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ABSTRACT
Introduction The COVID-19 epidemic grows and there 
are clinical trials of antivirals. There is an opportunity to 
complement these trials with investigation of angiotensin II 
type 1 receptor blockers (ARBs) because an ARB (losartan) 
was effective in murine influenza pneumonia.
Methods and analysis Our innovative design includes: 
ARBs; alignment with the WHO Ordinal Scale (primary 
endpoint) to align with other COVID-19 trials; joint longitudinal 
analysis; and predictive biomarkers (angiotensins I, 1–7, 
II and ACE1 and ACE2). Our hypothesis is: ARBs decrease 
the need for hospitalisation, severity (need for ventilation, 
vasopressors, extracorporeal membrane oxygenation or renal 
replacement therapy) or mortality of hospitalised COVID-19 
infected adults. Our two- pronged multicentre pragmatic 
observational cohort study examines safety and effectiveness 
of ARBs in (1) hospitalised adult patients with COVID-19 
and (2) out- patients already on or not on ARBs. The primary 
outcome will be evaluated by ordinal logistic regression 
and main secondary outcomes by both joint longitudinal 
modelling analyses. We will compare rates of hospitalisation 
of ARB- exposed versus not ARB- exposed patients. We will 
also determine whether continuing ARBs or not decreases 
the primary outcome. Based on published COVID-19 cohorts, 
assuming 15% of patients are ARB- exposed, a total sample 
size of 497 patients can detect a proportional OR of 0.5 
(alpha=0.05, 80% power) comparing WHO scale of ARB- 
exposed versus non- ARB- exposed patients.
Ethics and dissemination This study has core institution 
approval (UBC Providence Healthcare Research Ethics 
Board) and site institution approvals (Health Research 
Ethics Board, University of Alberta; Comite d’etique de la 
recerche, CHU Sainte Justine (for McGill University and 
University of Sherbrook); Conjoint Health Research Ethics 
Board, University of Calgary; Queen’s University Health 
Sciences & Affiliated Hospitals Research Ethics Board; 
Research Ethics Board, Sunnybrook Health Sciences 
Centre; Veritas Independent Research Board (for Humber 
River Hospital); Mount Sinai Hospital Research Ethics 
Board; Unity Health Toronto Research Ethics Board, St. 
Michael’s Hospital). Results will be disseminated by peer- 
review publication and social media releases.

Trial registration number NCT04510623

INTRODUCTION
The coronavirus (COVID-19) epidemic 
grows, mortality rate is 2% (lower than Severe 
Acute Respiratory Syndrome (SARS) (10%) 
and Middle East Respirtatory Syndrome 
(MERS) (36%)) but is 10% in hospitalised 
and 24%–62%1 in ICU- admitted patients in 
China.2–4 Interventions to date include quar-
antine, isolation and usual clinical care. There 
are no proven vaccines and just one anti-
viral—remdesivir5—is approved for COVID-
19. However, the critical illness complications 
of COVID-19—septic shock, acute respiratory 
distress syndrome (ARDS) and acute kidney 

Strengths and limitations of this study

 ► We have four strengths: first, our innovative de-
sign includes evaluation of use of angiotensin re-
ceptor blockers (ARBs) and aligns with the WHO 
Ordinal Scale (primary endpoint) to align with other 
COVID-19 trials.

 ► Second, we will use adjusted ordinal logistic regres-
sion to assess the primary outcome (COVID-19 WHO 
Ordinal Scale) and adjusted regression analysis for 
the secondary outcomes.

 ► Third, we measure and evaluate several biomark-
ers (angiotensins I, 1–7, II and ACE1 and ACE2) that 
are predictive of outcomes and response to ARBs in 
COVID-19.

 ► Fourth, our two- pronged multicentre pragmatic ob-
servational cohort study will determine the safety 
and effectiveness of ARBs in1 (1) hospitalised adult 
patients with COVID-19 and2 (2) out- patients, al-
ready on or not on ARBs.

 ► The limitations are that the study is not randomised 
and not blinded.
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injury (AKI)—are caused in part by the host response. 
We have a unique opportunity to complement these trials 
of antivirals with investigation of modulation of the host 
response to improve outcomes of COVID-19.6 7

Publications at the time of our grant submission were 
used to derive power and sample size. Of 278 COVID-19 
hospitalisations in China2–4 at that time, 7% had septic 
shock, 20% ARDS, 9% needed intubation and ventila-
tion, 3% needed extracorporeal membrane oxygenation, 
7% had AKI, 5% needed renal replacement therapy 
(RRT) and 8% died. Critically ill patients with COVID-19 
have similar mortality as sepsis and ARDS. Mortality of 
ICU- admitted patients with COVID-193 4 was 2%–62%,8 
similar to or higher than sepsis mortality (24% in 101 
064 patients in Australia)9 and ARDS mortality (30% in 
a systematic review).10 Clearly there are opportunities to 
improve these outcomes.

COVID-19 binds ACE211 and so the ACE axis is central 
to septic shock, ARDS and COVID-19.12 SARS- CoV-2’s 
spike glycoprotein binds ACE2 10–20 times more avidly 
than does SARS111 and inactivates ACE2.13 Patients 
already on ARBs have lower sepsis mortality and do not 
have worse haemodynamic status (blood pressure14) than 
patients not on ARBs.15–17

The underlying mechanisms leading to the acute lung 
injury after viral infection mediated by an increase in 
angiotensin II18 (ie, microvascular damage, increased 
vascular permeability, secondary production of inflam-
matory cytokines, accelerated apoptosis, fibrosis). Local 
activation of the renin- angiotensin- aldosterone system 
may mediate lung and cardiac injury responses to 
SARS- CoV-2. SARS- CoV-2 infection increases lung and 
coronary microvascular thrombosis and coagulation 
(increased D- dimers), which is associated with increased 
COVID-19 mortality19 20. ATII binds the ATII receptor 1 
(AGTR1) which increases expression of tissue factor (TF) 
and plasminogen activator inhibitor-1 (PAI-1).21 Losartan 
decreases TF22 and PAI-1.22 23 ARBs may also modulate 
ACE2 activity24 upregulating ACE2 in cardiac tissue25 and 
that could be an adverse effect of ARBs in COVID-19.

The most severe cases of COVID-19 that require ICU 
care have ARDS, septic shock and AKI. We also have 
had success in discovery of off- target drugs: proprotein 
convertase subtilisin/kexin type 9 inhibition26–28 and 
cholesteryl ester transfer protein inhibition29–31 for sepsis. 
Determining whether plasma angiotensin I, 1–7 and II 
and ACE and ACE2 levels predict response to ARBs is 
based on our genomics and protein biomarker research 
in which we identified predictive biomarkers (ie, predic-
tive of response to angiotensin II,32 vasopressin,33 and 
norepinephrine34).

There is clinical equipoise regarding safety and effec-
tiveness of ARBs in COVID-19.35–37 At the time of our study 
design and implementation there was only one study that 
separated ARBs use from ACE inhibitor (ACEi) use38 39 
(n=362) finding no associations of ARBs or ACEi with 
mortality.38 A recent meta- analysis found that use of ARBs 
or ACEi use was associated with decreased mortality of 

COVID-19.40 ARBs or ACEi use in patients with COVID-19 
with hypertension (n=1128) was associated with decreased 
mortality (9.8% vs 3.7%, RRR 60%, p = 0.03) compared 
with patients not on ARBs/ACEis in one study41 but not 
in Feng and colleagues.42 Li and colleagues38 found no 
differences in use of ACEis (9.1% vs 9.8%; p = 0.85), ARBs 
(19.5% vs 23.9%; p = 0.42), or the composite ACEis/ARBs 
(27.3% vs 33.0%; p = 0.34) between non- survivors and 
survivors.

Losartan (an ARB) decreases viral replication and 
lung injury in murine influenza pneumonia.8 ARBs are 
inexpensive clinically- available drugs used in hyperten-
sion and heart failure that could decrease morbidity and 
mortality of COVID-19. Angiotensin II worsens lung injury 
in influenza models2–4 because ACE2 is downregulated in 
H1N1, H5N1, H7N9 and SARS2–4 43 leading to increased 
angiotensin II. Angiotensin II levels are increased in 
COVID-1944 and human influenza and are associated with 
influenza viral load, disease progression and mortality.45 
Losartan limits lung injury in murine influenza H7N9(8), 
viral titre and RNA and lung injury. ARBs could limit viral 
titre and organ injury.

Hypertension guidelines recommend ARBs if ACEis 
are not tolerated,46 are very commonly prescribed (59% 
of hypertension47), 35% of hypertensive patients with 
chronic kidney disease (CKD)48 and 32% of diabetics.49 
ARBs are recommended first line therapy in Canadian 
heart failure guidelines.50 In Alberta, Canada, ARBs 
or ACEis were used in 50%–70% of patients with heart 
failure51 and 58% of patients in Nepal52 and 52%53 of US 
patients with heart failure.

If ARBs protect patients from COVID-19 because they 
are less sick and are not hospitalised, we may detect this 
in our study of hospitalised COVID-19. Thus, once hospi-
talised, ARB- exposed patients may not fare better than 
patients not on ARBs (ie, ARBs may protect them from 
getting sick enough to be admitted). To address that possi-
bility, we collaborate with SM and his study of community 
COVID-19 (COVID-19: Improving the Evidence to Treat 
an Emerging Infection) to determine whether ARB treat-
ment compared with not being on ARBs decreases the 
risk of hospitalisation.

Initially when we designed our study (ie, before the 
amendment), we sought to evaluate ARBs treatment 
versus no ARBs treatment but not ACEis because the 
available evidence in previous animal studies used ARB 
for attenuation of acute lung injury. We added an amend-
ment to similarly evaluate ACEi treatment versus no ACEi 
treatment and ARBs/ACEi versus no ARBs/ACEi.

Overall purpose
This is a multicentre pragmatic cohort study of hospital-
ised patients with COVID-19 that leverages cutting- edge 
longitudinal data analysis methods. We will assess ARBs 
(losartan, irbesartan, candesartan, telmisartan, valsartan, 
eprosartan and alzilsartan used to treat hypertension and 
heart failure) for safety and effectiveness in decreasing 
need for vital organ support and mortality of hospitalised 
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adults with COVID-19. There were two amendments after 
receiving Canadian Institutes of Health Research (CIHR) 
funding: to add other ACE pathway biomarkers and to 
evaluate ACEis (online supplemental file 1). There is a 
flow chart of ARBs Corona I shown in figure 1.

Objectives
 ► To accrue and retrospectively record clinical char-

acteristics and outcomes of COVID-19 hospitalised 
patients.

 ► To classify patients as ARB- exposed or not 
ARB- exposed.

 ► To measure serum angiotensin II levels at hospital 
admission and compare to the primary outcome 
COVID-19 WHO Ordinal Scale as well as comparing 
ARB- exposed to ARB- non- exposed patients (and 
ACEi- exposed vs not ACEi- exposed) and the associa-
tion of these treatments with the outcomes.

 ► To do adjusted ordinal logistic regression for the 
primary outcome COVID-19 WHO Ordinal Scale 
and adjusted regression analysis for the secondary 
outcomes comparing ARB- exposed to not ARB- 
exposed hospitalised COVID-19 patients.

 ► To do joint longitudinal analyses of organ dysfunc-
tion (as evaluated by the Sequential Organ Failure 
Assessment (SOFA) Score) over time comparing ARB- 
exposed to not ARB- exposed hospitalised patients 
with COVID-19.

 ► To do ordinal logistic regression and interaction tests 
for the primary outcome COVID-19 WHO Ordinal 
Scale to determine whether and at what level plasma 
angiotensin II levels are associated with improved 
WHO Ordinal Scale in ARB- exposed patients with 
COVID-19.

 ► To do logistic regression for the rates of hospitalisa-
tion of ARB- exposed to not ARB- exposed patients in 
the community (in collaboration with SM (COVID-
19: Improving the Evidence to Treat an Emerging 
Infection).

 ► To do ordinal logistic regression subgroup analysis 
in patients already on ARBs when they are hospital-
ised to determine whether continuing ARBs (or not) 
decreases WHO COVID-19 Ordinal Outcome Scale.

Our main hypothesis is that modulation of ACE2 by 
angiotensin receptor blockers is associated with decreased 
WHO COVID-19 Ordinal Outcome Scale (that evaluates 
the severity, need for ventilation, vasopressors, extracor-
poreal membrane oxygenation or RRT and mortality) of 
hospitalised COVID-19 infected adults.

Secondary biomarker hypothesis
Plasma angiotensin II levels are associated with effective-
ness of ARBs in hospitalised COVID-19 adults. Secondary 
HospitalisationHypothesi: odulation of ACE2 by angiotensin 
receptor blockers is associated with decreased rate of 
hospitalisation for COVID-19. Secondary Continuing ARBs 
Hypothesis: In patients already on ARBs when they are 
hospitalised continuing ARBs is associated with decreased 
WHO COVID-19 Ordinal Outcome Scale.

METHODS AND ANALYSIS
Design, participants and timeframe of enrollment and visits
Our pragmatic multicentre cohort study comparing 
ARB use to no ARB use in COVID-19 is relatively simple, 
inexpensive, will be done quickly and thus addresses 
the urgency of COVID-19 research. We will compare 
outcomes of hospitalised adult patients with COVID-19 
(1) who have use of any ARB within 24 hours of onset 
of COVID-19 symptoms with (2) patients who were not 
exposed to ARBs. At hospital admission we will obtain 
discarded blood from the routine blood work33 34 54 to 
measure plasma ACE pathway levels (see online supple-
mental file 1 regarding amendment) and do ordinal 
logistic regression of the interaction of plasma ACE 
pathway levels and ARB- exposed or not. For the hospi-
talisation hypothesis, we will obtain relevant data from 
SM’s CIHR- funded study: ‘COVID-19: Improving the 
Evidence to Treat an Emerging Infection’ and do logistic 
regression for the rates of hospitalisation of ARB- exposed 
to not ARB- exposed patients in out- patients. For the 
continuing ARBs or ACEi hypothesis, we will do ordinal 
logistic regression subgroup analysis in patients on ARBs 
(or ACEi) when hospitalised to determine whether 
continuing ARBs (or ACEi, or not) decreases WHO 
COVID-19 Ordinal Outcome Scale.

Inclusion criteria are individuals over 18 years of age 
who have confirmed COVID-19 infection (according 
to local hospital or provincial laboratories clinically 
approved laboratory testing for COVID-19). ARBs- 
exposed and ACEi- exposed patients are defined for inclu-
sion by being on ARB or ACE prior to and at the time of 

Figure 1 Flow chart of patients. ARBs, angiotensin receptor 
blockers, ACEi, ACE inhibitor; ARB, angiotensin receptor 
blockers.
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the hospital admission for COVID-19. There are no exclu-
sion criteria. We will enrol from 1 January 2020 until the 
conclusion of the COVID-19 epidemic at the centres in 
Canada (expected mid to end 2021).

Recruitment and power—sample size estimation
We used published cohorts of hospitalised adults with 
COVID-19 in China2–4 to determine expected severity and 
sample size. About 32% have WHO Ordinal Scale criteria 
6–8 (vasopressors, ventilation, ECMO, RRT or death). 
Since about 30% of patients with COVID-19 had cardio-
vascular disease or hypertension2–4 it is conceivable that 
a significant proportion of the population could be on 
ARBs. Assuming that 50% of the 30% with cardiovascular 
disease are on an ARB, then about 15% of patients of the 
total cohort would be on an ARB. Ordinal logistic regres-
sion will be used to compare the primary outcome—WHO 
Ordinal Scale for COVID-19—in ARB- exposed versus 
non- ARB- exposed hospitalised patients. Based on data 
from three publications (tables 1 and 2), assuming 15% of 
the patients were ARB- exposed, a total sample size of 497 
can detect a proportional OR of 0.5 (table 2, translated 
change in proportion in each category of the scale) at 
alpha=0.05 with 80% power for the comparison of WHO 
scale in five categories (WHO Ordinal Scale categories: 

3–4, 5, 6, 7 and 8). The current sample size was selected 
for feasibility as there was no existing information avail-
able to determine the potential effect of ARB exposure 
on the WHO Ordinal Scale. Calculation was performed 
using posamsize in the Hmisc package of R 3.6.2 (R Foun-
dation for Statistical Computing, Vienna, Austria).

Exam/visit components, measurements of exposure and 
disease and other measurements
Our Case Report Form is adapted from the ISARIC WHO 
Novel Coronavirus (nCoV) Acute Respiratory Infection 
Clinical Characterisation Data Tool (https://www. who. 
int/ emergencies/ diseases/ novel- coronavirus- 2019/ tech-
nical- guidance/ early- investigations) because measure-
ments are clinically available and our data will align with 
other studies of COVID-19.

We will record baseline characteristics (age, gender, 
heart rate, respiratory rate, temperature, blood pressure, 
SaO2, respiratory (PaO2/FiO2), creatinine and bilirubin, 
use of oxygen, vasopressors, ventilation and RRT. Use of 
ARBs is defined by taking an ARB up to within 24 hours 
of onset of COVID-19 symptoms. We will also record 
whether ARBs are continued after onset of symptoms and 
for how long.

Table 1 Numbers of patients and per cent of patients who had WHO Ordinal Scale of 6, 7 or 8 (needed ventilation, 
vasopressors, RRT, ECMO or who died) in three publications2–4 regarding hospitalised patients in China who had COVID-19 
used to derive sample size estimates to detect a one point or greater decrease of the WHO scale of ARB- exposed hospitalised 
patients compared with a control group of hospitalised patients with no ARB exposure

Publication Admitted to hospital WHO=6 WHO=7 WHO=8 WHO 6–8

Chen—Lancet 99 4 4 11 19

Wang—JAMA 138 17 13 6 36

Huang—Lancet 41 4 3 6 13

Totals 278 25 20 23 68

% 9.0 7.2 8.3 24.5

RRT, renal replacement therapy.

Table 2 Sample size by proportional OR of ARB- exposed versus non ARB- exposed (five categories for WHO scale)

Proportion of patients Mean score
Total sample size*
(by % ARB exposed)

WHO 3–4 WHO 5 WHO 6 WHO 7 WHO 8 All patients† 10% 15% 20% 50%

Non- ARB exposed 0.604 0.151 0.090 0.072 0.083 4.577

ARB exposed

OR=0.7 0.685 0.129 0.071 0.054 0.060 4.330 2656 1875 1494 956

OR=0.6 0.718 0.119 0.064 0.048 0.052 4.237 1295 914 729 466

OR=0.5 0.753 0.107 0.056 0.041 0.043 4.137 704 497 396 253

OR=0.4 0.792 0.093 0.047 0.033 0.035 4.030 403 284 227 145

OR=0.3 0.836 0.076 0.037 0.026 0.026 3.914 233 165 132 84

*Total size sample referred to the total of ARB exposed and non- ARB exposed.
†Assuming patients were evenly distributed across the WHO 3–4 categories.

 on A
pril 29, 2024 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2020-040768 on 7 D

ecem
ber 2020. D

ow
nloaded from

 

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/early-investigations
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/early-investigations
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/early-investigations
http://bmjopen.bmj.com/


5Russell JA, et al. BMJ Open 2020;10:e040768. doi:10.1136/bmjopen-2020-040768

Open access

The primary outcome is the COVID-19 WHO Ordinal 
Scale (table 3, J Marshall, personal communication).

Secondary outcomes are SOFA score55 (for joint longi-
tudinal modelling), 28- day mortality, hospital length of 
stay, proportions admitted to ICU, ICU length of stay, 
need for ventilation, vasopressors and RRT (ie, days alive 
and free of ventilation, vasopressors and RRT within 14 
days56) and severe adverse effects of ARBs. Comparison 
of ARB- exposed versus non ARB- exposed will be done 
by ordinal logistic regression analysis for the primary 
outcome and by logistic regression for binary secondary 
outcomes. Time to death and hospital length of stay 
will be analysed simultaneously using competing risk 
survival analysis. Given the heavily skewed distribution 
for days alive and free of ventilation/vasopressors/RRT, 
the comparison of these outcomes will be done based 
on quantile regression. Patients who die within the first 
14 days will be assigned a value of 0 to maximise penalty 
for non- survival. No adjustment for multiplicity of infer-
ences will be made for the secondary outcomes given the 
hypothesis generating nature of these analyses.

Adequacy of ARB intervention timing on COVID-19
ARB intervention in our study will have been for months–
years before COVID-19 infection, optimising beneficial 
effects of ARB on COVID-19 replication, inflammation 
and permeability. In murine models, the ARB losartan was 
effective when given 30 min before H7N98; recombinant 
ACE2 was effective when given 3 hours prior, 8 hours and 
3 days after murine H5N1.57 Clinicians are often uncer-
tain whether to continue ARBs in patients hospitalised 
for non- cardiovascular conditions. Thus, in a subgroup 
analysis of patients already on ARBs when hospitalised, we 
will evaluate whether continuing ARBs or ACEi (the ARB 
or ACEi they were already on) or not decreases WHO 
COVID-19 Ordinal Outcome Scale.

Data management and statistical analyses
DAF vasopressors, ventilation and RRT will be calculated 
separately by subtracting the number of days on vaso-
pressors, ventilation or RRT from the lesser of 14 or the 
number of days to death, scored as 1 if the patient is alive 
and free of vasopressors, ventilation or RRT56 and zero 
(0) if the patient had vasopressors, ventilation or RRT or 
is not alive (to maximise non- survival penalty).56

We will evaluate ARB- exposed versus not ARB- exposed 
and ACEi- exposed and not ACEi- exposed. The ACEi- 
exposed versus not ACEi- exposed patient analyses will be 
done exactly as described for the ARBs- exposed versus 
not ARBs- exposed patients. There will be a third analysis 
which compares ARB/ACEi versus no ARB/ACEi. All 
analyses will be adjusted for potential confounders (age, 
biological sex, blood pressure, and presence of heart 
failure, hypertension, renal failure and diabetes (the 
most common comorbidities of 2019 nCoV2–4 associated 
with increased risk of ICU admission4) using regression 
techniques rather than matching (eg, Propensity Score) 
because of the potential limited sample size and the 
possibility of discarding valuable data due to unmatched 
cases).

About 25% of patients with COVID-19 have organ 
dysfunction requiring critical care support. Comparisons 
of organ dysfunction are susceptible to bias from infor-
mative censoring (death, discharge, other competing 
risks58–61). Joint models handle data that is biassed 
from informative censoring by simultaneous estima-
tion of two separate regression models with a shared 
random effect.62 63 Joint modelling of the longitudinal 
and survival processes allows each model to inform (ie, 
adjust) the other to mitigate potential biases caused by 
missing outcomes (eg, death). Joint longitudinal model-
ling of SOFA requires estimation of an unobserved SOFA 
trajectory, estimating the SOFA trajectory if there was no 
informative censoring. The most common joint models 
are longitudinal (eg, repeated measures or mixed- effects 
models) and time- to- event (survival) models.

We will compare ARB- exposed to not ARB- exposed 
patients’ SOFA score by fitting (i) a traditional linear 
mixed- effects model (ie, longitudinal model with a partici-
pant random- intercept) and (ii) several joint longitudinal 
and survival models of SOFA scores over time.64 Time- to- 
event survival data will be modelled using a Cox propor-
tional hazards model for death; discharge and day 14 will 
be considered censoring events in death- specific Cox 
model. Shared random effects will be used to capture the 
association between the longitudinal and time- to- event 
models. We will explore multiple model specifications for 
the joint model by varying the functional form of time in 
both the fixed effects in the longitudinal component and 
the shared random effects specifications. For instance, 
we will test linear and quadratic effects, and spline terms 
with an increasing number of knots (up to 7 and 2 for the 
fixed effect and random effect of time, respectively). We 
will select the final model according to the Akaike Infor-
mation Criterion and Bayesian Information Criterion. 

Table 3 WHO 2019- nCoV Ordinal Outcome Scale 
(J Marshall, personal communication, and Cao and 
colleagues73)

Uninfected 0 points

Ambulatory—no limitation of activities 1 point

Ambulatory—limitation of activities 2 points

Hospitalised—no oxygen (mild) 3 points

Hospitalised—oxygen (mild) 4 points

Hospitalised (severe) non- invasive 
ventilation or high- flow oxygen

5 points

Hospitalised (severe) intubation and 
ventilation

6 points

Hospitalised (severe) ventilation and 
additional organ support (vasopressors, 
RRT, ECMO)

7 points

Death 8 points

nCoV, novel coronavirus; RRT, renal replacement therapy.
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Standard errors for the coefficients of the joint model will 
be estimated via 1000 bootstrap replications, resampling 
at a participant level. We will test for the modification of 
treatment by study time by including an interaction term 
in the longitudinal submodel and by testing its signifi-
cance using the Wald test. Finally, we will perform several 
sensitivity analyses to assess the robustness of our find-
ings including fitting a joint model accounting for the 
competing risk of discharge. All models will be estimated 
using the joineRML package V.0.4.2 in the statistical soft-
ware R.65 Joint models for longitudinal and survival data 
can also be implemented in other statistical software such 
as Stata66 and SAS.67

We collate in real time and evaluate the the most 
common severe adverse effects of ARBs: hypotension 
(systolic pressure <90 mm Hg or mean arterial pressure 
<65 mm Hg), hyperkalemia (potassium >6 mmol/L) and 
AKI (creatinine >200 mmol/L) comparing ARB- exposed 
with not ARB- exposed patients.

We will examine missing data fields to identify the type 
of missing data mechanisms. Most data will be missing 
at random; thus, as a sensitivity analysis, we will use 
multiple imputation technique to impute the missing 
data.68 69 Some data will be ‘informatively’ missing due to 
clinically relevant events: for example, death, discharge 
so we will examine statistical models to account for 
missing not at random (eg, joint longitudinal and time- 
to- event models,63 and inverse probability of censoring 
weighting70).

We will evaluate ARB- exposed versus not ARB- exposed, 
ACEi- exposed versus not ACEi- exposed and ARB/ACEi- 
exposed vs not ARB/ACEi- exposed in1 (1) heart failure 
and hypertension RRT and2 (2) patients who do or do 
not have ARB continued after hospital admission for the 
primary outcome and DAF vasopressors, ventilation and 
RRT. Sensitivity analyses will be carried out with adequate 
adjustments for missing data using multiple imputations 
technique as described above. The potential bias is that 
ARBs are not assigned randomly but are given for treat-
ment of hypertension or heart failure thus having a poorer 
COVID-19 prognosis. We mitigate this bias by doing 
ordinal logistic regression adjusted analyses to control 
for confounding by indication and control for variables 
that increase risk of poor outcomes. We will do analyses 
that assess the potential of unmeasured confounding (eg, 
E- value and other recently developed techniques71 72).

Quality assurance and control plans
We will monitor 15% of eCRFs against key primary 
data. We have a weekly 2- hour Management Committee 
meeting in which data quality and control is a regular 
agenda item.

Patient and public involvement
The development of the research question, outcome 
measures and design was not informed by patients’ 
priorities, experience and preferences. Patients were not 
involved in the recruitment to and conduct of the study 

because this is an inpatient hospital- based cohort study. 
Patients will be included without consent and all data are 
anonymised so that patients cannot be informed of the 
results of the study. Patients will be included in the inter-
pretation and dissemination of results through a relation-
ship with the British Columbia Support Unit.

There are limitations of our study. In this association 
study we cannot determine causation but will add further 
evidence regarding ARBs or ACEi use in COVID-19 as a 
foundation for future RCTs in COVID-19 and other viral 
epidemics caused by viruses that bind ACE2. Another 
potential limitation is inadequate sample size. The use 
of ARBs by COVID-19- infected patients may not be 
adequately large; yet, 50% of hospitalised patients with 
COVID-19 had comorbidities56 40% cardiovascular or 
cerebrovascular disease2 in which ARBs are commonly 
prescribed. There is potential bias regarding ARB 
confounding by indication that we limit by doing1 (1) 
ordinal logistic regression analyses,2 (2) sensitivity anal-
yses and3 (3) subgroup analyses to examine consistency 
of effects of ARBs on COVID-19 outcomes.

RCT(s) of ARBs in COVID-19 are now warranted and 
we are pleased to indicate that we have been funded by 
the CIHR for a multicentre randomised controlled trial 
of an ARB in COVID-19.
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Amendment 

 

Rather than just measuring plasma angiotensin II levels at baseline, we will measure plasma 

angiotensin I, 1-7, II and angiotensin converting enzyme (ACE) and ACE2 levels at baseline and 

days 2,4 7, and 14. 

We will also evaluate use of angiotensin converting enzyme inhibitors (ACEis) using the same 

statistical methods as per the evaluation of ARBs. 

Clinical characteristics of hospitalized COVID-19 to date 

The sample size calculation and primary endpoint require adequate understanding of the severity 

of disease and complications of patients hospitalized for COVID-19. COVID-19 causes septic 

shock, ARDS and AKI. To date, three peer-reviewed publications described clinical 

characteristics of hospitalized COVID-19 patients(2-4). In 99 hospitalized cases of COVID-19 

17% had ARDS, 8% had acute respiratory injury, 3% had acute kidney injury, and 4% had septic 

shock. For treatment, 13% had non-invasive ventilation, 4% were intubated and ventilated, 9% 

had renal replacement therapy (RRT), 3% had extra-corporeal membrane oxygenation (ECMO) 

and 11% died(2). In the second report(3) of 42 hospitalized COVID-19 patients, 29% had 

ARDS,  7% had acute kidney injury, and 7% had septic shock; 24% had high flow oxygen or 

non-invasive ventilation, 10% were intubated and ventilated, 7% had RRT, 5% had ECMO and 

15% died(2). Of 138 hospitalizedCOVID-19 patients in a third publication(4), 20% had ARDS, 

9% had septic shock; 14% had high flow oxygen or non-invasive ventilation, 12% were 

intubated and ventilated, 1% had RRT, 3% had ECMO and 4% died(2).   
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