

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Chronic Hyperglycaemia Increases the Risk of Kidney Stone disease, Results from a Systematic Review and Meta-Analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-032094
Article Type:	Research
Date Submitted by the Author:	07-Jun-2019
Complete List of Authors:	Geraghty, Robert; University Hospital Southampton NHS Foundation Trust, Abdi, Abdihakim; University of Southampton Somani, Bhaskar; University Hospital Southampton NHS Trust, Urology Cook, Paul; University Hospital Southampton, Clinical Biochemistry Roderick, Paul; University of Southampton, Health Care Research Unit
Keywords:	Urolithiasis < UROLOGY, DIABETES & ENDOCRINOLOGY, Other metabolic, e.g. iron, porphyria < DIABETES & ENDOCRINOLOGY
	·

1		
2		
3	1	Chronic Hyperglycaemia Increases the Risk of Kidney Stone disease, Results from a
4	2	Systematic Review and Meta-Analysis
5		Systematic Neview and Meta-Analysis
6	3	
7	4	Authors:
8	5	
9	6	1. Robert M Geraghty BSc – Corresponding author
10	7	
11		Academic Foundation Trainee, Department of Urology, University Hospital
12	8	Southampton, Tremona Road, SO16 6YD
13	9	r.geraghty@soton.ac.uk
14	10	
15	11	2. Abdihakim Abdi
16	12	Medical Student
17		
18	13	University of Southampton
19 20	14	
20	15	3. Bhaskar K Somani DM
21 22	16	Consultant Urologist and Associate Professor
22 23	17	University Hospital Southampton
25 24		Oniversity hospital southampton
24	18	
26	19	4. Paul Cook PhD
27	20	Consultant Chemical Pathologist
28	21	University Hospital Southampton
29	22	
30	23	5. Paul Roderick MD
31		
32	24	Professor of Primary Care and Population Sciences
33	25	University of Southampton
34	26	
35	27	
36	28	
37		
38	29	Abstract word count: 257
39	30	
40	31	Text word count: 2957
41	32	
42	33	Keywords: Diabetes Mellitus; Impaired Glucose Tolerance; Metabolic Syndrome: Kidney
43	34	Stone Disease
44		Stolle Disease
45	35	
46		
47		
48		
49 50		
50		
51 52		
52 53		
55 54		
55		
56		
57		
58		
59		
60		

2 3		
5 4	36	<u>Abstract</u>
5 6	37	Design: Systematic review and meta-analysis of observational studies
7 8 9	38	was performed using PRISMA guidelines for studies reporting on Diabetes
10 11	39	Mellitus (DM) or Metabolic syndrome (MetS) and kidney stone disease (KSD).
12 13 14	40	Objective: To examine the association between chronic
15 16 17	41	hyperglycaemia, in the form of DM and IGT in the context of MetS, and KSD.
17 18 19	42	Setting: Population based observational studies.
20 21 22	43	Participants: Patients with and without chronic hyperglycaemic states
22 23 24	44	(DM and MetS).
25 26	45	Main Outcome Measures: English language articles from January
27 28 29	46	2001-June 2018 reporting on observational studies. Exclusions: no
30 31	47	comparator group or fewer than 100 patients. Both unadjusted and adjusted
32 33 34	48	(where reported) values were identified and used for meta-analysis. Bias was
35 36	49	assessed using Newcastle-Ottawa scale.
37 38 39	50	Results: 2340 articles were screened with 13 studies included for
40 41	51	meta-analysis, 7 DM (3 cohort) and 6 MetS. 5 of the MetS studies provided
42 43 44	52	data on IGT alone. These included: DM, n=28,329; MetS, n=31,767; IGT,
45 46	53	n=12,770. Controls: DM, n=589,791; MetS, n=178,050; IGT, n=293,852
47 48 49	54	patients.
50 51	55	Adjusted risk for DM cohort studies, RR=1.23 (0.94-1.51) (p<0.001).
52 53	56	Adjusted Odds ratios for: DM cross-sectional/case-control studies, OR=1.32
54 55 56	57	(1.21-1.43) (p<0.001); IGT, OR=1.26 (0.92-1.58) (p<0.0001) and MetS,
57 58 59 60	58	OR=1.35 (1.16-1.54) (p<0.0001).

1		
2 3 4	59	There was no significant difference between IGT and DM (XS/CaCo),
5 6 7	60	nor IGT and MetS. There was a moderate risk of publication bias. Statistical
8 9	61	heterogeneity was significant in adjusted DM cohort values and adjusted IGT
10 11 12	62	XS/CaCo, but non-signficant for DM XS/CaCo.
13 14	63	Conclusion: Chronic hyperglycaemia increases the risk of developing
15 16	64	kidney stone disease. In the context of the diabetes pandemic, this will
17 18 19	65	increase the burden of stone related morbidity and mortality.
20 21 22	66	Trial registration: PROSPERO registration number CRD42018093382.
22 23 24	67	
25 26 27	68	
27 28 29	69	
30 31	70	Strengths and Limitations of This Study
32 33	71	 Largest systematic review and meta-analysis examining the risk of
34 35 36	72	chronic hyperglycaemic states and kidney stone disease (KSD), with
37 38	73	bias analysis.
39 40 41	74	Only observational studies available
42 43	75	Meta-analysis of Cohort studies examining Diabetes Mellitus
44 45 46	76	demonstrates an increased risk of KSD of of 1.23 (0.94-1.51) (p<0.001)
47 48	77	over the general population.
49 50 51	78	• There was a moderate risk of publication bias.
52 53	79	Statistical heterogeneity was significant in adjusted DM cohort values
54 55 56	80	and adjusted IGT
57 58 59 60	81	

Kidney stone disease (KSD) is a painful and costly condition[1] where

precipitates of normal urinary solutes aggregrate to form stones of varying

worldwide[3-6], with corresponding rises in surgical treatment rates[7] and

sizes and compositions[2]. Incidence of acute urolithiasis is rising

82 Introduction

88	morbidity[8,9] although mortality has declined[8,10]. 5-year recurrence rates
89	have been reported as high as 50%[11]. Long term problems associated with
90	recurrent KSD are decreased quality of life, missed work days[12], disabling
91	pain, need for repeated operations, complications including infection and
92	acute kidney injury[13,14], as well as long term increased risk of developing
93	chronic kidney disease[15].
94	Patients with Diabetes mellitus (DM)[16] and metabolic syndrome
95	(MetS)[17] have been identified as carrying a higher risk of developing KSD.
96	The global prevalence of both conditions has risen to pandemic levels[9,18]
97	seemingly in parallel with KSD[19]. There is overlap between the two
98	conditions, with impaired glucose tolerance (IGT), or pre-diabetes being one
99	of the five components of the 'metabolic syndrome'[20]. Although the
100	pathophysiology with respect to KSD is yet to be definitively described,
101	patients with either MetS or DM have been shown to have increased urinary
102	acidification and produce more uric acid stones than controls. Notably, with
103	rising BMI in both diabetic and non-diabetic patients, the incidence of uric
104	acid stones rises, whilst calcium oxalate stones fall[21,22].

1 2		
3 4	105	Previous systematic reviews have examined either DM[23] or
5 6 7	106	MetS[24,25] in isolation. These studies performed either no meta-
8 9	107	analysis[25], or else their heterogeneity/ sensitivity analyses were
10 11 12	108	limited[23,24]. Given the overlap between the two conditions we aimed to
12 13 14	109	perform a systematic review and meta-analysis of the existing literature on
15 16	110	both DM and MetS with complete sensitivity, bias and heterogeneity
17 18 19	111	analyses.
20 21	112	
22 23 24	113	
25 26	114	Evidence Acquisition
27 28 29 30	115	Search strategy and study selection
31 32 33	116	Population – Chronic hyperglycaemics (diabetes mellitus, impaired glucose
34 35 36	117	tolerance in context of metabolic syndrome) and those with metabolic
37 38	118	syndrome
39 40 41	119	Comparator – Those without hyperglycaemia (DM/IGT) or metabolic
42 43	120	syndrome, respectively
44 45 46	121	Outcome – Kidney stone disease (KSD) – all compositions
40 47 48	122	Study design – Systematic review and meta-analysis of published
49 50	123	observational studies (cohort, case control and cross-sectional)
51 52 53	124	
54 55	125	Inclusion criteria:
56 57 58	126	1) All articles written in the English language
59 60	127	2) Adults (>18 years)

2		
3	128	3) All articles reporting on risk of developing kidney stone disease in
4	120	57 An articles reporting on risk of developing kidney stone disease in
5 6	129	diabetes mellitus (type 1 and type 2) in comparison to general
7 8	130	population
9 10		
11 12	131	4) All articles reporting on risk of developing kidney stone disease in
13 14	132	patients with metabolic syndrome in comparison to general
15 16	133	population.
17 18 19	134	5) Risk in risk ratio (RR), hazard ratio (HR), odds ratio (OR) or prevalence
20 21	135	ratio (PR) with 95% confidence intervals.
22	120	
23 24	136	
24 25	137	Exclusion criteria:
26	137	Exclusion criteria.
27 28 20	138	1) Older studies using the same data as a more recent study – longest
29 30 31	139	follow-up used.
32 33	140	2) Studies exclusively using patients with kidney stone disease – unable
34 35 26	141	to calculate risk
36 37	140	2) Studies with less than 100 patients likely to be underneyward
38	142	3) Studies with less than 100 patients – likely to be underpowered
39 40 41	143	
42 43	144	The systematic review was performed according to the PRISMA
44 45	145	guidelines[26]. The search strategy was conducted to find relevant studies
46 47 48	146	from Ovid Medline without revisions (1996-June 2018), Cochrane Library
49 50 51	147	(2018), CINAHL (1990-June 2018), Clinicaltrials.gov, Google Scholar and
52 53	148	individual urologic, renal, metabolic and epidemiologic journals. The review
54 55	149	was registered prospectively with PROSPERO, ID number: CRD42018093382.
56 57 58	150	
59 60		

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30 39	
40	
40 41	
41	
43 44	
44 45	
45 46	
46 47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

151 Terms used included: "Diabetes", "Diabetes mellitus", "metabolic syndrome",
152 "urolithiasis", "nephrolithiasis", "kidney", "uret*", "ston*", "calcul*". Boolean
153 operators (AND, OR) were used to refine the search.

154 The search was limited to English language articles between January 2001 and155 June 2018. Only published data were used.

156 Two reviewers (RG and AM) identified all studies. All studies that appeared to 157 fit the inclusion criteria were included for full review. Each reviewer 158 independently selected studies for inclusion in the review [see fig. 1]. If there 159 was disagreement, PR and BKS made final decision on inclusion.

160 Data extraction and Assessment of Quality

161 The following variables were extracted from each study: first author, year of 162 publication, type of study, sample size, age, country, male:female ratio, 163 ascertainment of DM/IGT/MetS/KSD, type of DM, number of patient 164 reporting/presenting with stone disease for diabetes mellitus, metabolic 165 syndrome and specifically IGT in the context of MetS (given the common 166 mechanism – hyperglycaemia and insulin resistance).

167 Risk of KSD in RR, HR, OR or PR with 95% confidence intervals was also 168 extracted. HR and RR, and OR and PR, were considered the same and are 169 presented as RR and OR respectively. Unadjusted and adjusted risk values were 170 extracted from the studies. Adjustment factors were recorded. If adjusted

1 2		
3 4	171	values were missing then the study was removed from the adjusted meta-
5 6 7 8	172	analysis.
9 10	173	Cross-sectional and case-control studies were pooled as there were no case-
11 12 13	174	control studies for MetS, and 2 case-control studies for DM, only one of which
14 15 16	175	gave adjusted values.
17 18 19	176	Data were collated using Microsoft Excel (version 12.2.4). Level of evidence
20 21	177	was assessed and study bias was analysed using the Newcastle-Ottawa bias
22 23 24	178	assessment tool[27].
25 26 27 28	179	Data can be obtained by emailing the corresponding author.
29 30 31 32	180	<u>Statistical Methods</u>
33 34	181	Risk is presented with a 95% confidence interval as risk ratio (RR) for cohort
35 36 37	182	studies and odds ratio (OR) for case control and cross-sectional studies.
38 39	183	Statistical heterogeneity was tested for using I ² , Tau ² and Cochran's Q. P values
40 41 42	184	<0.05 were considered statistically significant, I ² values were interpreted
43 44	185	according to chapter 9.5.2 of the Cochrane handbook. Heterogeneity was also
45 46 47	186	tested with 'leave one out' analyses. Publication bias was assessed with Egger's
48 49 50	187	test and 'trim and fill' analysis.
51 52 53	188	Statistical analyses and figures were generated in R (R foundation for statistical
53 54 55 56	189	computing, Vienna, Austria) with the metafor package[28].
57 58 59 60	190	<u>Role of the funding source</u>

2 3 4	191	Health Education England had no role in study design, data collection, data
5 6 7	192	analysis, data interpretation or writing of the report. The corresponding author
7 8 9	193	had full access to all the data in the study and had final responsibility for the
10 11 12	194	decision to submit for publication.
13 14	195	
15 16 17 18	196	Figure 1. PRISMA flow diagram for article selection
19 20 21	197	Contributorship
22 23	198	PR and RG came up with the initial idea. RG and AA performed the search, with PR
24 25 26	199	and BS resolving inclusion disputes. RG extracted the data, performed the analyses and
27 28	200	wrote the manuscript, with PR, BS and PC helping edit.
29 30 31	201	Patient and Public Involvement
32 33	202	Patients/the public were not involved in this review article.
34 35 36	203	
37 38	204	Evidence Synthesis
39 40	205	Fifteen studies were included in the systematic review from an initial
41 42 43	206	search total of 2340 [see figure 1]. 2301 articles were excluded on the basis of
44 45	207	title, 15 on the basis of abstract and 15 on reading the full text. This left 13
46 47 48	208	studies, 7 examining diabetes mellitus (DM) and 6 examining impaired
49 50	209	glucose tolerance (IGT) in the context of metabolic syndrome (MetS).
51 52 53	210	
54 55	211	Demographics of included studies
56 57 58 59 60	212	<u>Diabetes Mellitus</u>

1		
2 3 4	213	Seven studies were included examining DM[29-35]. Three were
5 6	214	cohort[29-31], three were case-control[32-34] and three were cross-
7 8 9 10 11 12 13 14 15 16	215	sectional[29,31,35]. Taylor et al.[29] and Akoudad et al.[31] performed both
	216	cross-sectional and prospective cohort studies with their cohorts. The studies
	217	were conducted in Turkey, Taiwan and USA. They sampled varying
	218	populations, from hospital inpatients to national patient data. Patients with
17 18 19	219	Type 1 DM were included in all but one of the studies[34] [see table 1].
20 21	220	The male to female ratio and mean age for each study is detailed in
22 23 24	221	table 1. DM and KSD ascertainment ranged from the patient reporting the
25 26	222	diagnosis to ICD codes in medical records.
27 28 29	223	Overall there were 618,120 patients, of which 28,329 (4.6%) had DM.
30 31 32 33 34 35 36 37 38	224	These figures include 17,577 patients with DM in cohort studies with 348,036
	225	controls [see table 2] and 10,752 patients with DM in case-control or cross-
	226	sectional studies with 241,755 control [see table 3]. In the cohort studies,
	227	1312 (7.5%) of patients with DM developed KSD compared to 11,516 (3.3%)
39 40 41	228	of controls. In the case-control and cross-sectional studies, 1097 (10.2%) of
42 43	229	diabetics had KSD compared to 11,985 (5.0%) of controls. Study reported risk
44 45 46	230	is detailed in tables 2 and 3.
47 48		
49 50		
51 52		
53		
54 55		
56		
57 58		

6 232

DM	Study	Study type	Country	Sample	Controls	Metabolic syndrome definition	Diabetes Mellitus ascertainment	KSD ascertainment	M:F (%)	Mean age
				NHS I (1980-2000: 20 year f/u) +			Biennial health questionnaire with			
				II (1991-2001: 20 year f/u)						
				(female nurses), HPFS			supplementary questionnaire on symptoms,	Discusial hardth superior and	MUC: Entirely	
				participants (1986-2000: 14 year			diagnostic tests and treatment - DM	Biennial health questionnaire and	NHS: Entirely	NHS I: 48.6:
	Truden starl	Due ou outine		f/u) (male health professionals) –	NHS I + II, HPFS		Diagnosis corroborated by medical record	medical record review for	Female	,
	Taylor et al. 2005	Prospective Cohort	USA	'diabetics', those with known KSD excluded	participants - non- diabetics	N/A	review. T1 (≥2 episodes of ketonuria/ketoacidosis) and T2 included.	corroboration - incident stone with pain/haematuria	HPFS: Entirely Male	NHS II: 37.6; HFPS: 60.9
Cohort	2005	Conort	USA	National Health Insurance	ulabelics	N/A	Reconuna/Recoacidosis) and 12 Incidded.	pani/naematuria	IVIdle	HFP5: 00.9
				system database - prospectively	Without DM and					
				maintained - patients with DM	excluding patients		At least 3 outpatient visits for DM from			
				(T1 + T2) (2000-2007: 7 years	who developed		2000-2002 with corresponding health	Health insurance records; ICD9-CM		
	Chen et al.	Retrospectiv		f/u). Known KSD excluded at	DM in Follow-up		insurance records; ICD-9-CM 250; A-code	592; A-code A352, excluding bladder		
	2012	e Cohort	Taiwan	start.	period	N/A	A181. T1 + T2 included	stones. Only new stones included	50:50	N/A
	2012	econore	Taiwaii	ARIC study participants: Visit 3	periou	N/A	A181. 11 + 12 Ilicidded	stories. Only new stories included	50.50	N/A
				(1993-1995) to 2005 with						
				incident KSD (patient reported			Receiving diabetic medication, OGTT with			
				physician diagnosis of KSD at			FPG>110mg/dL, FPG>126mg/dL, patient			
	Akoudad et al.	Prospective		baseline excluded). F/U – mean	Without Incident		reported physician diagnosis. Unclear T1/T2	ICD 9 codes: 592, 592.0, 592.1, 592.9,		60.0 ± 5.7
	2010	Cohort	USA	10.8 years.	KSD	N/A	differentiation.	274.11 on discharge summaries	42:58	(calculated)
	2010	conore	USA	Rochester, Olmsted County,	KSD			274.11 on discharge summaries	42.50	(calculated)
				Minnesota residents with	Patients without					
				electronically documented KSD -	electronic					
				random sample of results of	documentation of					
				electronic medical record search	KSD, matched for		Electronic medical records using codes: ICD9			
				of Mayo clinic and Olmsted clinic	age, sex and		codes 250, 357.2, 362.0, 366.41, 648.0	Electronic medical records using		
	Lieske et al.			databases (Original search	calender year of		(gestational DM), 648.8, 790.2, 791.5, 962.3.	codes: ICD9-CM 592, 594, 275.11 with		
CaCo	2006	Case control	USA	n>7000)	stone	N/A	No clear differentiation between T1 + T2.	case review	62: 38	45.0±18
				Hospital outpatients with						
				urolithiasis attending Single			Receiving diabetic medication, OGTT with			
	Davarci et al.			centre between 2008-2009,	Without		FPG>110mg/dL, FPG>126mg/dL. T1			
	2011	Case control	Turkey	T1DM excluded	urolithiasis	N/A	excluded	USS, AXR, patient reported	47.5:52.5	49.0±10
					Non-diabetic					
					hospital					
		Cross-			attendees, unclear					
		sectional		Diabetic hospital attendees,	if inpatients or				Cases: 30:70	
	Meydan et al.	with		unclear if inpatients or	outpatients -		Unclear how defined. Included both T1 and	History of KSD, XR/USS – if any positive	Controls:	Cases: 57±10
XS	2003	matching	Turkey	outpatients	matched for age	N/A	T2.	confirmed with IVU	21:79	Controls: 56±9
				Baseline characteristics: NHS I	Baseline		Biennial health questionnaire with			
				(1980) + II (1991) (female	characteristics:		supplementary questionnaire on symptoms,			
				nurses), HFPS participants (1986)	NHS I + II, HFPS		diagnostic tests and treatment - DM	Biennial health questionnaire and		NHS I: 48.6;
	Taylor et al.	Cross-		(male health professionals) -	participants - non-		Diagnosis corroborated by medical record	medical record review for		NHS II: 37.6;
	2005	sectional	USA	diabetics	diabetics	N/A	review	corroboration - kidney stone history	22:78	HFPS: 60.9
				ARIC study participants: Visit 3			Receiving diabetic medication, OGTT with			
	Akoudad et al.	Cross-		(1993-1995), patient reported			FPG>110mg/dL, FPG>126mg/dL, patient		44:56	60.0 ± 5.7
	2010	sectional	USA	physician diagnosis of KSD	Without KSD	N/A	reported physician diagnosis	Patient reported physician diagnosis	(calculated)	(calculated)
							Self- reported history of DM, use of glucose-			
							lowering medications (insulin or oral			
	Weinberg et al.	Cross-		NHANES participants 2007-2010			hypoglycemics), and self-reported diabetic	Patient reported answer to: "have you		
	2013	sectional	USA	with T2DM	Without DM	N/A	comorbidities. T2 only.	ever had a kidney stone?"	N/A	N/A

1											
2											
3	MetS							IGT/DM ascertainment			
4 – 5 6 7 8	xs	Rendina et al. 2008	Cross- sectional	Italy	Single centre inpatients between 2004-2005 - those with MetS or IGT. Exclusions: acute/chronic renal failure, abnormal renal anatomy, hyperthyroidism, hyperparathyroidism, treatment for osteoporosis, metabolic bone disorders, neoplasia	Those without MetS or IGT	American Heart Association; National Heart, Lung, and Blood Institute: 3 or more of: 1) Waist circumference >102cm in men, >88cm in women. 2) fasting serum triglycerides >1.7mmol/L or treatment. 3) fasting serum HDL <1.03mmol/L in men, <1.30mmol/L in women or treatment. 4) Systolic >130mmHg or Diastolic >85mmHg or treatment. 5) fasting serum glucose >5.6mmol/L or treatment	Fasting serum glucose >5.6mmol/L or treatment	Questionnaire re: symptoms of renal colic and Ultrasonography	49:51	63.8 ± 15.8
9 - 10 11		West et al.	Cross-		NHANES III participants (1988- 1994) - those with metabolic syndrome/impaired glucose	2 or fewer MetS traits/no MetS	American Heart Association; National Heart, Lung, and Blood	Fasting serum glucose >5.6mmol/L or	Colf report of physician diagonasis	49.50	F9.9 + 17.1
12 13 14		2008 Jeong et al.	sectional Cross-	USA	tolerance Single centre - health promotion	traits Unclear - ?Those without MetS or	Institute as per Rendina et al. NCEP ATP III; American Heart Association; National Heart, Lung, and Blood Institute - 3 or more of: Systolic >130mmHg, Diastolic >85mmHg, random blood glucose >110mg/dL, random serum triglycerides >150mg/dL, random serum HDL <40mg/dL in men or <50mg/dL in women, obese range waist	treatment	Self report of physician diagnosis	48:52	58.8±17.1
15— 16		2011	sectional	South Korea	patients - those with IGT or MetS Single Centre - patients recruited to health promotion centre to undergo metabolic + KSD screen	IGT Unclear - ?Patients without impaired glucose	circumference NCEP ATP III - 3 or more of: Systolic >130mmHg, Diastolic	Fasting blood glucose >110mg/dL	CT)	60:40	50.0 ± 10.4
17 18 19		Jung et al. 2011	Cross- sectional	South Korea	 study group - those with impaired glucose tolerance and those with metabolic syndrome 	tolerance or metabolic syndrome	>85mmHg, random blood glucose >110mg/dL, random serum triglycerides >150mg/dL, random serum HDL <40mg/dL in men or <50mg/dL in women, obese range waist circumference NCEP ATP III; American Heart Association; National Heart, Lung,	Fasting blood glucose >110mg/dL	Ultrasonography	55:45	44.9 ± 11.5
20 21		Kim et al. 2012	Cross- sectional	South Korea	Single centre - health promotion patients - those with IGT or MetS	Unclear - ?Those without MetS or IGT	and Blood Institute - 3 or more of: Systolic >130mmHg, Diastolic >85mmHg, random blood glucose >110mg/dL, random serum triglycerides >150mg/dL, random serum HDL <40mg/dL in men or <50mg/dL in	Fasting blood glucose >110mg/dL	Ultrasonography	58:42	42.3 ± 8.4
22- 23 24 25		Lee et al. 2016	Cross- sectional	Taiwan	Single centre - men undergoing free health screening - those with MetS/DM	Unclear - ?Those without MetS or DM	3 of the 5 following criteria: patients were defined as having MtS by the presence of at least three of five of the following criteria: waist circumference (WC) 90cm, high-density lipoprotein (HDL) cholesterolS40 mg/dL, triglyceride (TG) 150 mg/dL, blood pressure (BP) 130/85 mm Hg or diagnosed hypertension on therapy and fasting blood glucose (FBG)4100 mg/dL or have a diagnosis of T2DM.	T2DM - fasting BGL >126mg/dL	 (a) characteristic clinical findings diagnosed by a physician with available medical records; (b) evidence of kidney stones from ultrasonography judged by an investigator (urologist); (c) operative history of stones removal from kidney. 	100:0	55.6 ± 4.6
26∟ 27	233		sectional	Taiwaii	with Metsydia	DIVI	ng/ot of have a diagnosis of 12Divi.	12DW - Tasting BGL >126mg/dL	from kidney.	100.0	55.0 ± 4.0
28 29 30	234 235	t Table	1. Study	v demogra	aphics. F/U=follow (ир, Т1= Туре	e 1 diabetes mellitus, T2=Type 2 die	abetes mellitus			
31 32	236										
33 34 35	237										
35 36 37											
38 39	238	5									
40 41											
42											

Cohort	Study	Baseline DM, n	Controls, n	With DM, person- years	Without DM, person- years	DM with KSD, n (% of DM)	Control with KSD, n (% of No DM)	Study Reported Unadjusted Risk (95% CI)	Study Reported Adjusted Risk (95% Cl)	Adjusted For
	Taylor et al.									
	2005: NHS I (younger						1578	RR 1.45	RR 1.29	Age, BMI, Thiazide use, fluid intake, alcohol use, calcium supplementatio
DM	female)	1,409	93,758	65,566	1,371,080	109 (7.7%)	(1.7%)	(1.20-1.77)	(1.05-1.58)	and diet
2111	Taylor et al.	1,405	55,750	03,300	1,571,000	105 (7.770)	(1.770)		(1.05 1.50)	Age, BMI, Thiazide use, fluid intake,
	2005: NHS II						1491	RR 1.86	RR 1.60	alcohol use, calcium supplementation
	(older female)	891	101,877	12,291	824,076	40 (4.5%)	(1.5%)	(1.36-2.56)	(1.16-2.21)	and diet
	Taylor et al.									Age, BMI, Thiazide use, fluid intake,
	2005: HFPS						1426	RR 0.76	RR 0.81	alcohol use, calcium supplementation
	(male)	1391	46,062	21,676	450,984	44 (3.2%)	(3.1%)	(1.56-1.03)	(0.59-1.09)	and diet
	Chen et al.	12 257	00 701	75.075	607.042	1,096	6950	HR 1.22	HR 1.18	Age, Sex, Occupation, urbanisation,
	2012	12,257	96,781	75,975	607,842	(8.9%)	(7.2%)	(1.15-1.30)	(1.10-1.27)	income and UTIs Age, Sex, Race, waist circumference
	Akoudad et al.								HR 1.98	hypertension, triglyceride level, uric
	2010	1,629	9,558	N/A	N/A	N/A	N/A	N/A	(1.20-3.28)	acid, gallstones
						1289	11445		(
	Total	17,577	348,036	253,365	3,253,982	(8.1%)	(3.4%)	1.		
240 241 242	le 2. DM Cohort s	uuics.								
243										
244										
245										
246										
247										
248										

DM	Study	Study population (DM), n	Controls, n	DM with KSD, n (% of DM)	Control with KSD, n (% of No DM)	Study Reported Unadjusted Risk (95% CI)	Study Reported Adjusted Risk (95% CI)	Adjusted For
						OR 1.29 (1.09-	OR 1.22	
CaCo	Lieske et al. 2006	3,561	3561	335 (9.4%)	268 (7.5%)	1.53)	(1.03-1.46)	Age, Sex, year of diagnosis, DM, hypertension and obesity
		22	477		cc (07.000)	RR 1.63 (1.12-		
	Davarci et al. 2011	23	177	14 (17.5%)	66 (37.3%)	2.39)	N/A	N/A
						OR 2.5 (1.39- 4.71)		
XS	Meydan et al. 2003	321	115	84 (26.2%)	14 (12.2%)	(calculated)	N/A	N/A
	Taylor et al. 2005: NHS I	511	115	01(20:270)	11(12)2/0/	RR 1.55 (1.20-	RR 1.38	Age, BMI, Thiazide use, fluid intake, alcohol use, calcium supplementation a
	(younger female)	1,473	74,266	64 (4.3%)	2029 (2.7%)	1.99)	(1.06-1.79)	diet
	Taylor et al. 2005: NHS II (older					RR 1.84 (1.41-	RR 1.67	Age, BMI, Thiazide use, fluid intake, alcohol use, calcium supplementation a
	female)	949	94,485	58 (6.1%)	3093 (3.3%)	2.41)	(1.28-2.20)	diet
						RR 1.21 (1.03-	RR 1.31	Age, BMI, Thiazide use, fluid intake, alcohol use, calcium supplementation a
	Taylor et al. 2005: HFPS (male)	1,568	47,737	177 (11.3%)	4002 (8.4%)	1.42)	(1.11-1.54)	diet
							PR 1.27	Age, Sex, Race, Region, waist circumference, triglycerides, hypertension, uri
	Akoudad et al. 2010	1,812	10,349	183 (18.8%)	1629 (14.6%)	N/A	(1.08-1.49)	acid, gallstones
				182 (17.1%)	884 (8.0%)	OR 2.44 (1.84-	OR 1.76	
	Weinberg et al. 2013	1,045 (estimated)	11,065 (estimated)	(estimated)	(estimated)	3.25)	(1.33-2.32)	Age, Sex, Race, Smoking history, BMI
	Cub Tabal	10,752		1007 (10 20()	11005 (5.0%)			
IGT in context	Sub Total	Inpaired Glucose tolerance (IGT)	241,755	1097 (10.2%)	11985 (5.0%)			
of MetS		only n (% of Total)		n (% of IGT)				
ormets							Male: OR 1.1	
					177 (8.7%)		(0.5-2.4)	
			1815 (calculated		(calculated		Female: OR	Age, waist circumference, high serum triglycerides, low serum HDL,
XS	Rendina et al. 2008	317 (14.9%)	estimate)	43 (13.6%)	estimate)	N/A	1.1 (0.3-1.8)	hypertension
					Vi	OR 1.39 (0.81-	OR 1.27 (0.77-2.10) (One metabolic	
			7268 (calculated			2.36)	syndrome	
	West et al. 2008	1260 (8.5%)	estimate)	17 (1.3%)	71 (1.0%)	(calculated)	component)	Sex, race, socioeconomic status, gout, thiazide use, allopurinol use
			13,700 (Quintile 1 -			OR 1.57 (1.26-	OR 1.09	
	Jeong et al. 2011	6929 (19.9%) (Quintile 5 - ≥104mg/dL)	≤85mg/dL)	211 (3.0%)	240 (1.8%)	1.95)	(0.87-1.37)	Age, sex, metabolic syndrome components, MetS status
					450 (1.6%)			
			28,692 (calculated		(calculated	1.26 (1.12-	OR 1.30	
	Jung et al. 2011	4192 (10.3%)	estimate)	102 (2.4%)	estimate)	1.42)	(1.03-1.64)	Age, GFR, serum urate, phosphorous and calcium
						Male: OR 1.18	Male: OR 1.03 (0.97-	
						(1.10-1.26)	1.03 (0.97-	
						Female: OR	Female: OR	
						1.26 (1.12-	1.02 (0.90-	
	Kim et al. 2012	N/A	N/A	N/A	N/A	1.42)	1.16)	Age, serum creatinine, serum urate, past medical history of KSD
						OR 1.87 (0.99-		
						3.53)		
	Lee et al. 2016	72 (11.3%) (DM)	622	14 (19.4%)	71 (11.7%)	(calculated)	N/A	N/A
	Sub Total	12770 (6.1%)	52,097	387 (3.2%)	1009 (1.9%)			
	Total	23,522	293,852	1484 (6.3%)	12,994 (4.4%)	1		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

249 Table 3. DM and IGT case-control and cross-sectional studies.

MetS	Study	Total participant s, n	Metaboli c Syndome , n (% of total)	Controls	Metaboli c Syndrom e with KSD, n (% of MetS)	Control with KSD, n (%)	Study Reported Unadjuste d Risk (95% CI)	Study Reported Adjusted Risk (95% CI)	Adjusted For
	Rendina et		725		112	108	OR 2.2	OR 2.0	
XS	al. 2008	2132	(34.0%)	1407	(15.4%)	(7.7%)	(1.7-2.9)	(1.3-3.0)	Age, sex, history of KSD
	West et al.		4952 🧹	6	628	363	OR 2.13	OR 1.52	Sex, race, socioeconomic status, gout,
	2008	14,870	(33.3%)	9,921	(12.7%)	(3.7%)	(1.74-2.62)	(1.22-1.89)	thiazide use, allopurinol use
	Jeong et		4602*		177	662	OR 1.71	1.25 (1.03-	Sex, race, socioeconomic status, gout,
	al. 2011	34,895	(13.2%)	30,293	(3.8%)	(2.2%)	(1.45-2.03)	1.50)	thiazide use, allopurinol use
	Jung et al.		7803		166	443		OR 1.36	Age, GFR, serum urate, phosphorous an
	2011	40,687	(19.2%)	32,884	(2.1%)	(1.3%)	N/A	(1.13-1.64)	calcium
	Kim et al.		13416		1129	5978	OR 1.33	OR 1.11	Age, serum creatinine, serum urate, pas
	2012	116,536	(11.5%)	103,120	(8.4%)	(5.8%)	(1.24-1.44)	(1.03-1.20)	medical history of KSD
	Lee et al.		269		46	39	· () .	OR 1.83	
	2016	694	(42.1%)	425	(17.1%)	(9.2%)	N/A	(1.14-2.93)	Age
			31,767		2258	7593			
	Total	209,814	(15.1%)	178,050	(7.1%)	(4.3%)		UA	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	254	
4	234	
5 6	255	
7	256	<u>Metabolic syndrome</u>
8 9	257	There were six studies[36-41] examining metabolic syndrome, of
10 11 12	258	which five provided data on chronic hyperglycaemia (IGT/DM)[36-39,41]. All
13 14 15	259	the studies were cross-sectional. These took place in Italy, South Korea,
16 17	260	Taiwan and USA. The samples ranged from hospital inpatients to
18 19 20	261	representative population based studies, which were representative of target
21 22	262	populations [see table 1].
23 24 25	263	The male to female ratio and mean age for each study is detailed in
26 27	264	table 1. MetS and KSD ascertainment ranged from the patient reported
28 29 30	265	diagnosis to ICD codes in medical records.
31 32	266	Overall there were 209,817 patients, of whom 31,767 (17.8%) had
33 34 35	267	MetS, 12,770 (6.1%) had IGT only [see table 4]. 2258 (7.1%) of those with
36 37	268	MetS had KSD, compared to 7593 (4.3%) of controls. 387 (3.2%) of those with
38 39 40	269	IGT had KSD compared to 1009 (1.9%) of controls [see table 3]. Unfortunately
40 41 42	270	control population had to be calculated from the OR for some of the
43 44 45	271	studies[36-38], therefore the figures for IGT are estimates. Study reported
46 47	272	risk is detailed in table 3 and 4.
48 49 50	273	<u>Meta-Analysis</u>
51 52	274	Tests for overall unadjusted effect in those with DM demonstrated
53 54 55	275	significantly higher risk of KSD (RR=1.66 (95% CI: 1.27-2.18, p<0.001).
56 57	276	Subgroup analyses by study type demonstrated significantly higher risk of
58 59	277	KSD in patients with DM in cohort studies in both unadjusted (1.36, 95% CI:
60	278	1.11-1.60, p<0.001) [see fig. 1] and adjusted risk (RR=1.23, 95% CI: 0.94-1.51,

Page 17 of 42

1		
2 3 4	279	p<0.001) [see fig. 2]. Significantly increased risk was also demonstrated in
5 6 7	280	cross-sectional/case-control studies in both unadjusted (OR=1.49, 95% CI:
7 8 9	281	1.09-1.89, p<0.0001) and adjusted risk (OR=1.32, 95% CI: 1.21-1.43, p<0.001)
10 11 12	282	[see fig. 3]. IGT in the context of MetS demonstrated significantly increased
12 13 14	283	risk in both unadjusted (OR=1.25, 95% CI: 1.16-1.54, p<0.0001) and adjusted
15 16	284	risk (OR=1.26, 95% CI: 0.94-1.58) [see fig. 3]. Combining DM case-control and
17 18 19	285	cross-sectional studies with IGT demonstrated significantly increased risk in
20 21	286	both unadjusted (OR=1.38, 95% CI: 1.18-1.59, p<0.0001) and adjusted risk
22 23 24	287	(OR=1.32, 95% CI: 1.17-1.49, p<0.0001).
25 26	288	Cross-sectional studies examining MetS also demonstrated
27 28 29	289	significantly increased risk of KSD in both unadjusted (OR=1.74, 95% CI: 1.45-
30 31	290	2.04, p<0.0001) and adjusted (OR=1.35, 95% CI: 1.16-1.54, p<0.0001) [see fig.
32 33 34	291	4] values.
35 36	292	
37 38 39	293	Figure 2. Forest Plot analysis – DM Cohort.
40 41	294	Figure 3. Forest Plot analysis – DM + IGT Cross-sectional and Case Control
42 43	295	studies.
44 45 46	200	
47 48	296	Figure 4. Forest Plot analysis – Metabolic syndrome (cross-sectional)
49 50 51	297	
52 53	298	Heterogeneity and Sensitivity Analysis
54 55 56	299	
57 58	300	There was borderline significant statistical heterogeneity between DM
59 60	301	cohort studies in unadjusted risk (Tau ² =0.042, Cochran's Q=9.50, p=0.05,

1 2		
3 4	302	I^2 =62.3%), however there was significant heterogeneity when risk was
5 6 7	303	adjusted (Tau ² =0.070, Cochran's Q=13.70, p=0.008, I ² =80.2%).
8 9 10 11 12 13 14 15 16 17 18	304	There was significant statistical heterogeneity between DM case-
	305	control/cross-sectional studies in unadjusted risk (Tau ² =0.258, Cochran's
	306	Q=104.67, p<0.0001, I ² =93.2%), however there this was non-significant for
	307	adjusted risk (Tau ² =0.00, Cochran's Q=6.46, p=0.26, I ² =0.0%).
	308	There was non-significant statistical heterogeneity between IGT cross-
19 20 21	309	sectional studies for unadjusted risk (Tau ² =0.003, Cochran's Q=7.18, p=0.30,
22 23	310	I ² =21.6%), however this was significant for adjusted risk (Tau ² =0.086,
24 25 26	311	Cochran's Q=62.21, p<0.0001, I ² =92.7%).
27 28	312	Combination of cross-sectional IGT studies with cross-sectional/case-
29 30 31	313	control DM studies demonstrated significant heterogeneity for both
32 33	314	unadjusted (Tau ² =0.11, Cochran's Q=160.10, p<0.0001, I ² =91.2%) and
34 35 36	315	adjusted risk (Tau ² =0.044, Cochran's Q=75.4, p<0.001, I ² =81.2%). However,
30 37 38	316	there was no statistical difference between subgroups for either unadjusted
39 40	317	(I ² =0%, p=0.54) or adjusted risk (I ² =0%, p=0.60).
41 42 43	318	There was significant statistical heterogeneity between MetS cross-
44 45	319	sectional studies for both unadjusted risk (Tau ² =0.092, Cochran's Q=26.08,
46 47 48	320	p<0.0001, I ² =79.5%), and adjusted risk (Tau ² =0.034, Cochran's Q=22.71,
49 50	321	p<0.001, l ² =72.7%).
51 52 53	322	
53 54 55	323	
56 57	324	Publication Bias and Quality of Evidence
58 59 60	325	

2		
3 4	326	Leave one out analysis did not identify any studies that significantly
5 6 7	327	changed the RR or OR for DM with and without IGT inclusion, nor for MetS.
7 8 9	328	Trim and fill analysis did no demonstrate any missing studies for DM
10 11 12 13 14	329	without IGT (SE=2.21). Inclusion of IGT with DM demonstrated 6 missing
	330	studies (SE=2.75) (see fig. 5). The analysis demonstrated lack of negative
15 16	331	studies. Trim and fill analysis of MetS demonstrated 2 missing studies
17 18	332	(SE=1.78) [see fig. 6], both negative.
19 20 21	333	Egger's regression demonstrated no significant results for: DM
22 23	334	without IGT (z=0.81, p=0.42), DM with IGT (z=0.85, p=0.40) or MetS (z=0.15,
24 25 26	335	p=0.88).
27 28	336	
29 30 31	337	Figure 5. Funnel plot - DM with IGT. Black dots = included studies, white dots =
32 33	338	missing studies identified on 'trim and fill analysis'.
34 35		
36 37	339	Figure 6. Funnel plot - Metabolic syndrome. Black dots = included studies,
38 39	340	white dots = missing studies identified on 'trim and fill analysis'.
40 41 42	341	
43		
44 45	342	Overall there was a moderate risk of bias. All but two studies[29,30]
46 47 48	343	had scores greater than 7 on examination with the Newcastle –Ottawa
40 49 50	344	quality assessment scale [see tables 5-7]. Broadly taking in all studies there
51 52	345	were no sample size calculations or demonstrable levels of response. None of
53 54 55	346	the cohort studies provided CONSORT diagrams nor did they provide loss to
55 56 57	347	follow-up data in the text.
58 59	348	
60		

	Cohort	Newcastle	-Ottawa Quality	Assessmen	t Scale
DM/MetS	Study	Selection (4 stars total)	Comparability (2 stars total)	Outcome (3 stars total)	Total (out of 9)
DM	Taylor et al. 2005	***	**	**	7
	Akoudad et al. 2010	****	**	***	9
	Chen et al. 2012	***	**	* * *	8
DM/MetS	Cross-sectional Study	Newcastle Selection (5 stars	e-Ottawa Quality Comparability	y Assessmer Outcome (3 stars	nt Scale Total (out
DM/MetS		Selection		Outcome	Total
		Selection (5 stars	Comparability	Outcome (3 stars	Total (out
	Study Meydan et al.	Selection (5 stars total)	Comparability (2 stars total)	Outcome (3 stars total)	Total (out of 10)
	Study Meydan et al. 2003	Selection (5 stars total) 0	Comparability (2 stars total)	Outcome (3 stars total) **	Total (out of 10) 2
DM/MetS DM	Study Meydan et al. 2003 Taylor et al. 2005 Akoudad et al.	Selection (5 stars total) 0 **	Comparability (2 stars total) 0 **	Outcome (3 stars total) ** **	Total (out of 10) 2 6
DM	Study Meydan et al. 2003 Taylor et al. 2005 Akoudad et al. 2010 Weinberg et al.	Selection (5 stars total) 0 ** **	Comparability (2 stars total) 0 ** **	Outcome (3 stars total) ** ** **	Total (out of 10) 2 6 7
	Study Meydan et al. 2003 Taylor et al. 2005 Akoudad et al. 2010 Weinberg et al. 2013 Rendina et al.	Selection (5 stars total) 0 ** ** ***	Comparability (2 stars total) 0 ** ** **	Outcome (3 stars total) ** ** ** **	Total (out of 10) 2 6 7 7
DM	Study Meydan et al. 2003 Taylor et al. 2005 Akoudad et al. 2010 Weinberg et al. 2013 Rendina et al. 2008	Selection (5 stars total) 0 ** *** *** ***	Comparability (2 stars total) 0 ** ** **	Outcome (3 stars total) ** ** ** ** **	Total (out of 10) 2 6 7 7 7

**

Lee et al. 2016 Table 6. Bias analyis of cross-sectional studies

Kim et al. 2012

DM/MetS	Case-control	Newcastle-Ottawa Quality Assessment Scale						
	Study	Selectio n (4 stars total)	Comparabili ty (2 stars total)	Exposure (3 stars total)	Total (out of 9)			
DM	Lieske et al. 2006	****	**	**	8			
	Davarci et al. 2011	*	*	***	5			

**

*

Table 7. Bias analysis of case-control studies.

1		
2 3	2.50	
4	359	
5 6 7	360	Conclusions
7 8 9	361	
10 11	362	In this review and meta-analysis diabetes mellitus (DM) carried a
12 13 14	363	significantly increased risk of developing kidney stone disease (KSD) in cohort
15 16 17	364	studies with a low risk of bias. Cross-sectional and case-control studies also
17 18 19	365	demonstrate significantly increased likelihood of having KSD in those who
20 21 22	366	have DM with a moderate risk of bias. Impaired glucose tolerance (IGT) in the
22 23 24	367	context of metabolic syndrome (MetS) carries a similar likelihood to DM in
25 26 27	368	cross-sectional studies.
27 28 29	369	MetS carries a similar likelihood to DM and IGT in the context of MetS,
30 31	370	with little difference between each in terms of adjusted odds ratios, again
32 33 34	371	with a moderate risk of bias.
35 36	372	This is the first systematic review and meta-analysis to examine DM
37 38 39	373	and MetS together. The results are highly significant although are limited by
40 41	374	heterogeneity. The results for DM are likely to be reflective of the true
42 43 44	375	situation given that there were no missing studies identified on 'trim and fill'
45 46	376	analysis. The situation for IGT and MetS may not be reflective given some
47 48 49	377	negative studies were identified, and therefore there is a risk of publication
49 50 51	378	bias.
52 53	379	The main strength in this study is the cohort studies examining DM,
54 55 56	380	which have long follow-up periods and demonstrate highly significant results
57 58 59 60	381	with a low risk of bias, despite suffering from significant statistical

3 4	382	heterogeneity. This may be the result of differing adjustments between
5 6 7	383	studies.
7 8 9	384	The case-control and cross-sectional studies examining DM were of
10 11	385	variable quality but demonstrated highly significant results, similar to the
12 13 14	386	cohort studies. Direct comparison between cohorts and these studies is
15 16	387	difficult due to the differing outcome measure
17 18 19	388	There was no differentiation between Type 1 and Type 2 DM in most
20 21	389	studies. It is unclear if type 1 confers the same risk as type 2.
22 23 24	390	It was unclear from the studies whether IGT was considered in
24 25 26	391	isolation or in combination with other MetS components, nor was it clear
27 28	392	whether the comparator groups contained those with MetS components,
29 30 31	393	without reaching the required three components needed for diagnosis. This
32 33	394	risks falsely lowering the risk associated with IGT due to the comparisons with
34 35 36	395	other potential KSD risk factors.
37 38	396	Statistical heterogeneity demonstrated in most of the analyses may
39 40 41	397	be due to ascertainment of KSD, variability in study populations and design
42 43	398	and publication bias.
44 45	399	There were significant variations in KSD ascertainment from patient reported
46 47 48	400	to medical notes to radiologically proven. Some studies may therefore under-
49 50	401	report the true number of stones.
51 52 53	402	Variability in study populations and design (cohort, cross-sectional
54 55	403	and case-control) ranged from hospital attendees in a single centre to large
56 57 58 59	404	regional or national cohort studies. The effect of this variability is somewhat
60		

1 2		
3 4	405	negated by dividing the studies by study design and analyzing each
5 6 7	406	separately.
8 9	407	DM cohort study adjusted values although the overall figure was
10 11 12	408	significant the confidence interval includes one, therefore this could
12 13 14	409	represent type 1 error.
15 16	410	Publication bias was low in this study with trim and fill analyses
17 18 19	411	demonstrating few missing studies (mostly for MetS) and leave-one-out
20 21	412	analysis not demonstrating any significantly heterogenous studies.
22 23 24	413	The pathophysiology for KSD in both DM and MetS is similar, both
25 26	414	have been linked to increased uric acid stone formation, whilst calcium stone
27 28 20	415	formation remains static, seemingly un-influenced by either DM or MetS[42].
29 30 31	416	The increased risk of KSD in DM is thought to be secondary to two factors,
32 33	417	glycaemic control[43-47] (common to both types 1 & 2 and impaired glucose
34 35 36	418	tolerance) and insulin resistance[47-49] (as seen in type 2 DM and MetS). The
37 38	419	adjusted odds ratios in this study for DM (OR=1.32, 95% CI: 1.21-1.43), IGT
39 40 41	420	(OR=1.26, 95% CI: 0.94-1.58) and MetS (OR=1.35, 95% CI: 1.16-1.54) were all
42 43	421	similar, potentially reflecting the common pathophysiology.
44 45 46	422	The rise in prevalence of DM and MetS is well documented and is now
47 48	423	perceived as a global pandemic[9,18]. KSD prevalence has risen in
49 50	424	parallel[3,5,6]. The Global Burden of Disease study[9,10] demonstrated
51 52 53	425	morbidity and absolute mortality associated with KSD has increased, perhaps
54 55	426	due to the pandemic of DM/MetS[19], although age standardized mortality
56 57 58	427	rates have decreased globally,. The effect is marked in higher income
59 60	428	countries (HIC), but is attenuated in lower-middle income countries

Page 24 of 42

BMJ Open

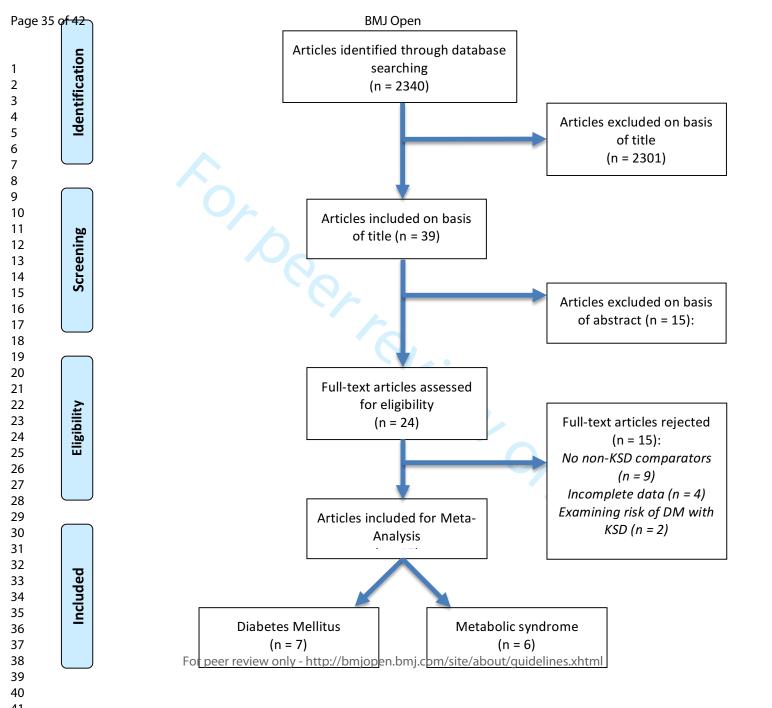
2 3 4	429	(LMIC)[8,10]. This may be attributable to lack of availability of prompt
5 6 7	430	intervention in developing countries, leading to later presentation and
7 8 9	431	invasive treatments including nephrectomy[50]. Following surgical treatment,
10 11	432	management to prevent recurrence is recommended[13], again this may not
12 13 14	433	be available in developing countries.
15 16	434	In this review, those with impaired glucose tolerance (pre-diabetes)
17 18 19	435	had an increased likelihood of KSD, which was similar to those with DM in
20 21	436	cross-sectional/case-control studies, although this may be suffering from
22 23 24	437	publication bias and the real situation may be that the likelihood of KSD in
25 26	438	IGT is lower than DM. Indeed, The NHANES III cross-sectional study[35]
27 28 29	439	demonstrated with increasingly poor glycaemic control led to increasing
29 30 31	440	likelihood of KSD as determined by fasting plasma glucose and glycosylated
32 33	441	haemoglobin. Given the evidence suggesting those with DM or MetS are at
34 35 36	442	increased risk of developing KSD measures to improve glycaemic control
37 38	443	should be examined for their efficacy in KSD prevention in this 'at-risk'
39 40 41	444	population. It should be noted that the stone type in those with DM or MetS
42 43	445	is most commonly calcium oxalate, however although still small, the
44 45 46	446	proportion of urate stones increases in these related populations[22] .
47 48	447	Clarity is required on the risk in type 1 diabetics and future studies
49 50 51	448	should differentiate these patients from type 2. Further prospective
52 53	449	examination of DM and MetS should be undertaken to accurately portray
54 55	450	whether additional risk is posed by MetS over DM and quantify this. Tight
56 57 58	451	glycaemic control and weight loss should be explored in primary prevention
59 60	452	studies for both MetS and DM, given the common pathophysiologic

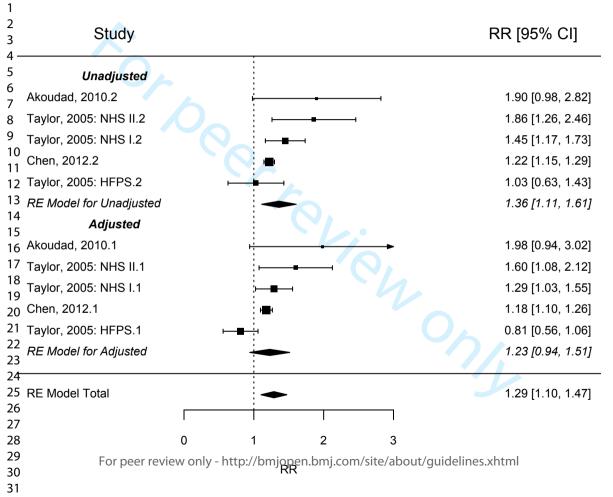
1 2							
3 4	453	mecha	anism. Further investigation is required to demonstrate if these patient				
5 6 7	454	are at	are at increased risk of recurrence.				
7 8 9	455		The risk of developing kidney stones is significantly increased in				
10 11	456	popula	ations with chronic hyperglycaemia. This has global implications with				
12 13 14	457	rising ı	morbidity and absolute mortality attributable to stones and is likely to				
15 16	458	increa	increase the health and economic burden on patients and healthcare				
17 18 19	459	providers. Tight glycaemic control and weight loss are low-cost and non-					
20 21	460	invasive measures, which should be investigated for their primary					
22 23	461	preventative effect on KSD in these populations and included as part of the					
24 25 26	462	long-term management of kidney stone disease.					
27 28	463						
29 30 31	464						
32 33	465	<u>Bibliog</u>	<u>graphy</u>				
34 35 36	466						
37							
38	467	[1]	Lotan Y. Economics and Cost of Care of Stone Disease. Advances in				
39 40	467 468	[1]	Lotan Y. Economics and Cost of Care of Stone Disease. Advances in Chronic Kidney Disease 2009;16:5–10.				
39		[1]					
39 40 41 42 43 44 45	468	[1]	Chronic Kidney Disease 2009;16:5–10.				
39 40 41 42 43 44	468 469		Chronic Kidney Disease 2009;16:5–10. doi:10.1053/j.ackd.2008.10.002.				
 39 40 41 42 43 44 45 46 47 48 49 50 	468 469 470		Chronic Kidney Disease 2009;16:5–10. doi:10.1053/j.ackd.2008.10.002. Sakhaee K. Recent advances in the pathophysiology of				
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	468 469 470 471		Chronic Kidney Disease 2009;16:5–10. doi:10.1053/j.ackd.2008.10.002. Sakhaee K. Recent advances in the pathophysiology of nephrolithiasis. Kidney International 2009;75:585–95.				
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	468 469 470 471 472	[2]	Chronic Kidney Disease 2009;16:5–10. doi:10.1053/j.ackd.2008.10.002. Sakhaee K. Recent advances in the pathophysiology of nephrolithiasis. Kidney International 2009;75:585–95. doi:10.1038/ki.2008.626.				
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	 468 469 470 471 472 473 	[2]	Chronic Kidney Disease 2009;16:5–10. doi:10.1053/j.ackd.2008.10.002. Sakhaee K. Recent advances in the pathophysiology of nephrolithiasis. Kidney International 2009;75:585–95. doi:10.1038/ki.2008.626. Pearle M, Calhoun E, Curhan G. Urologic Diseases In America Project:				
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	 468 469 470 471 472 473 474 	[2]	Chronic Kidney Disease 2009;16:5–10. doi:10.1053/j.ackd.2008.10.002. Sakhaee K. Recent advances in the pathophysiology of nephrolithiasis. Kidney International 2009;75:585–95. doi:10.1038/ki.2008.626. Pearle M, Calhoun E, Curhan G. Urologic Diseases In America Project: Urolithiasis. The Journal of Urology 2005;173:848–57.				

2			
3 4	477		Pathophysiology-based treatment of urolithiasis. Int J Urol
5 6 7	478		2016;24:32–8. doi:10.1111/iju.13187.
7 8 9	479	[5]	Edvardsson VO, Indridason OS, Haraldsson G, Kjartansson O, Palsson
10 11	480		R. Temporal trends in the incidence of kidney stone disease. Kidney
12 13 14	481		International 2013;83:146–52. doi:10.1038/ki.2012.320.
15 16	482	[6]	Yasui T, Iguchi M, Suzuki S, Kohri K. Prevalence and Epidemiological
17 18 19	483		Characteristics of Urolithiasis in Japan: National Trends Between
20 21	484		1965 and 2005. Urology 2008;71:209–13.
22 23	485		doi:10.1016/j.urology.2007.09.034.
24 25 26	486	[7]	Geraghty RM, Jones P, Somani BK. Worldwide Trends of Urinary
27 28	487		Stone Disease Treatment Over the Last Two Decades: A Systematic
29 30 31	488		Review. Journal of Endourology 2017;31:547–56.
32 33	489		doi:10.1089/end.2016.0895.
34 35 36	490	[8]	Bayne D, Chi T, Harris C, Odisho A. Global Trends In Urolithiasis
37 38	491		Morbidity And Mortality from 1990-2010. J Urol 2016;195:e1170–1.
39 40	492		doi:10.1016/j.juro.2016.02.2690.
41 42 43	493	[9]	Murray CJ, Vos, T, Lozano R, et al. Disability-adjusted life years
44 45	494		(DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a
46 47 48	495		systematic analysis for the Global Burden of Disease Study 2010. The
49 50	496		Lancet 2012;380:2197–223. doi:10.1016/S0140-6736(12)61689-4.
51 52	497	[10]	Lozano R,Naghavi M, Foreman K, et al. Global and regional mortality
53 54 55	498		from 235 causes of death for 20 age groups in 1990 and 2010: a
56 57	499		systematic analysis for the Global Burden of Disease Study 2010. The
58 59 60	500		Lancet 2012;380:2095–128. doi:10.1016/S0140-6736(12)61728-0.

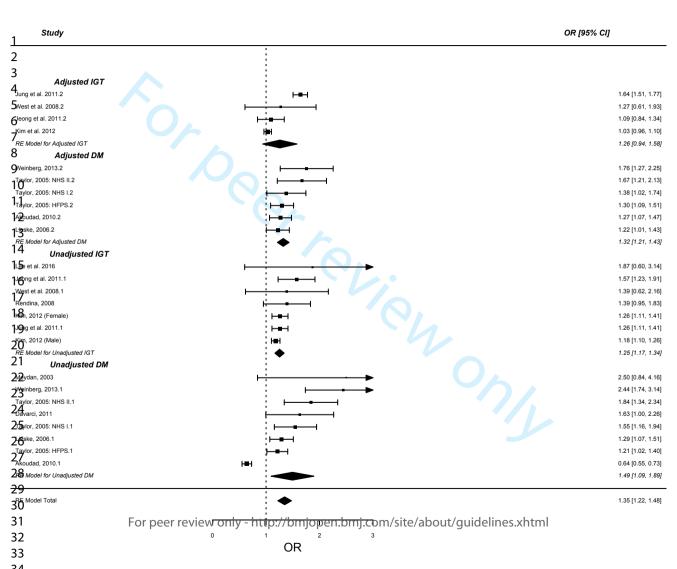
Page 27 of 42

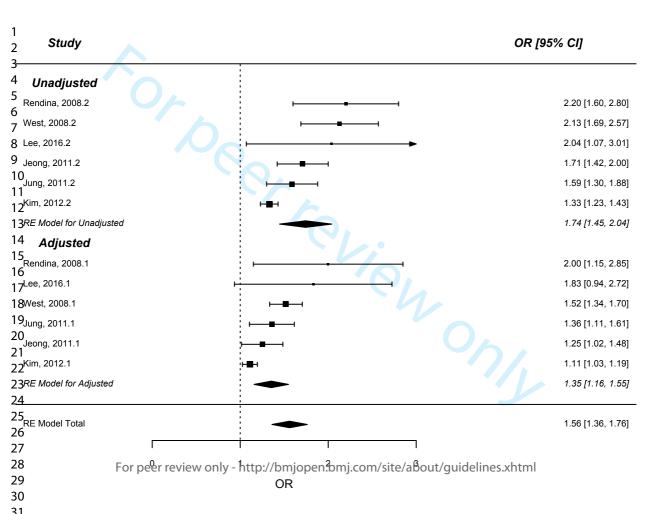
1 2			
2 3 4	501	[11]	Uribarri J, Oh MS, Carroll HJ. The first kidney stone. Ann Intern Med
5 6 7	502		1989;111:1006–9.
7 8 9	503	[12]	Bensalah K, Tuncel A, Gupta A, Raman JD, Pearle MS, Lotan Y.
10 11	504		Determinants of quality of life for patients with kidney stones. The
12 13 14	505		Journal of Urology 2008;179:2238–43–discussion2243.
15 16	506		doi:10.1016/j.juro.2008.01.116.
17 18 19	507	[13]	Pearle MS, Goldfarb DS, Assimos DG, Curhan G, Denu-Ciocca CJ,
20 21	508		Matlaga BR, et al. AUA Guidelines Medical Management of Kidney
22 23 24	509		Stones: AUA Guideline. Juro 2014;192:316–24.
25 26	510		doi:10.1016/j.juro.2014.05.006.
27 28 29	511	[14]	Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, et al. EAU
30 31	512		Guidelines on Interventional Treatment for Urolithiasis. European
32 33	513		Urology 2016;69:475–82. doi:10.1016/j.eururo.2015.07.041.
34 35 36	514	[15]	Saucier NA, Sinha MK, Liang KV, Krambeck AE, Weaver AL, Bergstralh
37 38	515		EJ, et al. Risk factors for CKD in persons with kidney stones: a case-
39 40 41	516		control study in Olmsted County, Minnesota. Am J Kidney Dis
42 43	517		2010;55:61–8. doi:10.1053/j.ajkd.2009.08.008.
44 45 46	518	[16]	Liu LH, Kang R, He J, Zhao SK, Li FT, Zhao ZG. Diabetes mellitus and
47 48	519		the risk of urolithiasis: a meta-analysis of observational studies.
49 50 51	520		Urolithiasis 2015:1–9. doi:10.1007/s00240-015-0773-5.
52 53	521	[17]	Wong Y, Cook P, Roderick P, Somani BK. Metabolic Syndrome and
54 55	522		Kidney Stone Disease: A Systematic Review of Literature. Journal of
56 57 58	523		Endourology 2016;30:246–53. doi:10.1089/end.2015.0567.
59 60	524	[18]	Grundy SM. Metabolic Syndrome Pandemic. Arteriosclerosis,

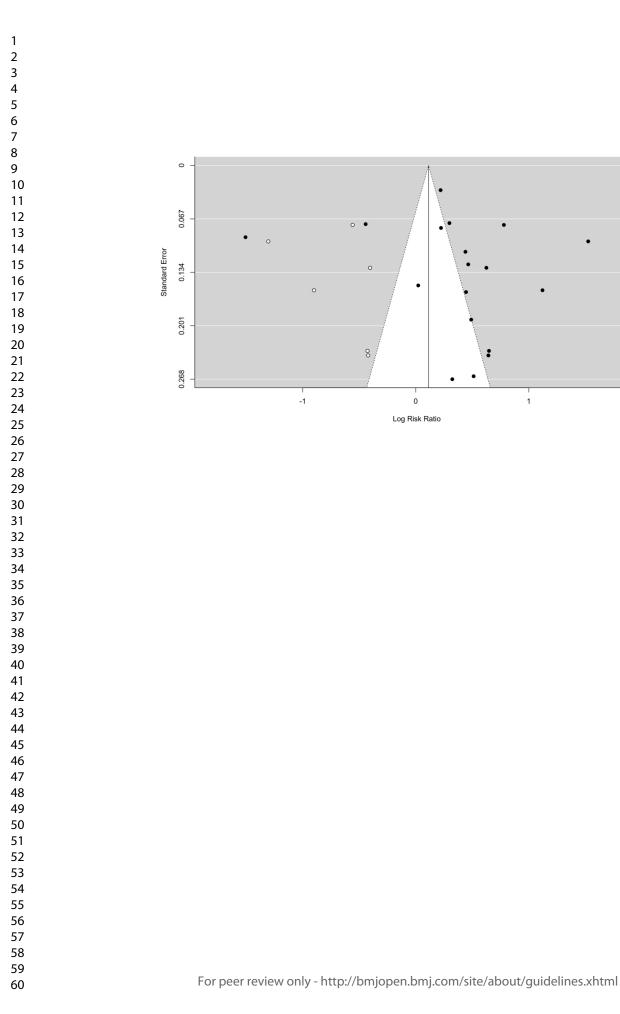

525		Thrombosis, and Vascular Biology 2008;28:629–36.
526		doi:10.1161/ATVBAHA.107.151092.
527	[19]	Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, et al. Global,
528		regional, and national incidence, prevalence, and years lived with
529		disability for 310 diseases and injuries, 1990-2015: a systematic
530		analysis for the Global Burden of Disease Study 2015. The Lancet
531		2016;388:1545–602. doi:10.1016/S0140-6736(16)31678-6.
532	[20]	Grundy SM, Brewer HB, Cleeman JI, Smith SC, Lenfant C, American
533		Heart Association, et al. Definition of metabolic syndrome: Report of
534		the National Heart, Lung, and Blood Institute/American Heart
535		Association conference on scientific issues related to definition.
		Circulation, vol. 109, Lippincott Williams & Wilkins; 2004, pp. 433–8.
537		doi:10.1161/01.CIR.0000111245.75752.C6.
538	[21]	Daudon M. Type 2 Diabetes Increases the Risk for Uric Acid Stones.
539		Journal of the American Society of Nephrology 2006;17:2026–33.
540		doi:10.1681/ASN.2006030262.
541	[22]	Daudon M, Lacour B, Jungers P. Influence of body size on urinary
542		stone composition in men and women. Urological Research
543		2006;34:193–9. doi:10.1007/s00240-006-0042-8.
544	[23]	Liu LH, Kang R, He J, Zhao SK, Li FT, Zhao ZG. Diabetes mellitus and
545		the risk of urolithiasis: a meta-analysis of observational studies.
		Urolithiasis 2015:1–9. doi:10.1007/s00240-015-0773-5.
540		orontinusis 2013.1 5. doi.10.1007/300240 013 0773 5.
547	[24]	Besiroglu H, Otunctemur A, Ozbek E. The metabolic syndrome and
540		urolithiasis: a systematic review and meta-analysis. Renal Failure
	526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546	526527[19]528529530531532[20]533534535536537538[21]539540541[22]542543544545546547547

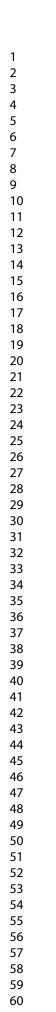

2			
3 4	549		2014;37:1–6. doi:10.3109/0886022X.2014.976133.
5 6 7	550	[25]	Wong Y, Cook P, Roderick P, Somani BK. Metabolic Syndrome and
8 9	551		Kidney Stone Disease: A Systematic Review of Literature. Journal of
10 11	552		Endourology 2016;30:246–53. doi:10.1089/end.2015.0567.
12 13 14	553	[26]	Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred
15 16	554		reporting items for systematic reviews and meta-analyses: the
17 18	555		PRISMA statement. J Clin Epidemiol 2009;62:1006–12.
19 20 21	556		doi:10.1016/j.jclinepi.2009.06.005.
22 23	557	[27]	Luchini C, Stubbs B, Solmi M, Veronese N. Assessing the quality of
24 25	558		studies in meta-analyses: Advantages and limitations of the
26 27 28	559		Newcastle Ottawa Scale. World Journal of Meta-Analysis 2017;5:80.
29 30	560		doi:10.13105/wjma.v5.i4.80.
31 32 33	561	[28]	Viechtbauer W. Conducting Meta-Analyses in Rwith the
34 35	562		metaforPackage. Journal of Statistical Software 2010;36:1–48.
36 37	563		doi:10.18637/jss.v036.i03.
38 39 40	564	[29]	Taylor EN, Stampfer MJ, Curhan GC. Diabetes mellitus and the risk of
41 42	565	[23]	nephrolithiasis. Kidney International 2005;68:1230–5.
43 44			
45 46	566		doi:10.1111/j.1523-1755.2005.00516.x.
47 48	567	[30]	Chen HS, Su LT, Lin SZ, Sung FC, Ko MC, Li CY. Increased Risk of
49 50 51	568		Urinary Tract Calculi Among Patients With Diabetes Mellitus—A
52 53	569		Population-based Cohort Study. Urology 2012;79:86–92.
54 55	570		doi:10.1016/j.urology.2011.07.1431.
56 57	571	[31]	Akoudad S, Szklo M, McAdams MA, Fulop T, Anderson CAM, Coresh J,
58 59 60	572		et al. Correlates of kidney stone disease differ by race in a multi-

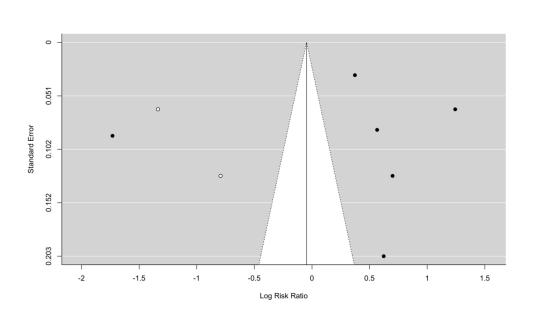
2			
3 4	573		ethnic middle-aged population: The ARIC study. Preventive Medicine
5 6 7	574		2010;51:416–20. doi:10.1016/j.ypmed.2010.08.011.
8 9	575	[32]	Meydan N, Barutca S, Caliskan S, Camsari T. Urinary Stone Disease in
10 11	576		Diabetes Mellitus. Scandinavian Journal of Urology and Nephrology
12 13 14	577		2003;37:1–7.
15 16	578	[33]	Lieske JC, la Vega de LSP, Gettman MT, Slezak JM, Bergstralh EJ,
17 18 19	579		Melton LJ III, et al. Diabetes Mellitus and the Risk of Urinary Tract
20 21	580		Stones: A Population-Based Case-Control Study. American Journal of
22 23	581		Kidney Diseases 2006;48:897–904. doi:10.1053/j.ajkd.2006.09.002.
24 25 26	582	[34]	Davarci M, Helvaci MR, Aydin M. What is the relationship between
27 28	583		type 2 diabetes mellitus and urolithiasis? Bratisl Lek Listy
29 30 31	584		2011;112:711–4.
32 33	585	[35]	Weinberg AE, Patel CJ, Chertow GM, Leppert JT. Diabetic Severity and
34 35 36	586		Risk of Kidney Stone Disease. European Urology 2014;65:242–7.
37 38	587		doi:10.1016/j.eururo.2013.03.026.
39 40 41	588	[36]	Rendina D, Mossetti G, De Filippo G, Benvenuto D, Vivona CL,
42 43	589		Imbroinise A, et al. Association between metabolic syndrome and
44 45	590		nephrolithiasis in an inpatient population in southern Italy: role of
46 47 48	591		gender, hypertension and abdominal obesity. Nephrology Dialysis
49 50	592		Transplantation 2008;24:900–6. doi:10.1093/ndt/gfn548.
51 52 53	593	[37]	West B, Luke A, Durazo-Arvizu RA, Cao G, Shoham D, Kramer H.
54 55	594		Metabolic syndrome and self-reported history of kidney stones: the
56 57 58	595		National Health and Nutrition Examination Survey (NHANES III) 1988-
59 60	596		1994. Am J Kidney Dis 2008;51:741–7.


2			
3 4	597		doi:10.1053/j.ajkd.2007.12.030.
5 6 7	598	[38]	Jung HS, Chang IH, Kim KD, Moon YT, Kim T-H, Myung SC, et al.
, 8 9	599		Possible Relationship between Metabolic Syndrome Traits and
10 11	600		Nephrolithiasis: Incidence for 15 Years According to Gender. Korean J
12 13 14	601		Urol 2011;52:548–6. doi:10.4111/kju.2011.52.8.548.
15 16	602	[39]	Jeong IG, Kang T, Bang JK, Park J, Kim W, Hwang SS, et al. Association
17 18 19	603		Between Metabolic Syndrome and the Presence of Kidney Stones in a
20 21	604		Screened Population. Yajkd 2011;58:383-8.
22 23	605		doi:10.1053/j.ajkd.2011.03.021.
24 25 26	606	[40]	Kim Y-J, Kim C-H, Sung E-J, Kim S-R, Shin H-C, Jung W-J. Association of
27 28	607		nephrolithiasis with metabolic syndrome and its components.
29 30 31	608		Metabolism 2013;62:808–13. doi:10.1016/j.metabol.2012.12.010.
32 33	609	[41]	Lee Y-C, Huang S-P, Juan Y-S, Huang T-Y, Liu C-C. Impact of metabolic
34 35 36	610		syndrome and its components on kidney stone in aging Taiwanese
37 38	611		males. The Aging Male 2016;19:197–201.
39 40 41	612		doi:10.1080/13685538.2016.1174987.
42 43	613	[42]	Kadlec AO, Greco K, Fridirici ZC, Hart ST, Vellos T, Turk TM. Metabolic
44 45	614		Syndrome and Urinary Stone Composition: What Factors Matter
46 47 48	615		Most? Urology 2012;80:805–10. doi:10.1016/j.urology.2012.05.011.
49 50	616	[43]	Nagasaka S, Murakami T, Uchikawa T, Ishikawa SE, Saito T. Effect of
51 52 53	617		glycemic control on calcium and phosphorus handling and
54 55	618		parathyroid hormone level in patients with non-insulin-dependent
56 57 58	619		diabetes mellitus. Endocr J 1995;42:377–83.
59 60	620	[44]	Thalassinos NC, Hadjiyanni P, Tzanela M, Alevizaki C, Philokiprou D.


1 2			
3 4	621		Calcium metabolism in diabetes mellitus: effect of improved blood
5 6 7	622		glucose control. Diabet Med 1993;10:341–4.
7 8 9	623	[45]	Cook DG, Shaper AG, Thelle DS, Whitehead TP. Serum uric acid,
10 11	624		serum glucose and diabetes: relationships in a population study.
12 13 14	625		Postgrad Med J 1986;62:1001–6.
15 16	626	[46]	Gotfredsen A, McNair P, Christiansen C, Transbøl I. Renal
17 18	627		hypouricaemia in insulin treated diabetes mellitus. Clin Chim Acta
19 20 21	628		1982;120:355–61.
22 23	629	[47]	Eisner BH, Porten SP, Bechis SK, Stoller ML. Urolithiasis/Endourology
24 25 26	630		Diabetic Kidney Stone Formers Excrete More Oxalate and Have Lower
27 28	631		Urine pH Than Nondiabetic Stone Formers. Juro 2010;183:2244–8.
29 30 31	632		doi:10.1016/j.juro.2010.02.007.
32 33	633	[48]	Maalouf NM, Cameron MA, Moe OW, Sakhaee K. Metabolic Basis for
34 35 36	634		Low Urine pH in Type 2 Diabetes. Clinical Journal of the American
37 38	635		Society of Nephrology 2010;5:1277–81. doi:10.2215/CJN.08331109.
39 40	636	[49]	Abate N, Chandalia M, Cabo-Chan AV, Moe OW, Sakhaee K. The
41 42 43	637		metabolic syndrome and uric acid nephrolithiasis: Novel features of
44 45	638		renal manifestation of insulin resistance. Kidney International
46 47 48	639		2004;65:386–92. doi:10.1111/j.1523-1755.2004.00386.x.
49 50	640	[50]	Marchini GS, Mello MF, Levy R, Vicentini FC, Torricelli FCM, Eluf-Neto
51 52 53	641		J, et al. Contemporary Trends of Inpatient Surgical Management of
54 55	642		Stone Disease: National Analysis in an Economic Growth Scenario.
56 57 58	643		Journal of Endourology 2015;29:956–62. doi:10.1089/end.2015.0021.
59 60			






Page 37 of 42

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE	<u> </u>		
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	6
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5,6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5,6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5,6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5,6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	6,7

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Fig 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	7,8,9
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9,10
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	7,8 + figures
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8,9
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	9,10 + fig 2
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	9
DISCUSSION	•	·	
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	10
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	12,13
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	13
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	14

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

BMJ Open

Does Chronic Hyperglycaemia Increase the Risk of Kidney Stone disease? Results from a Systematic Review and Meta-Analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-032094.R1
Article Type:	Research
Date Submitted by the Author:	02-Dec-2019
Complete List of Authors:	Geraghty, Robert; Freeman Hospital, Urology Abdi, Abdihakim; University of Southampton Somani, Bhaskar; University Hospital Southampton NHS Trust, Urology Cook, Paul; University Hospital Southampton, Clinical Biochemistry Roderick, Paul; University of Southampton, Health Care Research Unit
Primary Subject Heading :	Urology
Secondary Subject Heading:	Epidemiology, Diabetes and endocrinology
Keywords:	Urolithiasis < UROLOGY, DIABETES & ENDOCRINOLOGY, Other metabolic, e.g. iron, porphyria < DIABETES & ENDOCRINOLOGY

1		
2 3	1	Deep Chronic Unnergly seconds Increases the Dick of Kidney, Stone discosed Decults from a
4	1	Does Chronic Hyperglycaemia Increase the Risk of Kidney Stone disease? Results from a
5	2	Systematic Review and Meta-Analysis
6	3	
7	4	Authors:
8 9	5	
10	6	 Robert M Geraghty BSc – Corresponding author
11	7	Academic Clinical Fellow in Urology
12	8	Freeman Hospital
13	9	Newcastle-upon-Tyne
14 15	10	Rob.geraghty@newcastle.ac.uk
15 16	11	
17	12	2. Abdihakim Abdi 💫 🔨
18	13	Medical Student
19	14	University of Southampton
20	15	
21 22	16	3. Bhaskar K Somani DM
22	17	Consultant Urologist and Associate Professor
24	18	University Hospital Southampton
25	19	
26	20	4. Paul Cook PhD
27	20	Consultant Chemical Pathologist
28 29	21	University Hospital Southampton
30	22	Oniversity hospital southampton
31	23 24	5. Paul Roderick MD
32	24 25	Professor of Primary Care and Population Sciences
33	23 26	
34 35		University of Southampton
36	27	
37	28	
38	29	
39	30	Abstract word count: 289
40	31	
41 42	32	Text word count: 3587
43	33	
44	34	Keywords: Diabetes Mellitus; Impaired Glucose Tolerance; Metabolic Syndrome: Kidney
45	35	Stone Disease
46	36	
47 48		
40 49		
50		
51		
52		
53		
54 55		
56		
57		
58		
59		
60		

2 3 4	37	Abstract
5 6 7	38	Design: Systematic review and meta-analysis of observational studies
7 8 9	39	was performed using PRISMA guidelines for studies reporting on Diabetes
10 11	40	Mellitus (DM) or Metabolic syndrome (MetS) and kidney stone disease (KSD).
12 13 14	41	Objective: To examine the association between chronic
15 16	42	hyperglycaemia, in the form of DM and Impaired Glucose Tolerate (IGT) in the
17 18 19	43	context of MetS, and KSD.
20 21	44	Setting: Population based observational studies. Databases searched:
22 23 24	45	Ovid Medline without revisions (1996-June 2018), Cochrane Library (2018),
24 25 26	46	CINAHL (1990-June 2018), Clinicaltrials.gov, Google Scholar and individual
27 28	47	journals including the Journal of Urology, European Urology and Kidney
29 30 31	48	International.
32 33	49	Participants: Patients with and without chronic hyperglycaemic states
34 35 36	50	(DM and MetS).
37 38	51	Main Outcome Measures: English language articles from January
39 40 41	52	2001-June 2018 reporting on observational studies. Exclusions: no
42 43	53	comparator group or fewer than 100 patients. Unadjusted values were used
44 45 46	54	for meta-analysis, with further meta-regression presented as adjusted values.
47 48	55	Bias was assessed using Newcastle-Ottawa scale.
49 50	56	Results: 2340 articles were screened with 13 studies included for
51 52 53	57	meta-analysis, 7 DM (3 cohort) and 6 MetS. 5 of the MetS studies provided
54 55	58	data on IGT alone. These included: DM, n=28,329; MetS, n=31,767; IGT,
56 57 58	59	n=12,770. Controls: DM, n=589,791; MetS, n=178,050; IGT, n=293,852
59	60	patients.

Page 3 of 49

1 2

2 3		
4	61	Adjusted risk for DM cohort studies, RR=1.23 (0.94-1.51) (p<0.001).
5 6 7	62	Adjusted Odds ratios for: DM cross-sectional/case-control studies, OR=1.32
7 8 9	63	(1.21-1.43) (p<0.001); IGT, OR=1.26 (0.92-1.58) (p<0.0001) and MetS,
10 11	64	OR=1.35 (1.16-1.54) (p<0.0001).
12 13 14	65	There was no significant difference between IGT and DM (cross-
15 16	66	sectional/case-control), nor IGT and MetS. There was a moderate risk of
17 18 19	67	publication bias. Statistical heterogeneity remained significant in adjusted
20 21	68	DM cohort values and adjusted IGT (cross-sectional/case-control), but non-
22 23 24	69	signficant for adjusted DM (cross-sectional/case-control).
25 26	70	Conclusion: Chronic hyperglycaemia increases the risk of developing
27 28 29	71	kidney stone disease. In the context of the diabetes pandemic, this will
30 31	72	increase the burden of stone related morbidity and mortality.
32 33 34	73	Trial registration: PROSPERO registration number CRD42018093382.
35 36	74	Strengths and Limitations of This Study
37 38	75	 Largest systematic review and meta-analysis examining the risk of
39 40 41	76	chronic hyperglycaemic states and kidney stone disease (KSD), with
42 43	77	bias analysis.
44 45 46	78	Meta-analysis of Cohort studies examining Diabetes Mellitus
47 48	79	demonstrates an increased risk of KSD of of 1.23 (0.94-1.51) (p<0.001)
49 50 51	80	over the general population.
52 53	81	• There was a moderate risk of publication bias.
54 55 56	82	Statistical heterogeneity remained significant in adjusted DM cohort
57 58	83	values and adjusted IGT
59 60	84	No data on stone type

35	Introduction	ſ

	BMJ Open
85	Introduction
86	
87	Kidney stone disease (KSD) is a painful and costly condition[1] where
88	precipitates of normal urinary solutes aggregrate to form stones of varying
89	sizes and compositions[2]. Incidence of acute urolithiasis is rising
90	worldwide[3-6], with corresponding rises in surgical treatment rates[7] and
91	morbidity[8,9] although mortality has declined[8,10]. 5-year recurrence rates
92	have been reported as high as 50%[11]. Long term problems associated with
93	recurrent KSD are decreased quality of life, missed work days[12], disabling
94	pain, need for repeated operations, complications including infection and
95	acute kidney injury[13,14], as well as long term increased risk of developing
96	chronic kidney disease[15].
97	Patients with Diabetes mellitus (DM)[16] and metabolic syndrome
98	(MetS)[17] have been identified as carrying a higher risk of developing KSD.
99	The global prevalence of both conditions has risen to pandemic levels[9,18]
100	seemingly in parallel with KSD[19]. There is overlap between the two
101	conditions, with impaired glucose tolerance (IGT), or pre-diabetes being one
102	of the five components of the 'metabolic syndrome' [20]. Although the
103	pathophysiology with respect to KSD is yet to be definitively described,
104	patients with either MetS or DM have been shown to have increased urinary
105	acidification and produce more uric acid stones than controls. Notably, with
106	rising BMI in both diabetic and non-diabetic patients, the incidence of uric
107	acid stones rises, whilst calcium oxalate stones fall[21,22].

1 2		
2 3 4	108	Previous systematic reviews have examined either DM[23] or
5 6 7 8 9 10 11 12 13 14 15 16	109	MetS[24,25] in isolation. These studies performed either no meta-
	110	analysis[25], or else their heterogeneity/ sensitivity analyses were
	111	limited[23,24]. Given the overlap between the two conditions we aimed to
	112	perform a systematic review and meta-analysis of the existing literature on
	113	both DM and MetS with complete sensitivity, bias and heterogeneity
17 18 19	114	analyses.
20 21	115	
22 23	116	
24 25 26	117	Evidence Acquisition
27 28		
29 30 31 32 33 34 35 36 37 38	118	Search strategy and study selection
	119	Population – Chronic hyperglycaemics (diabetes mellitus, impaired glucose
	120	tolerance in context of metabolic syndrome) and those with metabolic
	121	syndrome
39 40	122	Comparator – Those without hyperglycaemia (DM/IGT) or metabolic
41 42 43	123	syndrome, respectively
44 45	124	Outcome – Kidney stone disease (KSD) – all compositions
46 47 48	125	Study design – Systematic review and meta-analysis of published
49 50	126	observational studies (cohort, case control and cross-sectional)
51 52 53	127	
53 54 55	128	Inclusion criteria:
56 57	129	1) All articles written in the English language
58 59 60	130	2) Adults (>18 years)

2		
3	131	3) All articles reporting on risk of developing kidney stone disease in
4 5		
6 7	132	diabetes mellitus (type 1 and type 2) in comparison to general
8 9	133	population
10 11 12	134	4) All articles reporting on risk of developing kidney stone disease in
13 14	135	patients with metabolic syndrome in comparison to general
15 16 17	136	population.
17 18 19	137	5) Risk in risk ratio (RR), hazard ratio (HR), odds ratio (OR) or prevalence
20 21 22	138	ratio (PR) with 95% confidence intervals.
22 23 24	139	
25 26	140	Exclusion criteria:
27 28 29	141	1) Older studies using the same data as a more recent study – longest
30 31	142	follow-up used.
32 33 34	143	2) Studies exclusively using patients with kidney stone disease – unable
34 35 36	144	to calculate risk
37 38	145	3) Studies with less than 100 patients – likely to be underpowered
39 40 41	146	
42 43	147	The systematic review was performed according to the PRISMA
44 45 46	148	guidelines[26]. The search strategy was conducted to find relevant studies
47 48	149	from Ovid Medline without revisions (1996-June 2018), Cochrane Library
49 50 51	150	(2018), CINAHL (1990-June 2018), Clinicaltrials.gov, Google Scholar and
52 53	151	individual journals including the Journal of Urology, European Urology and
54 55	152	Kidney International. The review was registered prospectively with
56 57 58 59 60	153	PROSPERO, ID number: CRD42018093382.

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
21 22 23 24 25 26 27
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
40 49
49 50
51
52
53
54
55
56
57
58
59
60

154 Terms used included: "Diabetes", "Diabetes mellitus", "metabolic syndrome",
155 "urolithiasis", "nephrolithiasis", "kidney", "uret*", "ston*", "calcul*". Boolean
156 operators (AND, OR) were used to refine the search.

157 The search was limited to English language articles between January 2001 and158 June 2018. Only published data were used.

159 Two reviewers (RG and AM) identified all studies. All studies that appeared to 160 fit the inclusion criteria were included for full review. Each reviewer 161 independently selected studies for inclusion in the review [see fig. 1]. If there 162 was disagreement, PR and BKS made final decision on inclusion.

163 Data extraction and Assessment of Quality

The following variables were extracted from each study: first author, year of publication, type of study, sample size, age, country, male:female ratio, ascertainment of DM/IGT/MetS/KSD, type of DM, number of patient reporting/presenting with stone disease for diabetes mellitus, metabolic syndrome and specifically IGT in the context of MetS (given the common mechanism – hyperglycaemia and insulin resistance).

170 Risk of KSD in RR, HR, OR or PR with 95% confidence intervals was also 171 extracted. HR and RR, and OR and PR, were considered the same and are 172 presented as RR and OR respectively. Unadjusted and adjusted risk values were 173 extracted from the studies. Adjustment factors were recorded. If adjusted

1 2		
3 4	174	values were missing then the study was removed from the adjusted meta-
5 6 7 8	175	analysis.
9 10	176	Cross-sectional and case-control studies were pooled as there were no case-
11 12 13	177	control studies for MetS, and 2 case-control studies for DM, only one of which
14 15 16	178	gave adjusted values.
17 18 19	179	Data were collated using Microsoft Excel (version 12.2.4). Level of evidence
20 21	180	was assessed and study bias was analysed using the Newcastle-Ottawa bias
22 23 24	181	assessment tool[27].
25 26 27 28	182	Data Sharing
29 30 31	183	Data has been uploaded to PROSPERO or can be obtained, upon reasonable
32 33 34	184	request, by emailing the corresponding author.
35 36 37 38	185	Statistical Methods
39 40 41	186	Risk is presented with a 95% confidence interval as risk ratio (RR) for cohort
42 43	187	studies and odds ratio (OR) for case control and cross-sectional studies.
44 45	188	Statistical heterogeneity was tested for using I ² , Tau ² and Cochran's Q. P values
46 47 48	189	<0.05 were considered statistically significant, I^2 values were interpreted
49 50	190	according to chapter 9.5.2 of the Cochrane handbook. Heterogeneity was also
51 52 53	191	tested with 'leave one out' analyses. Publication bias was assessed with Egger's
54 55	192	test and 'trim and fill' analysis. Meta-regression analysis was performed,
56 57 58	193	adjusting for age and gender. Student T Statistic is utilized for degrees of
59 60	194	freedom.

1 2		
3 4	195	Statistical analyses and figures were generated in R (R foundation for statistical
5 6 7	196	computing, Vienna, Austria) with the metafor package[28].
8 9 10 11	197	Role of the funding source/Competing interests
12 13 14	198	There is no funding to report. None of the authors have any competing
15 16 17	199	interests to declare.
17 18 19 20	200	
20 21 22 23	201	Figure 1. PRISMA flow diagram for article selection
24 25 26	202	Contributorship
20 27 28	203	RG performed the search, statistical analysis and wrote the manuscript. AA
29 30	204	performed the search and reviewed the manuscript. PC, BS and PR edited the manuscript
31 32 33	205	and critiqued the statistical analysis. BS and PR decided whether or not to include studies as
34 35	206	the senior authors
36 37 38	207	Patient and Public Involvement
39 40	208	Patients/the public were not involved in this review article.
41 42 43	209	
44 45	210	Evidence Synthesis
46 47 48	211	Fifteen studies were included in the systematic review from an initial
48 49 50	212	search total of 2340 [see figure 1]. 2301 articles were excluded on the basis of
51 52	213	title, 15 on the basis of abstract and 15 on reading the full text. This left 13
53 54 55	214	studies, 7 examining diabetes mellitus (DM) and 6 examining impaired
56 57	215	glucose tolerance (IGT) in the context of metabolic syndrome (MetS). Inter-
58 59 60	216	rater reliability as assessed by Cohen's kappa was 0.95.

2 3 4	217	Demographics of included studies
5 6 7	218	<u>Diabetes Mellitus</u>
7 8 9	219	Seven studies were included examining DM[29-35]. Three were
10 11	220	cohort[29-31], three were case-control[32-34] and three were cross-
12 13 14	221	sectional[29,31,35]. Taylor et al.[29] and Akoudad et al.[31] performed both
15 16	222	cross-sectional and prospective cohort studies with their cohorts. The studies
17 18 19	223	were conducted in Turkey, Taiwan and USA. They sampled varying
20 21	224	populations, from hospital inpatients to national patient data. Patients with
22 23 24	225	Type 1 DM were included in all but one of the studies[34] [see table 1].
24 25 26	226	The male to female ratio and mean age for each study is detailed in
27 28 20	227	table 1. DM and KSD ascertainment ranged from the patient reporting the
29 30 31	228	diagnosis to ICD codes in medical records.
32 33	229	Overall there were 618,120 patients, of which 28,329 (4.6%) had DM.
34 35 36	230	These figures include 17,577 patients with DM in cohort studies with 348,036
37 38	231	controls [see table 2] and 10,752 patients with DM in case-control or cross-
39 40 41	232	sectional studies with 241,755 control [see table 3]. In the cohort studies,
42 43	233	1312 (7.5%) of patients with DM developed KSD compared to 11,516 (3.3%)
44 45 46	234	of controls. In the case-control and cross-sectional studies, 1097 (10.2%) of
40 47 48	235	diabetics had KSD compared to 11,985 (5.0%) of controls. Study reported risk
49 50	236	is detailed in tables 2 and 3.
51 52 53		
54 55		
56 57		

6 238

		Study	Count				Diabetes Mellitus		M:F	Mean
0 DM	Study	type	ry	Sample	Controls	Metabolic syndrome definition	ascertainment	KSD ascertainment	(%)	age
1				NHS I (1980- 🦯						
2				2000: 20 year						
3				f/u) + II (1991- 🦷			Biennial health			
4 5				2001: 20 year			questionnaire with			
6				f/u) (female			supplementary			
7				nurses), HPFS		R	questionnaire on			
8				participants		N N K	symptoms, diagnostic			
9				(1986-2000: 14		4	tests and treatment -		NHS:	
0 1				year f/u) (male			DM Diagnosis	Biennial health	Entirel	
2				health	NHS I +	eer revie.	corroborated by	questionnaire and	У	NHS I:
.3				professionals) –	II, HPFS		medical record	medical record	Femal	48.6;
4		Prosp		'diabetics',	participa		review. T1 (≥2	review for	e	NHS II:
.5 .6	Taylor	ective		those with	nts -		episodes of	corroboration -	HPFS:	37.6;
Coh	et al.	Cohor		known KSD	non-		ketonuria/ketoacidosi	incident stone with	Entirel	HFPS:
8 ort	2005	t	USA	excluded	diabetics	N/A	s) and T2 included.	pain/haematuria	y Male	60.9
.9				National Health	Without					
0				Insurance	DM and		At least 3 outpatient			
1				system	excludin		visits for DM from			
3				database -	g		2000-2002 with	Health insurance		
4		Retros		prospectively	patients		corresponding health	records; ICD9-CM		
5		pectiv		maintained -	who		insurance records;	592; A-code A352,		
6 7	Chen et	e		patients with	develope		ICD-9-CM 250; A-code	excluding bladder		
8	al.	Cohor	Taiwa	DM (T1 + T2)	d DM in		A181. T1 + T2	stones. Only new		
9	2012	t	n	(2000-2007: 7	Follow-	N/A	included	stones included	50:50	N/A

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3			1	years f/u).	ир		1			
4				Known KSD	period					
5 6				excluded at	period					
7				start.						
8				ARIC study						
9				participants:						
10				Visit 3 (1993-						
11 12				1995) to 2005						
13				with incident						
14				KSD (patient	Jr.		Receiving diabetic			
15				reported	l'h		medication, OGTT			
16 17				physician		Q	with FPG>110mg/dL,			
18				diagnosis of KSD			FPG>126mg/dL,	ICD 9 codes: 592,		
19		Prosp		at baseline			patient reported	592.0, 592.1,		60.0 ±
20	Akouda	ective		excluded). F/U –	Without		physician diagnosis.	592.9, 274.11 on		5.7
21 22	d et al.	Cohor		mean 10.8	Incident		Unclear T1/T2	discharge		(calcula
22	2010	t	USA	years.	KSD	N/A	differentiation.	summaries	42:58	ted)
24		-		Rochester,	Patients					
25				Olmsted	without					
26				County,	electroni					
27 28				Minnesota	C		06/			
29				residents with	docume		Electronic medical			
30				electronically	ntation		records using codes:			
31				documented	of KSD,		ICD9 codes 250,			
32 33				KSD - random	matched		357.2, 362.0, 366.41,			
34				sample of	for age,		648.0 (gestational	Electronic medical		
35				results of	sex and		DM), 648.8, 790.2,	records using		
36	Lieske	Case		electronic	calender		791.5, 962.3. No clear	codes: ICD9-CM		
37 38 Ca	et al.	contr		medical record	year of		differentiation	592, 594, 275.11		45.0±1
39 Co	2006	ol	USA	search of Mayo	stone	N/A	between T1 + T2.	with case review	62: 38	8

1											
2 3 4 5 6 7 8					clinic and Olmsted clinic databases (Original search n>7000)						
9 - 10 11 12 13 14 15 16 17		Davarci et al. 2011	Case contr ol	Turke	Hospital outpatients with urolithiasis attending Single centre between 2008-2009, T1DM excluded	Without urolithia sis	N/A	Receiving diabetic medication, OGTT with FPG>110mg/dL, FPG>126mg/dL. T1 excluded	USS, AXR, patient reported	47.5:5 2.5	49.0±1 0
17 18 19 20 21 22 23 24 25 26 27 28 29 30		Meyda n et al.	Cross- sectio nal with match	Turke	Diabetic hospital attendees, unclear if inpatients or	Non- diabetic hospital attendee s, unclear if inpatient s or outpatie nts - matched			History of KSD, XR/USS – if any positive confirmed	Cases: 30:70 Contro Is:	Cases: 57±10 Control
31 32-	XS	2003	ing	y	outpatients	for age	N/A	T2.	with IVU	21:79	s: 56±9
33 34 35 36 37 38		Taylor et al.	Cross- sectio		Baseline characteristics: NHS I (1980) + II (1991) (female nurses), HFPS	Baseline characte ristics: NHS I + II, HFPS		Biennial health questionnaire with supplementary questionnaire on symptoms, diagnostic	Biennial health questionnaire and medical record review for		NHS I: 48.6; NHS II: 37.6; HFPS:
39		2005	nal	USA	participants	participa	N/A	tests and treatment -	corroboration -	22:78	60.9
40											

Page	14 of 49
------	----------

				(1986) (male health professionals) - diabetics	nts - non- diabetics		DM Diagnosis corroborated by medical record review	kidney stone history		
	Akouda d et al. 2010	Cross- sectio nal	USA	ARIC study participants: Visit 3 (1993- 1995), patient reported physician diagnosis of KSD	Without KSD	N/A	Receiving diabetic medication, OGTT with FPG>110mg/dL, FPG>126mg/dL, patient reported physician diagnosis	Patient reported physician diagnosis	44:56 (calcul ated)	60.0 ± 5.7 (calcula ted)
	Weinbe rg et al. 2013	Cross- sectio nal	USA	NHANES participants 2007-2010 with T2DM	Without DM	N/A	Self- reported history of DM, use of glucose- lowering medications (insulin or oral hypoglycemics), and self-reported diabetic comorbidities. T2 only.	Patient reported answer to: "have you ever had a kidney stone?"	N/A	N/A
Me tS	2015	IIdi	USA				IGT/DM ascertainment	Kiuliey stolle:		
XS	Rendin a et al. 2008	Cross- sectio nal	Italy	Single centre inpatients between 2004- 2005 - those with MetS or IGT. Exclusions: acute/chronic renal failure, abnormal renal	Those without MetS or IGT	American Heart Association; National Heart, Lung, and Blood Institute: 3 or more of: 1) Waist circumference >102cm in men, >88cm in women. 2) fasting serum triglycerides >1.7mmol/L or treatment. 3) fasting serum HDL <1.03mmol/L in men, <1.30mmol/L in women or	Fasting serum glucose >5.6mmol/L or treatment	Questionnaire re: symptoms of renal colic and Ultrasonography	49:51	63.8 ± 15.8

1										
2 3 4 5 6 7 8 9 10 11 12 13 14				anatomy, hyperthyroidism , hyperparathyroi dism, treatment for osteoporosis, metabolic bone disorders, neoplasia	Dr	treatment. 4) Systolic >130mmHg or Diastolic >85mmHg or treatment. 5) fasting serum glucose >5.6mmol/L or treatment				
15 16 17 18				NHANES III participants (1988-1994) -	2 or	00.				
19 20 21				those with metabolic	fewer MetS	r ro.				
22	West et	Cross-		syndrome/impai	traits/no	American Heart Association;	Fasting serum glucose			
23	al.	sectio		red glucose	MetS	National Heart, Lung, and Blood	>5.6mmol/L or	Self report of		58.8 ±
24	2008	nal	USA	tolerance	traits	Institute as per Rendina et al.	treatment	physician diagnosis	48:52	17.1
25 26 27 28 29 30 31 32 33				Single centre - health	Unclear -	NCEP ATP III; American Heart Association; National Heart, Lung, and Blood Institute - 3 or more of: Systolic >130mmHg, Diastolic >85mmHg, random blood glucose >110mg/dL, random serum triglycerides	071			
34				promotion	?Those	>150mg/dL, random serum HDL		Radiological		
35	Jeong	Cross-		patients - those	without	<40mg/dL in men or <50mg/dL		records		
36 37	et al.	sectio	South	with IGT or	MetS or	in women, obese range waist	Fasting blood glucose	(ultrasound and		50.0 ±
38	2011	nal	Korea	MetS	IGT	circumference	>110mg/dL	CT)	60:40	10.4
39										

Page	16	of 49	
------	----	-------	--

1										
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Jung et	Cross-		Single Centre - patients recruited to health promotion centre to undergo metabolic + KSD screen - study group - those with impaired glucose tolerance and those with	Unclear - ?Patients without impaired glucose toleranc e or metaboli c	NCEP ATP III - 3 or more of: Systolic >130mmHg, Diastolic >85mmHg, random blood glucose >110mg/dL, random serum triglycerides >150mg/dL, random serum HDL <40mg/dL in men or <50mg/dL in women,				
20 21	al. 2011	sectio	South	metabolic	syndrom	obese range waist	Fasting blood glucose		EE.4E	44.9 ±
22 23 24 25 26 27 28 29 30 31 32 33 34	2011 Kim et al. 2012	nal Cross- sectio nal	Korea South Korea	syndrome Single centre - health promotion patients - those with IGT or MetS	e Unclear - ?Those without MetS or IGT	circumference NCEP ATP III; American Heart Association; National Heart, Lung, and Blood Institute - 3 or more of: Systolic >130mmHg, Diastolic >85mmHg, random blood glucose >110mg/dL, random serum triglycerides >150mg/dL, random serum HDL <40mg/dL in men or <50mg/dL in	>110mg/dL Fasting blood glucose >110mg/dL	Ultrasonography	55:45	11.5 42.3 ± 8.4
35 36 37	Lee et	Cross-		Single centre - men undergoing	Unclear -	3 of the 5 following criteria: patients were defined as having		(a) characteristic clinical findings		
38	al.	sectio	Taiwa	free health	?Those	MtS by the presence of at least	T2DM - fasting BGL	diagnosed by a		55.6 ±
39	2016	nal	n	screening -	without	three of five of the following	>126mg/dL	physician with	100:0	4.6
40										

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

239 240 Tal 241	le 1. Study der	those we mographics. F	DM	MetS or DM	(WC) 900 lipoprote cholester triglyceri blood pro Hg or dia on thera glucose (have a dia	rol540 mg/dL, de (TG) 150 mg/ essure (BP) 130/8 gnosed hyperten py and fasting blo FBG)4100 mg/dL agnosis of T2DM	IL, 5 mm sion od or	ellitus	available medical records; (b) evidence of kidney stones from ultrasonography judged by an investigator (urologist); (c) operative history of stones removal from kidney.	
242										
242 243 244										

Page 18 of 49

	Total	17,577	348,036	5	2	(8.1%)	(3.4%)			
				253,36	3,253,98	1289	11445			-
	al. 2010	1,629	9,558	N/A	N/A	N/A	N/A	N/A	3.28)	gallstones
	Akoudad et								(1.20-	triglyceride level, uric acid,
									HR 1.98	circumference, hypertension
										Age, Sex, Race, waist
	2012	12,257	96,781	75 <i>,</i> 975	607,842	(8.9%)	(7.2%)	(1.15-1.30)	1.27)	urbanisation, income and UT
	Chen et al.					1, 096	6950	HR 1.22	(1.10-	Age, Sex, Occupation,
					2				HR 1.18	
	(male)	1391	46,062	21,676	450,984	(3.2%)	(3.1%)	(1.56-1.03)	1.09)	supplementation and diet
	2005: HFPS					44	1426	RR 0.76	(0.59-	intake, alcohol use, calcium
	Taylor et al.								RR 0.81	Age, BMI, Thiazide use, fluid
	female)	891	101,877	12,291	824,076	(4.5%)	(1.5%)	(1.36-2.56)	2.21)	supplementation and diet
	(older					40	1491	RR 1.86	(1.16-	intake, alcohol use, calcium
	2005: NHS II								RR 1.60	Age, BMI, Thiazide use, fluid
	Taylor et al.									
DM	female)	1,409	93,758	65,566	0	(7.7%)	(1.7%)	(1.20-1.77)	1.58)	supplementation and diet
	(younger				1,371,08	109	1578	RR 1.45	(1.05-	intake, alcohol use, calcium
	2005: NHS I								RR 1.29	Age, BMI, Thiazide use, fluid
	Taylor et al.									

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 49

DM	Study	Study population (DM), n	Controls, n	DM with KSD, n (% of DM)	Control with KSD, n (% of No DM)	Study Reported Unadjust ed Risk (95% CI)	Study Reported Adjusted Risk (95% Cl)	Adjusted For
						OR 1.29	OR 1.22	
	Lieske et al.			335	268	(1.09-	(1.03-	Age, Sex, year of diagnosis, DM
CaCo	2006	3,561	3561	(9.4%)	(7.5%)	1.53)	1.46)	hypertension and obesity
						RR 1.63		
	Davarci et al.			14	66	(1.12-		
	2011	23	177	(17.5%)	(37.3%)	2.39)	N/A	N/A
				C/		OR 2.5		
						(1.39-		
					0.	4.71)		
	Meydan et al.			84	14	(calculate		
XS	2003	321	115	(26.2%)	(12.2%)	d)	N/A	N/A
	Taylor et al. 2005: NHS I (younger female)	1,473	74,266	64 (4.3%)	2029 (2.7%)	RR 1.55 (1.20- 1.99)	RR 1.38 (1.06- 1.79)	Age, BMI, Thiazide use, fluid intake, alcohol use, calcium supplementation and diet
	Taylor et al.	1,475	74,200		(2.770)	RR 1.84	RR 1.67	Age, BMI, Thiazide use, fluid
	2005: NHS II				3093	(1.41-	(1.28-	intake, alcohol use, calcium
	(older female)	949	94,485	58 (6.1%)	(3.3%)	2.41)	2.20)	supplementation and diet
	Taylor et al.		- ,		(RR 1.21	RR 1.31	Age, BMI, Thiazide use, fluid
	2005: HFPS			177	4002	(1.03-	(1.11-	intake, alcohol use, calcium
	(male)	1,568	47,737	(11.3%)	(8.4%)	1.42)	1.54)	supplementation and diet
		,				,	PR 1.27	Age, Sex, Race, Region, waist
	Akoudad et al.			183	1629		(1.08-	circumference, triglycerides,
	2010	1,812	10,349	(18.8%)	(14.6%)	N/A	1.49)	hypertension, uric acid, gallstor

Page	20 of	49
------	-------	----

				182	884			
			11,065	(17.1%)	(8.0%)	OR 2.44	OR 1.76	
	Weinberg et	1,045	(estimate	(estimate	(estimate	(1.84-	(1.33-	Age, Sex, Race, Smoking history,
	al. 2013	(estimated)	d)	d)	d)	3.25)	2.32)	BMI
				1097	11985			
	Sub Total	10,752	241,755	(10.2%)	(5.0%)			
IGT in		Impaired Glucose						
contex t of MetS		tolerance (IGT) only n (% of Total)	5	IGT with KSD, n (% of IGT)				
IVIELS							Male: OR	
					177		1.1 (0.5-	
			1815		(8.7%)		2.4)	
			(calculate		(calculate		Female:	Age, waist circumference, high
	Rendina et al.		d	43	d		OR 1.1	serum triglycerides, low serum
XS	2008	317 (14.9%)	estimate)	(13.6%)	estimate)	N/A	(0.3-1.8)	HDL, hypertension
			,				OR 1.27	
							(0.77-	
						OR 1.39	2.10) (One	
			7268			(0.81-	metabolic	
			(calculate			2.36)	syndrome	
	West et al.		d			(calculate	compone	Sex, race, socioeconomic status,
	2008	1260 (8.5%)	estimate)	17 (1.3%)	71 (1.0%)	d)	nt)	gout, thiazide use, allopurinol us
			13,700 (Quintile					
		6929 (19.9%)	1 -			OR 1.57	OR 1.09	
	Jeong et al.	(Quintile 5 -	≤85mg/d	211	240	(1.26-	(0.87-	Age, sex, metabolic syndrome
	2011	≥104mg/dL)	L)	(3.0%)	(1.8%)	1.95)	1.37)	components, MetS status

Sub Total Total	12770 (6.1%) 23,522	52,097 293,852 ectional stud	387 (3.2%) 1484 (6.3%)	1009 (1.9%) 12,994 (4.4%) Contr Stu	udy St	tudy	
Total	12770 (6.1%) 23,522	52,097 293,852	387 (3.2%) 1484 (6.3%)	(1.9%) 12,994		74	
	12770 (6.1%)	52,097	387 (3.2%) 1484	(1.9%) 12,994	~~~~	7/,	
Sub Total			387 (3.2%)	(1.9%)	~		
Sub Total			387				
				1000			
2016	1 77 (11.3%) (DM)	622	(19.4%)	(11./%)	a)	N/A	N/A
		600					
					3.53)		
				0.	(0.99-		
		,			, OR 1.87	,	
	N/A	N/A	N/A	N/A		•	urate, past medical history of k
Kim et al.							Age, serum creatinine, serum
		6					
		<u> </u>			-		
					(1.10-	(0.97-	
					1.18	1.03	
		,	. ,	,	, Male: OR	Male: OR	
2011	4192 (10.3%)	-			•		phosphorous and calcium
luna et al		· ·	102	•			Age, GFR, serum urate,
		· ·			1 26	OP 1 20	
		20.000					
-	Kim et al. 2012 Lee et al.	2011 4192 (10.3%) Kim et al. 2012 N/A Lee et al.	2011 4192 (10.3%) estimate) Kim et al. N/A N/A Lee et al. Lee et al. Image: constraint of the second secon	Jung et al. (calculate d 102 2011 4192 (10.3%) estimate) (2.4%) Kim et al. N/A N/A N/A Lee et al. Image: Note that the state of	Jung et al. 2011(calculate d(calculate dJung et al. 20114192 (10.3%)estimate)(2.4%)Kim et al. 2012N/AN/AN/ALee et al.Image: state Image: stateImage: state Image: stateImage: state Image: stateLee et al.Image: state Image: stateImage: state Image: stateImage: state Image: stateImage: state Image: state	Image 1 28,692 (1.6%) Jung et al. (calculate (calculate 2011 4192 (10.3%) estimate) (2.4%) estimate) 1.42) 2011 4192 (10.3%) estimate) (2.4%) Male: OR 1.18 1.18 1.18 (1.10- 1.18 (1.10- 1.26) Female: OR 1.26 Female: OR 1.26 (1.12- 0R 1.26 Kim et al. N/A N/A N/A N/A 1.42 2012 N/A N/A N/A OR 1.87 (0.99- (0.99- 3.53) 1.42 3.53) 1.53) Lee et al. 2016 72 (11.3%) (DM) 622 (19.4%) (11.7%) d)	Image al. 28,692 (1.6%) Image al. 0 R 1.30 Jung et al. d 102 d (1.12-) (1.03-) 2011 4192 (10.3%) estimate) (2.4%) estimate) 1.42) 1.64) Male: OR 1.4192 income income income income income Visit income income income income income income income income Kim et al. N/A N/A N/A N/A income incom incom incom

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

with

Syndrom

Unadjuste Adjusted

Adjusted For

Page 21 of 49

MetS

44 45 46 Study

s, n

Syndom

s, n

			e, n (% of total)		e with KSD, n (% of MetS)	KSD, n (%)	d Risk (95% CI)	Risk (95% Cl)	
	Rendina								
VC	et al.	2422	725	1407	112	108	OR 2.2	OR 2.0	
XS	2008	2132	(34.0%)	1407	(15.4%)	(7.7%)	(1.7-2.9)	(1.3-3.0)	Age, sex, history of KSD
							OR 2.13	OR 1.52	
	West et		4952		628	363	(1.74-	(1.22-	Sex, race, socioeconomic status, gou
	al. 2008	14,870	(33.3%)	9,921	(12.7%)	(3.7%)	2.62)	1.89)	thiazide use, allopurinol use
							OR 1.71	1.25	
	Jeong et		4602*		177	662	(1.45-	(1.03-	Sex, race, socioeconomic status, gou
	al. 2011	34,895	(13.2%)	30,293	(3.8%)	(2.2%)	2.03)	1.50)	thiazide use, allopurinol use
								OR 1.36	
	Jung et		7803		166 🗸	443		(1.13-	Age, GFR, serum urate, phosphorous
	al. 2011	40,687	(19.2%)	32,884	(2.1%)	(1.3%)	N/A	1.64)	and calcium
							OR 1.33	OR 1.11	
	Kim et al.		13416		1129	5978	(1.24-	(1.03-	Age, serum creatinine, serum urate,
	2012	116,536	(11.5%)	103,120	(8.4%)	(5.8%)	1.44)	1.20)	past medical history of KSD
								OR 1.83	
	Lee et al.		269		46	39		(1.14-	
	2016	694	(42.1%)	425	(17.1%)	(9.2%)	N/A	2.93)	Age
			31,767		2258	7593			
	Total	209,814	(15.1%)	178,050	(7.1%)	(4.3%)			

259 Table 4. MetS cross-sectional studies. *=discrepancy between text and table.

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	260	
4 5		
6 7	261 262	<u>Metabolic syndrome</u>
8 9 10	263	There were six studies[36-41] examining metabolic syndrome, of
11 12	264	which five provided data on chronic hyperglycaemia (IGT/DM)[36-39,41]. All
13 14 15	265	the studies were cross-sectional. These took place in Italy, South Korea,
16 17	266	Taiwan and USA. The samples ranged from hospital inpatients to
18 19 20	267	representative population based studies, which were representative of target
21 22	268	populations [see table 1].
23 24 25	269	The male to female ratio and mean age for each study is detailed in
25 26 27	270	table 1. MetS and KSD ascertainment ranged from the patient reported
28 29	271	diagnosis to ICD codes in medical records.
30 31 32	272	Overall there were 209,817 patients, of whom 31,767 (17.8%) had
33 34	273	MetS, 12,770 (6.1%) had IGT only [see table 4]. 2258 (7.1%) of those with
35 36 37	274	MetS had KSD, compared to 7593 (4.3%) of controls. 387 (3.2%) of those with
38 39	275	IGT had KSD compared to 1009 (1.9%) of controls [see table 3]. Unfortunately
40 41 42	276	control population had to be calculated from the OR for some of the
43 44	277	studies[36-38], therefore the figures for IGT are estimates. Study reported
45 46 47	278	risk is detailed in table 3 and 4.
47 48 49	279	<u>Meta-Analysis</u>
50 51	280	Tests for overall unadjusted effect in those with DM demonstrated
52 53 54	281	significantly higher risk of KSD (RR=1.66 (95% CI: 1.27-2.18, p<0.001).
55 56	282	Subgroup analyses by study type demonstrated significantly higher risk of
57 58 59 60	283	KSD in patients with DM in cohort studies in both unadjusted (1.36, 95% CI:

1 2		
3 4	284	1.11-1.60, p<0.001) [see fig. 1] and adjusted risk (RR=1.23, 95% CI: 0.94-1.51,
5 6 7	285	p<0.001) [see fig. 2]. Significantly increased risk was also demonstrated in
8 9	286	cross-sectional/case-control studies in both unadjusted (OR=1.49, 95% CI:
10 11 12	287	1.09-1.89, p<0.0001) and adjusted risk (OR=1.32, 95% CI: 1.21-1.43, p<0.001)
12 13 14	288	[see fig. 3]. IGT in the context of MetS demonstrated significantly increased
15 16 17	289	risk in both unadjusted (OR=1.25, 95% CI: 1.16-1.54, p<0.0001) and adjusted
17 18 19	290	risk (OR=1.26, 95% CI: 0.94-1.58) [see fig. 3]. Combining DM case-control and
20 21	291	cross-sectional studies with IGT demonstrated significantly increased risk in
22 23 24	292	both unadjusted (OR=1.38, 95% CI: 1.18-1.59, p<0.0001) and adjusted risk
25 26	293	(OR=1.32, 95% CI: 1.17-1.49, p<0.0001).
27 28 29	294	Cross-sectional studies examining MetS also demonstrated
30 31	295	significantly increased risk of KSD in both unadjusted (OR=1.74, 95% CI: 1.45-
32 33 34	296	2.04, p<0.0001) and adjusted (OR=1.35, 95% CI: 1.16-1.54, p<0.0001) [see fig.
35 36	297	4] values.
37 38 39	298	
40 41	299	Figure 2. Forest Plot analysis – DM Cohort.
42 43 44	300	Figure 3. Forest Plot analysis – DM + IGT Cross-sectional and Case Control
45 46	301	studies.
47 48 49	302	Figure 4. Forest Plot analysis – Metabolic syndrome (cross-sectional)
50 51 52	303	
53 54		Hotorogonaity and Consitivity Analysis
55 56	304	Heterogeneity and Sensitivity Analysis
57 58 59	305	
60		

Page 25 of 49

1 2		
2 3 4	306	There was borderline significant statistical heterogeneity between DM
5 6 7	307	cohort studies in unadjusted risk (Tau ² =0.042, Cochran's Q=9.50, p=0.05,
8 9	308	I^2 =62.3%), however there was significant heterogeneity when risk was
10 11 12	309	adjusted (Tau ² =0.070, Cochran's Q=13.70, p=0.008, I ² =80.2%).
13 14	310	There was significant statistical heterogeneity between DM case-
15 16 17	311	control/cross-sectional studies in unadjusted risk (Tau ² =0.258, Cochran's
17 18 19	312	Q=104.67, p<0.0001, I ² =93.2%), however there this was non-significant for
20 21 22	313	adjusted risk (Tau ² =0.00, Cochran's Q=6.46, p=0.26, I ² =0.0%).
22 23 24	314	There was non-significant statistical heterogeneity between IGT cross-
25 26 27	315	sectional studies for unadjusted risk (Tau ² =0.003, Cochran's Q=7.18, p=0.30,
27 28 29	316	I ² =21.6%), however this was significant for adjusted risk (Tau ² =0.086,
30 31 32	317	Cochran's Q=62.21, p<0.0001, l ² =92.7%).
32 33 34	318	Combination of cross-sectional IGT studies with cross-sectional/case-
35 36 27	319	control DM studies demonstrated significant heterogeneity for both
37 38 39	320	unadjusted (Tau ² =0.11, Cochran's Q=160.10, p<0.0001, I ² =91.2%) and
40 41	321	adjusted risk (Tau ² =0.044, Cochran's Q=75.4, p<0.001, I ² =81.2%). However,
42 43 44	322	there was no statistical difference between subgroups for either unadjusted
45 46	323	(I ² =0%, p=0.54) or adjusted risk (I ² =0%, p=0.60).
47 48 49	324	There was significant statistical heterogeneity between MetS cross-
50 51	325	sectional studies for both unadjusted risk (Tau ² =0.092, Cochran's Q=26.08,
52 53	326	p<0.0001, I ² =79.5%), and adjusted risk (Tau ² =0.034, Cochran's Q=22.71,
54 55 56	327	p<0.001, l ² =72.7%).
57 58	328	
59 60	329	

2 3 4	330	Publication Bias and Quality of Evidence
5 6 7	331	
7 8 9	332	Leave one out analysis did not identify any studies that significantly
10 11 12	333	changed the RR or OR for DM with and without IGT inclusion, nor for MetS.
12 13 14	334	Trim and fill analysis did no demonstrate any missing studies for DM
15 16	335	without IGT (SE=2.21). Inclusion of IGT with DM demonstrated 6 missing
17 18 19	336	studies (SE=2.75) (see fig. 5). The analysis demonstrated lack of negative
20 21	337	studies. Trim and fill analysis of MetS demonstrated 2 missing studies
22 23 24	338	(SE=1.78) [see fig. 6], both negative.
25 26	339	Egger's regression demonstrated no significant results for: DM
27 28 20	340	without IGT (z=0.81, p=0.42), DM with IGT (z=0.85, p=0.40) or MetS (z=0.15,
29 30 31	341	p=0.88).
32 33	342	
34 35 36	343	Figure 5. Funnel plot - DM with IGT. Black dots = included studies, white dots =
37 38	344	missing studies identified on 'trim and fill analysis'.
39 40 41	345	Figure 6. Funnel plot - Metabolic syndrome. Black dots = included studies,
42 43 44	346	white dots = missing studies identified on 'trim and fill analysis'.
44 45 46	247	
47 48	347	
49 50	348	Overall there was a moderate risk of bias. All but two studies[29,30]
51 52 53	349	had scores greater than 7 on examination with the Newcastle –Ottawa
54 55	350	quality assessment scale [see tables 5-7]. Broadly taking in all studies there
56 57 58 59 60	351	were no sample size calculations or demonstrable levels of response. None of

1
2
3
4
5
6
7
8
o 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
24
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
40 41
41
42 43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

follow-up data in the text.

	Cohort	Newcastle-Ottawa Quality Assessment Scale					
DM/MetS	Study	Selection (4 stars total)	Comparability (2 stars total)	Outcome (3 stars total)	Total (out of 9)		
DM	Taylor et al. 2005	***	**	**	7		
	Akoudad et al. 2010	****	**	***	9		
	Chen et al. 2012	***	**	***	8		

Table 5. Bias	analysis of Cohort :	studies					
	Cross-sectional	ional Newcastle-Ottawa Quality Assessment Scale					
DM/MetS	Study	Selection (5 stars total)	Comparability (2 stars total)	Outcome (3 stars total)	Total (out of 10)		
DM	Meydan et al. 2003	0	0 2	**	2		
	Taylor et al. 2005	**	**	**	6		
	Akoudad et al. 2010	***	**	**	7		
	Weinberg et al. 2013	***	**	**	7		
MetS	Rendina et al. 2008	***	*	***	7		
	West et al. 2008	****	**	**	8		
	Jeong et al. 2011	***	**	***	8		
	Kim et al. 2012	***	**	***	8		
	Lee et al. 2016	**	*	***	6		

Table 6. Bias analyis of cross-sectional studies

57 58	363				
59		DM/MetS	Case-control	Newcastle-Ottawa Quality Assessment Scale	
60					

1 2		
3 4 5 7 8 9 10 11		D
12 13	364	L
14 15	365	
16 17 18	366	
19 20	367	
21 22	368	
23 24 25	369	
26 27	370	
28 29 20	371	
30 31 32	372	
33 34	373	
35 36 37	374	
38 39	375	
40 41 42	376	
43 44	377	
45 46 47	378	
48 49	379	
50 51 52	380	
53 54	381	
55 56 57 58 59 60	382	

		Study	Selectio n (4 stars total)	Comparabili ty (2 stars total)	Exposure (3 stars total)	Total (out of 9)
	DM	Lieske et al. 2006	****	**	**	8
		Davarci et al. 2011	*	*	***	5
1	Table 7. Bias d	analysis of case-cont	rol studies.			
5						
5	Discussion					
7						
3	In this	review and meta-an	alysis diab	etes mellitus (D	M) carried a	
)	significantly ir	ncreased risk of deve	loping kidr	ney stone diseas	e (KSD) in cohort	
)	studies with a	low risk of bias. Cro	ss-sectiona	al and case-cont	rol studies also	
1	demonstrate	significantly increase	d likelihoo	d of having KSD	in those who	
2	have DM with a moderate risk of bias. Impaired glucose tolerance (IGT) in the					
3	context of metabolic syndrome (MetS) carries a similar likelihood to DM in					
1	cross-sectional studies.					
5	MetS o	carries a similar likeli	hood to DI	VI and IGT in the	e context of MetS,	
5	with little difference between each in terms of adjusted odds ratios, again					
7	with a moderate risk of bias.					
3	This is the first systematic review and meta-analysis to examine DM					
)	and MetS tog	ether. The results are	e highly sig	nificant althoug	h are limited by	
)	heterogeneity	v, despite meta-regre	ession anal	ysis. The results	for DM are likely	
1	to be reflectiv	e of the true situatio	on given th	at there were n	o missing studies	
2	identified on '	trim and fill' analysis	s. The situa	tion for IGT and	MetS may not	

1 2		
3 4	383	be reflective given some negative studies were identified, and therefore
5 6 7	384	there is a risk of publication bias.
7 8 9	385	The main strength in this study is the cohort studies examining DM,
10 11	386	which have long follow-up periods and demonstrate highly significant results
12 13 14	387	with a low risk of bias, despite suffering from significant statistical
15 16 17 18 19 20 21	388	heterogeneity. This may be the result of differing adjustments between
	389	studies.
20	390	The case-control and cross-sectional studies examining DM were of
22 23	391	variable quality but demonstrated highly significant results, similar to the
24 25 26	392	cohort studies. Direct comparison between cohorts and these studies is
27 28	393	difficult due to the differing outcome measure
29 30 31	394	There was no differentiation between Type 1 and Type 2 DM in most
32 33	395	studies. It is unclear if type 1 confers the same risk as type 2.
34 35 36	396	It was unclear from the studies whether IGT was considered in
37 38	397	isolation or in combination with other MetS components, nor was it clear
39 40 41	398	whether the comparator groups contained those with MetS components,
41 42 43	399	without reaching the required three components needed for diagnosis. This
44 45	400	risks falsely lowering the risk associated with IGT due to the comparisons with
46 47 48	401	other potential KSD risk factors.
49 50	402	Statistical heterogeneity demonstrated in most of the analyses may
51 52 53	403	be due to ascertainment of KSD, variability in study populations and design
54 55	404	and publication bias. There were significant variations in KSD ascertainment
56 57 58	405	from patient reported to medical notes to radiologically proven. Some studies
58 59 60	406	may therefore under-report the true number of stones.

2 3 4	407	Variability in study populations and design (cohort, cross-sectional
5 6 7	408	and case-control) ranged from hospital attendees in a single centre to large
7 8 9	409	regional or national cohort studies. The effect of this variability is somewhat
10 11	410	negated by dividing the studies by study design and analyzing each
12 13 14	411	separately.
15 16	412	DM cohort study adjusted values although the overall figure was
17 18 19	413	significant the confidence interval includes one, therefore this could
20 21	414	represent type 1 error.
22 23 24	415	Publication bias was low in this study with trim and fill analyses
25 26	416	demonstrating few missing studies (mostly for MetS) and leave-one-out
27 28 29	417	analysis not demonstrating any significantly heterogenous studies.
30 31	418	The most common stone composition in all KSD formers is calcium oxalate, followed
32 33	419	closely by calcium phosphate, together comprising around 85% of all stones. Uric acid
34 35 36	420	stones are third, accounting for 12% in men, 7% in women, whilst the far rare cystine stones
37 38	421	account for less than 1% in either gender[42]. Both DM and MetS have been linked to
39 40 41	422	increased uric acid stone formation, whilst calcium stone formation remains static,
42 43	423	seemingly un-influenced by either DM or MetS[43].
44 45 46	424	The increased risk of KSD in DM is thought to be secondary to two factors, glycaemic
47 48	425	control (common to both types 1 & 2 and impaired glucose tolerance) and insulin resistance
49 50 51	426	(as seen in type 2 DM and MetS). Hyperglycaemia has been demonstrated to increase
52 53	427	urinary calcium[44,45], phosphorous[44,45], uric acid[46,47] and oxalate[48] secretion.
54 55	428	Whereas increased insulin resistance increases renal ammonium secretion[49] and
56 57 58	429	decreased urinary pH[48], which in turn increases urinary calcium and uric acid
59 60	430	secretion[50] whilst decreases urinary citrate[51] (an alkalizing agent), compounding urinary

1		
2 3 4	431	acidification. Together these mechanisms lead to increased risk of precipitation and
5 6 7	432	subsequent formation of uric acid stones.
7 8 9	433	Notably, Chung et al.[52] and Weikert[53] in prospective cohort studies
10 11	434	demonstrated patients who suffered from KSD were more likely to develop DM over a five
12 13 14	435	year period than those who did not form stones. This muddies the water, giving a 'chicken
14 15 16	436	and egg' scenario. It could be that KSD is a symptom of an underlying systemic metabolic
17 18	437	disorder, or something intrinsic to KSD formers increases the risk of metabolic
19 20 21	438	derangement. The former is more likely given the evidence for biochemical disruption in
22 23	439	urinary excretions prior to stone formation.
24 25 26	440	Metabolic syndrome has been defined multiple times[54], however all definitions
20 27 28	441	are in agreement that it comprises a combination of insulin resistance, hypertension and
29 30	442	dyslipidaemia. Insulin resistance in metabolic syndrome is the same mechanism resulting in
31 32 33	443	type 2 diabetes and thus the findings of urinary acidification[55,56], increased risk of uric
34 35	444	acid secretion[55] and uric acid stone formation[56] via the pathophysiology described
36 37 38	445	above are the same.
39 40	446	In this review a small, albeit non-significant increase in risk suffering from
41 42	447	heterogeneity, was associated with MetS versus IGT/DM. This may be attributable to the
43 44 45	448	other components of MetS.
46 47	449	There is conflicting evidence about hypertension and a possible link to increased risk
48 49 50	450	of KSD[37] and vice versa[57]. A prospective cohort study by Cappuccio et al.[58]
50 51 52	451	demonstrated a significantly increased crude risk of hypertensives developing KSD than non-
53 54	452	hypertensives. However, when observing the difference between stone formers and non-
55 56 57	452	
57 58 59		stone formers, the stone formers had no significant difference in blood pressure. It was
60	454	noted that the hypertensives were significantly heavier, older and had higher BMI's. Madore

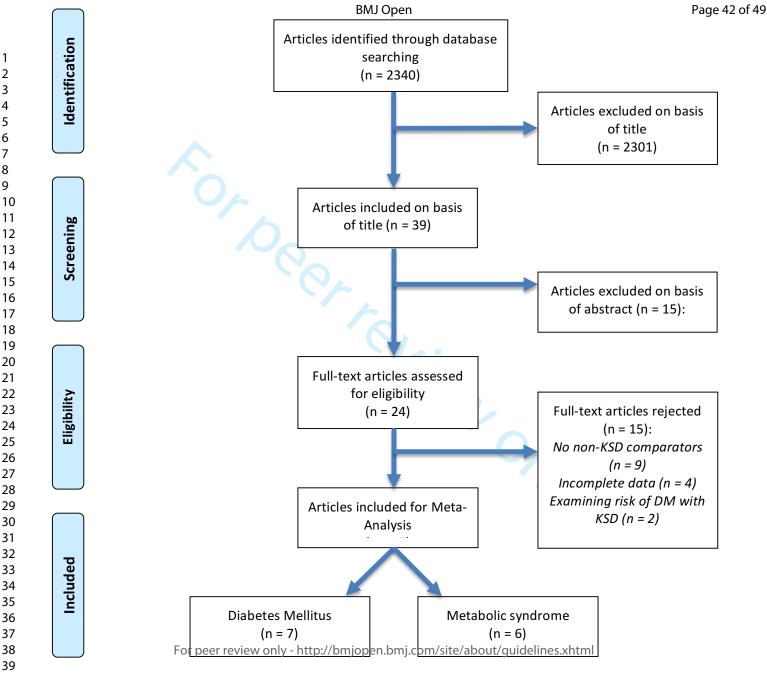
2 3	
4	
5 6	
6 7	
8	
9 10	
11	
12 13	
14	
15 16	
17	
18	
19 20 21 22 23 24 25	
21	
22 23	
24	
25 26	
26 27	
28	
29 30	
31	
32 33	
34 35	
35 36	
36 37 38	
38 39	
40	
41	
42 43	
44	
45 46	
47	
48 49	
50	
51	
52 53	
54	
55 56	
57	
58 59	
60	

	455	et al. in consecutive studies on both genders[57,59], demonstrated there was no increased
	456	risk compared to non-hypertensive individuals when age, BMI and electrolyte intake were
	457	adjusted for. Akoudad et al. ²⁹ in their prospective cohort study demonstrated an increased
)	458	risk of KSD with hypertension. However on multivariate analysis the effect was rendered
<u>/</u> } }	459	non-significant. Perhaps the risk found by Cappuccio was confounded by the presence of
5	460	metabolic syndrome, which at the time of publication was not defined[20]. Hypertension is
, 3 9	461	more likely indicative of underlying metabolic disturbance than having a truly lithogenic
)	462	effect.
2 } 1	463	Dyslipidaemia, defined as hypercholesterolaemia, low serum high-density
5	464	lipoprotein and high serum triglycerides[20] has also been associated with increased risk of
7 3 2	465	KSD[60]. However, when adjusted in multivariate analysis the association is lost[60].
) 	466	Moreover, the only demonstrable biochemical abnormality after multivariate analysis is
<u>2</u> 3	467	high urinary uric acid. Therefore the risk associated with dyslipidaemia is due to insulin
+ 5 5	468	resistance instead.
7 3	469	Renal lipotoxicity, defined as lipid accumulation in non-adipose tissues, has been
) 	470	linked to decreased ammonium secretion and therefore lower pH in rat models[61].
<u>2</u> 3	471	However, this observation has yet to be reflected in humans. Renal lipotoxicity may
1 5 5	472	represent the end-point of chronic dyslipidaemia.
7 3	473	The addition of renal lipotoxicity to insulin resistance may explain the seemingly
))	474	increased risk of KSD observed in patients with MetS versus IGT. Further studies are
<u>2</u> 3	475	required to accurately demonstrate the underlying mechanism.
+ 5	476	The rise in prevalence of DM and MetS is well documented and is now
, 7 }	477	perceived as a global pandemic[9,18]. KSD prevalence has risen in
)	478	parallel[3,5,6]. The Global Burden of Disease study[9,10] demonstrated

2 3 4	479	morbidity and absolute mortality associated with KSD has increased, perhaps
5 6	480	due to the pandemic of DM/MetS[19], although age standardized mortality
7 8 9	481	rates have decreased globally,. The effect is marked in higher income
10 11 12	482	countries (HIC), but is attenuated in lower-middle income countries
12 13 14	483	(LMIC)[8,10]. This may be attributable to lack of availability of prompt
15 16 17	484	intervention in developing countries, leading to later presentation and
17 18 19	485	invasive treatments including nephrectomy[62-64]. Following surgical
20 21	486	treatment, management to prevent recurrence is recommended[13], again
22 23 24	487	this may not be available in developing countries.
25 26	488	In this review, those with impaired glucose tolerance (pre-diabetes)
27 28 29	489	had an increased likelihood of KSD, which was similar to those with DM in
30 31	490	cross-sectional/case-control studies, although this may be suffering from
32 33	491	publication bias and the real situation may be that the likelihood of KSD in
34 35 36	492	IGT is lower than DM. Indeed, The NHANES III cross-sectional study[35]
37 38	493	demonstrated with increasingly poor glycaemic control led to increasing
39 40 41	494	likelihood of KSD as determined by fasting plasma glucose and glycosylated
42 43	495	haemoglobin. Given the evidence suggesting those with DM or MetS are at
44 45 46	496	increased risk of developing KSD measures to improve glycaemic control
47 48	497	should be examined for their efficacy in KSD prevention in this 'at-risk'
49 50 51	498	population. It should be noted that the stone type in those with DM or MetS
52 53	499	is most commonly calcium oxalate, however although still small, the
54 55	500	proportion of urate stones increases in these related populations[22,65] .
56 57 58	501	Clarity is required on the risk in type 1 diabetics and future studies
59 60	502	should differentiate these patients from type 2. Further prospective

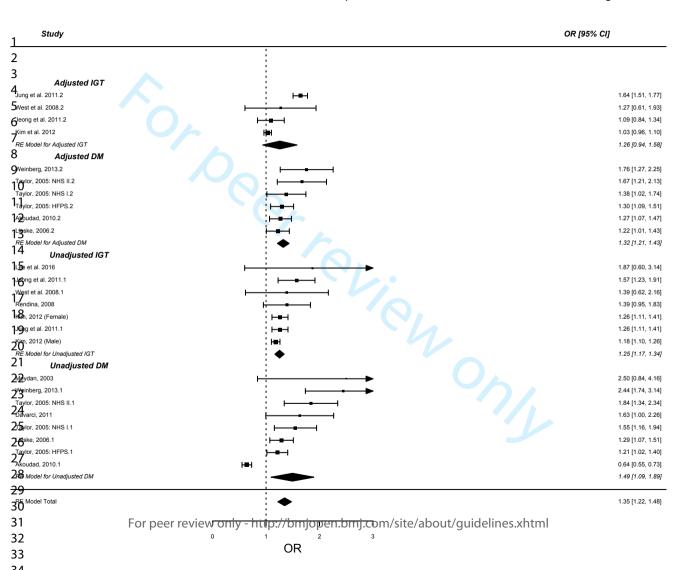
2		
3 4	503	examination of DM and MetS should be undertaken to accurately portray
5	504	whether additional risk is recard by MatCauca DNA and supplify this. Tight
6 7	504	whether additional risk is posed by MetS over DM and quantify this. Tight
8	505	glycaemic control and weight loss should be explored in primary prevention
9 10		
11	506	studies for both MetS and DM, given the common pathophysiologic
12 13	507	mechanism. Further investigation is required to demonstrate if these patient
14 15		
16	508	are at increased risk of recurrence.
17 18	509	The risk of developing kidney stones is significantly increased in
19	507	
20 21	510	populations with chronic hyperglycaemia. This has global implications with
22	511	rising morbidity and absolute mortality attributable to stones and is likely to
23 24	511	Tising morbidity and absolute mortainty attributable to stones and is likely to
25 26	512	increase the health and economic burden on patients and healthcare
27	512	
28 29	513	providers. Tight glycaemic control and weight loss are low-cost and non-
30	514	invasive measures, which should be investigated for their primary
31 32	- 1 -	
33 34	515	preventative effect on KSD in these populations and included as part of the
35	516	long-term management of kidney stone disease.
36 37		
38	517	
39 40	518	
41		
42 43	519	Bibliography
44 45	520	
46	020	
47 48	521	1 Lotan Y. Economics and Cost of Care of Stone Disease. Advances in Chronic Kidney
49	522	Disease 2009;16:5–10. doi:10.1053/j.ackd.2008.10.002
50 51	523	2 Sakhaee K. Recent advances in the pathophysiology of nephrolithiasis. <i>Kidney</i>
52	524	<i>international</i> 2009; 75 :585–95. doi:10.1038/ki.2008.626
53 54	525	3 PEARLE M, CALHOUN E, CURHAN G. UROLOGIC DISEASES IN AMERICA PROJECT:
55 56	526	UROLITHIASIS. 2005; 173 :848–57. doi:10.1097/01.ju.0000152082.14384.d7
57	507	A Vacui T. Okada A. Hamamata C. at al. Dathanhysiology based treatment of use lithiasia
58 59	527 528	4 Yasui T, Okada A, Hamamoto S, <i>et al.</i> Pathophysiology-based treatment of urolithiasis. <i>Int J Urol</i> 2016; 24 :32–8. doi:10.1111/iju.13187
60		· · · · · · · · · · · · · · · · · · ·

2			
3	529	5	Edvardsson VO, Indridason OS, Haraldsson G, et al. Temporal trends in the incidence of
4 5	530		kidney stone disease. <i>Kidney international</i> 2013;83:146–52. doi:10.1038/ki.2012.320
6 7	531	6	Yasui T, Iguchi M, Suzuki S, et al. Prevalence and Epidemiological Characteristics of
8	532		Urolithiasis in Japan: National Trends Between 1965 and 2005. Urology 2008; 71 :209–
9	533		13. doi:10.1016/j.urology.2007.09.034
10			
11 12	534	7	Geraghty RM, Jones P, Somani BK. Worldwide Trends of Urinary Stone Disease
13	535		Treatment Over the Last Two Decades: A Systematic Review. 2017; 31 :547–56.
14	536		doi:10.1089/end.2016.0895
15			
16 17	537	8	Bayne D, Chi T, Harris C, et al. GLOBAL TRENDS IN UROLITHIASIS MORBIDITY AND
17	538		MORTALITY FROM 1990-2010. JURO 2016; 195 :e1170–1.
19	539		doi:10.1016/j.juro.2016.02.2690
20	540	9	MD PCJLM, PhD PTV, MD PRL, et al. Disability-adjusted life years (DALYs) for 291
21 22	540 541	9	diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global
22	541 542		
24			Burden of Disease Study 2010. <i>The Lancet</i> 2012; 380 :2197–223. doi:10.1016/S0140-6736(12)61689-4
25	543		0/30(12)01089-4
26 27	544	10	MD PRL, PhD MN, MPH KF, et al. Global and regional mortality from 235 causes of
27	545		death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden
29	546		of Disease Study 2010. The Lancet 2012; 380 :2095–128. doi:10.1016/S0140-
30	547		6736(12)61728-0
31	• • •		
32 33	548	11	Uribarri J, Oh MS, Carroll HJ. The first kidney stone. Ann Intern Med 1989; 111 :1006–9.
34	549	12	Bensalah K, Tuncel A, Gupta A, et al. Determinants of quality of life for patients with
35 36	550	12	kidney stones. 2008; 179 :2238–43–discussion2243. doi:10.1016/j.juro.2008.01.116
37	550		Kiuney stones. 2008, 179.2238–43–uiscussion2243. doi.10.1010/j.ju/0.2008.01.110
38	551	13	Pearle MS, Goldfarb DS, Assimos DG, et al. AUA Guidelines Medical Management of
39	552		Kidney Stones: AUA Guideline. JURO 2014; 192 :316–24. doi:10.1016/j.juro.2014.05.006
40 41			
42	553	14	Türk C, Petřík A, Sarica K, et al. EAU Guidelines on Interventional Treatment for
43	554		Urolithiasis. <i>European Urology</i> 2016; 69 :475–82. doi:10.1016/j.eururo.2015.07.041
44			
45 46	555	15	Saucier NA, Sinha MK, Liang KV, et al. Risk factors for CKD in persons with kidney
47	556		stones: a case-control study in Olmsted County, Minnesota. Am J Kidney Dis
48	557		2010; 55 :61–8. doi:10.1053/j.ajkd.2009.08.008
49 50	558	16	Liu LH, Kang R, He J, <i>et al.</i> Diabetes mellitus and the risk of urolithiasis: a meta-analysis
50 51	559	10	of observational studies. Urolithiasis 2015;:1–9. doi:10.1007/s00240-015-0773-5
52	557		
53	560	17	Wong Y, Cook P, Roderick P, <i>et al.</i> Metabolic Syndrome and Kidney Stone Disease: A
54	561		Systematic Review of Literature. 2016; 30 :246–53. doi:10.1089/end.2015.0567
55 56			
57	562	18	Grundy SM. Metabolic Syndrome Pandemic. Arteriosclerosis, Thrombosis, and Vascular
58	563		<i>Biology</i> 2008; 28 :629–36. doi:10.1161/ATVBAHA.107.151092
59			
60			

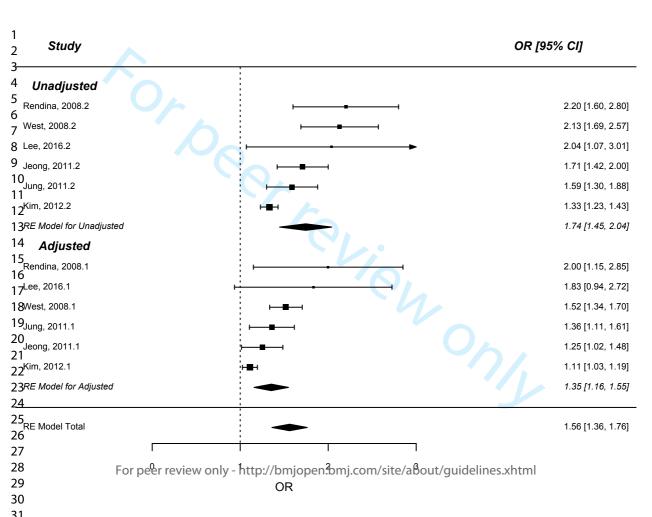

2			
3	564	19	Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and
4	565		years lived with disability for 310 diseases and injuries, 1990–2015: a systematic
5	566		
6			analysis for the Global Burden of Disease Study 2015. <i>The Lancet</i> 2016; 388 :1545–602.
7	567		doi:10.1016/S0140-6736(16)31678-6
8			
9	568	20	Grundy SM, Brewer HB, Cleeman JI, et al. Definition of metabolic syndrome: Report of
10	569		the National Heart, Lung, and Blood Institute/American Heart Association conference
11 12	570		on scientific issues related to definition. Lippincott Williams & Wilkins 2004. 433–8.
12	571		doi:10.1161/01.CIR.0000111245.75752.C6
14	011		
15	572	21	Daudon M. Type 2 Diabetes Increases the Risk for Uric Acid Stones. Journal of the
16	573	21	American Society of Nephrology 2006; 17 :2026–33. doi:10.1681/ASN.2006030262
17	575		Americun Society of Nephrology 2000, 17.2020–55. uol.10.1081/ASN.2000050202
18	574	าา	Daudan M. Lacour P. Jungars D. Influence of body size on urinary stone composition in
19		22	Daudon M, Lacour B, Jungers P. Influence of body size on urinary stone composition in
20	575		men and women. Urological Research 2006; 34 :193–9. doi:10.1007/s00240-006-0042-8
21		• •	
22	576	23	Liu LH, Kang R, He J, et al. Diabetes mellitus and the risk of urolithiasis: a meta-analysis
23	577		of observational studies. Urolithiasis 2015;:1–9. doi:10.1007/s00240-015-0773-5
24 25			
26	578	24	Besiroglu H, Otunctemur A, Ozbek E. The metabolic syndrome and urolithiasis: a
27	579		systematic review and meta-analysis. 2014; 37 :1–6.
28	580		doi:10.3109/0886022X.2014.976133
29			
30	581	25	Wong Y, Cook P, Roderick P, <i>et al.</i> Metabolic Syndrome and Kidney Stone Disease: A
31	582		Systematic Review of Literature. 2016; 30 :246–53. doi:10.1089/end.2015.0567
32			
33	583	26	Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews
34 25	584		and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009; 62 :1006–12.
35 36	585		doi:10.1016/j.jclinepi.2009.06.005
37	565		doi.10.1010/j.jcimepi.2009.00.005
38	586	27	Luchini C, Stubbs B, Solmi M, et al. Assessing the quality of studies in meta-analyses:
39		27	
40	587		Advantages and limitations of the Newcastle Ottawa Scale. World Journal of Meta-
41	588		Analysis 2017; 5 :80. doi:10.13105/wjma.v5.i4.80
42	-00		
43	589	28	Viechtbauer W. Conducting Meta-Analyses in Rwith the metaforPackage. <i>Journal of</i>
44	590		Statistical Software 2010; 36 :1–48. doi:10.18637/jss.v036.i03
45 46			
46 47	591	29	Taylor EN, Stampfer MJ, Curhan GC. Diabetes mellitus and the risk of nephrolithiasis.
47 48	592		<i>Kidney international</i> 2005; 68 :1230–5. doi:10.1111/j.1523-1755.2005.00516.x
40			
50	593	30	Chen HS, Su LT, Lin SZ, et al. Increased Risk of Urinary Tract Calculi Among Patients
51	594		With Diabetes Mellitus—A Population-based Cohort Study. Urology 2012; 79 :86–92.
52	595		doi:10.1016/j.urology.2011.07.1431
53			
54	596	31	Akoudad S, Szklo M, McAdams MA, et al. Correlates of kidney stone disease differ by
55	597		race in a multi-ethnic middle-aged population: The ARIC study. <i>Preventive Medicine</i>
56	598		2010; 51 :416–20. doi:10.1016/j.ypmed.2010.08.011
57	570		2010, 31 .410 ⁻ 20. 001.10.1010/J.ypineu.2010.06.011
58 59	599	22	Moudan N. Barutea S. Calickan S. at al Urinary Stone Disease in Dishatas Mallitus
59 60		32	Meydan N, Barutca S, Caliskan S, <i>et al.</i> Urinary Stone Disease in Diabetes Mellitus.
00	600		Scandinavian Journal of Urology and Nephrology 2003; 37 :1–7.
1			

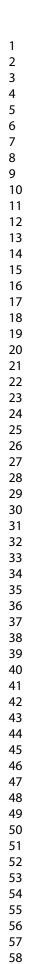
1			
2 3 4 5 6	601 602 603	33	Lieske JC, la Vega de LSP, Gettman MT, <i>et al.</i> Diabetes Mellitus and the Risk of Urinary Tract Stones: A Population-Based Case-Control Study. <i>American Journal of Kidney</i> <i>Diseases</i> 2006; 48 :897–904. doi:10.1053/j.ajkd.2006.09.002
7			
8 9 10	604 605	34	Davarci M, Helvaci MR, Aydin M. What is the relationship between type 2 diabetes mellitus and urolithiasis? <i>Bratisl Lek Listy</i> 2011; 112 :711–4.
11 12	606	35	Weinberg AE, Patel CJ, Chertow GM, et al. Diabetic Severity and Risk of Kidney Stone
13 14	607		Disease. European Urology 2014;65:242–7. doi:10.1016/j.eururo.2013.03.026
15	608	36	
16 17	609 610		and nephrolithiasis in an inpatient population in southern Italy: role of gender,
18	611		hypertension and abdominal obesity. <i>Nephrology Dialysis Transplantation</i> 2008; 24 :900–6. doi:10.1093/ndt/gfn548
19 20	011		
21	612	37	West B, Luke A, Durazo-Arvizu RA, et al. Metabolic syndrome and self-reported history
22	613		of kidney stones: the National Health and Nutrition Examination Survey (NHANES III)
23 24	614		1988-1994. Am J Kidney Dis 2008; 51 :741–7. doi:10.1053/j.ajkd.2007.12.030
25	615	38	Jung HS, Chang IH, Kim KD, et al. Possible Relationship between Metabolic Syndrome
26	616	50	Traits and Nephrolithiasis: Incidence for 15 Years According to Gender. <i>Korean J Urol</i>
27 28	617		2011; 52 :548–6. doi:10.4111/kju.2011.52.8.548
29			
30	618	39	Jeong IG, Kang T, Bang JK, <i>et al.</i> Association Between Metabolic Syndrome and the
31 32	619		Presence of Kidney Stones in a Screened Population. YAJKD 2011;58:383–8.
33	620		doi:10.1053/j.ajkd.2011.03.021
34 35	621	40	Kim Y-J, Kim C-H, Sung E-J, et al. Association of nephrolithiasis with metabolic
36	622	10	syndrome and its components. <i>Metabolism</i> 2013; 62 :808–13.
37	623		doi:10.1016/j.metabol.2012.12.010
38 39			
40	624	41	Lee Y-C, Huang S-P, Juan Y-S, et al. Impact of metabolic syndrome and its components
41	625		on kidney stone in aging Taiwanese males. <i>The Aging Male</i> 2016; 19 :197–201.
42 43	626		doi:10.1080/13685538.2016.1174987
44	627	42	Knoll T. Epidemiology, Pathogenesis, and Pathophysiology of Urolithiasis. European
45	628		Urology Supplements 2010; 9 :802–6. doi:10.1016/j.eursup.2010.11.006
46 47			
48	629	43	Kadlec AO, Greco K, Fridirici ZC, et al. Metabolic Syndrome and Urinary Stone
49	630		Composition: What Factors Matter Most? Urology 2012; 80 :805–10.
50 51	631		doi:10.1016/j.urology.2012.05.011
52	632	44	Nagasaka S, Murakami T, Uchikawa T, et al. Effect of glycemic control on calcium and
53	633		phosphorus handling and parathyroid hormone level in patients with non-insulin-
54 55	634		dependent diabetes mellitus. <i>Endocr J</i> 1995; 42 :377–83.
56	() -		
57	635	45	Thalassinos NC, Hadjiyanni P, Tzanela M, <i>et al.</i> Calcium metabolism in diabetes
58 59	636		mellitus: effect of improved blood glucose control. <i>Diabet Med</i> 1993; 10 :341–4.
60			

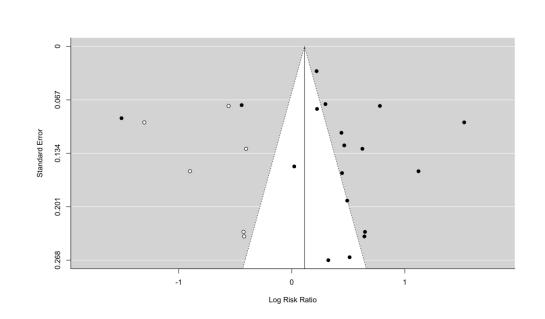
1 2			
3 4 5	637 638	46	Cook DG, Shaper AG, Thelle DS, <i>et al</i> . Serum uric acid, serum glucose and diabetes: relationships in a population study. <i>Postgrad Med J</i> 1986; 62 :1001–6.
6 7 8 9	639 640	47	Gotfredsen A, McNair P, Christiansen C, <i>et al.</i> Renal hypouricaemia in insulin treated diabetes mellitus. <i>Clin Chim Acta</i> 1982; 120 :355–61.
10 11 12 13	641 642 643	48	Eisner BH, Porten SP, Bechis SK, <i>et al.</i> Urolithiasis/Endourology Diabetic Kidney Stone Formers Excrete More Oxalate and Have Lower Urine pH Than Nondiabetic Stone Formers. <i>JURO</i> 2010; 183 :2244–8. doi:10.1016/j.juro.2010.02.007
14 15 16 17 18	644 645 646	49	Maalouf NM, Cameron MA, Moe OW, <i>et al</i> . Metabolic Basis for Low Urine pH in Type 2 Diabetes. <i>Clinical Journal of the American Society of Nephrology</i> 2010; 5 :1277–81. doi:10.2215/CJN.08331109
19 20 21 22 23	647 648 649	50	Abate N, Chandalia M, Cabo-Chan AV, <i>et al</i> . The metabolic syndrome and uric acid nephrolithiasis: Novel features of renal manifestation of insulin resistance. <i>Kidney international</i> 2004; 65 :386–92. doi:10.1111/j.1523-1755.2004.00386.x
24 25 26 27	650 651 652	51	Cupisti A, Meola M, D'Alessandro C, <i>et al.</i> Insulin resistance and low urinary citrate excretion in calcium stone formers. <i>Biomed Pharmacother</i> 2007; 61 :86–90. doi:10.1016/j.biopha.2006.09.012
28 29 30 31	653 654	52	Chung SD, Chen YK, Lin HC. Increased Risk of Diabetes in Patients With Urinary Calculi: A 5-Year Followup Study. <i>JURO</i> 2011; 186 :1888–93. doi:10.1016/j.juro.2011.07.011
32 33 34	655 656	53	Weikert C, Weikert S, Schulze MB, <i>et al.</i> Presence of Gallstones or Kidney Stones and Risk of Type 2 Diabetes. <i>Am J Epidemiol</i> 2010; 171 :447–54. doi:10.1093/aje/kwp411
35 36 37 38	657 658	54	Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. <i>The Lancet</i> 2005; 365 :1415– 28. doi:10.1016/S0140-6736(05)66378-7
39 40 41 42	659 660 661	55	Okamoto M, Kohjimoto Y, Iba A, <i>et al.</i> Calcium oxalate crystal deposition in metabolic syndrome model rat kidneys. <i>Int J Urol</i> 2010; 17 :996–1003. doi:10.1111/j.1442-2042.2010.02661.x
43 44 45 46 47	662 663 664	56	Abate N, Chandalia M, Cabo-Chan AV, <i>et al.</i> The metabolic syndrome and uric acid nephrolithiasis: Novel features of renal manifestation of insulin resistance. <i>Kidney international</i> 2004; 65 :386–92. doi:10.1111/j.1523-1755.2004.00386.x
48 49 50 51 52 53 54	665 666	57	Madore F, Stampfer MJ, Willett WC, <i>et al.</i> Nephrolithiasis and risk of hypertension in women. <i>Am J Kidney Dis</i> 1998; 32 :802–7.
	667 668	58	Cappuccio FP, Siani A, Barba G, <i>et al.</i> A prospective study of hypertension and the incidence of kidney stones in men. <i>J Hypertens</i> 1999; 17 :1017–22.
55 56 57	669 670	59	Madore F, Stampfer MJ, Rimm EB, <i>et al.</i> Nephrolithiasis and risk of hypertension. <i>Am J</i> <i>Hypertens</i> 1998; 11 :46–53.
58 59 60	671 672	60	Torricelli FCM, De SK, Gebreselassie S, <i>et al</i> . Urolithiasis/Endourology Dyslipidemia and Kidney Stone Risk. <i>JURO</i> 2014; 191 :667–72. doi:10.1016/j.juro.2013.09.022


1			
2 3 4 5 6 7	673 674 675	61	Bobulescu IA, Dubree M, Zhang J, <i>et al.</i> Effect of renal lipid accumulation on proximal tubule Na+/H+ exchange and ammonium secretion. <i>Am J Physiol Renal Physiol</i> 2008; 294 :F1315–22. doi:10.1152/ajprenal.00550.2007
7 8 9 10 11	676 677 678	62	Rimtebaye K, Sillong FD, Tashkand AZA, <i>et al.</i> Urolithiasis: Diagnostic and Therapeutic Aspects in Urology Department of N'Djamena in Chad. <i>OJU</i> 2015; 05 :199–206. doi:10.4236/oju.2015.511032
12 13 14 15 16	679 680 681	63	Hounnasso PP, Avakoudjo JDG, Paré AK, <i>et al.</i> Symptomatic Urinary Lithiasis: Epidemiology and Management at Urology Department of University Hospital of Cotonou. <i>OJU</i> 2015; 05 :7–12. doi:10.4236/oju.2015.52002
17 18 19 20	682 683 684	64	Marchini GS, Mello MF, Levy R, <i>et al.</i> Contemporary Trends of Inpatient Surgical Management of Stone Disease: National Analysis in an Economic Growth Scenario. 2015; 29 :956–62. doi:10.1089/end.2015.0021
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	685 686	65	Cho ST, Jung SI, Myung SC, <i>et al.</i> Correlation of metabolic syndrome with urinary stone composition. <i>Int J Urol</i> 2012; 20 :208–13. doi:10.1111/j.1442-2042.2012.03131.x
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54			
55 56 57 58 59 60			

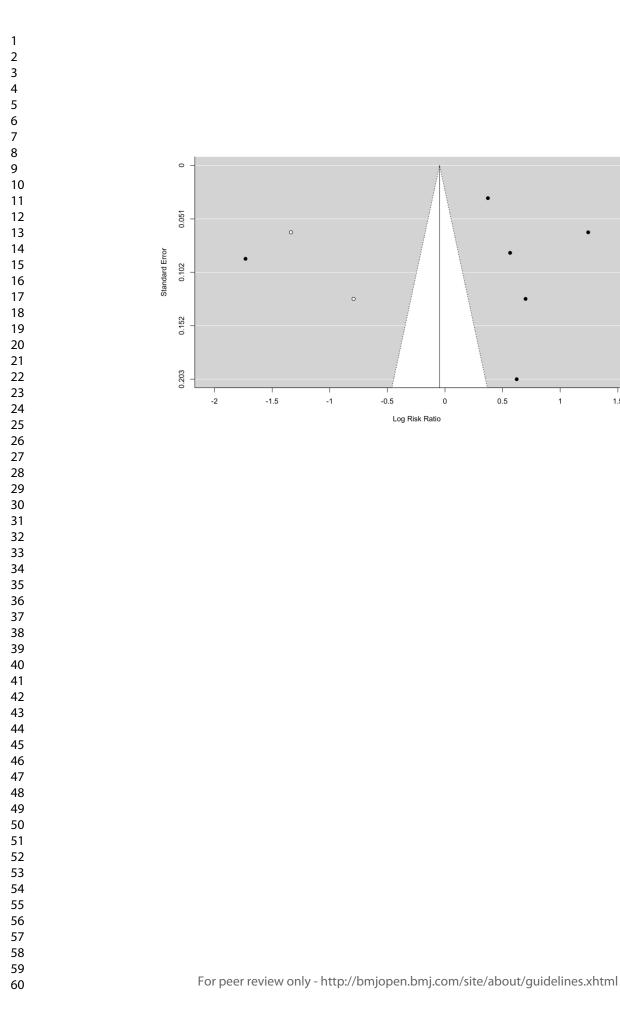
to beet terien only




1					
2 3 Stu	ıdy				RR [95% CI]
4	usted				
6 7 Akoudad, 2010.2	2	. <u> </u>			1.90 [0.98, 2.82]
, 8 Taylor, 2005: NH	IS II.2	· · · · •	—		1.86 [1.26, 2.46]
⁹ Taylor, 2005: NH	IS I.2	· • • •			1.45 [1.17, 1.73]
10 11 Chen, 2012.2		-			1.22 [1.15, 1.29]
12 Taylor, 2005: HF	PS.2	—			1.03 [0.63, 1.43]
¹³ RE Model for Un	adjusted				1.36 [1.11, 1.61]
14 Adju	sted				
16 Akoudad, 2010.1					1.98 [0.94, 3.02]
17 Taylor, 2005: NH	IS II.1	⊢			1.60 [1.08, 2.12]
18 19 Taylor, 2005: NH	IS I.1	; ; (1.29 [1.03, 1.55]
20 Chen, 2012.1		H			1.18 [1.10, 1.26]
21 Taylor, 2005: HF	PS.1 -				0.81 [0.56, 1.06]
22 23 RE Model for Ad	justed				1.23 [0.94, 1.51]
25 24		• • •			
25 RE Model Total		•			1.29 [1.10, 1.47]
26		<u> </u>			
27 28	0	1	2	3	
20	r peer review only - http:	//hmionen h	_	-	idelines xhtml
30	peer review only intip.	RR	, inj.com	, site, about, gu	iden reskrittin
31					


Page 44 of 49

Page 45 of 49



0.5

1

1.5

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #			
TITLE						
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1			
ABSTRACT						
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2			
, Rationale	3	Describe the rationale for the review in the context of what is already known.	4			
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5			
METHODS						
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	6			
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5,6			
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5,6			
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6			
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5,6			
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6			
v Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5,6			
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6			
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7			
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	6,7			

Page 49 of 49

Section/topic

4 5

PRISMA 2009 Checklist

#

Checklist item

6	Section/topic	#	Checklist item	on page #					
7 8 9	Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6					
1(1	Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.						
13	RESULTS								
14 15	Study selection		Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.						
17 17 18	Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	7,8,9					
19	Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9,10					
20 2 22	Results of individual studies 20		For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.						
23	Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8,9					
25 25 26	Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).						
28	Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	9					
29 30 31 32 33 34									
	Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).						
	Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	12,13					
36	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	13					
37 38	FUNDING								
39 4(Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	14					
4 42 43 44 44 44	Page 2 of 2								

BMJ Open

Page 1 of 2

Reported

- 46
- 47