Article Text

Download PDFPDF

Original research
Association between birth weight and neurodevelopment at age 1–6 months: results from the Wuhan Healthy Baby Cohort
  1. Man Zhang1,
  2. Marufu Martin Gazimbi2,
  3. Zhong Chen3,
  4. Bin Zhang3,
  5. Yanru Chen1,
  6. Yizhen Yu4,
  7. Jie Tang1
  1. 1 Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
  2. 2 Global Development Institute, The University of Manchester, Manchester, UK
  3. 3 Department of Child Health Care, Wuhan Medical and Healthcare Center for Women and Children, Wuhan, China
  4. 4 Child and Women Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
  1. Correspondence to Professor Jie Tang; james.tang{at}wlv.ac.uk

Abstract

Objective The association between birth weight and infants’ neurodevelopment is not well understood. We aimed to examine the impact of birth weight on neurodevelopment of infants at age 1–6 months using data from the Wuhan Healthy Baby Cohort (WHBC) study.

Setting and participants This is a prospective cohort study of 4026 infants from the WHBC study who were born at the Women and Children’s Hospital of Wuhan, China between October 2012 and September 2013 and who had complete healthcare records within 6 months after birth. Participants were categorised into three groups according to their birth weight: low birth weight (LBW; birth weight <2500 g), normal birth weight (2500 g ≤ birth weight <4000 g) and macrosomia (birth weight ≥4000 g).

Main outcome measures The main outcomes were development quotient (DQ) and clinical diagnosis of neurodevelopmental delay. Both adjusted regression coefficients and ORs were estimated for LBW and macrosomia.

Results Of the 4026 infants, 166 (4.12%) were of LBW and 237 (5.89%) were with macrosomia. Adjusted regression coefficients of LBW and macrosomia for gross motor DQ were −11.18 (95% CI −11.36 to 10.99) and 0.49 (95% CI 0.36 to 0.63), fine motor DQ −6.57 (95% CI −6.76 to −6.39) and −2.73 (95% CI −2.87 to −2.59), adaptability DQ −4.87 (95% CI −5.05 to −4.68) and −1.19 (95% CI −1.33 to −1.05), language DQ −6.23 (95% CI −6.42 to −6.05) and 0.43 (95% CI 0.29 to 0.57), and social behaviour DQ −6.82 (95% CI −7.01 to −6.64) and 1.10 (95% CI 0.96 to 1.24). Adjusted OR of LBW for clinical diagnosis of ‘neurodevelopmental delay’ in gross motor was 2.43 (95% CI 1.65 to 3.60), fine motor 1.49 (95% CI 1.01 to 2.19) and adaptability 1.56 (95% CI 1.06 to 2.31). LBW has no significant effects on ‘neurodevelopmental delay’ in language and social behaviour, and macrosomia has no significant effects on clinical diagnosis of ‘neurodevelopmental delay’ in all domains.

Conclusion Both LBW and macrosomia are associated with infants’ DQ, and LBW increases the risk of being diagnosed with ‘neurodevelopmental delay’ in gross motor, fine motor and adaptability among infants aged 1–6 months.

  • Epidemiology
  • Paediatric neurology
  • PUBLIC HEALTH
http://creativecommons.org/licenses/by-nc/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • Contributors TJ, YY and MMG conceived the study idea. MZ and YRC performed the literature search. ZC, MZ and BZ were involved in data collection. MZ wrote the first draft of the manuscript. MMG and TJ critically revised the manuscript. All authors approved the final version of the manuscript. TJ had full access to all of the data (including statistical reports and tables) in the study, and takes responsibility for the integrity of the data and the accuracy of the data analysis.

  • Funding This study was supported by the National Natural Science Foundation of China (Grant No 81773457) and was partially supported by the National Natural Science Foundation of Guangdong Province (Grant No 2015A030313455). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

  • Competing interests None declared.

  • Patient consent for publication Not required.

  • Ethics approval The WHBC study was approved by the Institutional Review Board of Women and Children's Hospital of Wuhan (no 2010009), and written informed consent was obtained from participants’ parents before recruitment. The present study was approved by the Review Board of Guangzhou Medical College (no [2015]17).

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data availability statement Data are available upon reasonable request. All of the de-identified individual participant data used in this study can be shared with investigators by contacting the corresponding author. Other data of the WHBC study are available (including data dictionaries) for investigators whose proposed use of the data has been approved by an independent review committee identified for this purpose by contacting the WHBC study team.