.02	1.45	1.00	2.08	0.05
Residential heating	0-50 th	ref	-	-			ref	-	-
U	50 th -90 th	1.04	0.87	1.25	0.65	1.02	0.83	1.25	0.87
	90 th -100 th	0.90	0.66	1.25	0.54	0.69	0.47	1.01	0.06
Marine traffic	0-50 th	ref		-		ref	-	-	
	50 th -90 th	0.98	0.81	1.18	0.82	1.01	0.82	1.26	0.89
	90 th -100 th	0.83	0.59	1.17	0.29	0.91	0.62	1.33	0.64
Industry	0-50 th	ref	-	-		ref	-	-	
	50 th -90 th	0.99	0.81	1.22	0.95	1.03	0.82	1.30	0.79
	90 th -100 th	0.97	0.71	1.32	0.85	1.13	0.79	1.61	0.49
PM _{2.5}									
Total	0-50 th								
	50 th -90 th	0.97	0.81	1.16	0.76	1.03	0.84	1.26	0.77
	90 th -100 th	1.07	0.79	1.46	0.66	1.31	0.94	1.82	0.11
Traffic	0-50 th	ref	-	-	-				••••
	50 th -90 th	1.13	0.93	1.38	0.22	1.21	0.97	1.51	0.09
	90 th -100 th	1.47	1.06	2.03	0.02	1.54	1.07	2.21	0.02
Residential heating	0-50 th	ref	-	-	-	ref	-	-	
nouting	50 th -90 th	1.03	0.85	1.23	0.79	1.02	0.83	1.25	0.87
	90 th -100 th	0.90	0.65	1.23	0.50	0.69	0.47	1.01	0.06
Marine traffic	0-50 th	ref	-	-	0.00	ref	-	-	0.00
	50 th -90 th	0.98	0.81	1.18	0.82	1.01	0.82	1.26	0.89
	90 th -100 th	0.83	0.59	1.17	0.29	0.91	0.62	1.33	0.64
Industry	0-50 th	0.00	0.00	1.17	0.20	ref	-	-	0.04
Industry	50 th -90 th	0.91	0.74	1.12	0.38	1.03	0.82	1.30	0.79

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		Supple	mentary tab	les for ADC	NIX: Lung function	n and source specific F	1.13 0.79 1.61 ref 1.07 0.86 1.32						
	90 th -100 th	0.97	0.71	1.33	0.83	1.13	0.79	1.61	0.49				
Р М _{вс}													
Total	0-50 th					ref	-	-					
	50 th -90 th	1.08	0.89	1.31	0.44	1.07	0.86	1.32	0.56				
	90 th -100 th	1.34	0.97	1.86	0.08	1.46	1.02	2.09	0.04				
Traffic	0-50 th	ref	-	-	-								
	50 th -90 th	1.17	0.96	1.42	0.12	1.19	0.95	1.48	0.13				
	90 th -100 th	1.37	0.98	1.90	0.06	1.55	1.08	2.23	0.02				
Residential heating	0-50 th	ref	-	-	-	ref	-	-					
Ū	50 th -90 th	1.09	0.90	1.30	0.38	0.94	0.76	1.15	0.54				
	90 th -100 th	0.80	0.57	1.11	0.18	0.64	0.44	0.94	0.02				
Marine traffic	0-50 th	ref	6-	-		ref	-	-					
	50 th -90 th	1.00	0.82	1.21	0.96	1.00	0.81	1.25	0.98				
	90 th -100 th	0.89	0.64	1.26	0.52	0.94	0.64	1.37	0.75				
Industry	0-50 th					ref	-	-					
2	50 th -90 th	0.96	0.78	1.17	0.67	1.05	0.84	1.32	0.68				
	90 th -100 th	0.99	0.72	1.35	0.95	1.09	0.77	1.56	0.62				

 ORs from regression models adjusted for age, weight, education, area of residence, smoking status and exposure to environmental tobacco smoke in the last 12 months.FEV₁, forced expiratory volume in 1 second, FVC, forced vital capacity, LLN, lower limit of normal, the fifth percentile of a healthy population, according to formula from Brisman et al., 2017.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Supplementary tables for ADONIX: Lung function and source specific PM

			FE	EV1				FVC	
	N (%)	β	95% Lower	% CI Upper	р	β	95% Lower	% CI <u>Upper</u>	p
GSTP									
rs1138272									
(TT+CT)	707 (14.3)								
vs CC	4250 (85.7)	0.513	-0.539	1.565	0.339	0.790	-0.161	1.741	0.103
rs596603									
(TT+GT)	3363 (68.0)								
vs GG	1581 (32.0)	-0.336	-1.126	0.455	0.405	-0.216	-0.931	0.499	0.554
rs762803									
(AA+AC)	3309 (67.0)								
vs CC	1633 (33.0)	-0.802	-1.583	-0.02	0.044	-0.736	-1.443	-0.028	0.042
rs1695									
(AG+GG)	2683 (54.4)								
vs AA	2244 (45.5)	-0.902	-1.643	-0.16	0.017	-0.575	-1.246	0.095	0.093
<u>GSTT</u>									
rs2266637									
GG	1005 (23.8)								
vs CC	3219 (76.2)	-0.378	-1.331	0.575	0.437	-1.431	-2.293	-0.57	0.001
SP-A 1									
rs1136450									
(CC+GC)	2926 (63.8)								
vs GG	1660 (36.2)	-0.106	-0.899	0.704	0.807	-0.106	-0.832	0.62	0.774
rs1136451									
(GG+GA)	1352 (29.7)								
vs AA	3195 (70.3)	0.498	-0.348	1.345	0.248	0.257	-0.51	1.023	0.511
rs1059057									
(GG + GA)	579 (12.6)								
vs AA	4018 (87.4)	0.155	-1.003	1.313	0.793	0.073	-0.977	1.124	0.891
rs4253527	. ,								
					7				

		:	Supplementa	ary tables for A	ADONIX: Lung fur	nction and source spec	ific PM		
(TT+TC)	848 (18.5)								
<i>vs</i> CC <u>SP-A 2</u>	3735 (81.5)	0.479	-0.513	1.471	0.344	0.508	-0.392	1.408	0.269
rs1059046									
(GG+GT)	2814 (61.8)								
vs TT	1741 (38.2)	0.070	-0.724	0.865	0.862	0.038	-0.682	0.759	0.917
rs1965707	0100 (46 0)								
(AA+AG) <i>v</i> s GG	2103 (46.2) 2449 (53.8)	0.085	-0.686	0.856	0.829	0.255	-0.446	0.956	0.476
rs1965708)	2449 (00.0)	0.005	-0.000	0.000	0.029	0.200	-0.440	0.330	0.470
(TT+TG)	1551 (33.8)								
vs GG	3041 (66.2)	-0.583	-1.397	0.231	0.160	-0.342	-1.08	0.396	0.364
With adjustment for	age, weight, ed	ucation, area	a of reside	nce, smokir	ng status, and	exposure to enviro	onmental to	bacco smo	oke in the last 12
months.									
						exposure to enviro			

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Supplementary tables for ADONIX: Lung function and source specific PM

Table S6 Interaction between genotype (minor allele carriers) and total and source specific PM on lung function in a linear model

		INTERACT				
Gene	SNP	Total	Traffic	Residential heating	Marine traffic	Industry
FEV ₁						
GSTP1	rs1138272	P>0.1	P>0.1	P>0.1	P>0.1	0.05
GSTP1	rs596603	P>0.1	P>0.1	P>0.1	P>0.1	0.06
GSTP1	rs762803	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
GSTP1	rs1695	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
GSTT1	rs2266637	0. 01	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs1136450	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs1136451	P>0.1	P>0.1	P>0.1	0.04	0.01
SP-A1	rs1059057	0. 05	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs4253527	P>0.1	P>0.1	P>0.1	0.02	P>0.1
SP-A2	rs1059046	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A2	rs1965707	P>0.1	P>0.1	P>0.1	0.06	P>0.1
SP-A2	rs1965708	P>0.1	P>0.1	P>0.1	0.08	P>0.1
<u>FVC</u>						
GSTP1	rs1138272	P>0.1	P>0.1	P>0.1	P>0.1	0.06
GSTP1	rs596603	P>0.1	P>0.1	P>0.1	P>0.1	0.07
GSTP1	rs762803	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
GSTP1	rs1695	P>0.1	P>0.1	P>0.1	P>0.1	0.03
GSTT1	rs2266637	0.048	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs1136450	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs1136451	P>0.1	P>0.1	P>0.1	P>0.1	0.03
SP-A1	rs1059057	P>0.1	0.07	0.08	P>0.1	0.01
SP-A1	rs4253527	P>0.1	P>0.1	P>0.1	0.03	P>0.1
SP-A2	rs1059046	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A2	rs1965707	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A2	rs1965708	P>0.1	P>0.1	P>0.1	0.03	P>0.1

Interaction models were adjusted for age, weight, education, area of residence, smoking status and exposure to environmental tobacco smoke in the last 12 months.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	Ok,
		(b) Provide in the abstract an informative and balanced	Page 3
		summary of what was done and what was found	l age 5
T J		Summary of what was done and what was found	
Introduction	2	Evaluin the acientific heal-around and rationals for the	Introduction nagoo
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Introduction pages 4-5
Objectives	3	State specific objectives, including any prespecified	Page 5, last
Objectives	3	hypotheses	introduction
		nypomeses	paragraph
			paragraph
Methods	4	Descent how show outs of study, design controls in the non-on	In the chatness title
Study design	4	Present key elements of study design early in the paper	In the abstract, title
			and aims (last paragraph of
			introduction)
Setting	5	Describe the setting, locations, and relevant dates, including	Methods line 102,
Setting	5	periods of recruitment, exposure, follow-up, and data	Wrethous line 102,
		collection	
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods	Line 102 and and
i unicipants	0	of selection of participants. Describe methods of follow-up	references therein
		(b) For matched studies, give matching criteria and number of	Does not apply
		exposed and unexposed	Does not upply
Variables	7	Clearly define all outcomes, exposures, predictors, potential	From line 133
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details	From line 102
measurement		of methods of assessment (measurement). Describe	(cohort) and line
		comparability of assessment methods if there is more than one	111 (exposure)
		group	
Bias	9	Describe any efforts to address potential sources of bias	See statistical
			methods
Study size	10	Explain how the study size was arrived at	From line 103
Quantitative variables	11	Explain how quantitative variables were handled in the	From line 132
		analyses. If applicable, describe which groupings were chosen	
		and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to	From line 154
		control for confounding	
		(b) Describe any methods used to examine subgroups and	Line 171 and 173
		interactions	
		(c) Explain how missing data were addressed	Lines 281-286
		(<i>d</i>) If applicable, explain how loss to follow-up was addressed	Does not apply
		(<i>e</i>) Describe any sensitivity analyses	Line 173-175.
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg	Line 281-286.
		numbers potentially eligible, examined for eligibility,	

		confirmed eligible, included in the study, completing follow- up, and analysed	
		(b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Page 8, exposure page 8-9.
		(b) Indicate number of participants with missing data for each variable of interest	Does not apply
		(c) Summarise follow-up time (eg, average and total amount)	Does not apply
Outcome data	15*	Report numbers of outcome events or summary measures over time	See table 1
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Adjusted estimates are reported as main results, unadjusted estimates can be provided upon request. Interaction results are reported without adjustment
		 (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk 	Table 2 Does not apply
		into absolute risk for a meaningful time period	11 2
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Line 244-246.
Discussion		4	
Key results	18	Summarise key results with reference to study objectives	Line 248 onwards.
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	See article summary, from lin 50, and in discussion line 331 onward
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Discussion and interpretation lines 253 and onwards. Results from similar studies line 291-316.
Generalisability	21	Discuss the generalisability (external validity) of the study results	Line 364 onward
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Reported on manuscript central and statements.

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

JE de J.vww.pidem.

BMJ Open

Exposure to traffic related particle matter and effects on lung function and potential interactions in a cross-sectional analysis of a cohort study in West Sweden

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-034136.R2
Article Type:	Original research
Date Submitted by the Author:	02-Jul-2020
Complete List of Authors:	Carlsen, Hanne Krage; University of Gothenburg Sahlgrenska Academy, Occupational and Environmental Medicine Nyberg, Fredrik; Sahlgrenska Academy, Register Epidemiology, School of Public Health and Community Medicine; University of Gothenburg Sahlgrenska Academy, Occupational and Environmental Medicine Torén, Kjell; University of Gothenburg Sahlgrenska Academy, Occupational and Environmental Medicine Segersson, David; Sveriges meteorologiska och hydrologiska institut Olin, Anna-Carin; University of Gothenburg Sahlgrenska Academy, Occupational and Environmental Medicine
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Respiratory medicine, Public health
Keywords:	EPIDEMIOLOGY, GENETICS, PARTICLE MATTER, SURFACTANT PROTEIN A, glutathione S-transferase, LUNG FUNCTION

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		Manuscript	2020	Lung function and PM species data from SCAC								
1 2												
3	1	Title page										
4 5												
6 7	2	Exposure to traffic related particle matter and effects on lung function and potential interactions in a										
8 9	3	cross-sectional ana	alysis of a cohort study in West S	weden								
10 11												
12 13	4											
14	F	Ath aa										
15 16	5	Authors										
17												
18	6	Carlsen HK ¹ , hanne	e.krage.carlsen@amm.gu.se,*									
19 20												
20 21	7	Nyberg F ^{1,2} , fred	rik.nyberg2@gu.se									
22		y 0 /										
23	8	Torén K, <u>kjell.toren</u>	ı@amm.gu.se,									
24 25												
26	9	Sagarsson David ³	david sagarsson @smbi sa									
27	9	Segersson David ² , g	david.segersson@smhi.se									
28												
29 30	10	Olin A-C ¹ , anna-car	in.olin@amm.gu.se									
31												
32	11	Affiliations										
33 34												
35												
36	12	¹ Occupational and	Environmental Medicine, Depa	artment of Public Health & Community Medicine,								
37	13	Institute of Medici	ne Sahlgrenska Academy Unive	rsity of Gothenburg, Gothenburg, Sweden								
38 39	10	institute of Medici	ie, Sangrenska Academy, Onive	isity of dothenburg, dothenburg, sweden								
40												
41	14	² Register Epidemi	ology, School of Public Health	and Community Medicine, Institute of Medicine,								
42 43	15	Cableroncka Acada	my, University of Gothenburg, G	athenburg Swadan								
44	15	Salligrenska Acaue	my, oniversity of Gothenburg, G	othenburg, sweden								
45												
46	16	³ Swedish Meteoro	logical and Hydrological Institute	e, Norrköping, Sweden.								
47 48												
49	17	*Corresponding au	ithor, telephone number 0046 7	56238918								
50		corresponding ad										
51 52		_										
52 53	18	Word count: 3506										
54												
55	19	Keywords:										
56 57		-										
57 58	00											
59	20	PIVI SIZE fractions, F	vivi sources, lung function, GST, S	SP-A, gene-environment interaction								
60												

Manuscript

ABSTRACT

BMJ Open

22	objectives: To investigate the long-term effects of source-specific particle matter (PM) on lung
23	function, effects of Surfactant Protein A (SP-A) and glutathione S-transferase (GST) genes GSTP1
24	and GSTT1 gene variants and effect modification by single nucleotide polymorphism (SNP)
25	genotype.
26	design: Cohort study with address-based annual PM exposure assigned from annual estimates of
27	size (PM_{10} , $PM_{2.5}$ and PM_{BC}) and source-specific (traffic, industry, marine traffic and wood burning)
28	dispersion modelling.
29	setting: Gothenburg, Sweden.

participants: The ADONIX study had 6685 participants recruited from the general population,
 of which 5216 (78%) were included in the current study with information on all variables of
 interest. Mean age at the time of enrolment was 51.4 years (range 24-76) and 2427 (46.5%)
 were males.

primary and secondary outcome measures: The primary outcome was forced vital capacity
(FVC) and forced expiratory flow in 1 second (FEV₁). Secondary outcome measure were effects
and gene-environment interactions of SP-A and GSTT1 and GSTP1 genotypes.

results: Exposure to traffic-related PM₁₀ and PM₂₅ was associated with decreases in percentpredicted FEV₁ by -0.48% (95%CI -0.89% to -0.07%) and -0.47% (95%CI -0.88% to -0.07%) per interquartile range (IQR) 3.05 and 2.47 µg/m³, respectively, and with decreases in percent-predicted FVC by -0.46% (95%CI -0.83% to -0.08%) and -0.47% (95%CI -0.83% to -0.10%). Total and traffic-related PM_{BC} was strongly associated with both FEV₁ and FVC by -0.53 (95%CI -0.94 to -0.13%) and -0.43% (95%CI -0.77 to -0.09%) per IQR, respectively, for FVC, and similarly for FEV₁. Minor allele carrier status for two GSTP1 SNPs and the GSTT1 null genotype were associated with decreases in percent-predicted lung function. Three SP-A SNPs showed effect modification with exposure to PM₂₅ from industry and marine traffic.

1		Manuscript	2020	Lung function and PM species data from SCAC
1 2				
3 4	46			
5 6 7	47	conclusions: PM e	xposure, specifically traffi	c-related, was associated with FVC and FEV,
, 8 9	48	reductions and not m	odified by genotype. Gene	tic effect modification was suggested for industry
10 11	49	and marine traffic PM	2.5*	
12 13 14	50	Article summary: St	rength and limitations of th	s study
15 16 17	51	• An extensive	dispersion model of sour	ce-specific PM was assigned to a large, general
17 18 19	52	population co	hort of adults in a single urb	an region
20 21	53	• The cohort wa	as designed with focus on r	espiratory health and a broad range of covariates
22 23	54	were collecte	d as well as genotyping fo	genes with known associations with respiratory
24 25 26	55	health		
27 28	56	• Spirometry w	as performed according to	a standardized maneuver by trained personnel
29 30	57	although not v	with reversibility test	
31 32	58	• A full resident	ial history was not available	and thus exposure was assigned for the time of the
33 34 35	59	participation a	and indoor or occupational a	ir pollution exposure was not taken into account."
36 37				
38 39				
40 41				
42 43				
44 45				
46 47				
48				
49 50				
51				
52				
53 54				
55				
56 57				
57 58				
59				
60				

60 INTRODUCTION

Exposure to air pollution, especially traffic-related air pollution, is associated with reduced lung function¹⁻³ and accelerated lung function decline.⁴ However, there is little evidence of the relevance of particles of different sizes and from specific sources to respiratory health on a population level.⁵ To date particle sources have only been addressed in few epidemiological studies of respiratory health effects with non-conclusive results.^{2 6 7} In panel studies, there were stronger associations between short term increases in Club Cell protein CC16 (a marker of increased lung permeability) concentration in urine and high levels of traffic PM than total PM.⁸ In controlled experiments *in vitro*, exposing human lung cells to PM from different sources triggered very different pulmonary cell and DNA damage outcomes.⁹ A deepened knowledge about effects of specific particle pollution sources is of particular interest to prioritize public health measures to reduce health effects of ambient air pollution.

In epidemiological studies, air pollution is most often assigned to certain sources by building exposure profiles from particle size distributions and relative concentrations of specific chemicals in the particles. Traffic pollution is for example characterized by NOx and ultrafine particles.⁷ Particles from petrochemical industries are characterized by trace elements such as nickel, cobalt, caesium and lanthanum,¹⁰ and particles from other industry is characterized by high levels of trace metals vanadium and nickel,¹⁰¹¹ but are of course sector-dependent. Similarly, PM from marine traffic is subject to large uncertainties as fuel types and fleet types vary across the world.¹² However, this field of research is expanding rapidly as exposure science evolves with more sophisticated source specific models.¹³ Beyond the importance of exposure composition and source, individual susceptibility to air pollution is modified by many factors, including genetic differences. Susceptibility related to genetic variability may improve our understanding of the physiological mechanisms underlying health effects of air pollution.^{14 15} Glutathione S-transferase (GST) are involved in metabolizing reactive oxygen species to reduce oxidative stress.¹⁶ GSTP1 SNPs have been reported to modify the risk of cardiovascular disease associated with exposure to NO₂¹⁷ and to modify the association between NO₂ and lung function

decline in adults,¹⁸ but findings are inconsistent and no meta-analysis has been performed.^{19,20} Surfactant protein A (SP-A) is found in the surfactant fluid which lines the lung alveoli and has important functions in the innate immune system of the lungs, especially for opsonizing inhaled material.²¹ SP-A gene polymorphisms are associated with development of serious pulmonary disease and are involved in the pulmonary defence against pathogens.²² SNPs in SP-A coding regions have been associated with multiple respiratory diseases,¹⁴ ²³ as well as gene-environment interactions for smoking and chronic obstructive pulmonary disease.²⁴

Many questions remain as to what components of air pollution are harmful in a general population, in particular at relatively low pollution exposures, and if such associations are modified by genetic factors. Thus, the aim of the current study was to investigate the effects of different PM sources determined from a state-of the arts dispersion model on lung function in a general population cohort, and to investigate lung function effects of genotype and gene-environment interaction with particle erien exposures types.

METHODS

Study population

The study population originates from the ADONIX (ADult-Onset asthma and NItric oXide) cohort, a random sample of subjects aged 24-76 years who were invited to participate in a clinical examination between 2001-2008, as previously described.^{17 25-28} In brief, the overall participation rate was 46%, all participants provided data on residential address, lifestyle factors and education, presence of allergic airway inflammation and respiratory health, as well as clinical measurements of lung function, such as spirometry (single manoeuver) and nitric oxide in exhaled air (FENO). Blood samples were collected for DNA extraction and subsequently genotyped for selected SNPs from the SP-A, GSTP1, and GSTT1 genes.

Exposure assessment Page 7 of 39

BMJ Open

As a part of the involvement in the Swedish Clean Air and Climate project (SCAC), the Swedish Meteorological and Hydrological Institute (SMHI) modelled source-specific, annual particulate matter (PM) concentrations for different size fractions for each calendar year in the period 1990 to 2011 using dispersion modelling described in detail by Segersson and colleagues, 2017, including a detailed map of the area.²⁹ PM_{10} and $PM_{2.5}$ represent particles smaller than 10 and 2.5 micrometers (µm) respectively, whereas black carbon particles, PM_{BC}, are soot particles from combustion, notably vehicle exhaust. The specific sources that were investigated were traffic (exhaust and road wear for PM_{10} and PM_{2.5}, exhaust only for PM_{BC}), residential heating (predominantly house heating using wood assessed as area sources), marine traffic (averaged description from a bottom-up calculation using actual positions of ships in port, manoeuvring and cruising), and industrial sources (point sources, in Gothenburg dominated by refineries, energy plants, and other industry).³⁰ Background concentration (long-range transport particles), was also provided, but was estimated indirectly as the difference between total modelled local contribution and monitoring data from a central urban background station. Consequently, it showed no spatial variation and was not used for analyses. To refine the estimated contribution of traffic, an increment due to reduced ventilation in street canyons was added for the busiest streets. The increment was estimated as the difference between simulations with and without buildings using the OSPM model.³¹ For each study participant's residential address at the date of clinical examination, annual mean values of pollutants were calculated separately for the five source categories and modelled exposure grid values of all PM fractions were matched to the year of the participant's clinical examination.

9 129 Outcome definitions

Dynamic spirometry including FEV₁ and FVC was performed with the subject in a sitting position using
 a nose clip without bronchodilation. In all measurements, a Jaeger Master Screen PFT (Vyaire,
 Mettawa, IL, US) was used. All procedures were performed according to ATS/ERS standards.³² A local
 reference material was used for calculation of percent predicted (% predicted) of FEV₁ and FVC and

lower limit of normal, (LLN, the lower 5th percentile in healthy individuals) for FEV₁ and FVC.^{33 34} Asthma
was defined as reporting having had at least one asthma attack in the previous 12 months, and atopy
was defined as having a positive phadiatop test. We used FEV₁, FVC and FEV₁/FVC below LLN as an
indicator of clinically significant lung function reductions or air flow limitation.

Based on questionnaire replies, smoking status was categorised into current, former (no smoking during the last year) and never smoking. Upon inspection of the distribution of total and traffic particles within residential regions, postcodes were categorised into four residential areas: Inner city, non-central city, suburban, and outer suburb or rural. Education was categorised in six categories: elementary school, lower secondary school, training or girls' school, grammar school, university, and "other" or not reported. Individuals who did not have information on all variables of interest were excluded, except for genotype, where analyses were run separately for each SNP. For this study we used genotype data on four GSTP1 SNPs, a SNP marker for the GSTT1 null genotype, four SP-A1 SNPs and three SP-A2 SNPs. All SNPs were coded using a dominant model for the minor (least common) allele.

148 Statistical methods

First, descriptive statistics were calculated for the cohort and exposure data, and correlations between
the total and source-specific exposure estimates for all PM size fractions were determined.

We estimated the association between each PM size fraction for each PM source, with predicted FEV_1 and FVC, in linear models. First, percent predicted lung function effects associated with PM size fractions and sources were analysed with exposure as a continuous variable, and estimated for an interquartile increase in exposure (additionally, the analysis was repeated for lung function in Litres). Second, we investigated the effects of the highest exposure values by setting high exposure cut-off for PM above the 90th percentile of population exposure, medium exposure at 50-90th percentile, with exposure at or below 50th percentile as the reference, and tested these for linear trends. To investigate clinically significant effects, we modelled increased risk of low lung function with LLN as a cut-off in

BMJ Open

3	
4	
т 5	
5 6 7	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
12 13 14 15 16 17 18	
10	
17	
10	
19	
20	
21	
20 21 22 23 24 25 26 27	
23	
24	
25	
26	
27	
28	
20	
29 30 31 32 33 34 35 36	
30	
31	
32	
33	
34	
35	
34 35 36 37	
37	
38	
39	
40	
41	
41 42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53 54	
55	
56	
57	
58	
59	
~~	

logistic models. To assess confounding, covariates were added to regression models one at a time and
were retained in the model if the coefficient of PM was altered by more than 10% by their inclusion.
The covariates included in the final models were age, sex, weight, education, residential area, smoking
status, and exposure to passive smoking in the last 12 months.

For genetic markers, we assessed Hardy-Weinberg equilibrium, then analysed the association between genotypes and lung function for all available SNPs in single-SNP linear models coded as minor allele dominant effects. We present nominal p-values for these exploratory analyses. To evaluate effect modification, we tested for interaction of the effects of exposure to different PM size fractions and sources on lung function by genotype, and report the adjusted means of a fitted model adjusted for all covariate variables. The significance of the interaction terms was evaluated using a likelihood ratio tests comparing the model with interaction term to the model without this term.

In sensitivity analysis, the effects of PM were analysed in models stratified by sex, smoking status,
 asthma status, atopic status, BMI categories, and age categories to evaluate possible confounding from
 any of these characteristics.

All regression results for change in lung function were reported as increment or decrement in % predicted. Change in mL is reported in the supplement. Odds ratios were obtained from the logistic model analyses. All results are presented as point estimates with 95% confidence intervals, and with p-values as appropriate. Analyses were performed in R studio.³⁵

177 Patient and public involvement

178 Patients and the public were not involved in the design, or conduct, or reporting of the present
 51
 52 179 research.

55 180 **RESULTS**

181 The ADONIX cohort includes 6685 individuals. After excluding individuals with missing data on
 60 182 explanatory variables such as smoking status (25), environmental tobacco smoke (76), and who had

N=5216

missing, or very low quality of lung function (532), there were 6006 individuals, further 333 had a missing postcode, 315 did not have a European background, and 457 were outside the catchment area leaving 5216 for the main analysis. In the genetic analysis, up to 276 individuals had missing data. Finally, 5216 were included with information on the variables related to exposure and health outcomes used in this study and self-reported European ancestry. The mean age of the study population was 51.6 ±11.4 years and 46.5% were males, 46.1% had never smoked, 16.5% were current smokers and 10.2% were exposed to passive smoking. A total of 12.6% (n=656) of the study population had FEV_1 below lower limit of normal and 9.5% (n=494) had FVC below LLN. The most common highest education level was university education (37.1%), followed by grammar school (23.0%) (Table 1).

192 TABLE 1 CHARACTERISTICS OF THE STUDY POPULATION

N-5210	
Age, mean (SD)	51.6 (11.4)
Males, n (%)	2427 (46.5%)
Females	2789 (53.5%)
Respiratory health	
FEV ₁ (% of predicted*), mean (SD)	96.6 (13.7)
FVC (% of predicted*), mean (SD)	97.9 (12.4)
Below LLN of predicted FEV_1 , n (%)	656 (12.6%)
Below LLN of predicted FVC, n (%)	494 (9.5%)
Below LLN of FEV ₁ /FVC, n (%)	548 (10.5%)
Smoking	
Current smokers, n (%)	860 (16.5%)
Former smokers, n (%)	1951 (37.4%)
Never smokers, n (%)	2405 (46.1%)

Passive smoking (last 12 months)	534 (10.2%)
Education	
Elementary school, n (%)	639 (12.2%)
Lower secondary School, n (%)	175 (3.3%)
Training/girls school, n (%)	389 (7.5%)
Grammar school, n (%)	1205 (23.1%)
University, n (%)	1954 (37.5%)
Other or not reported, n (%)	853 (16.4%)
Residential area	
Inner city, n (%)	945 (18.1%)
Non-central urban, n (%)	922 (17.7)
Suburban, n (%)	2178 (41.7%)
Outer suburb or rural, n (%)	1171 (22.4%)
Self-reported respiratory health**	
Current asthma, n (%)	462/4698 (9.0%)
MD diagnosed asthma, n (%)	348/4828 (6.9%)
Allergy***, n (%)	1220/3887 (23.9%)
BMI, mean (standard deviation)	26.1 (4.1)

FEV₁, forced expiratory volume in 1 second. FVC, forced vital capacity. LLN, lower limit of normal, the fifth percentile of a healthy population.*Lung function predicted from age, height and sex.³³

**Adapted from questionnaire: "Have you had an asthma attack in the last 12 months?"

***Allergy was determined by a positive phadiatop test (IgE >0.35 IU/mL)

193	The mean annual air pollution levels at the residential addresses in the study population at study entry
194	were moderate, at 15.7 $\mu g/m^3$ PM $_{10}$, 9.3 $\mu g/m^3$ PM $_{2.5}$, and 0.76 $\mu g/m^3$ PM $_{BC}$ (Table 2). Background long-
195	range transported particle matter constituted the larger proportion of exposure, contributing t75%
196	and 76% of the total PM_{10} and $PM_{2.5}$ levels, respectively. The local emission source that contributed
197	mostly to total PM_{10} was traffic, whereas residential heating contributed most to $PM_{2.5}$ (Table 2).

198TABLE 2 DESCRIPTIVE STATISTICS OF EXPOSURE PARAMETERS IN THE STUDY199POPULATION

PM species and sources	Mean (SD)	50 th percentile	90 th	IQR
			percentile	
<u>PM₁₀total</u>	15.7 (2.49)	15.47	18.80	3.05
Traffic (µg/m³)	2.32 (1.75)	1.78	4.41	1.64
Residential heating (μ g/m ³)	1.22 (0.48)	1.17	1.88	0.62
Marine traffic (µg/m³)	0.03 (0.05)	0.02	0.08	0.03
Industry (µg/m³)	0.11 (0.09)	0.09	0.23	0.10
<u>PM_{2.5} total (</u> μg/m³)	9.33 (1.75)	9.36	11.80	2.47
Traffic (µg/m³)	0.74 (0.56)	0.57	1.41	0.52
Residential heating (μ g/m ³)	1.22 (0.48)	1.17	1.88	0.62
Marine traffic (µg/m ³)	0.03 (0.05)	0.05	0.08	0.03
Industry (µg/m³)	0.07 (0.05)	0.06	0.12	0.06
<u>PM_{BC}total (</u> μg/m³)	0.76 (0.32)	0.71	1.13	0.33
Traffic (μg/m³)	0.36 (0.29)	0.27	0.69	0.25
Residential heating(µg/m ³)	0.14 (0.06)	0.13	0.23	0.06
Marine traffic (μ g/m ³)	0.01 (0.01)	0.00	0.02	0.01
Industry (µg/m³)	0.01 (0.01)	0.01	0.01	0.01

200 IQR, interquartile range. SD, standard deviation.

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

201 Traffic was the largest contributor to PM_{BC}, and for PM_{BC} the contribution from long-range sources was 202 considerably lower than for PM₁₀ and PM_{2.5}, at 26%. Traffic sources were originally divided into exhaust 203 and road wear, but as these were highly correlated (r>0.98) we combined the two into a single variable 204 for traffic exposure and used that in the analyses. The correlation between total and traffic-related 205 exposure was very high for PM_{BC} (r=0.99), whereas it was high for PM₁₀ (r=0.75) and moderate for PM_{2.5} 206 (r=.040) (Table S1).

207 Effects of PM exposure

208 Percent predicted lung function were negatively associated with PM₁₀ and PM_{2.5} from traffic, and with 209 PM_{BC} in linear models with continuous exposure. The effect estimates for particles from residential 210 heating, marine traffic or industry indicated no strong or consistent adverse effects in the linear models 211 (Table 3).

TABLE 3 ESTIMATED CHANGE IN FEV, AND FVC PER IQR CHANGE IN PM FROM 212 213 **DIFFERENT SOURCES**

	Del	ta % preo	dicted F	EV ₁		Delta % pi	redicted F	VC
	В	95%	o Cl		В	95%	6 CI	
		Lower	Uppe	p-		Lower	Upper	p-value
			r	value				
PM₁₀ Total	-0.16	-0.64	0.33	0.53	-0.37	-0.81	0.07	0.10
Traffic	-0.48	-0.89	-0.07	0.02	-0.46	-0.83	-0.08	0.02
Residential								
heating	-0.30	-0.80	0.20	0.23	-0.03	-0.48	0.43	0.91
Marine traffic	0.00	-0.24	0.24	1.00	-0.05	-0.27	0.17	0.66
Industry	-0.33	-0.78	0.11	0.14	-0.40	-0.80	0.01	0.05

PM_{2.5} Total	0.00	-0.53	0.53	1.00	-0.47	-0.95	0.01	0.05
Traffic	-0.47	-0.88	-0.07	0.02	-0.47	-0.83	-0.10	0.01
Residential								
heating	-0.30	-0.80	0.20	0.23	-0.03	-0.48	0.43	0.91
Marine traffic	0.00	-0.89	0.89	1.00	-0.05	-0.85	0.75	0.66
Industry	-0.34	-0.86	0.18	0.21	-0.32	-0.80	0.15	0.18
PM_{BC} Total	-0.56	-1.01	-0.12	0.01	-0.53	-0.94	-0.13	0.01
Traffic	-0.41	-0.78	-0.03	0.03	-0.43	-0.77	-0.09	0.01
Residential								
heating	-0.38	-0.89	0.12	0.14	0.00	-0.46	0.45	0.99
Marine traffic	-0.01	-0.25	0.23	0.94	-0.05	-0.27	0.16	0.62
Industry	-0.40	-0.92	0.12	0.13	-0.38	-0.85	0.09	0.11

Parameter coefficients from in separate, single-pollutant models adjusted for age, weight, education, area of residence, smoking status, and exposure to environmental tobacco smoke in the last 12 months.

IQR, interquartile range.

 In models with categorical exposure (low, medium, and high exposure), there was a consistent trend across categories for traffic-related exposure in all particulate measures for both percent predicted FVC and FEV₁ (*p* for trend<0.05; for FEV₁ and PM_{BC} traffic p=0.09); the trend was slightly less strong and consistent for total PM exposure (Figure 1). There were no significant negative associations between percent predicted lung function and exposure to particles of any size from residential heating, marine traffic or industrial sources (Figure 1), nor were there statistically significant trends (Table S2). Estimating effects on lung function in mL rather than % predicted we observed significant decreases

BMJ Open

of FEV₁ and FVC associated with PM_{10} traffic, $PM_{2.5}$ total and traffic as in the percent predicted analysis (Table S3 and Table 3). However, in this analysis PM_{10} and PM_{BC} from industry were also associated with decreased FEV₁ and FVC (Table S3). In a logistic regression, high exposure to any particle fraction from traffic were associated with increased odds ratio of having clinically significant reductions in FEV₁ and FVC (below LLN) (p<0.05; except p=0.08 for FEV₁ and PM_{BC}) (Table S4). The ratio FEV₁/FVC below LLN was not associated with any exposure (data not shown).

227 Genetic main effects

All SNPs were in Hardy-Weinberg equilibrium except rs1136450, which has one very rare genotype (n=12). The frequency of the dominant minor allele carrier genotype varied from 12.6% to 68.0%. (Table S5). In a main effect analysis without considering environmental exposure, minor allele carrier status of three GST SNPs was associated with lung function outcomes in minor allele dominant genetic models. The two GSTP1 SNPs rs762803 and rs1695 were significantly associated with FEV₁ reductions by -0.80% (p=0.044) and -0.90% (p=0.017), respectively, and FVC reductions were seen in minor allele carriers of the same GSTP1 SNP rs762803 (-0.74%, p=0.042) and the GSTT1 null genotype assessed with SNP rs2266637 (-1.434%, p=0.001). No main effect associations were found with SP-A SNPs (Table S5).

236 Effect modification of PM effects

PM_{2.5}, which had marginally more consistent effects for traffic-related exposure, was used for exploratory interaction analyses. The effect of genotype and exposure to $PM_{2.5}$ from all sources was analysed in interaction models, and SNPs with exposure-interaction p-values below 0.1 are shown in Table S6. The number of significant interactions was higher than expected by chance. The most plausible statistically significant patterns of interaction were seen for industry-related exposure (Figure 2). Two SNPs from SP-A1, rs1136451 and rs1059057 had significant interaction effects on both FEV_1 and FVC, and on FVC only, respectively, suggesting variable susceptibility at high exposures. This result should, however, be seen as highly exploratory. Analysing the data stratifying by smoking status, atopy, asthma status, and BMI category showed no significant effect modification on the estimated effect of

3 4	2
5	,
	4
6 7 8	
9	
10	
11	
13	
14	
15 16	
9 10 11 12 13 14 15 16 17 18	
18	
19 20 21	
21	
22 23	
25 24	
25	
26 27	
28	
29	
30 31	
31 32 33	
33	
34 35	
36	
36 37	
38 39	
40	
41 42	
43	
44	
45 46	
47	
48	
49 50	
51	
52	
53 54	
55	
56	
57 58	

1 2

246 PM2.5 from traffic sources on lung function in either linear or logistic analysis. Although the estimated

effect of exposure differed between the subgroups, all confidence intervals overlapped (Table S7).

to been teriew only

DISCUSSION

In a general population cohort we observed significant associations between lung function and modelled exposure to PM₁₀ and PM_{2.5} from traffic as well as PM_{BC}. The association between FEV₁ and FVC was consistently present in 1) linear models with continuous exposure (Table 3), and 2) in models in which exposure was expressed as categories, high exposure (above the 90th percentile) compared to low exposure (<50th percentile) with significant trends across three exposure strata (Figure 1, Table S2). In the analyses, the observed average decreases were numerically small and without individual-level clinical significance, but in logistic regression models with binary outcomes, FEV₁ below LLN was associated with high exposure to PM₁₀ and PM_{2.5} traffic particles, and FVC below LLN was associated with traffic particles in all size fractions as well as total PM_{BC} (Table S4). This pattern was also found when exposure was expressed categorically for a continuous outcome (Figure 1). We observed no associations with airflow limitation, rather the negative associations with exposure means that such effects, which could possibly explained by the parallel reduction of both FEV_1 and FVC.

Because we observed significant associations between percent predicted lung function and most traffic-related exposure metrics on a population level, and no obvious associations were found between any fractions of PM from residential heating, marine traffic or industry, our results indicate that exposure to PM from traffic is particularly detrimental to lung function. However, we cannot rule out that we observed the lack of associations to other sources were due to a lower accuracy in exposure assessment for these sources. Furthermore, the relative contribution of marine traffic, industry and residential heating to total PM was modest (Table 2), which could also lead to inaccurate or low estimates without statistical significance. There are hypotheses postulating that exposure to newly formed particles, such as from traffic close to the domestic address, may be more potent and reactive, but so far there seem to be no consensus.^{29 36} Interestingly, in the analysis of crude lung function (in mL, rather than percent of predicted) we also observed associations with particles of

industrial origin, suggesting that they could be modified by factors related to age, height and sex whichare accounted for in the percent predicted value.

In spite of there being moderate to high correlations (0.75, 0.42 and 0.99) between total PM and traffic related PM in any of the three fractions (Table S1), total PM_{10} and $PM_{2.5}$ were not significantly associated with reductions in percent predicted FVC and FEV₁. Residential heating is the second largest local contribution to total PM, and we observed negative correlations between PM from residential heating and total PM as well as PM from other sources. PM from residential heating could thus be interpreted as an indicator of low exposure to other sources of air pollution which might contribute to explaining the few suggested inverse (positive) associations seen in some categorical analyses between PM from residential heating and FEV₁ and FVC (e.g. Figure 1).

For GSTP and GSTT genotypes, where carrying the minor or null allele, were associated with decreased percent predicted FEV₁ and FVC, whereas no direct effects of SP-ASNPS were found (Table S4). Gene-environment interactions were tested for all SNPs and all PM sources and size fraction, but significant and biologically plausible interactions were only observed between specific SP-A SNPs and exposure to PM_{2.5} from marine traffic and industrial sources, and not for traffic or total PM, where most direct effects where observed. We thus infer that it is possible that detrimental effects from marine traffic and industry PM t may affect specific individuals with genetic susceptibilities.¹⁴ Industrial exposure in Gothenburg is concentrated along the northern mouth of the Göta Älv River and is dominated by a power plant and oil refineries. PM from marine traffic is also concentrated along the river.

⁴⁸ 291 During initial analysis and covariate selection, we found that residential region was an effect modifier,
⁵⁰ 292 and included this as a covariate in the study. Other studies of lung function within a single region have
⁵² adjusted for municipality to avoid confounding of the results which is likely due socio-economic
⁵⁴ distribution of the study population in some urban areas, where high-exposed areas also have a high
⁵⁶ proportion of individuals with high socio-economic status which entails other risk factor panorama and
⁵⁹ 296 health behaviours.³⁷

Page 19 of 39

BMJ Open

In a previous study on the same cohort population, short distance to the nearest road was found to be associated with decreases in FEV₁ and FVC.³⁸ Comparing with other studies, the size of the estimated change in lung function in our study are similar and within confidence intervals of those reported from the UK biobank.³ The pollution levels found in the current study were moderate compared to those presented in the study from Adam and colleagues, reporting significant associations for both FEV₁ and FVC in adults related to long term exposure to NO₂, NOx and PM₁₀, but not PM_{2.5} or coarse PM in a meta-analysis of the ESCAPE data.⁷ In our study, both of NOx and NO₂ were highly correlated with traffic PM_{10} , $PM_{2.5}$ and PM_{BC} (all correlations r>0.79), for the years that both NOx and NO₂ and source specific PM estimates were available.

Effects specifically of exposure to industrial emissions have not been widely studied, and industry emissions are often pooled with other sources,²⁹ or considered negligible as high stacks disperse the emissions.³⁹ Studies of respiratory health with source specific results generally find associations mainly with traffic: In the study of Jacquemin and colleagues,⁸ only traffic, and not industry-specific particles were associated with the lung damage marker CC16. Krall and colleagues¹³ observed only effects from tailpipe exhaust on lung function and eNO. Billet and colleagues⁹ exposed cells *in-vitro* to particles from a highly industrialized environment and found that ultrafine particles with higher concentrations of polyaromatic hydrocarbons induced more oxidative DNA damage adducts and DNA damage response. Peng and colleagues⁶ observed that PM from vehicle emissions, diesel engines and wood burning were associated with the largest increases in emergency hospital admissions for CVD and respiratory disease.⁶ In a multi-city European study⁴⁰ there were negative associations between FEV₁ and PM from nickel and sulphur, however results were not consistent between cities, perhaps reflecting the heterogeneity in particle compositions in different cities in the study.⁴¹

SP-A has the ability to bind and help clear pathogens but also particle matter from the lungs by opsonisation²² and is activated in response to exposure to Ozone, another major air pollutant⁴² Previous literature suggest that SNPs of SP-A are associated with defect opsonisation, and hence

increased risk for viral infections,⁴³ but likely also for adverse effects of particle exposure (as well as
volatile exposures.²² We found a significant interaction between polymorphisms of two SP-A1 SNPs
and the association between exposure to PM from industrial sources and lung function. Other studies
have found rs1059057 to be associated with acute lung injury²² and cystic fibrosis,⁴⁴ and rs1136451
with susceptibility to COPD and analysed gene-environment effects from tobacco smoking.²⁴ The SP-A
2 SNP rs4253527 has been associated with tuberculosis.²²

We observed no gene-environment interactions with any GSTT or GSTP SNPS. The GSTP SNP rs1695 has been associated with possible increased asthma risk of air pollution exposure,¹⁹ whereas we found a main effect with lower FEV₁ in the current study of adults, but no interactions. These genetic interactions results should be seen as exploratory and be interpreted with caution.

⁷ 332 **Strengths and limitations**

The cohort data used in this study were collected to study respiratory health, and provides a rich dataset containing a large number of variables of interest. In the model selection, adding additional covariates as potential confounders did not affect the regression estimates substantially. Nonparticipation analysis was previously reported for the earliest collected cohort data (gathered 2001–2003) and showed that women, the elderly, and individuals with university education were more likely to participate.²⁸ As we adjusted for these covariates and as exposure was unknown to participants, this is not likely to bias the current results.

The number of individuals who fell below the lower limit of normal for both FEV₁ and FVC was rather high, as this value is defined as the 5th percentile in a healthy, non-smoking population. It is possible that individuals with respiratory issues, as well as past and present smokers, are more likely to take part in a study such as ADONIX.²⁸ On the other hand, with clinical outcome measures and an exposure which was not known to the participants, this is an unlikely source of important bias.

57 345 In this study, complete residential histories, including duration of residence, were not available. 50 346 Instead, we used a single modelled value for residential exposure that was matched by year of

BMJ Open

participation for each individual, rather than a complete longitudinal exposure history over multiple
years. We consider this a reasonable approach, as the between-year correlation in air pollution
concentrations and emissions in a certain location is very high.

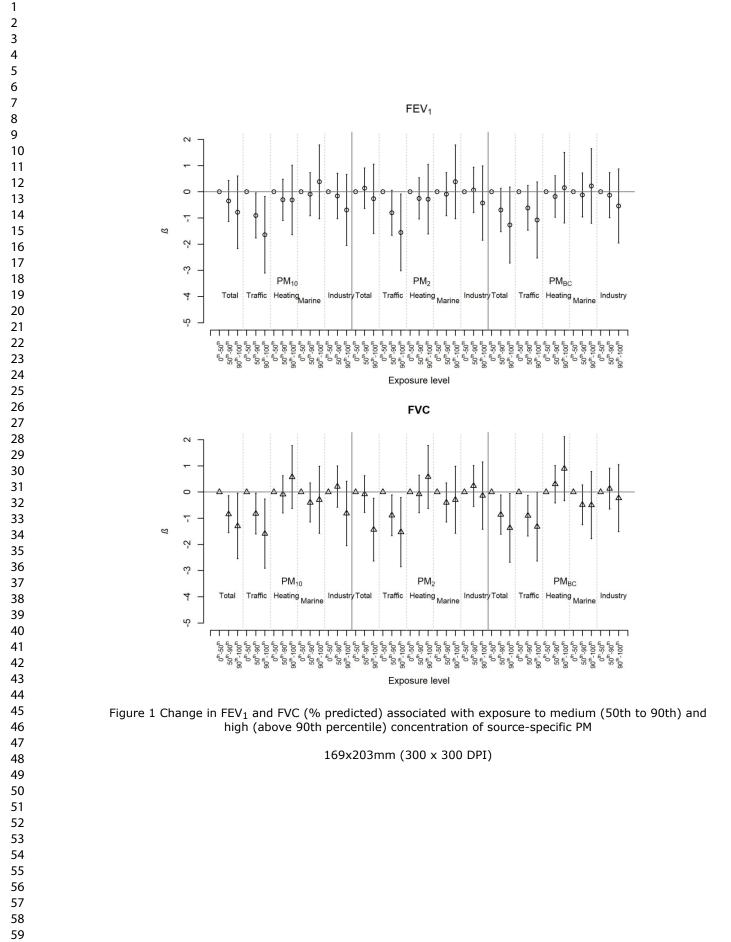
As people spend a fair proportion of their time outside their home, and our results are based on modelled air pollution data at the place of residence, the exposure represents an approximation of the real exposure. However, this is an established method which provides a fair picture of the actual exposure. The resulting, and likely nondifferential, misclassification of exposure would, however, then to shrink risk estimates towards the null. The model was developed using new emissions inventories, updated information on vehicle composition, and had been further verified by measurements.²⁹ However, for residential heating, the source assignment is based on proxies such as building type, as no actual source inventory was available, and may have a poorer performance.

The very high correlations between traffic-related PM_{10} , $PM_{2.5}$ and PM_{BC} (Table S1) mean that it is difficult to assign the observed effect to a certain size fraction with any certainty. The moderate to high correlations between the various PM source measures also meant we had to refrain from using multi-pollutant models, meaning that f estimates associated with each exposure type must be interpreted cautiously. Nevertheless, traffic-related PM exposure showed clear and consistent associations with FEV₁ and FVC, whereas the other source-specific exposures did not.

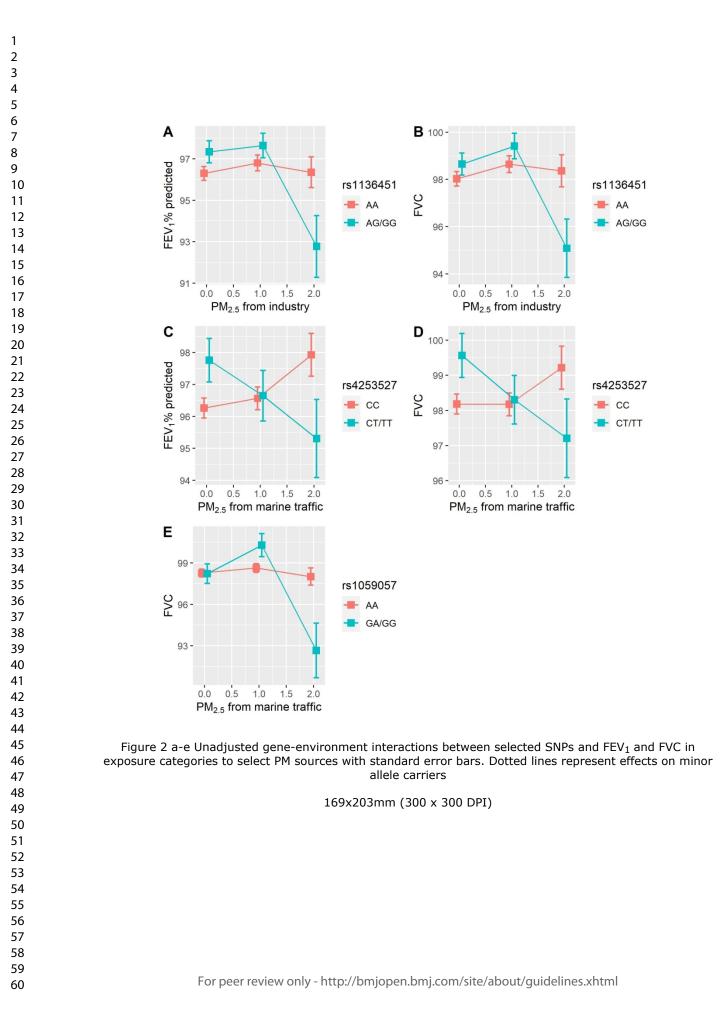
364 CONCLUSION

In this large study of clinically measured outcomes in a general population sample we found that exposure to traffic particles of all three studied PM species and size fractions were associated with reductions in FEV₁ and FVC and increased risk of low FEV₁ and FVC (below LLN), supporting the need for measures to reduce urban pollution from traffic to protect urban populations. Furthermore, we found intriguing suggestions in our exploratory analysis that the SP-A1 gene may play a part in susceptibility to air pollution from industrial sources, possibly due to its very different composition.

2		
3 4	371	Author Contributions
5 6	372	HKC analysed the data and drafted the manuscript. FN, KT, and A-CO provided the cohort
7	373	and genetic data, contributed to essential parts of the introduction and discussion and the final
8 9	374	manuscript. DS provided and documented the PM exposure data. All authors approved the
10 11	375	final version of the manuscript and contributed to the discussion.
12 13 14	376	Data statement
14 15 16	377	Additional data from the ADONIX study exist and are held by the authors.
17 18 19	378	Funding
20	379	This work was supported by the Swedish Heart and Lung Foundation, The Swedish Research
21 22	380	Council Formas, The Swedish Society for Medical Research and the Swedish Environmental
23 24	381	Protection Agency.
25 26 27	382	Competing interests
27 28 29	383	None declared.
30 31	384	Ethics approval: The Västra Götaland Region ethical review board approved of the study (ref
31 32 33	385	no. Ö 092-01) and participants gave informed consent.
34 35	386	Legends
36 37	387	Figure 1 Change in FEV1 and FVC (% predicted) associated with exposure to medium (50th to
38	388	90th) and high (above 90th percentile) concentration of source-specific PM
39 40		
41 42	389	
43 44	390	Figure 2 a-e Unadjusted gene-environment interactions between selected SNPs and FEV_1 and
45	391	FVC in exposure categories to select PM sources. Dotted lines represent effects on minor
46 47	392	allele carriers
48 49 50 51 52 53 54 55 56 57	393	
58 59		
60		


REFERENCES

- 395 1. Abbey DE, Burchette RJ, Knutsen SF, et al. Long-term particulate and other air pollutants and lung
 396 function in nonsmokers. *American journal of respiratory and critical care medicine* 397 1998;158(1):289-98.
- 398 2. Rice MB, Ljungman PL, Wilker EH, et al. Long-term exposure to traffic emissions and fine particulate matter and lung function decline in the Framingham heart study. *American Journal of Respiratory and Critical Care Medicine* 2015;191(6):656-64.
- 401 3. Doiron D, de Hoogh K, Probst-Hensch N, et al. Air pollution, lung function and COPD: results from
 402 the population-based UK Biobank study. *European Respiratory Journal* 2019;54(1):1802140.
- 403 4. Ackermann-Liebrich U, Kuna-Dibbert B, Probst-Hensch NM, et al. Follow-up of the Swiss Cohort
 404 Study on Air Pollution and Lung Diseases in Adults (SAPALDIA 2) 1991–2003: methods and
 405 characterization of participants. *Sozial-und Präventivmedizin/Social Preventive Medicine*406 2005;50(4):245-63.
- 5. Cassee FR, Héroux M-E, Gerlofs-Nijland ME, et al. Particulate matter beyond mass: recent health
 evidence on the role of fractions, chemical constituents and sources of emission. *Inhalation toxicology* 2013;25(14):802-12.
- 6. Peng RD, Bell ML, Geyh AS, et al. Emergency admissions for cardiovascular and respiratory diseases
 and the chemical composition of fine particle air pollution. *Environmental health perspectives*2009;117(6):957-63.
- 7. Adam M, Schikowski T, Carsin AE, et al. Adult lung function and long-term air pollution exposure.
 ESCAPE: a multicentre cohort study and meta-analysis. *European respiratory journal* 2015;45(1):38-50.
- 416 8. Jacquemin B, Lanki T, Yli-Tuomi T, et al. Source category-specific PM2. 5 and urinary levels of
 417 Clara cell protein CC16. The ULTRA study. *Inhalation toxicology* 2009;21(13):1068-76.
- 9. Billet S, Landkocz Y, Martin PJ, et al. Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. *Journal of Environmental Sciences* 2018;71:168-78.
 10. Querol X, Viana M, Alastuey A, et al. Source origin of trace elements in PM from regional
 - Querol X, Viana M, Alastuey A, et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. *Atmospheric Environment* 2007;41(34):7219-31.
- 424 11. Viana M, Kuhlbusch T, Querol X, et al. Source apportionment of particulate matter in Europe: a review of methods and results. *Journal of aerosol science* 2008;39(10):827-49.
- 426 12. Viana M, Amato F, Alastuey As, et al. Chemical tracers of particulate emissions from commercial shipping. *Environmental science & technology* 2009;43(19):7472-77.
- 428 13. Krall JR, Strickland MJ. Recent approaches to estimate associations between source-specific air pollution and health. *Current environmental health reports* 2017;4(1):68-78.
- 430 14. Peden DB. The epidemiology and genetics of asthma risk associated with air pollution. *Journal of* 431 *Allergy and Clinical Immunology* 2005;115(2):213-19. doi: 10.1016/j.jaci.2004.12.003
 - 432 15. Sacks JD, Stanek LW, Luben TJ, et al. Particulate matter–induced health effects: Who is susceptible?
 433 *Environmental health perspectives* 2010;119(4):446-54.
 - 434 16. Raza H. Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications
 435 in oxidative stress, toxicity and disease. *The FEBS journal* 2011;278(22):4243-51.
 - 436 17. Levinsson A, Olin A-C, Modig L, et al. Interaction effects of long-term air pollution exposure and variants in the GSTP1, GSTT1 and GSTCD genes on risk of acute myocardial infarction and hypertension: a case-control study. *PLoS One* 2014;9(6):e99043.
 - 439 18. Bowatte G, Lodge CJ, Knibbs LD, et al. Traffic-related air pollution exposure is associated with allergic sensitization, asthma, and poor lung function in middle age. *Journal of Allergy and Clinical Immunology* 2017;139(1):122-29. e1.
- 442
 443
 443
 443
 444
 444
 444
 445
 446
 446
 447
 447
 448
 448
 449
 449
 449
 449
 440
 440
 440
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441


445
 446
 446
 547
 447
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448

- 448 21. Vieira F, Kung JW, Bhatti F. Structure, genetics and function of the pulmonary associated surfactant
 449 proteins A and D: The extra-pulmonary role of these C type lectins. *Annals of Anatomy*450 2017;211:184-201. doi: 10.1016/j.aanat.2017.03.002 [published Online First: 2017/03/30]
- 451
 452
 453
 453
 22. Silveyra P, Floros J. Genetic variant associations of human SP-A and SP-D with acute and chronic lung injury. *Front Biosci (Landmark Ed)* 2012;17:407-29. doi: 10.2741/3935 [published Online First: 2011/12/29]
 - 454 23. Malik S, Greenwood CM, Eguale T, et al. Variants of the SFTPA1 and SFTPA2 genes and
 455 susceptibility to tuberculosis in Ethiopia. *Human genetics* 2006;118(6):752-9. doi: 10.1007/s00439-005-0092-y [published Online First: 2005/11/18]
 - 457 24. Guan J, Liu X, Xie J, et al. Surfactant protein a polymorphism is associated with susceptibility to
 458 chronic obstructive pulmonary disease in Chinese Uighur population. *Journal of Huazhong* 459 University of Science and Technology 2012;32(2):186-89.
 - 460 25. Mehlig K, Berg C, Björck L, et al. Cohort Profile: The INTERGENE Study. *International journal* 461 *of epidemiology* 2017;46(6):1742-43h.
- 462
 463
 26. Dahgam S, Modig L, Naluai ÅT, et al. Haplotypes of the inducible nitric oxide synthase gene are strongly associated with exhaled nitric oxide levels in adults: a population-based study. *Journal* of medical genetics 2014;51(7):449-54.
- 465
 465
 466
 466
 467
 467
 27. Olin A-C, Rosengren A, Thelle DS, et al. Height, age, and atopy are associated with fraction of exhaled nitric oxide in a large adult general population sample. *Chest* 2006;130(5):1319-25.
 28. Stem theorem F. Pare C. Lieuwith et al. Selection historic production in the selection of the selection
 - 467 28. Strandhagen E, Berg C, Lissner L, et al. Selection bias in a population survey with registry linkage:
 468 potential effect on socioeconomic gradient in cardiovascular risk. *Eur J Epidemiol* 2010;25(3):163-72. doi: 10.1007/s10654-010-9427-7 [published Online First: 2010/02/04]
 - 470 29. Segersson D, Eneroth K, Gidhagen L, et al. Health Impact of PM10, PM2.5 and Black Carbon
 471 Exposure Due to Different Source Sectors in Stockholm, Gothenburg and Umea, Sweden. Int J
 472 Environ Res Public Health 2017;14(7) doi: 10.3390/ijerph14070742 [published Online First:
 473 2017/07/08]
 - 474 30. Andersson S, Arvelius J, Brodl L, et al. Metod- och kvalitetsbeskrivning för geografiskt fördelade
 475 emissioner till luft Norrköping Länsstyrelsen, 2018.
 - 476 31. Berkowicz R. OSPM-A parameterised street pollution model. *Environmental monitoring and assessment* 2000;65(1-2):323-31.
 - 478 32. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. *European respiratory journal* 2005;26(2):319-38.
 - 480 33. Brisman J, Kim JL, Olin AC, et al. Spirometric reference equations for Swedish adults. *Clinical physiology and functional imaging* 2017;37(6):640-45.
 - 482 34. Brisman J, Kim JL, Olin AC, et al. A physiologically based model for spirometric reference equations in adults. *Clinical physiology and functional imaging* 2016;36(1):77-84.
 - 484 35. R Core Team R. R: A language and environment for statistical computing: R foundation for statistical computing Vienna, Austria, 2013.
 - 486 36. Janssen NA, Yang A, Strak M, et al. Oxidative potential of particulate matter collected at sites with different source characteristics. *Science of the Total Environment* 2014;472:572-81.
 - 488 37. Schultz ES, Gruzieva O, Bellander T, et al. Traffic-related air pollution and lung function in children
 489 at 8 years of age: a birth cohort study. *American journal of respiratory and critical care*490 *medicine* 2012;186(12):1286-91.
 - 38. Carlsen HK, Modig L, Levinsson A, et al. Exposure to traffic and lung function in adults: a general
 population cohort study. *BMJ open* 2015;5(6):e007624.
 - 39. Soares J, Kousa A, Kukkonen J, et al. Refinement of a model for evaluating the population exposure
 in an urban area. *Geosci Model Dev* 2014;7(5):1855-72. doi: 10.5194/gmd-7-1855-2014
 - 495 40. Eeftens M, Hoek G, Gruzieva O, et al. Elemental composition of particulate matter and the association with lung function. *Epidemiology* 2014;25(5):648-57.
- 497 41. Tsai M-Y, Hoek G, Eeftens M, et al. Spatial variation of PM elemental composition between and
 498 within 20 European study areas—results of the ESCAPE project. *Environment international* 2015;84:181-92.

1 2 3 4 5 6 7 8 9 10 11 12	500 501 502 503 504 505 506 507 508	 Wang G, Umstead TM, Hu S, et al. Differential Effects of Human SP-A1 and SP-A2 on the BAL Proteome and Signaling Pathways in Response to Klebsiella pneumoniae and Ozone Exposure. <i>Front Immunol</i> 2019;10:561. doi: 10.3389/fimmu.2019.00561 [published Online First: 2019/04/12] Herrera-Ramos E, López-Rodríguez M, Ruíz-Hernández JJ, et al. Surfactant protein A genetic variants associate with severe respiratory insufficiency in pandemic influenza A virus infection. <i>Critical Care</i> 2014;18(3):R127. Lin Z, Thorenoor N, Wu R, et al. Genetic Association of Pulmonary Surfactant Protein Genes, SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD With Cystic Fibrosis. <i>Frontiers in immunology</i> 2018;0:2256
13	509	2018;9:2256.
14 15	510	
15 16		
17		
18 19		
20		
21		
22 23		
24		
25 26		
20 27		
28		
29 30		
31		
32 33		
34		
35 36		
37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 40		
49 50		
51		
52 53		
54		
55 56		
56 57		
58		
59 60		
50		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary tables for ADONIX: Lung function and source specific PM

		PM ₁₀	0				PM _{2.5}	5								
		Total	Traffic	Res. heating	Marine traffic	Industry		Traffic	Res. heating	Marine traffic	Industry	PM _{BC} Total	Traffic	Res. heating	Marine traffic	Industr
PM 10	Total	1														
	Traffic	0.75*	1													
	Residential heating	-0.43	-0.70*	1												
	Marine traffic	0.06	0.44	-0.83*	1											
	Industry	-0.32	0.30	-0.60*	0.63*	1										
PM _{2.5}	Total	0.89*	0.37	-0.12	-0.22	-0.66*	1									
	Traffic	0.77*	1*	-0.70*	0.43	0.27	0.40	1								
	Residential heating	-0.43	-0.70*	1*	-0.83*	-0.60*	-0.12	-0.70*	1							
	Marine traffic	0.06	0.44	-0.83*	1*	0.63*	-0.22	0.43	-0.83*	1						
	Industry	-0.23	0.29	-0.70*	0.72*	0.94*	-0.54*	0.27	-0.70*	0.72*	1					
РМ _{вс}	Total	0.83*	0.98*	-0.59*	0.32*	0.13	0.49	0.99*	-0.59*	0.32	0.13	1				
	Traffic	0.83*	0.99*	-0.69*	0.40*	0.19	0.48	1*	-0.69*	0.40	0.21	0.99*	1			
	Residential heating	-0.41	-0.69*	1*	-0.83*	-0.62*	-0.09	-0.69*	1*	-0.83*	-0.73*	-0.58*	-0.68*	1		
	Marine traffic	0.08	0.45	-0.83*	1*	0.62*	-0.20	0.44	-0.83*	1*	0.71*	0.33	0.41	-0.83*	1	
	Industry	-0.24	0.29	-0.70*	0.72*	0.94*	-0.54*	0.27	-0.70*	0.72*	1*	0.13	0.21	-0.72*	0.70*	1
* p<0.05																

 BMJ Open

Supplementary tables for ADONIX: Lung function and source specific PM

90th percentile) concentrations of source-specific PM (Figure 1)	Table S2 Trends in change in FEV ₁ and FVC (% predicted) across exposure strata from low (0-50 th percentile) to high (above
	90th percentile) concentrations of source-specific PM (Figure 1)

	FE	V ₁			F	FVC		
	β	95%	6 CI	р	β	95%	6 CI	р
		Lower	Upper			Lower	Upper	•
PM ₁₀								
Total	-0.37	-0,97	0,22	0.22	-0.73	-1,27	-0,19	0.01
Traffic Residential	-0.85	-1,51	-0,19	0.01	-0.81	-1,40	-0,21	0.01
heating	-0.21	-0,79	0,37	0.47	0.15	-0,38	0,67	0.59
Marine traffic	0.08	-0,54	0,71	0.32	-0.24	-0,81	0,32	0.29
Industry	-0.29	-0,91	0,33	0.36	-0.22	-0,79	0,35	0.45
PM _{2.5}								
Total	-0.03	-0,60	0,54	0.92	-0.47	-0,98	0,05	0.08
Traffic Residential	-0.79	-1,45	-0,13	0.02	-0.81	-1,41	-0,21	0.01
heating	-0.18	-0,77	0,40	0.53	0.15	-0,37	0,68	0.57
Marine traffic	0.08	-0,54	0,71	0.32	-0.24	-0,81	0,32	0.29
Industry	-0.12	-0,76	0,53	0.72	0.03	-0,55	0,62	0.91
PM _{BC}								
Total	-0.66	-1,30	-0,01	0.05	-0.75	-1,34	-0,17	0.01
Traffic	-0.57	-1,22	0,09	0.09	-0.75	-1,34	-0,16	0.01
Residential		,	- ,			,	-, -	
heating	-0.02	-0,61	0,58	0.95	0.39	-0,15	0,93	0.16
Marine traffic	0.03	-0,61	0,67	0.33	-0.34	-0,91	0,24	0.30
Industry	-0.22	-0,86	0,42	0.49	-0.03	-0,61	0,55	0.92

ORs from regression models adjusted for age, weight, education, area of residence, smoking status and exposure to environmental tobacco smoke in the last 12 months.

 Supplementary tables for ADONIX: Lung function and source specific PM

			FEV1			FVC	
			95%	6 CI		95	% CI
	IQR (µg/m³)	β	Lower	Upper	β	Lower	Upper
P M 10							
Total	3.05	-23	-46	0	-11	-30	8
Traffic	1.64	-23	-43	-4	-20	-36	-4
Residential heating	0.62	4	-20	28	-7	-27	12
Marine traffic	0.03	4	-8	16	4	-6	13
Industry	0.10	-26	-47	-5	-18	-35	-1
PM _{2.5}							
Total	2.47	-28	-54	-3	-5	-26	15
Traffic	0.52	-24	-43	-5	-20	-36	-4
Residential heating	0.62	4	-20	28	-7	-27	12
Marine traffic	0.03	4	-38	46	4	-30	38
Industry	0.06	-24	-49	0.	-18	-38	2
РМ _{вс}							
Total	0.33	-29	-50	-8	-25	-42	-7
Traffic	0.25	-24	-42	-6	-18	-33	-4
Residential heating	0.07	4	-21	28	-11	-31	8
Marine traffic	0.01	3	-8	15	3	-6	13
Industry	0.01	-27	-51	-2	-20	-40	0

Change estimated from linear regression models adjusted for age, weight, education, area of residence, smoking status and exposure to environmental tobacco smoke in the last 12 months

BMJ Open

Supplementary tables for ADONIX: Lung function and source specific PM

		LLN FE				LI	LN FVC		
			959	% CI			95%	% CI	
Model	Percentile	OR	lower	upper	р	OR	lower	upper	р
P M 10									
Total	0-50 th	-	-	-	-				
	50 th -90 th	1.05	0.87	1.26	0.61	1.23	1.00	1.51	0.05
	90 th -100 th	1.18	0.86	1.62	0.31	1.40	0.98	1.99	0.06
Traffic	0-50 th	ref	-	-		ref	-	-	
	50 th -90 th	1.12	0.92	1.36	0.28	1.16	0.93	1.45	0.18
	90 th -100 th	1.46	1.06	2.02	0.02	1.45	1.00	2.08	0.05
Residential	0-50 th								
heating		ref	-	-			ref	-	-
0	50 th -90 th	1.04	0.87	1.25	0.65	1.02	0.83	1.25	0.87
	90 th -100 th	0.90	0.66	1.25	0.54	0.69	0.47	1.01	0.06
Marine traffic	0-50 th	ref				ref	-	-	
	50 th -90 th	0.98	0.81	1.18	0.82	1.01	0.82	1.26	0.89
	90 th -100 th	0.83	0.59	1.17	0.29	0.91	0.62	1.33	0.64
Industry	0-50 th	ref	-	-		ref	-	-	
	50 th -90 th	0.99	0.81	1.22	0.95	1.03	0.82	1.30	0.79
	90 th -100 th	0.97	0.71	1.32	0.85	1.13	0.79	1.61	0.49
PM _{2.5}		0.01	•		0.00		••		•••••
Total	0-50 th								
	50 th -90 th	0.97	0.81	1.16	0.76	1.03	0.84	1.26	0.77
	90 th -100 th	1.07	0.79	1.46	0.66	1.31	0.94	1.82	0.11
Traffic	0-50 th	ref	-	-	-				••••
	50 th -90 th	1.13	0.93	1.38	0.22	1.21	0.97	1.51	0.09
	90 th -100 th	1.47	1.06	2.03	0.02	1.54	1.07	2.21	0.02
Residential	0-50 th								••••
heating		ref	-	-	-	ref	-	-	
	50 th -90 th	1.03	0.85	1.23	0.79	1.02	0.83	1.25	0.87
	90 th -100 th	0.90	0.65	1.23	0.50	0.69	0.47	1.01	0.06
Marine traffic	0-50 th	ref	-	-	0.00	ref	-	-	0.00
	50 th -90 th	0.98	0.81	1.18	0.82	1.01	0.82	1.26	0.89
	90 th -100 th	0.83	0.59	1.17	0.29	0.91	0.62	1.33	0.64
Industry	0-50 th	0.00	0.00		0.20	ref	-	-	0.01
	50 th -90 th	0.91	0.74	1.12	0.38	1.03	0.82	1.30	0.79

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		Supple	mentary tab	oles for ADC	NIX: Lung function	and source specific I	PM		
	90 th -100 th	0.97	0.71	1.33	0.83	1.13	0.79	1.61	0.49
РМ _{вс}									
Total	0-50 th					ref	-	-	
	50 th -90 th	1.08	0.89	1.31	0.44	1.07	0.86	1.32	0.56
	90 th -100 th	1.34	0.97	1.86	0.08	1.46	1.02	2.09	0.04
Traffic	0-50 th	ref	-	-	-				
	50 th -90 th	1.17	0.96	1.42	0.12	1.19	0.95	1.48	0.13
	90 th -100 th	1.37	0.98	1.90	0.06	1.55	1.08	2.23	0.02
Residential heating	0-50 th	ref	-	-	-	ref	-	-	
0	50 th -90 th	1.09	0.90	1.30	0.38	0.94	0.76	1.15	0.54
	90 th -100 th	0.80	0.57	1.11	0.18	0.64	0.44	0.94	0.02
Marine traffic	0-50 th	ref	6-	-		ref	-	-	
	50 th -90 th	1.00	0.82	1.21	0.96	1.00	0.81	1.25	0.98
	90 th -100 th	0.89	0.64	1.26	0.52	0.94	0.64	1.37	0.75
Industry	0-50 th					ref	-	-	
,	50 th -90 th	0.96	0.78	1.17	0.67	1.05	0.84	1.32	0.68
	90 th -100 th	0.99	0.72	1.35	0.95	1.09	0.77	1.56	0.62

 ORs from regression models adjusted for age, weight, education, area of residence, smoking status and exposure to environmental tobacco smoke in the last 12 months.FEV₁, forced expiratory volume in 1 second, FVC, forced vital capacity, LLN, lower limit of normal, the fifth percentile of a healthy population, according to formula from Brisman et al., 2017.

BMJ Open

Supplementary tables for ADONIX: Lung function and source specific PM

			F	EV1				FVC	
	N (%)	β	95% Lower	% CI Upper	р	β	95% Lower	% CI Upper	p
GSTP								<u>oppci</u>	
rs1138272									
(TT+CT)	707 (14.3)								
vs CC	4250 (85.7)	0.513	-0.539	1.565	0.339	0.790	-0.161	1.741	0.103
rs596603									
(TT+GT)	3363 (68.0)								
vs GG	1581 (32.0)	-0.336	-1.126	0.455	0.405	-0.216	-0.931	0.499	0.554
rs762803	()								
(AA+AC)	3309 (67.0)								
vs CC	1633 (33.0)	-0.802	-1.583	-0.02	0.044	-0.736	-1.443	-0.028	0.042
rs1695						••••••			••••
(AG+GG)	2683 (54.4)								
vs AA	2244 (45.5)	-0.902	-1.643	-0.16	0.017	-0.575	-1.246	0.095	0.093
<u>GSTT</u>	(.e.e)	01002		••••		0.010		01000	01000
rs2266637									
GG	1005 (23.8)								
vs CC	3219 (76.2)	-0.378	-1.331	0.575	0.437	-1.431	-2.293	-0.57	0.001
	0210 (1012)	0101.0	11001	0.010	01101			••••	01001
<u>SP-A 1</u>									
<u></u>									
rs1136450									
(CC+GC)	2926 (63.8)								
vs GG	1660 (36.2)	-0.106	-0.899	0.704	0.807	-0.106	-0.832	0.62	0.774
rs1136451	()								
(GG+GA)	1352 (29.7)								
`vs AA ́	3195 (70.3)	0.498	-0.348	1.345	0.248	0.257	-0.51	1.023	0.511
rs1059057	()								
(GG + GA)	579 (12.6)								
`vs AA ∕́	4018 (87.4)	0.155	-1.003	1.313	0.793	0.073	-0.977	1.124	0.891
rs4253527	()								
					6				

			Supplementa	ary tables for <i>i</i>	ADONIX: Lung fu	unction and source spec	ific PM		
(TT+TC) <i>v</i> s CC	848 (18.5) 3735 (81.5)	0.479	-0.513	1.471	0.344	0.508	-0.392	1.408	0.269
<u>SP-A 2</u>	0700 (01.0)	0.475	0.010	1.471	0.044	0.000	0.002	1.400	0.200
rs1059046									
(GG+GT)	2814 (61.8)	0.070	0 704	0.005	0.000	0.020	0.000	0.750	0.047
<i>vs</i> TT rs1965707	1741 (38.2)	0.070	-0.724	0.865	0.862	0.038	-0.682	0.759	0.917
(AA+AG)	2103 (46.2)								
<i>vs</i> GG	2449 (53.8)	0.085	-0.686	0.856	0.829	0.255	-0.446	0.956	0.476
rs1965708)									
(TT+TG) <i>v</i> s GG	1551 (33.8) 3041 (66.2)	-0.583	-1.397	0.231	0.160	-0.342	-1.08	0.396	0.364
With adjustment for		ucation, area	a of reside	nce. smokii	ng status, and		nmental to	bacco smo	
months.		,	6	,	·g · · · · · · ·				
					7				
		_		1 1	7		1		
		For pe	eer review oi	nly - http://br	njopen.bmj.com	n/site/about/guidelines	s.xhtml		

BMJ Open

Supplementary tables for ADONIX: Lung function and source specific PM

Table S6 Interaction between genotype (minor allele carriers) and total and source specific PM on lung function in a linear model

		INTERACT				
Gene	SNP	Total	Traffic	Residential heating	Marine traffic	Industry
FEV ₁						
GSTP1	rs1138272	P>0.1	P>0.1	P>0.1	P>0.1	0.05
GSTP1	rs596603	P>0.1	P>0.1	P>0.1	P>0.1	0.06
GSTP1	rs762803	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
GSTP1	rs1695	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
GSTT1	rs2266637	0. 01	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs1136450	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs1136451	P>0.1	P>0.1	P>0.1	0.04	0.01
SP-A1	rs1059057	0.05	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs4253527	P>0.1	P>0.1	P>0.1	0.02	P>0.1
SP-A2	rs1059046	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A2	rs1965707	P>0.1	P>0.1	P>0.1	0.06	P>0.1
SP-A2	rs1965708	P>0.1	P>0.1	P>0.1	0.08	P>0.1
<u>FVC</u>						
GSTP1	rs1138272	P>0.1	P>0.1	P>0.1	P>0.1	0.06
GSTP1	rs596603	P>0.1	P>0.1	P>0.1	P>0.1	0.07
GSTP1	rs762803	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
GSTP1	rs1695	P>0.1	P>0.1	P>0.1	P>0.1	0.03
GSTT1	rs2266637	0.048	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs1136450	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A1	rs1136451	P>0.1	P>0.1	P>0.1	P>0.1	0.03
SP-A1	rs1059057	P>0.1	0.07	0.08	P>0.1	0.01
SP-A1	rs4253527	P>0.1	P>0.1	P>0.1	0.03	P>0.1
SP-A2	rs1059046	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A2	rs1965707	P>0.1	P>0.1	P>0.1	P>0.1	P>0.1
SP-A2	rs1965708	P>0.1	P>0.1	P>0.1	0.03	P>0.1

Interaction models were adjusted for age, weight, education, area of residence, smoking status and exposure to environmental tobacco smoke in the last 12 months.

Supplementary tables for ADONIX: Lung function and source specific PM

Table S7 Sensitivity analysis - ESTIMATED CHANGE IN FEV1 AND FVC PER IQR CHANGE IN PM2.5 FROM traffic in various subgroups of the cohort

Linear regression			EV ₁			F∖		
			% CI		_	95%		
	β	Lower	Upper	p	β	Lower	Upper	р
<u>Smoking status</u>								
Never smoker	-0.26	-0.84	0.33	0.10	-0.47	-1.01	0.07	0.0
Former smoker	-0.10	-0.83	0.61	0.50	-0.33	-0.98	0.31	0.3
Current smoker	-1.61	-2.50	-0.72	0.06	-0.71	-1.52	0.10	0.0
Atopic sensibilisation*								
No atopy	-0.84	0.13	0.08	<0.00	-0.36	-0.80	0.08	0.0
Atopy	-1.46	0.12	0.05	<0.00	-0.67	-1.37	0.04	0.3
Asthma*								
No asthma	-0.38	-0.79	0.04	0.07	-0.44	-0.82	-0.06	0.0
Asthma	-0.70	-2.33	0.92	0.40	-0.58	-1.89	0.74	0.3
Body mass index (BMI. kg/m2)								
Underweight (BMI <= 20)	0.41	-2.06	2.88	0.74	0.22	-2.11	2.55	0.8
Normal weight (BMI 0-25)	-0.08	-0.70	0.53	0.79	-0.29	-0.83	0.26	0.3
Overweight (BMI >25)	-0.85	-1.42	-0.29	<0.00	-0.64	-1.15	-0.13	0.0
Logistic regression		959	% CI			95%	6 CI	
Smoking status	OR	Lower	Upper	p	OR	Lower	Upper	р
Never smoker	1.43	1.08	1.90	0.01	1.38	1.04	1.85	0.0
Former smoker	1.24	0.94	1.64	0.12	1.06	0.87	1.30	0.7
Current smoker	0.98	0.69	1.39	0.90	1.26	0.97	1.63	0.2
Atopic sensibilisation*								
No atopy	1.13	0.92	1.39	0.23	1.23	0.98	1.55	0.0
Atopy	1.38	0.98	1.95	0.06	1.26	0.98	1.62	0.2
<u>Asthma**</u>								
No asthma	1.21	0.99	1.47	0.05	1.27	1.03	1.57	0.0
Asthma	1.18	0.76	1.82	0.47	1.24	0.91	1.69	0.4
Body mass index (BMI. kg/m2)								

 BMJ Open

Supplementary tables for ADONIX: Lung function and source specific PM

				,	0	•		
Underweight (BMI <= 20)	1.15	0.39	3.32	0.81	1.02	0.44	2.34	0.96
Normal weight (BMI 0-25)	1.03	0.75	1.41	0.85	1.06	0.84	1.35	0.75
Overweight (BMI >25)	1.35	1.09	1.66	<0.00	1.36	1.19	1.56	0.01

FEV₁, forced expiratory volume in 1 second. FVC, forced vital capacity. IQR, interguartile range. β from linear regression models adjusted for age, weight,

education, area of residence, and smoking status, excluding the stratification variable in the models stratified for smoking status and BMI. ORs from generalized linear regression models adjusted for age, weight, education, area of residence, and smoking status excluding the stratification variable in the models stratified for smoking status and BMI.

*Allergy was determined by a positive phadiatop test (IgE >0.35 IU/mL)

**Answering "yes" to "Have you had an asthma attack in the last 12 months?"

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	Ok,
		(b) Provide in the abstract an informative and balanced	Page 3
		summary of what was done and what was found	l age 5
T J		Summary of what was done and what was found	
Introduction Background/rationale	2	Evaluin the acientific heal-around and rationals for the	Introduction nagoo
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Introduction pages 4-5
Objectives	3	State specific objectives, including any prespecified	Page 5, last
Objectives	3	hypotheses	introduction
		nypomeses	paragraph
			paragraph
Methods	4	Descent how show outs of study, design controls in the non-on	In the chatness title
Study design	4	Present key elements of study design early in the paper	In the abstract, title
			and aims (last paragraph of
			introduction)
Setting	5	Describe the setting, locations, and relevant dates, including	Methods line 102,
Setting	5	periods of recruitment, exposure, follow-up, and data	Wrethous line 102,
		collection	
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods	Line 102 and and
i unicipants	0	of selection of participants. Describe methods of follow-up	references therein
		(b) For matched studies, give matching criteria and number of	Does not apply
		exposed and unexposed	Does not upply
Variables	7	Clearly define all outcomes, exposures, predictors, potential	From line 133
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details	From line 102
measurement		of methods of assessment (measurement). Describe	(cohort) and line
		comparability of assessment methods if there is more than one	111 (exposure)
		group	
Bias	9	Describe any efforts to address potential sources of bias	See statistical
			methods
Study size	10	Explain how the study size was arrived at	From line 103
Quantitative variables	11	Explain how quantitative variables were handled in the	From line 132
		analyses. If applicable, describe which groupings were chosen	
		and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to	From line 154
		control for confounding	
		(b) Describe any methods used to examine subgroups and	Line 171 and 173
		interactions	
		(c) Explain how missing data were addressed	Lines 281-286
		(<i>d</i>) If applicable, explain how loss to follow-up was addressed	Does not apply
		(<i>e</i>) Describe any sensitivity analyses	Line 173-175.
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg	Line 281-286.
		numbers potentially eligible, examined for eligibility,	

		confirmed eligible, included in the study, completing follow- up, and analysed	
		(b) Give reasons for non-participation at each stage	_
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	Page 8, exposure
Descriptive data	11	clinical, social) and information on exposures and potential	page 8-9.
		confounders	F8
		(b) Indicate number of participants with missing data for each	Does not apply
		variable of interest	fin the first
		(c) Summarise follow-up time (eg, average and total amount)	Does not apply
Outcome data	15*	Report numbers of outcome events or summary measures	See table 1
		over time	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-	Adjusted estimates
		adjusted estimates and their precision (eg, 95% confidence	are reported as
		interval). Make clear which confounders were adjusted for	main results,
		and why they were included	unadjusted
			estimates can be
			provided upon
			request.
			Interaction results
			are reported
			without adjustment
		(b) Depart actors in hour device when continuous veriables	Table 2
		(b) Report category boundaries when continuous variables	Table 2
		were categorized	Dees not onni-
		(c) If relevant, consider translating estimates of relative risk	Does not apply
0.1	17	into absolute risk for a meaningful time period	Line 244-246.
Other analyses	17	Report other analyses done—eg analyses of subgroups and	Line 244-246.
		interactions, and sensitivity analyses	
Discussion	10		
Key results	18	Summarise key results with reference to study objectives	Line 248 onwards.
Limitations	19	Discuss limitations of the study, taking into account sources	See article
		of potential bias or imprecision. Discuss both direction and	summary, from lin
		magnitude of any potential bias	50, and in
			discussion line 331
			onward
Interpretation	20	Give a cautious overall interpretation of results considering	Discussion and
		objectives, limitations, multiplicity of analyses, results from	interpretation lines
		similar studies, and other relevant evidence	253 and onwards.
			Results from
			similar studies line
			291-316.
Generalischility	21	Discuss the generalisability (external validity) of the study	Line 364 onward
Generalisability	∠1	results	
Other information			
Funding	22	Give the source of funding and the role of the funders for the	Reported on
i unum <u>s</u>	<i></i>	-	manuscript central
		present study and, if applicable, for the original study on which the present article is based	and statements.

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

L JBE α β://www.pidem. -g