

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Are socioeconomic inequalities in the incidence of small-forgestational-age birth narrowing? Findings from a population-based cohort in the South of England

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026998
Article Type:	Research
Date Submitted by the Author:	01-Oct-2018
Complete List of Authors:	Wilding, Sam; University of Southampton, Academic Unit of Primary Care and Population Sciences, Faculty of Medicine Ziauddeen, Nida; University of Southampton, Academic Unit of Primary Care and Population Sciences, Faculty of Medicine Roderick, Paul; University of Southampton, Academic Unit of Primary Care and Population Sciences, Faculty of Medicine Smith, Dianna; University of Southampton, Geography & Environment Chase, Debbie; Southampton City Council, Public Health Macklon, Nick; University of Copenhagen, Department of Obstetrics and Gynaecology; London Women's Clinic McGrath, Nuala; University of Southampton, Academic Unit of Primary Care and Population Sciences, Faculty of Medicine; University of Southampton, School of Economic, Social and Political Science, Faculty of Social Sciences, Hanson, Mark; University of Southampton, Institute of Developmental Sciences, Academic Unit of Human Development and Health, Faculty of Medicine; University of Southampton and University Hospital Southampton NHS Foundation Trust , NIHR Southampton Biomedical Research Centre Alwan, Nisreen; University of Southampton, Academic Unit of Primary Care and Population Sciences, Faculty of Medicine; University of Southampton and University of Southampton, Academic Unit of Primary Care and Population Sciences, Faculty of Medicine; University of Southampton NHS Foundation Trust , NIHR Southampton Biomedical Research Centre Alwan, Nisreen; University of Southampton, Academic Unit of Primary Care and Population Sciences, Faculty of Medicine; University of Southampton and University Hospital Southampton NHS Foundation Trust, NIHR Southampton Biomedical Research Centre
Keywords:	PUBLIC HEALTH, SOCIAL MEDICINE, small for gestational age, socioeconomic inequalities

SCHOLARONE[™] Manuscripts

Are socioeconomic inequalities in the incidence of small-forgestational-age birth narrowing? Findings from a populationbased cohort in the South of England

Authors:

Sam Wilding¹, Nida Ziauddeen¹, Paul Roderick¹, Dianna Smith², Debbie Chase³, Nicholas Macklon^{4,5}, Nuala McGrath^{1,6}, Mark Hanson^{7,8}, Nisreen A Alwan^{1,8}

Author affiliations:

¹ Academic Unit of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton

² Geography and Environmental Science, Faculty of Environmental and Life Sciences, University of Southampton

³ Public Health, Southampton City Council

⁴ Department of Obstetrics and Gynaecology, University of Copenhagen, Zealand University Hospital, Roskilde 4000, Denmark

⁵ London Women's Clinic, 113-115 Harley Street, London W1G 6AP

⁶ School of Economic, Social and Political Science, Faculty of Social Sciences, University of Southampton

⁷ Institute of Developmental Sciences, Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton

⁸ NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust

Abstract

Objectives

To investigate socioeconomic inequalities, using maternal educational attainment, maternal and partner employment status, and lone motherhood indicators, in the risk of small for gestational age (SGA) births, their time trend, potential mediation by maternal smoking and body mass index (BMI), and effect modification by parity.

Design

Population-based birth cohort utilising routine antenatal healthcare data.

Setting

Babies born at University Hospital Southampton, UK, between 2004 and 2016.

Participants

65,825 singleton live births born to mothers aged ≥18 years between 23 and 42 weeks gestation.

Main outcome measures

SGA (birth weight <10th percentile for others born at the same number of completed weeks compared to 2013/2014 within England and Wales).

Results

Babies born to mothers with no university degree (adjusted Odds Ratio (aOR) 1.19, 99% Confidence Interval (CI) 1.09-1.31), who were unemployed (aOR 1.31, CI 1.20-1.42) or with unemployed partners (aOR 1.31, CI 1.17-1.48) were at greater risk of being SGA. There was no statistically significant change in the magnitude of this risk difference by these indicators over time between 2004 and 2016, as estimated by linear interactions with year of birth. Babies born to lone mothers were not at higher risk compared to partnered mothers after adjusting for maternal smoking (aOR 1.08, CI 0.95-1.22). The inverse association between maternal educational attainment and SGA risk appeared greater in multiparous (aOR 1.29, CI 1.04-1.61) compared to primiparous women (aOR 1.16, CI 1.04-1.30), and the reverse was true for maternal unemployment where the association was stronger in primiparous women.

Conclusions

SES Inequalities in SGA risk by educational attainment and employment status are not narrowing over time, with differences in association strength by parity. The greater SGA risk in lone mothers was potentially explained by maternal smoking. Preventive interventions should target socially disadvantaged women, including preconception and postpartum smoking cessation to reduce SGA risk.

Strengths and limitations of this study

- This study uses routine data for all pregnancies in a regional specialist antenatal hospital to predict the risk of small-for-gestational-age births to mothers by socio-economic factors.
- Standard measures are used which can be used for risk prediction in practice without additional time required in antenatal appointments, given that there is no evidence of change in socioeconomic risk factors over time.
- Limitations include the transferability of results from this hospital to centres with differing populations, that socioeconomic factors were only measured at one time point, the exclusion of teenage mothers and late antenatal bookings, and self-reporting of educational qualifications and employment.

Introduction

Babies born small for gestational age (defined as <10th percentile for birthweight at a particular gestational age; SGA) are at higher risk of neonatal mortality [1] and childhood obesity through compensatory early growth [2]. A number of clinical and lifestyle risk factors are associated with the risk of being SGA, including maternal height, weight, diet, ethnicity, parity, smoking, pre-eclampsia and hypertension [3,4]. Beyond these risk factors, and closely linked to them, there is extensive evidence of Socio Economic Status (SES) inequalities, with babies born to mothers living in the most socioeconomically deprived areas being between 28% and 34% more likely to be born SGA than those in the most affluent quintile [5].

Several proxies of SES are present in the literature, with area measures of wealth, maternal education, socioeconomic position of maternal employment and income being the most common indicators, with paternal factors being notably absent [6]. The majority of studies rely on one proxy of SES, but studies controlling for several SES proxies find that different aspects of SES are independently associated with the risk of SGA [7–11]. Despite the wealth of research on the association between parental SES and SGA, the mechanisms underlying this association are poorly understood [12]. Current explanations focus on the availability of (physiological and material) resources and mediating factors that differ between women of high and low SES. For resources, the 'weathering' hypothesis states that women in low SES at the time of conception have experienced relatively high levels of cumulative disadvantage in terms of income, stress and diet, which have led to a deterioration in physiological health [13]. This association may also be mediated by lifestyle factors, wherein mothers in low SES are more likely to be exposed to or partake in risk factors for SGA, which in turn increase their relative risk of SGA. Mediation analyses have found that higher rates of underweight and smoking at conception among mothers with low educational attainment mediates the association between SES and birth outcomes in the UK [12,14]. The extent of these SES inequalities in the risk of SGA may differ between first and higher order births. The birth of the first child brings significant physiological, wellbeing and social changes [15], and women in low SES may have weaker social support mechanisms to adjust to these changes, as they appear to be at high risk of SGA in subsequent births after adjusting for clinical risk factors [16]. Risk factors for SGA specific to second and higher order births are more prevalent in women of low SES, with postnatal depression being more common in mothers without a university degree and those in poverty [17,18].

Public health policy aims to narrow SES inequalities in birth outcomes over time, and there is reason to believe that inequalities in SGA may have changed since the early-2000s. Major welfare reforms enacted in the UK between 1999 and 2002 increased in-work tax incentives, which particularly increased the net income of part-time working women, relative to those out of work [19]. In 2008 the global 'great recession' occurred, after which single mothers in England became increasingly less likely to be employed, whilst facing disproportionate losses of welfare income, facing a double income penalty relative to working mothers [20]. The recession appears to have had differential impacts on women by level of educational attainment, with those without a university degree experiencing a post-recession rise in the prevalence of obesity, relative to those with degrees [21].

Utilising a maternity healthcare database in Hampshire, England, we aimed to examine differences in SGA risk by SES indicators, investigate if these differences are mediated by maternal weight and smoking, and whether they have narrowed over the 13 year study period (2004-2016). In addition, we aimed to stratify by parity in order to examine whether the extent of SES inequalities are the same at first births, relative to 2nd and higher order births.

Methods

Data

This analysis is based on a population-based cohort including anonymised antenatal and delivery records of women aged ≥18 years who had a live singleton birth between 1 January 2004 and 31 December 2016 at the University Hospital Southampton (UHS) National Health Service (NHS) Trust in the South of England. UHS is the primary centre for maternity care for the city of Southampton and the surrounding areas, and is the regional centre for high-risk pregnancies. To ensure that the findings are applicable to the majority of (non high-risk) pregnancies, records with late first antenatal (booking) appointments (after 24 weeks gestation, as assessed by ultrasound) and of mothers under the age of 18 were excluded. First, we analysed the risk of SGA by SES in all births (including more than one birth per mother if in the database and study timeframe), adjusting for confounding and clustering. We then tested whether differences between SES groups (by maternal education, employment, paternal employment and partnership status) have changed over the study period (2004-2016). We then limited the analysis to the first recorded birth per mother in the dataset, and stratified by parity (primiparous and multiparous), to avoid biasing sub-analyses via double-counting. This project was approved by the University of Southampton Faculty of Medicine Ethics Committee (ref 24433) and the NHS Health Research Authority (ref 242031).

Assessment of SES exposures

Socioeconomic measures were self-reported at the first antenatal (booking) appointment, which is recommended by the National Institute for Health and Care Excellence (NICE) Antenatal Care Guidelines to occur by the 10th week of gestation [22]. Mothers were asked to report their highest educational qualification, whether they were currently employed, and if their partners were currently employed (possible answers included employed, unemployed and seeking work or student). Partnership status was self-reported at the same appointment. All four SES proxies were dichotomised, with values of 1 indicating lower SES (mother does not have a degree; mother is unemployed; mother's partner is unemployed; mother is single).

Assessment of outcome

Birth weight was measured by healthcare professionals for all births in the dataset. Gestational age was based on a dating ultrasound scan performed by healthcare professionals, and was present for all records in the dataset. Birth weight centile for gestational age is calculated using reference values provided in the most recently released data (2013-2014) for England and Wales, which were validated using 2015 records [23]. Given that the association between SES and preterm births is well established in the literature [24], and that gestational age is strongly associated with birthweight, we use a Small for Gestational Age (SGA) measure to assess low birth weight rather than the standard birth weight cut-off.

The birth centile references are available for 24-42 completed weeks of gestation, so live births at \leq 23 (71) or >42 (564) completed weeks or with indeterminate sex (16) are excluded from the analysis (SGA sample = 65,825/66,476). SGA is defined as a birth weight lower than the 10th percentile compared to others born at the same number of weeks gestation in the sex-specific reference centiles [23], and all others are defined as Not Small for Gestational Age (non-SGA).

Assessment of confounder and mediator variables

Maternal age, height, smoking history (never smoked, ex-smoker and current smoker at the time of the booking appointment), parity and ethnicity were self-reported at the booking appointment. Baby's sex was assessed at birth by a healthcare professional. Maternal weight and blood pressure were measured by a healthcare professional at the booking appointment. Maternal age, ethnicity

BMJ Open

and systolic blood pressure were adjusted for in the multivariable models, as these factors have been associated with the risk of SGA in previous analyses [3,25,26]. Parity (no versus 1 or more previous births) was treated as a confounder in the models analysing the whole sample, and then as an effect modifier for SES through interaction terms and later stratification. Maternal body mass index (BMI) and smoking history are included as potential mediators of the relationship between SES and risk of SGA, based on previous evidence [12,14].

Statistical analysis

All analyses were conducted using Stata 15 (College Station, Texas). Descriptive statistics and the unadjusted odds ratios (ORs) between all variables and risk of SGA are presented in Table 1. T-tests were used to test whether the mean of each continuous variable (maternal BMI, age and systolic blood pressure at booking) differed between those born SGA and non-SGA. Multivariable logistic regression models were used to estimate ORs, p-values and respective 99% confidence intervals (CI) for SES differences in the risk of SGA independently after adjustment for control variables, after adjustment for other SES indicators, and then after controlling for mediators. A p-value cut-off of 0.01 is used to test for statistical significance when reporting risk rather than the more conventional 0.05 cut-off in order to minimise the risk of type I error due to multiple testing, as adjusted models control for multiple SES indicators [27]. Evidence of mediation is examined through assessing the attenuation of SES with SGA associations once known risk factors are controlled for [28]. In all logistic regressions, cases with missing data for variables within the model were dropped (complete case analysis).

In the first analysis, adjusted ORs for the risk of a baby being born SGA are presented in model 1 (control variables include maternal age, parity, ethnicity, and systolic blood pressure at booking) independently for maternal education, employment and partnership status, adjusting for clustering of births within the same mother. In model 2, all three of these SES proxies are controlled for, in additional to the control variables in model 1, before including the two mediators (maternal BMI and smoking) sequentially in models 3 and 4. Due to collinearity between maternal partnership and partner's employment, the association for the latter is tested separately with the same structure.

In the second analysis, year and the interactions between year and SES indicator (slope) effects are included to model 4 for maternal education, employment, partner's employment and partnership status, to test whether SES inequalities in the risk of being born SGA are widening or narrowing over time during the study period. These slopes represent the change in relative odds of SGA for the socioeconomic group relative to the control group for each year in the dataset (2004-2016). Odds ratios >1 indicate that this group became at higher risk of SGA births over time, relative to the control group [29]. Further models were estimated including SES interactions between a dummy indicator for records pre- (2004-2008) and post- (2009-2016) 2008, to test whether SES inequalities in the risk of SGA changed in magnitude between the two periods.

In the third analysis, the sample is limited to the first birth for each mother (1 birth per mother), and then stratified by parity (primiparous or multiparous). Limiting the sample to the first birth for each mother acts as a sensitivity analysis for the first analysis, ensuring that the results are not influenced by multiple births per mother. Interactions between SES and parity are estimated to test whether the association between SES and risk of SGA is modified by parity, and then parity-stratified modelling was conducted. A p-value cut-off of 0.05 is used to test for interactions. As in the first analysis, adjusted SES ORs are presented for each sub-sample, then these ORs are adjusted for other SES indicators, before including mediators (maternal BMI and smoking).

Results

There are 65,825 singleton live births within the dataset which can be categorised as SGA or non-SGA to 44,371 mothers. Of births, 71% were to women with no university degree, in employment (67.9%), have partners the time of booking (92.3%), who are in employment (90.4%), of white ethnicity (82.4%) and with normal (<140 mm Hg) systolic blood pressure (98.7%). Of these 65,825 births, 6,343 (9.6%, 99% CI 9.4%-9.9%) were born SGA (Table 1).

The proportion of SGA births was higher than the average for births to mothers in all disadvantaged SES groups. This includes births to mothers with no university degree (10.3% born SGA, 99% CI 9.9-10.6), births to unemployed mothers (11.6% born SGA, 99% CI 11.1-12.2), births to mothers with unemployed partners (14.2% born SGA, 99% CI 13.0-15.4), and births to single mothers (12.4% born SGA, 99% CI 11.3-13.7). Other maternal factors associated with a higher than average rate of SGA include maternal BMI <18.5 kg/m² (19.9% born SGA, 99% CI 17.6-22.3), maternal smoking at booking (16.8% born SGA, 99% CI 15.9-17.8) and Asian ethnicity (18.3% born SGA, 99% CI 16.8-19.8).

Table 1 – Maternal characteristics of all babies by Small for Gestational Age status (birthweight <10th percentile for gestational age) in the University Hospital Southampton (UHS) maternity population-based cohort (singleton live births 2004-2016, n=65,825)

	SGA		Non-SGA		% SGA	а
Maternal characteristics	n	(%)	n	(%)	% SGA	(99% CI)
Highest qualification						
University degree or higher	1,545	(24.4)	17,498	(29.5)	8.1	(7.6 - 8.6)
Lower than a university degree	4,795	(75.6)	41,924	(70.6)	10.3	(9.9 - 10.6
Employment status						
Employed	3,868	(61.3)	40,511	(68.6)	8.7	(8.4 - 9.1)
Unemployed	2,438	(38.7)	18,519	(31.4)	11.6	(11.1 - 12.2
Partner's employment status						
Employed	4,969	(85.6)	50,621	(90.9)	8.9	(8.6 - 9.3)
Unemployed	838	(14.4)	5,075	(9.1)	14.2	(13.0 - 15.4
Partnership						
Partnered	5,706	(90.0)	54,994	(92.5)	9.4	(9.1 - 9.7)
Lone mother	637	(10.0)	4,488	(7.6)	12.4	(11.3 - 13.
BMI						
<18.5	393	(6.2)	1,586	(2.7)	19.9	(17.6 - 22.)
18.5-24.9	3,628	(57.2)	30,722	(51.7)	10.6	(10.1 - 11
25-29.9	1,425	(22.5)	16,070	(27.0)	8.1	(7.6 - 8.7)
30+	897	(14.1)	11,104	(18.7)	7.5	(6.9 - 8.1)
Smoking						
Never smoked	3,050	(48.1)	30,760	(51.8)	9.0	(8.6 - 9.4
Ex-smoker	1,488	(23.5)	19,735	(33.2)	7.0	(6.6 - 7.5)
Current smoker	1,801	(28.4)	8,902	(15.0)	16.8	(15.9 - 17.
Age (years)						
18-24	2,000	(31.5)	14,343	(24.1)	12.2	(11.6 - 12.
25-34	3,420	(53.9)	35,641	(59.9)	8.8	(8.4 - 9.1
35-39	754	(11.9)	7,998	(13.5)	8.6	(7.9 - 9.4)
40+	169	(2.7)	1,500	(2.5)	10.1	(8.3 - 12.2
Previous live births						

BMJ Open

	SGA		Non-SGA		% SGA	э
Maternal characteristics	n	(%)	n	(%)	% SGA	(99% CI)
None	3,515	(55.4)	25,097	(42.2)	12.3	(11.8 - 12.8
One or more	2,828	(44.6)	34,385	(57.8)	7.6	(7.2 - 8)
Ethnicity						
White	4,793	(75.6)	49,477	(83.2)	8.8	(8.5 - 9.2)
Mixed	87	(1.4)	720	(1.2)	10.8	(8.1 - 13.9)
Asian	809	(12.8)	3,621	(6.1)	18.3	(16.8 - 19.8
Black/African/Caribbean	148	(2.3)	1,096	(1.8)	11.9	(9.6 - 14.4)
Chinese	31	(0.5)	427	(0.7)	6.8	(4.1 - 10.4)
Other	116	(1.8)	831	(1.4)	12.2	(9.6 - 15.2)
Not known	359	(5.7)	3,310	(5.6)	9.8	(8.6 - 11.1)
Systolic blood pressure at						
first antenatal appointment						
<140 mm Hg	6,275	(99.0)	58,578	(98.6)	9.7	(9.4 - 10)
>=140 mm Hg	64	(1.0)	812	(1.4)	7.3	(5.2 - 9.9)
Overall	6,343	(100)	59,482	(100)	9.6	(9.4 - 9.9)
	SC	δA	Non-SGA			
	Mean	(SD)	Mean	(SD)	p-valı	ue for t-test
BMI	24.5	5.2	25.7	5.5		<0.001
Age	27.9	5.8	28.8	5.5		<0.001
Systolic blood pressure	107.5	16.2	108.4	17.0		<0.001

Source: UHS antenatal records for live singleton births to mothers ≥18 years (2004-2016). Records with a late antenatal booking (over 24 weeks gestation) were excluded. Variables with missing information include maternal education (63), maternal employment (489) and partner's employment (4,322). ^a The percentage of babies born SGA relative to non-SGA for this characteristic, and the accompanying 99% confidence interval. The t-test indicates whether the mean of each variable differs between those born SGA and non-SGA.

SES differences in SGA risk in the whole cohort

Estimates of the association between maternal SES indicators and risk of SGA are presented in Table 2. The univariable associations between each SES indicator and the risk of SGA are presented in the unadjusted risk row, with all SES indicators being associated with SGA. The size of these effects increase in the first adjusted model (controlling for maternal age, ethnicity, parity and systolic blood pressure), and attenuate once other SES indicators are controlled for (model 2). Accounting for maternal BMI increased educational differences (from an OR of 1.29 to 1.34), but did not affect the estimates for employment or partnership (model 3). After including maternal smoking all SES inequalities reduced in size (model 4), with the OR for lone motherhood attenuating to statistical insignificance at the 99% level (OR 1.08, 99% CI 0.95-1.22, p=0.133).

Table 2– Risk of being born Small for Gestational Age (birthweight <10th percentile for gestational age) by maternal socioeconomic indicator in the
University Hospital Southampton (UHS) maternity population-based cohort (singleton live births 2004-2016).

	Maternal educational qualification less than a university degree			qualification less than a the first antenatal				Lone motherhood at the first antenatal appointment*			
	OR 99% CI p			OR	99% CI	р	OR	99% CI	р		
Unadjusted risk	1.30	(1.19 - 1.41)	<0.001	1.38	(1.28 - 1.49)	< 0.001	1.37	(1.22 - 1.54)	<0.001		
Adjusted risk - Model 1	1.36	(1.25 - 1.48)	<0.001	1.55	(1.42 - 1.68)	< 0.001	1.41	(1.25 - 1.59)	<0.001		
Adjusted risk - Model 2	1.29	(1.18 - 1.40)	<0.001	1.47	(1.35 - 1.60)	< 0.001	1.27	(1.13 - 1.44)	<0.001		
Adjusted risk - Model 3	1.34	(1.23 - 1.47)	<0.001	1.48	(1.36 - 1.61)	< 0.001	1.27	(1.13 - 1.44)	<0.001		
Adjusted risk - Model 4	1.19	(1.09 - 1.31)	<0.001	1.31	(1.20 - 1.43)	<0.001	1.08	(0.95 - 1.22)	0.133		

#Model 1 adjusts for maternal age, ethnicity, parity and systolic blood pressure.

 ## Model 2 is model 1 plus the other two SES indicators (n births = 65,331, n mothers = 44,158).

###Model 3 is model 2 plus maternal body mass index (continuous) as a potential mediator (n births = 65,331, n mothers = 44,158).

####Model 4 is model 3 plus maternal smoking history (categorical) as an additional mediator (n births = 65,331, n mothers = 44,158).

OR = odds ratio; CI = confidence interval. In all models the standard errors are adjusted for multiple births per mother.

BMJ Open

In unadjusted estimates, those born to mothers with unemployed partners at the antenatal booking appointment are 68% more likely to be born SGA (OR 1.68 99% CI 1.51-1.88) in comparison to those born to mothers with employed partners. This association attenuates once confounders are controlled for (model 1), but extenuates once maternal education and employment are controlled for (model 2). The association attenuates further once maternal BMI is controlled for (model 3) and remains similar once smoking is accounted for (model 4 OR 1.31, 99% CI 1.17-1.48, p <0.001) (Table 3).

enaternal .es further once m. .ounted for (model 4 O.

Table 3 – Risk of being born Small for Gestational Age (birthweight <10th percentile for gestational age) by partner's employment status in the</th> University Hospital Southampton (UHS) maternity population-based cohort (singleton live births 2004-2016).

	I		thers with unem ners at the first a appointment	ntenatal
	0	R	99% CI	р
Unadjusted risk	1.6	58	(1.51 - 1.88)	< 0.001
Adjusted risk - Model 1	1.6	59	(1.51 - 1.89)	< 0.001
Adjusted risk - Model 2	1.5	51	(1.35 - 1.69)	< 0.001
Adjusted risk - Model 3	1.5	55	(1.38 - 1.74)	< 0.001
Adjusted risk - Model 4	1.3	31	(1.17 - 1.48)	<0.001

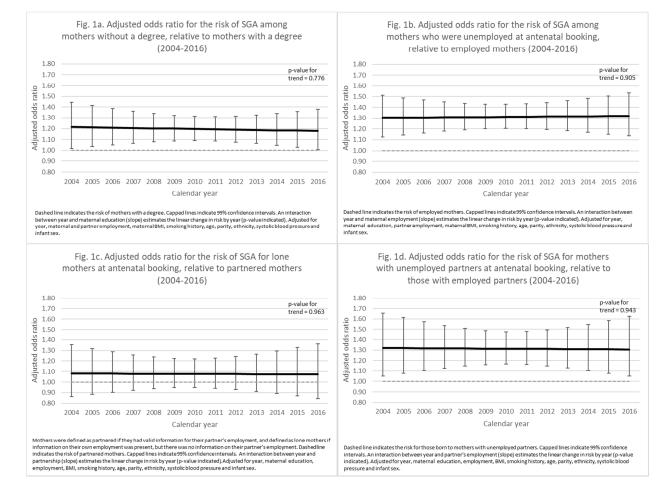
#Model 1 adjusts for maternal age, ethnicity, parity and systolic blood pressure.

 ## Model 2 is model 1 plus the other two SES indicators (n births = 61,170, n mothers = 42,217).

###Model 3 is model 2 plus maternal body mass index as a potential mediator (n births = 61,170, n mothers = 42,217).

####Model 4 is model 3 plus maternal smoking history as an additional mediator (n births = 61,170, n mothers = 42,217).

OR = odds ratio; CI = confidence interval. In all models the standard errors are adjusted for multiple births per mother.


Time trend in SES inequalities in the risk of SGA between 2004 and 2016

To test whether SES inequalities are narrowing or widening over time, interactions between year (continuous) and SES ('slope') were included to model 4 in Table 2 and Table 3, and expressed as ORs. A positive slope OR indicates that the disadvantaged SES group are becoming at greater risk of SGA relative to the advantaged group over calendar year, and vice versa for a negative effect.

Figure 1a-d displays the adjusted ORs for each SES indicator by year in the cohort (UHS), and the accompanying p-value for the slope over calendar year. The slopes for maternal education (OR 1.00, 99% CI 0.98-1.02), lone motherhood (OR 1.00, 99% CI 0.97-1.03) and partner unemployment (OR 1.00, 99% CI 0.97-1.03) were negative but not statistically significant, whilst the slope for maternal employment (OR 1.00, 99% CI 0.98-1.02) was positive but also not statistically significant. Models using a binary indicator for pre- and post-2008 (2003-2008 and 2009-2016) showed no significant differences in the magnitude of SES inequalities (results not shown).

ve. s for each e over calend. Segtive but not statistic. (J.98-1.02) was positive b. pre and post-2008 (2003-2008 d.ed of SES inequalities (results not s.

Figure 1 - Risk of being born Small for Gestational Age (birthweight <10th percentile for gestational age) by parental SES indicators in the University Hospital Southampton (UHS) maternity population-based cohort (singleton live births 2004-2016).

SES differences in SGA risk by maternal parity status

For this analysis, the sample was restricted to the first antenatal care record per mother included in our dataset with no missing information (21,667 records dropped, with a new total of 44,158). Interaction terms between each SES indicator and parity (accounting for control variables) were conducted utilising this sample showing a near significant interaction between maternal educational qualification and SGA (p = 0.06), and a significant interaction between maternal employment status and SGA (p=0.01). We then stratified the sample by parity (n primiparous (0 previous live births) = 28,469; n multiparous (1 or more previous live births) = 15,699). The modelling strategy used in the first analysis is repeated on these sub-samples to assess the risk estimates by parity.

The association between maternal education and risk of SGA appeared less pronounced among primiparous (aOR 1.16, 99% CI 1.04-1.30) than multiparous women (aOR 1.29, CI 1.04-1.61). Maternal unemployment (relative to mothers who were employed) was associated with higher risk of SGA in all samples, with a stronger association in the model limited to primiparous women (aOR 1.33, 99% CI 1.17-1.51) than in the model limited to multiparous women (aOR 1.21, 99% CI 1.03-1.42). The association between lone motherhood and SGA risk appeared to be mediated by smoking in all sub-samples (Table 4).

Table 5Table 5 displays the results for partner's employment (total n mothers = 42,217; 26,792 primiparous, 15,425 multiparous). The association between partner's employment and risk of SGA appeared to be mediated by maternal smoking among multiparous women (aOR 1.21, Cl 0.98-1.49), but not primiparous women (aOR 1.35, Cl 1.14-1.60). The estimates of SES differences in the risk of SGA were similar in the reduced sample (Tables 4 and 5) and the whole sample (Tables 2 and 3).

Table 4 - Risk of being born Small for Gestational Age (birthweight <10th percentile for gestational age) by maternal socioeconomic indicator and stratified by parity in the University Hospital Southampton (UHS) maternity population-based cohort (singleton live births 2004-2016, one live birth per mother)

		N	laternal educatio	nal						
		qu	alification less th	an a	Mater	nal unemployme	nt at the	Lone	e motherhood at	the first
			university degre	e	first antenatal appointment		antenatal appointment*			
	Model	OR	99% CI	р	OR	99% CI	р	OR	99% CI	р
	Unadjusted risk	1.22	(1.12 - 1.34)	< 0.001	1.37	(1.26 - 1.49)	<0.001	1.33	(1.17 - 1.52)	<0.001
Whole sample	Adjusted risk - Model 1#	1.31	(1.19 - 1.44)	< 0.001	1.48	(1.35 - 1.63)	<0.001	1.40	(1.22 - 1.60)	<0.001
n mothers = 44,158	Adjusted risk - Model 2##	1.27	(1.15 - 1.40)	< 0.001	1.43	(1.29 - 1.57)	<0.001	1.28	(1.12 - 1.47)	<0.001
11 mothers – 44,130	Adjusted risk - Model 3###	1.32	(1.20 - 1.45)	< 0.001	1.42	(1.29 - 1.56)	<0.001	1.29	(1.12 - 1.48)	<0.001
	Adjusted risk - Model 4####	1.19	(1.08 - 1.31)	< 0.001	1.29	(1.16 - 1.42)	<0.001	1.11	(0.97 - 1.28)	0.055
	Unadjusted risk	1.25	(1.13 - 1.38)	< 0.001	1.78	(1.59 - 1.99)	<0.001	1.32	(1.12 - 1.56)	<0.001
Primiparous women	Adjusted risk - Model 1#	1.24	(1.11 - 1.38)	< 0.001	1.50	(1.32 - 1.69)	<0.001	1.33	(1.12 - 1.57)	<0.001
only	Adjusted risk - Model 2##	1.21	(1.09 - 1.35)	< 0.001	1.45	(1.28 - 1.64)	<0.001	1.22	(1.03 - 1.45)	0.003
n births = 28,469	Adjusted risk - Model 3###	1.25	(1.12 - 1.39)	<0.001	1.44	(1.27 - 1.63)	<0.001	1.23	(1.03 - 1.46)	0.002
	Adjusted risk - Model 4####	1.16	(1.04 - 1.30)	0.001	1.33	(1.17 - 1.50)	<0.001	1.10	(0.92 - 1.31)	0.172
	Unadjusted risk	1.52	(1.24 - 1.86)	<0.001	1.52	(1.31 - 1.77)	<0.001	1.49	(1.19 - 1.85)	<0.001
Multiparous women	Adjusted risk - Model 1#	1.60	(1.29 - 1.97)	<0.001	1.44	(1.23 - 1.69)	<0.001	1.55	(1.23 - 1.94)	<0.001
only	Adjusted risk - Model 2##	1.50	(1.21 - 1.85)	< 0.001	1.35	(1.15 - 1.59)	<0.001	1.40	(1.11 - 1.76)	<0.001
n births = 15,699	Adjusted risk - Model 3###	1.59	(1.28 - 1.97)	< 0.001	1.37	(1.17 - 1.61)	<0.001	1.41	(1.12 - 1.77)	<0.001
	Adjusted risk - Model 4####	1.29	(1.04 - 1.61)	0.003	1.21	(1.03 - 1.42)	0.003	1.12	(0.89 - 1.42)	0.214

#Model 1 adjusts for maternal age, ethnicity and systolic blood pressure.

Model 2 is model 1 plus the other two SES indicators (e.g. the maternal education column is adjusted for maternal employment and partnership).

###Model 3 is model 2 plus maternal body mass index as a potential mediator.

####Model 4 is model 3 plus maternal smoking history as an additional mediator.

OR = odds ratio; CI = confidence interval. All models for the whole sample are adjusted for parity.

 BMJ Open

Table 5 - Risk of being born Small for Gestational Age (birthweight <10th percentile for gestational age) by partner's employment and stratified by parity</th> in the University Hospital Southampton maternity population-based cohort (singleton live births 2004-2016)

			employed partner ntenatal appointr	
	Model	OR	99% CI	р
	Unadjusted risk	1.61	(1.42 - 1.81)	<0.001
Whole cample	Adjusted risk - Model 1#	1.61	(1.42 - 1.82)	<0.001
Whole sample n mothers = 42,217	Adjusted risk - Model 2##	1.46	(1.28 - 1.66)	<0.001
11 mothers = 42,217	Adjusted risk - Model 3###	1.49	(1.31 - 1.70)	<0.001
	Adjusted risk - Model 4####	1.30	(1.14 - 1.49)	<0.001
	Unadjusted risk	1.75	(1.50 - 2.05)	<0.001
Primiparous women	Adjusted risk - Model 1#	1.59	(1.36 - 1.87)	<0.001
only	Adjusted risk - Model 2##	1.45	(1.22 - 1.71)	<0.001
n births = 26,792	Adjusted risk - Model 3###	1.47	(1.24 - 1.74)	<0.001
	Adjusted risk - Model 4####	1.35	(1.14 - 1.60)	<0.001
	Unadjusted risk	2.03	(1.37 - 2.03)	<0.001
Multiparous women	Adjusted risk - Model 1#	1.63	(1.33 - 1.99)	<0.001
only	Adjusted risk - Model 2##	1.47	(1.20 - 1.81)	< 0.001
n births = 15,425	Adjusted risk - Model 3###	1.52	(1.24 - 1.87)	<0.001
	Adjusted risk - Model 4####	1.21	(0.98 - 1.49)	0.021

#Model 1 adjusts for parity, maternal age, ethnicity and systolic blood pressure.

Model 2 is model 1 plus maternal education and employment.

###Model 3 is model 2 plus maternal body mass index as a potential mediator.

####Model 4 is model 3 plus maternal smoking history as an additional mediator.

Discussion

In this analysis of routine maternity healthcare data from a regional hospital in Southampton, UK, multivariable logistic regression was used to examine the relationship between SES indicators (education, employment and partnership) and SGA, and whether these relationships are stable over time and different by parity. Educational attainment and employment (of the mother and her partner) were independently associated with the risk of SGA, although differences between the association between single motherhood and SGA were attenuated by adjusting for smoking status. SES differences in the risk of SGA were stable over the study period (2004-2016). The strength of these SES differences varied between mothers at their first and higher order births, with the association between maternal lower educational attainment and SGA being stronger, and the association between partner's employment and SGA being weaker, in mothers with previous live births.

Comparison with other studies

The evidence for SES inequalities by maternal educational attainment, employment and partner's employment in the risk of SGA is consistent with the literature, and the third analysis shows that these associations remain robust after limiting the sample to one record per mother. Within a systematic review of socioeconomic disparities in birth outcomes conducted in 2010 [6], 6 of the 9 (66%) studies of SGA and maternal education reported a significant association, in addition to single studies finding an association for maternal [30] and paternal employment [31]. Part of the complexity in the relationship between maternal SES and SGA results from many analyses using only one measure of SES, with maternal education [12,32] and employment [33] being the main indicators used. Factors related to the mother's partners are usually excluded, due to a lack of appropriate data or small sample sizes, despite the potential of these factors to describe the conditions mothers experience during pregnancy [34]. Whether the mother has a partner or not is largely overlooked as a risk factor in this area, with the exception of Kleijer et al (2005), who found that single mothers are at higher risk of SGA. The final estimates of SES inequalities in this study are adjusted for other SES indicators, suggesting that there are multiple pathways through which SES is linked to gestational growth.

Since the publication of Blumenshine *et al*'s systematic review [6] there has been an increased focus on how SES differences in weight outcomes at birth and during early life may be mediated through maternal BMI and smoking. In a Dutch cohort, maternal smoking and height during pregnancy were reported to explain 75% of the difference in risk of SGA between mothers with low and high education [12]. In an Australian cohort maternal smoking and the BMI of both parents were reported to explain 83.5% of SES differences in their children's BMI Z-score at age 10-11 years [36]. In the present analysis, accounting for maternal smoking reduced the magnitude of the SGA risk difference by SES from a 36% increase in risk to 20% among mothers without a university degree, and from a 48% to 31% increase in risk among unemployed mothers. Maternal smoking also explained the relatively high risk of SGA among single mothers. This attenuation corroborates previous research indicating that single mothers are more likely to smoke, and that this may be related to the level of stress that they report, relative to partnered mothers [37]. Single mothers may be relying on smoking as a means of stress relief or management during pregnancy, and smoking cessation and support programmes may be effective in reducing inequalities in birth outcomes as a result.

To our knowledge, there has been no analysis of socioeconomic inequality time trends in SGA from the mid-2000s onwards in a developed Western context. Inequalities in birth weight (adjusting for gestational age) were stable between 1961 and 2000 in a regional city-based study in North East

BMJ Open

England [24], and the same is found between 2004 and 2016 in this study. The stability of SES inequalities in SGA implies that further interventions and initiatives are required to narrow SES inequalities in SGA births.

Our hypothesis was that the extent of SES inequalities in the risk of SGA may differ by parity, as the birth of the first child is a period which brings about significant physiological, lifestyle and social changes, in addition to postpartum weight retention [15]. An analysis of birth register data in Norway found that mothers who had several SGA births were characterized by low educational attainment and partners employed in low SES occupations [16]. In the present analysis, the strength of the association between SES indicators and the risk of SGA varied between primiparous and multiparous women, with education inequalities being greater for multiparous women, and employment inequalities being greater for primiparous women. The explanation may be that more advantaged women are economically able to leave the workforce after their first birth when planning further pregnancies (thus attenuating the differences between those in and outside employment when having subsequent births), whilst educational differences in terms of health behaviours, health literacy and mental wellbeing are risk factors of having repeat or new SGA outcomes [38]. This group may benefit from additional support following the birth of their first baby to promote mental and physical wellbeing and facilitate healthy behaviours.

Strengths and limitations of the study

This study benefits from a large regionally-representative sample over many years. The exposure measures are prospectively collected in the course of routine care at a regional hospital. As data from the local hospital system are used, there is no selection bias which may arise from participation in a research cohort, and the sample is therefore representative of all those receiving care under the NHS. The outcome (SGA) is derived from birth weight, which is objectively measured by a health professional at birth. The most recent birth centiles for England and Wales were used [23] to reflect changes in birth weight since the oft-used 1990 birth centiles [39]. The measures of SES used are also collected within the usual course of NHS care before birth, so the results may be used to inform risk stratification interventions at or following the booking appointment to curtail SGA births and other associated adverse health outcomes. The antenatal booking appointment is a critical point for intervention as health professionals see all mothers receiving care under the NHS. The results herein find that women who report low educational qualifications, are unemployed, or their partner is unemployed at this stage are at higher risk of SGA delivery. These groups, as well as women with no partners and/or other social support at the time of the booking appointment, may then be referred for additional support to minimize the risk of an SGA birth and other adverse maternal and health outcomes. A limitation of our dataset is that such processes (if they y) were not electronically recorded and hence not includes in our analyses.

Some potential risk factors were not adjusted for in this study due to inconsistency of data for those specific variables as captured routinely in antenatal care, including diet during pregnancy and alcohol intake. These factors may also be mediate the effect of SES on SGA risk, wherein disadvantaged SES groups could be more likely to engage in risky health behaviours. In addition, this analysis did not account for characteristics of the residential environments mothers lived in during pregnancy. Systematic reviews indicate that social, built and air characteristics of the environment experienced during pregnancy are strongly associated with birth outcomes [5,40], and this will be addressed in a follow-up study on the associations between environmental characteristics and birth outcomes for the cohort.

As the data used in this study are limited to a hospital serving the city of Southampton and the surrounding region, the results may not apply to hospitals serving populations with differing characteristics. Southampton is a provincial urban city which is more deprived than the average Local Authority in England, although the surrounding area (Hampshire) is relatively affluent [41]. Southampton has a similar ethnicity profile to the rest of England and Wales [42], but with a relatively large university student population, and women in Southampton are underrepresented in managerial, administrative and professional occupations, relative to others in England [43]. As a result, findings from this study may not be replicated using healthcare records in areas with predominantly rural populations, or areas with non-student and managerial populations.

Implications for research and practice

The persistence of educational and employment inequalities in the risk of SGA found within this study justifies further interventions and initiatives in order to narrow SES inequalities in the risk of SGA, and subsequently their long-term adverse health impact. The antenatal booking appointment offers an opportune moment for risk stratification and signposting of additional support for women with low educational qualification, in unemployed households and low social support. Smoking appeared as a potential mediator for SES inequalities in this study, despite support in smoking cessation being offered in the course of NHS care [44]. This suggests that further support is required for mothers of low SES, and pre- and interconception programmes may have the added benefit of reducing the extent of SES inequalities in SGA, in addition to overall SGA rates. For research, this study aligns with recent calls to incorporate paternal/partner influences in developmental health research [34], in that similar levels of SGA risk are found for maternal and partner unemployment. Research in this area should adopt a more family-centred approach in relation to offspring health outcomes, taking into account contributing exposures from others within the household structure (partners and siblings).

Conclusions

This study confirms that socioeconomic status indicators, including educational attainment, employment status and single motherhood, are strongly and independently associated with the risk of small for gestational age birth, and they are not narrowing over time. Maternal smoking appears to play a significant role in these inequalities, particularly for lone mothers. However, the associations between educational attainment and employment status with SGA risk remain strong even after accounting for maternal smoking and BMI. Inequalities in SGA risk by maternal educational attainment appear greater for multiparous compared to primiparous women, while the opposite is true by maternal employment status. Further research is needed to identify critical windows of opportunity (preconception/pregnancy/interconception) and effective interventions in order to narrow these inequalities. Prevention programmes targeting socioeconomically disadvantaged women which incorporate smoking cessation and social support are vital to tackling health inequalities in SGA.

What is already known on this topic

- Babies born to mothers in low socioeconomic status (SES) are at higher risk of being born small for gestational age (SGA).

- These SES inequalities were found to be stable between 1961 and 2000 in a previous English study.

- The relationship between maternal SES and SGA is linked to a higher prevalence of smoking and maternal underweight among mothers in low SES.

What this study adds

- Indicators of parental SES (maternal education, maternal and partner employment) are independently associated with the risk of being born SGA with some variation in the magnitude of risk between primiparous and multiparous women, while the risk difference between lone and partnered mothers is attenuated by accounting for maternal smoking.

-These SES inequalities remained stable between 2004 and 2016 in this English population-based cohort.

Footnotes

Contributors

NAA is the Principal Investigator of the project, and acts as the guarantor of this study. SW, NZ, PR, DS, DC, NMc, MH and NAA contributed to study conception and design. NMc provided input on the statistical analysis for this study. SW conducted the statistical analyses, and drafted the initial report. NZ checked the accuracy of the reported estimates from the statistical models. All authors contributed to interpretation of data and revising the manuscript critically for important intellectual content. All authors read and approved the final manuscript.

Funding

This research is supported by an Academy of Medical Sciences and Wellcome Trust grant to NAA (Grant no: AMS_HOP001\1060), and the National Institute for Health Research through the NIHR Southampton Biomedical Research Centre. The research funders had no input on research design or manuscript drafting. MAH is supported by the British Heart Foundation and the National Institute for Health Research through the NIHR Southampton Biomedical Research through the NIHR Southampton Biomedical Research through the NIHR Southampton Biomedical Research Centre.

Acknowledgments

We thank Ravita Taheem (Senior Public Health Practitioner, Southampton City Council) for her input in the conception of this paper, David Cable (Electronic Patient Records Implementation and Service Manager) and Florina Borca (Senior Information Analyst for R&D, NIHR Southampton Biomedical Research Centre) at University Hospital Southampton NHS Foundation Trust for their support in extracting the data used in this study.

Competing interests

All authors have completed the ICMJE uniform disclosure form at <u>www.icmje.org/coi_disclosure.pdf</u> and declare: NAA had financial support from the Academy of Medical Sciences/Wellcome Trust and the NIHR Southampton Biomedical Research Centre for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval

This study used anonymised antenatal record data supplied by University Hospital Southampton Trust. This analysis forms part of a research project reviewed and approved by the University of Southampton Faculty of Medicine Ethics Committee (ref 24433) and the National Health Service Health Research Authority (ref 242031).

Data sharing

The authors' ethical approval from the Faculty of Medicine Ethics Committee, University of Southampton (Reference number 24433) restricts public sharing of the data used in this study. The data owner is University Hospital Southampton NHS Trust. Please contact NAA to request data access beyond that included in the manuscript. Further ethical and research governance approval may be required.

Transparency

The first author, SW, affirms that the manuscript is an honest, accurate, and transparent account of the study being reported.

Mendez-Figueroa H, Truong V, Pedroza C, <i>et al</i> . Morbidity and mortality with small for gestational age: Secondary analysis of nine MFMU network studies. Am. J. Obstet. Gynecol.
2016; 214 :S320– 1.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed13&NEWS=N&AN=72 164789
Reilly JJ, Armstrong J, Dorosty AR, <i>et al.</i> Early life risk factors for obesity in childhood: cohort study. <i>BMJ</i> 2005; 330 :1357.http://www.bmj.com/content/330/7504/1357.abstract
McCowan L, Horgan RP. Risk factors for small for gestational age infants. <i>Best Pract Res Clin Obstet Gynaecol</i> 2009; 23 :779–93. doi:https://doi.org/10.1016/j.bpobgyn.2009.06.003
Mitchell EA, Robinson E, Clark PM, <i>et al.</i> Maternal nutritional risk factors for small for gestational age babies in a developed country: a case-control study. <i>Arch Dis Child - Fetal Neonatal Ed</i> 2004; 89 :F431 LP-F435.http://fn.bmj.com/content/89/5/F431.abstract
Vos AA, Posthumus AG, Bonsel GJ, <i>et al</i> . Deprived neighborhoods and adverse perinatal outcome: a systematic review and meta-analysis. <i>Acta Obstet Gynecol Scand</i> 2014; 93 :727–40. doi:10.1111/aogs.12430
Blumenshine P, Egerter S, Barclay CJ, <i>et al.</i> Socioeconomic Disparities in Adverse Birth Outcomes: A Systematic Review. <i>Am J Prev Med</i> 2010; 39 :263–72. doi:https://doi.org/10.1016/j.amepre.2010.05.012
Gao W, Paterson J, Carter S, <i>et al.</i> Risk factors for preterm and small-for-gestational-age babies: a cohort from the Pacific Islands Families Study. <i>J Paediatr Child Health</i> 2006; 42 :785–92. doi:10.1111/j.1440-1754.2006.00978.x
Luo Z-C, Wilkins R, Kramer MS, <i>et al</i> . Effect of neighbourhood income and maternal education on birth outcomes: a population-based study. <i>C Can Med Assoc J</i> 2006; 174 :1415–20. doi:10.1503/cmaj.051096
Masi CM, Hawkley LC, Piotrowski ZH, <i>et al</i> . Neighborhood economic disadvantage, violent crime, group density, and pregnancy outcomes in a diverse, urban population. <i>Soc Sci Med</i> 2007; 65 :2440–57. doi:10.1016/j.socscimed.2007.07.014
Pevalin DJ, Wade TJ, Brannigan A, <i>et al.</i> Beyond biology: The social context of prenatal behaviour and birth outcomes. <i>Soz Praventivmed</i> 2001; 46 :233–9. doi:10.1007/BF01593178
Savitz DA, Kaufman JS, Dole N, <i>et al</i> . Poverty, education, race, and pregnancy outcome. <i>Ethn Dis</i> 2004; 14 :322–9.
van den Berg G, van Eijsden M, Galindo-Garre F, <i>et al</i> . Smoking overrules many other risk factors for small for gestational age birth in less educated mothers. <i>Early Hum Dev</i> 2013; 89 :497–501. doi:https://doi.org/10.1016/j.earlhumdev.2013.03.007
Love C, David RJ, Rankin KM, <i>et al.</i> Exploring Weathering: Effects of Lifelong Economic Environment and Maternal Age on Low Birth Weight, Small for Gestational Age, and Preterm Birth in African-American and White Women. <i>Am J Epidemiol</i> 2010; 172 :127– 34.http://dx.doi.org/10.1093/aje/kwq109
Taylor-Robinson D, Agarwal U, Diggle PJ, <i>et al.</i> Quantifying the Impact of Deprivation on Preterm Births: A Retrospective Cohort Study. <i>PLoS One</i> 2011; 6 :e23163.https://doi.org/10.1371/journal.pone.0023163
Hollis JL, Crozier SR, Inskip HM, et al. Modifiable risk factors of maternal postpartum weight
21
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

retention: An analysis of their combined impact and potential opportunities for prevention. *Int J Obes* 2017;**41**:1091–8. doi:10.1038/ijo.2017.78

- 16 Bakketeig LS, Bjerkedal T, Hoffman HJ. Small-for-gestational age births in successive pregnancy outcomes: results from a longitudinal study of births in Norway. *Early Hum Dev* 1986;**14**:187–200. doi:https://doi.org/10.1016/0378-3782(86)90180-5
- Milgrom J, Gemmill AW, Bilszta JL, *et al.* Antenatal risk factors for postnatal depression: A large prospective study. *J Affect Disord* 2008;**108**:147–57.
 doi:https://doi.org/10.1016/j.jad.2007.10.014
- 18 Patel V, Rodrigues M, DeSouza N. Gender, poverty, and postnatal depression: A study of mothers in Goa, India. Am J Psychiatry Published Online First: 2002. doi:10.1176/appi.ajp.159.1.43
- 19 Richard B, Monica CD, Costas M, *et al.* Female Labor Supply, Human Capital, and Welfare Reform. *Econometrica* 2016;**84**:1705–53. doi:10.3982/ECTA11576
- 20 Rafferty A, Wiggan J. The Time-related Underemployment of Lone Parents during Welfare Reform, Recession and Austerity: A Challenge to In-work Conditionality? Soc Policy Adm 2017;51:511–38. doi:10.1111/spol.12190
- 21 Jofre-Bonet M, Serra-Sastre V, Vandoros S. The impact of the Great Recession on healthrelated risk factors, behaviour and outcomes in England. *Soc Sci Med* 2018;**197**:213–25. doi:https://doi.org/10.1016/j.socscimed.2017.12.010
- 22 National Institute for Clinical Excellence. Antenatal care for uncomplicated pregnancies: schedule of appointments. 2012.https://pathways.nice.org.uk/pathways/antenatal-care-foruncomplicated-pregnancies/antenatal-care-for-uncomplicated-pregnancies-schedule-ofappointments.pdf (accessed 23 Jul 2018).
- 23 Norris T, Seaton SE, Manktelow BN, et al. Updated birth weight centiles for England and Wales. Arch Dis Child - Fetal Neonatal Ed Published Online First: 7 December 2017.http://fn.bmj.com/content/early/2017/12/07/archdischild-2017-313452.abstract
- 24 Glinianaia S V, Ghosh R, Rankin J, *et al.* No improvement in socioeconomic inequalities in birthweight and preterm birth over four decades: a population-based cohort study. *BMC Public Health* 2013;**13**:345. doi:10.1186/1471-2458-13-345
- 25 Kozuki N, Lee ACC, Silveira MF, *et al.* The associations of parity and maternal age with smallfor-gestational-age, preterm, and neonatal and infant mortality: a meta-analysis. *BMC Public Health* 2013;**13**:S2–S2. doi:10.1186/1471-2458-13-S3-S2
- 26 Block-Abraham DM, Adamovich D, Turan OM, *et al.* Maternal blood pressures during pregnancy and the risk of delivering a small-for-gestational-age neonate. *Hypertens pregnancy* 2016;**35**:350–60. doi:10.3109/10641955.2016.1150487
- 27 Ranganathan P, Pramesh CS, Buyse M. Common pitfalls in statistical analysis: The perils of multiple testing. *Perspect Clin Res* 2016;**7**:106–7. doi:10.4103/2229-3485.179436
- 28 Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. *J Pers Soc Psychol* 1986;**51**:1173–82.
- 29 Galobardes B, Costanza MC, Bernstein MS, *et al.* Trends in Risk Factors for Lifestyle-Related Diseases by Socioeconomic Position in Geneva, Switzerland, 1993–2000: Health Inequalities Persist. *Am J Public Health* 2003;**93**:1302–9. doi:10.2105/AJPH.93.8.1302

2		
2 3 4 5	30	Gissler M, Rahkonen O, Arntzen A, <i>et al</i> . Trends in socioeconomic differences in Finnish perinatal health 1991–2006. <i>J Epidemiol Community Health</i> 2009; 63 :420 LP- 425.http://jech.bmj.com/content/63/6/420.abstract
6 7 8 9	31	Fairley L, Leyland AH. Social class inequalities in perinatal outcomes: Scotland 1980–2000. <i>J</i> Epidemiol Community Health 2006;60:31 LP- 36.http://jech.bmj.com/content/60/1/31.abstract
10 11 12 13	32	Agyemang C, Vrijkotte TGM, Droomers M, <i>et al.</i> The effect of neighbourhood income and deprivation on pregnancy outcomes in Amsterdam, The Netherlands. <i>J Epidemiol Community Health</i> 2009; 63 :755 LP-760.http://jech.bmj.com/content/63/9/755.abstract
14 15 16 17	33	Räisänen S, Gissler M, Sankilampi U, <i>et al.</i> Contribution of socioeconomic status to the risk of small for gestational age infants – a population-based study of 1,390,165 singleton live births in Finland. <i>Int J Equity Health</i> 2013; 12 :28. doi:10.1186/1475-9276-12-28
18 19 20	34	Sharp GC, Lawlor DA, Richardson SS. It's the mother!: How assumptions about the causal primacy of maternal effects influence research on the developmental origins of health and disease. <i>Soc Sci Med</i> 2018; 213 :20–7. doi:https://doi.org/10.1016/j.socscimed.2018.07.035
21 22 23 24	35	Kleijer ME, Dekker GA, Heard AR. Risk factors for intrauterine growth restriction in a socio- economically disadvantaged region. <i>J Matern Neonatal Med</i> 2005; 18 :23–30. doi:10.1080/14767050500127674
25 26 27 28	36	Iguacel I, Chung A, Gearon E, <i>et al.</i> Influence of early-life risk factors on socioeconomic inequalities in weight gain. <i>J Public Health (Bangkok)</i> Published Online First: 26 March 2018.http://dx.doi.org/10.1093/pubmed/fdy056
29 30 31	37	Sperlich S, Maina MN, Noeres D. The effect of psychosocial stress on single mothers' smoking. BMC Public Health 2013; 13 :1125. doi:10.1186/1471-2458-13-1125
32 33 34	38	Güneş PM. The role of maternal education in child health: Evidence from a compulsory schooling law. <i>Econ Educ Rev</i> 2015; 47 :1–16. doi:https://doi.org/10.1016/j.econedurev.2015.02.008
35 36 37 38	39	J. CT, V. FJ, A. PM. British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. <i>Stat Med</i> 1998; 17 :407–29. doi:10.1002/(SICI)1097-0258(19980228)17:4<407::AID-SIM742>3.0.CO;2-L
39 40 41 42	40	X. L, S. H, A. J, <i>et al.</i> Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis. <i>Environ Pollut</i> 2017; 227 :596–605. doi:http://dx.doi.org/10.1016/j.envpol.2017.03.055
43 44 45 46	41	Department for Communities and Local Government. English Indices of Deprivation 2015. 2015.https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/4677 64/File_1_ID_2015_Index_of_Multiple_Deprivation.xlsx (accessed 11 Sep 2018).
47 48 49 50	42	Office for National Statistics. Ethnicity and National Identity in England and Wales 2011. 2012.https://www.ons.gov.uk/peoplepopulationandcommunity/culturalidentity/ethnicity/art icles/ethnicityandnationalidentityinenglandandwales/2012-12-11 (accessed 11 Sep 2018).
51 52 53 54 55 56	43	Office for National Statistics. 2011 Census: Key statistics and quick statistics for local authorities in the United Kingdom - part 2. 2014.https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentand employeetypes/datasets/2011censuskeystatisticsandquickstatisticsforlocalauthoritiesintheun itedkingdompart2 (accessed 13 Feb 2018).
57 58 59		23
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

44 National Institute for Clinical Excellence. Smoking: stopping in pregnancy and after childbirth. 2010.https://www.nice.org.uk/guidance/ph26 (accessed 11 Sep 2018).

tor peer teriew only

STROBE Statement—checklist of items that should be included in rep	orts of observational studies

		BMJ Open						
STROBE Statement	-checklist of items that should be included in reports of observational studie							
	Item No	Recommendation	Pag No					
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1					
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2					
Introduction								
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3					
Objectives	3	State specific objectives, including any prespecified hypotheses	3					
Methods			1					
Study design	4	Present key elements of study design early in the paper	3					
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4					
-		recruitment, exposure, follow-up, and data collection						
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods	4					
		of selection of participants. Describe methods of follow-up						
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and						
		methods of case ascertainment and control selection. Give the rationale for						
		the choice of cases and controls						
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and						
		methods of selection of participants						
		(<i>b</i>) <i>Cohort study</i> —For matched studies, give matching criteria and number	N/A					
		of exposed and unexposed						
		<i>Case-control study</i> —For matched studies, give matching criteria and the						
X 7 · 11	7	number of controls per case	4.5					
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	4-5					
	0*	and effect modifiers. Give diagnostic criteria, if applicable	4.5					
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	4-5					
measurement		assessment (measurement). Describe comparability of assessment methods if						
D.	0	there is more than one group	4					
Bias	9	Describe any efforts to address potential sources of bias	4					
Study size	10	Explain how the study size was arrived at	4					
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	5-6					
Statistical	10	applicable, describe which groupings were chosen and why	_					
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	5					
		confounding(b) Describe any methods used to examine subgroups and interactions	5					
			5					
		(c) Explain how missing data were addressed	5					
		(<i>d</i>) Cohort study—If applicable, explain how loss to follow-up was addressed	N/A					
			1					
		<i>Case-control study</i> —If applicable, explain how matching of cases and	1					
		controls was addressed	1					
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	1					
		account of sampling strategy	5					
		(<i>e</i>) Describe any sensitivity analyses	5					

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	4-6
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	4-7
data		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	6-7
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/A
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over	N/A
		time	
		Case-control study—Report numbers in each exposure category, or summary	N/A
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	6-7
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	8,10,14,1
		and their precision (eg, 95% confidence interval). Make clear which confounders	
		were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	6-7
		(c) If relevant, consider translating estimates of relative risk into absolute risk for	N/A
		a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	14-15
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	16
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	17-18
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	18
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other information	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	20
-		applicable, for the original study on which the present article is based]

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Are socioeconomic inequalities in the incidence of small-forgestational-age birth narrowing? Findings from a population-based cohort in the South of England

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026998.R1
Article Type:	Research
Date Submitted by the Author:	12-Jun-2019
Complete List of Authors:	Wilding, Sam; University of Southampton, Academic Unit of Primary Care and Population Sciences, Faculty of Medicine Ziauddeen, Nida; University of Southampton, Academic Unit of Primary Care and Population Sciences, Faculty of Medicine Roderick, Paul; University of Southampton, Academic Unit of Primary Care and Population Sciences, Faculty of Medicine Smith, Dianna; University of Southampton, Geography & Environment Chase, Debbie; Southampton City Council, Public Health Macklon, Nick; University of Copenhagen, Department of Obstetrics and Gynaecology; London Women's Clinic McGrath, Nuala; University of Southampton, Academic Unit of Primary Care and Population Sciences, Faculty of Medicine; University of Southampton, School of Economic, Social and Political Science, Faculty of Social Sciences, Hanson, Mark; University of Southampton, Institute of Developmental Sciences, Academic Unit of Human Development and Health, Faculty of Medicine; University of Southampton and University Hospital Southampton NHS Foundation Trust , NIHR Southampton Biomedical Research Centre Alwan, Nisreen; University of Southampton, Academic Unit of Primary Care and Population Sciences, Faculty of Medicine; University of Southampton and University Hospital Southampton and University of Southampton NHS Foundation Trust , NIHR Southampton Biomedical Research Centre Alwan, Nisreen; University Hospital Southampton NHS Foundation Trust, NIHR Southampton Biomedical Research Centre
Primary Subject Heading :	Public health
Secondary Subject Heading:	Paediatrics, Obstetrics and gynaecology
Keywords:	PUBLIC HEALTH, SOCIAL MEDICINE, small for gestational age, socioeconomic inequalities

SCHOLARONE[™] Manuscripts

1 2		
3 4 5	1	Are socioeconomic inequalities in the incidence of small-for-
6 7 8	2	gestational-age birth narrowing? Findings from a population-
9 10 11	3	based cohort in the South of England
12	4	
13 14	5	
15 16	6	Authors:
17 18 19 20	7 8	Sam Wilding ¹ , Nida Ziauddeen ¹ , Paul Roderick ¹ , Dianna Smith ² , Debbie Chase ³ , Nicholas Macklon ^{4,5} , Nuala McGrath ^{1,6} , Mark Hanson ^{7,8} , Nisreen A Alwan ^{1,8}
20 21	9	Author affiliations:
22 23	10	¹ School of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton
24 25 26	11 12	² Geography and Environmental Science, Faculty of Environmental and Life Sciences, University of Southampton
27 28	13	³ Public Health, Southampton City Council
29 30 31	14 15	⁴ Department of Obstetrics and Gynaecology, University of Copenhagen, Zealand University Hospital, Roskilde 4000, Denmark
32 33	16	⁵ London Women's Clinic, 113-115 Harley Street, London W1G 6AP
34 35 36 37 38 39 40 41 42	17 18	⁶ School of Economic, Social and Political Science, Faculty of Social Sciences, University of Southampton
	19 20	⁷ Institute of Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton
	21 22	⁸ NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust
43 44	23	Corresponding author:
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	24 25	Nisreen A Alwan, Room AC23, South Academic Block, University Hospital Southampton, Southampton, UK, SO16 6YD. Email: <u>n.a.alwan@soton.ac.uk</u> .

1 2		
2 3 4	26	Abstract
5	27	Objectives
6 7	28	-
8	28 29	To investigate socioeconomic inequalities, using maternal educational attainment, maternal and partner employment status, and lone motherhood indicators, in the risk of small for gestational age
9	29 30	(SGA) births, their time trend, potential mediation by maternal smoking and body mass index (BMI),
10	30 31	and effect modification by parity.
11 12	51	and effect mounication by parity.
13	32	Design
14	33	Population-based birth cohort utilising routine antenatal healthcare data.
15 16	55	
17	34	Setting
18	35	Babies born at University Hospital Southampton, UK, between 2004 and 2016.
19	55	
20 21	36	Participants
22	37	65,909 singleton live births born to mothers aged ≥18 years between 24 and 42 weeks gestation.
23	0.	
24	38	Main outcome measures
25 26	39	SGA (birth weight <10 th percentile for others born at the same number of completed weeks
27	40	compared to 2013/2014 within England and Wales).
28	-	
29	41	Results
30 31	42	Babies born to mothers educated up to secondary school level (adjusted Odds Ratio (aOR) 1.30, 99%
32	43	Confidence Interval (CI) 1.17-1.45), who were unemployed (aOR 1.27, CI 1.16-1.38) or with
33	44	unemployed partners (aOR 1.27, Cl 1.13-1.43) were at greater risk of being SGA. There was no
34 35	45	statistically significant change in the magnitude of this risk difference by these indicators over time
36	46	between 2004 and 2016, as estimated by linear interactions with year of birth. Babies born to lone
37	47	mothers were not at higher risk compared to partnered mothers after adjusting for maternal
38	48	smoking (aOR 1.06, CI 0.93-1.20). The inverse association between maternal educational attainment
39 40	49	and SGA risk appeared greater in multiparous (aOR 1.38, CI 1.09-1.75) compared to primiparous
41	50	women (aOR 1.26, CI 1.11-1.44), and the reverse was true for maternal and partner's unemployment
42	51	where the association was stronger in primiparous women.
43	50	Conclusions
44 45	52	Conclusions
46	53	Socioeconomic inequalities in SGA risk by educational attainment and employment status are not
47	54	narrowing over time, with differences in association strength by parity. The greater SGA risk in lone
48	55	mothers was potentially explained by maternal smoking. Preventive interventions should target
49 50	56 57	socially disadvantaged women, including preconception and postpartum smoking cessation to reduce SGA risk.
51	57	Teduce SGA TISK.
52	58	Strengths and limitations of this study
53 54	59	This study uses a relatively-large sample of population-level antenatal care data to predict
55	60	the risk of small-for-gestational-age births by socioeconomic factors
56	61	 Standard routinely-collected measures recorded at the first antenatal appointment are
57 58	62	utilised which can be used for risk prediction in practice without the need to collect extra
58 59	63	data during antenatal appointments
60		

1 2		
3 4 5 6	64 • 65 66	Limitations include the transferability of results from this population to others with differing characteristics, that socioeconomic factors were only assessed at one time point in pregnancy, and self-reporting of educational qualifications and employment.
7	67	
8 9		
9 10		
11		
12 13		
14		
15 16		
17		
18		
19 20		
21		
22 23		
24		
25 26		
26 27		
28		
29 30		
31		
32 33		
34		
35 36		
37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
49 50		
51		
52 53		
54		
55 56		
57		
58 59		
60		

68 Introduction

69 Babies born small for gestational age (SGA) are at higher risk of neonatal morbidity, mortality [1] and

- 70 childhood obesity potentially through compensatory early growth [2][3]. Numerous clinical and
- 71 lifestyle risk factors are associated with the risk of being SGA, including maternal height, weight,
- 9 72 diet, ethnicity, parity, smoking, pre-eclampsia and hypertension [4,5]. Closely linked to these risk
- 10 73 factors there is extensive evidence of socioeconomic status (SES) inequalities, with more SGA babies
- born to mothers living in the most deprived communities compared to those in the most affluent [6].

Several proxies of SES are present in the literature, with area measures of wealth, maternal education, employment and income being the most common indicators, while paternal factors being notably absent [7]. Disadvantaged SES groups (in terms of education and income) typically experience greater rates of SGA births [8,9]. The majority of studies rely on one proxy of SES, but studies controlling for several SES measures find that different aspects of SES are independently associated with the risk of SGA [10–14].

Despite the wealth of research on the association between parental SES and SGA, the underlying mechanisms are poorly understood [15]. Current explanations focus on the availability of (physiological and material) resources and mediating factors that differ between women of high and low SES. For resources, the 'weathering' hypothesis states that women in low SES at the time of conception have experienced relatively high levels of cumulative disadvantage in terms of income, stress and diet, which have led to a deterioration in physiological health [16]. This association may also be mediated by lifestyle factors, wherein mothers in low SES are more likely to be exposed to or partake in risk factors for SGA such as smoking. Mediation analyses have found that higher rates of underweight and smoking at conception among mothers with low educational attainment mediates the association between SES and birth outcomes in the UK [15,17].

The extent of these SES inequalities in the risk of SGA may differ between first and higher order births. The birth of the first child brings significant physiological, wellbeing and social changes [18], and women in low SES may have weaker social support mechanisms to adjust to these changes, as they appear to be at higher risk of SGA in subsequent births after adjusting for clinical risk factors [19]. Risk factors for SGA specific to second and higher order births are more prevalent in women of low SES, with postnatal depression being more common in mothers without a university degree and those in poverty [20,21].

In England, public health policy aims to narrow SES inequalities in birth outcomes over time [22,23], and changes in the extent of inequalities in SGA have been noted in other European countries since the early-2000s [24]. Major welfare reforms enacted in the UK between 1999 and 2002 increased in-work tax incentives, which particularly increased the net income of part-time working women, relative to those out of work [25]. In 2008 the global 'great recession' occurred, after which single mothers in England became increasingly less likely to be employed, whilst facing disproportionate losses of welfare income, facing a double income penalty relative to working mothers [26]. The recession appears to have had differential impacts on women by level of educational attainment, with those without a university degree experiencing a post-recession rise in the prevalence of obesity, relative to those with degrees [27].

Utilising an antenatal healthcare database in Hampshire, England, we aimed to examine differences
 in SGA risk by SES indicators, investigate if these differences are mediated by maternal body mass
 index and smoking, and whether the inequalities gap has narrowed over the 13 year study period

(2004-2016). In addition, we aimed to stratify by parity in order to examine whether the SES gap in
 SGA risk is the same at first births, relative to 2nd and higher order births.

7 113 Methods

9 114 Data

This analysis is based on a population-based cohort including anonymised antenatal and delivery records of women aged ≥18 years who had a live singleton birth between 1 January 2004 and 31 December 2016 at the University Hospital Southampton (UHS) National Health Service (NHS) Trust in the South of England. UHS is the primary centre for maternity care for the city of Southampton and the surrounding areas, and is the regional centre for high-risk pregnancies. The process of deriving a sample for analysis is outlined in Supplementary Figure 1. To ensure that the findings are applicable to the majority of (non high-risk) pregnancies, records with late first antenatal (booking) appointments (after 24 weeks gestation, as assessed by ultrasound) and of mothers under the age of 18 were excluded. First, we analysed the risk of SGA by SES in all births (including more than one birth per mother if in the database and study timeframe), adjusting for confounding and clustering. We then tested whether differences between SES groups (by maternal education, employment, paternal employment and partnership status) have changed over the study period (2004-2016). We then limited the analysis to the first recorded birth per mother in the dataset, and stratified by parity (primiparous and multiparous), to avoid biasing sub-analyses via double-counting. This project was approved by the University of Southampton Faculty of Medicine Ethics Committee (ref 24433) and the NHS Health Research Authority (ref 242031).

3031 131 Assessment of SES exposures

Socioeconomic measures were self-reported at the first antenatal (booking) appointment, which is recommended by the National Institute for Health and Care Excellence (NICE) Antenatal Care Guidelines to occur by the 10th week of gestation [28]. Mothers were asked to report their highest educational qualification, classified as university degree (highest level), college (A levels) or secondary school (GCSE), whether they were currently employed, and if their partners were currently employed (possible answers included employed, unemployed and seeking work or student, with the latter two being combined). Partnership status was self-reported at the same appointment. All four SES proxies were categorised to be compared to mothers with advantaged SES (mother has a university degree; mother is employed; mother's partner is employed; mother has a partner). Time trends in SES factors were examined, and presented in Supplementary Figure 2.

⁴⁵ 142 Assessment of outcome

Birth weight was measured by healthcare professionals for all births in the dataset. Gestational age was based on a dating ultrasound scan performed by healthcare professionals, and was present for all records in the dataset. Birth weight centile for gestational age is calculated using reference values provided in the most recently released data (2013-2014) for England and Wales, which were validated using 2015 records [29]. Given that the association between SES and preterm births is well established in the literature [30], and that gestational age is strongly associated with birthweight, we use a Small for Gestational Age (SGA) measure to assess low birth weight rather than the standard birth weight cut-off.

57151The birth centile references are available for 24-42 completed weeks of gestation, so live births at58152 ≤ 23 (71) or >42 (568) completed weeks or with indeterminate sex (16) are excluded from the60153analysis (SGA sample = 65,909/66,564). In line with World Health Organisation guidelines, UK

guidelines and common practice, SGA is defined as a birth weight lower than the 10th percentile
 compared to others born at the same number of weeks gestation in the sex-specific reference

156 centiles [31–33], and all others are defined as Not Small for Gestational Age (non-SGA).

7 8 157 Assessment of confounder and mediator variables

Maternal age, weight, height, parity, ethnicity and smoking history were self-reported at the booking antenatal appointment. Baby's sex was assessed at birth by a healthcare professional. Maternal weight and blood pressure were measured by a healthcare professional at the booking appointment, and screening for gestational diabetes was carried out for women identified as at high risk in the second trimester of pregnancy [28]. Maternal age, ethnicity, gestational diabetes and systolic blood pressure were adjusted for in the multivariable models, as these factors have been associated with size at birth in previous analyses [4,34,35]. Parity (no versus 1 or more previous births) was treated as a confounder in the models analysing the whole sample, and then as an effect modifier for SES through interaction terms and later stratification. Maternal body mass index (BMI) and smoking history are included as potential mediators of the relationship between SES and risk of SGA, based on previous evidence [15,17]. Maternal BMI was categorised as underweight (<18.5), normal (18.5-24.9), overweight/pre-obese (25.0-29.9) and obese (30+) [36], and treated as a categorical variable in all analyses. Maternal smoking was reported as follows (never smoked, ex-smoker, <10 per day, 10-20 per day and 20+ per day), and also treated as a categorical variable in all analyses.

²⁷₂₈ 172 Patient and Public Involvement

173 Because this analysis uses routinely-collected antenatal data where patient identifiers were
 174 anonymised, no patients or members of the public were recruited or consulted by the research
 175 team.

34 176 Statistical analysis

All analyses were conducted using Stata 15 (College Station, Texas). Descriptive statistics and the unadjusted odds ratios (ORs) between all variables and risk of SGA are presented in Table 1. T-tests were used to test whether the mean of each continuous variable (maternal BMI, age and systolic blood pressure at booking) differed between those born SGA and non-SGA. Multivariable logistic regression models were used to estimate ORs, p-values and respective 99% confidence intervals (CI) for SES differences in the risk of SGA independently after adjustment for control variables, after adjustment for other SES indicators, and then after controlling for mediators. A p-value cut-off of 0.01 is used to test for statistical significance when reporting risk rather than the more conventional 0.05 cut-off in order to minimise the risk of type I error due to multiple testing, as adjusted models control for multiple SES indicators [37]. Evidence of mediation is examined through assessing the attenuation of SES with SGA associations once known risk factors are controlled for, and the significance once each a priori mediator (first BMI, then smoking) is controlled for [38]. In all logistic regressions, cases with missing data for variables within the model were dropped (complete case analysis).

In the first analysis, adjusted ORs for the risk of a baby being born SGA are presented in model 1 (control variables include maternal age, parity, ethnicity, gestational diabetes, gestational hypertension and systolic blood pressure at booking) independently for maternal education, employment and partnership status, adjusting for clustering of births within the same mother. In model 2, all three of these SES proxies are controlled for, in additional to the control variables in model 1, before including the two mediators (maternal BMI and smoking) sequentially in models 3

I		
2		
3	197	and 4. Due to collinearity between maternal partnership and partner's employment, the association
4 5	198	for the latter is tested separately with the same structure.
6 7	199	In the second analysis, year and the interactions between year and SES indicator (slope) effects are
8	200	included to model 4 for maternal education, employment, partner's employment and partnership
9	201	status, to test whether SES inequalities in the risk of being born SGA are widening or narrowing over
10	202	time during the study period. These slopes represent the change in relative odds of SGA for the
11	203	socioeconomic group relative to the control group for each year in the dataset (2004-2016). Odds
12 13	204	ratios >1 indicate that this group became at higher risk of SGA births over time, relative to the
14	205	control group [39]. Further models were estimated including SES interactions between a dummy
15	206	indicator for records pre- (2004-2008) and post- (2009-2016) 2008, to test whether SES inequalities
16 17	207	in the risk of SGA changed in magnitude between the two periods.
18	208	In the third analysis, the sample is limited to the first birth for each mother (1 birth per mother), and
19 209	209	then stratified by parity (primiparous or multiparous). Limiting the sample to the first birth for each
20	210	mother acts as a sensitivity analysis for the first analysis, ensuring that the results are not influenced
21 22	211	by multiple births per mother. Interactions between SES and parity are estimated to test whether
<u> </u>		

- 212 the association between SES and risk of SGA is modified by parity, and then parity-stratified
- 24 213 modelling was conducted. A p-value cut-off of 0.05 is used to test for interactions. As in the first
 25 214 analysis, adjusted SES ORs are presented for each sub-sample, then these ORs are adjusted for other

26 215 SES indicators, before including mediators (maternal BMI and smoking).

³ 4 216 Results

There are 65,825 singleton live births within the dataset which can be categorised as SGA or non-SGA to 44,371 mothers. Of births, 71% were to women with no university degree, in employment (67.9%), have partners the time of booking (92.3%), who are in employment (90.4%), of white ethnicity (82.4%) and with normal (<140 mm Hg) systolic blood pressure (98.7%). Of these 65,825 births, 6,343 (9.6%, 99% CI 9.4%-9.9%) were born SGA (Table 1).

1112222Time trends in SES factors are displayed in Supplementary Figure 1. Briefly, less than college (A13223levels) educational qualification, maternal unemployment and lone motherhood became less14224prevalent over time (39%, 34% and 9% in 2004 to 22%, 29% and 6% in 2016, respectively), whilst16225partner unemployment remained relatively stable.

The proportion of SGA births was higher than the average for births to mothers in all disadvantaged SES groups. This includes births to mothers with no university degree (college qualification: 9.0% born SGA, 99% CI 8.5-9.5, secondary school qualification: 11.9% born SGA, 99% CI 11.3-12.5), births to unemployed mothers (11.6% born SGA, 99% CI 11.1-12.2), births to mothers with unemployed partners (14.2% born SGA, 99% CI 13.0-15.4), and births to single mothers (12.4% born SGA, 99% CI 11.3-13.7). Other maternal factors associated with a higher than average rate of SGA include maternal BMI <18.5 kg/m² (19.9% born SGA, 99% CI 17.6-22.3), maternal smoking at booking (16.8% born SGA, 99% CI 15.9-17.8) and Asian ethnicity (18.3% born SGA, 99% CI 16.8-19.8).

Table 1 – Maternal/pregnancy characteristics by Small for Gestational Age status (birthweight <10th percentile for gestational age) in the University Hospital Southampton (UHS) maternity population-based cohort (singleton live births 2004-2016, n=65,825)

	SG	A	Non	SGA	%	SGA
Characteristics	n	(%)	n	(%)	% SGA	(99% CI)
Highest qualification University degree			•	0		
or higher	1,545	(24.4)	17,498	(29.5)	8.1	(7.6 - 8.6)
ollege econdary school	2,371	(37.4)	23,986	(40.4)	9.0	(8.5 - 9.5) (11.3 -
n lower Aaternal mployment	2,424	(38.2)	17,938	(30.2)	11.9	12.5)
mployed	3,868	(61.3)	40,511	(68.6)	8.7	(8.4 - 9.1
Unemployed	2,438	(38.7)	18,519	(31.4)	11.6	(11.1 - 12.2)
Partner's employment						
Employed	4,969	(85.6)	50,621	(90.9)	8.9	(8.6 - 9.3 (13.0 -
Unemployed	838	(14.4)	5,075	(9.1)	14.2	15.4)
Partnership Partnered	5,706	(90.0)	54,994	(92.5)	9.4	(9.1 - 9.7)
Lone mother	637	(10.0)	4,488	(7.6)	12.4	(11.3 - 13.7)
<i>Maternal BMI</i> <18.5 (underweight)	393	(6.2)	1,586	(2.7)	19.9	(17.6 - 22.3)

2							
3	18.5-24.9 (normal						
4	weight)	3,628	(57.2)	30,722	(51.7)	10.6	(10.1 - 11)
5 6	25-29.9		(22.2)		(0 0)		
7	(overweight)	1,425	(22.5)	16,070	(27.0)	8.1	(7.6 - 8.7)
8	30+ (obese)	897	(14.1)	11,104	(18.7)	7.5	(6.9 - 8.1)
9	Smoking						
10	Never smoked	3,050	(48.1)	30,760	(51.8)	9.0	(8.6 - 9.4)
11 12	Ex-smoker	1,488	(23.5)	19,735	(33.2)	7.0	(6.6 - 7.5)
12	<10 per day	1,038	(16.4)	5,547	(9.3)	15.8	(14.6-17.0)
14	10-20 per day		(()		(16.6 -
15	· ,	692	(10.9)	3,103	(5.2)	18.2	19.9) (16.2
16	> 20 per day	71	(1.1)	252	(0.4)	22.0	(16.3 - 28.5)
17	Maternal age	/1	(1.1)	252	(0.4)	22.0	28.5)
18 19	_						(11.6 -
20	18-24	2,000	(31.5)	14,343	(24.1)	12.2	12.9)
21	25-34	3,420	(53.9)	35,641	(59.9)	8.8	(8.4 - 9.1)
22	35-39	754	(11.9)	7,998	(13.5)	8.6	(7.9 - 9.4)
23	40+	169	(2.7)	1,500	(2.5)	10.1	(8.3 - 12.2)
24 25	Previous live	105	(2.7)	1,500	(2.3)	10.1	(0.5 - 12.2)
25 26	births						
27	None						(11.8 -
28	None	3,515	(55.4)	25,097	(42.2)	12.3	12.8)
29	One or more	2,828	(44.6)	34,385	(57.8)	7.6	(7.2 - 8)
30	Maternal ethnicity						
31 32	White	4,793	(75.6)	49,477	(83.2)	8.8	(8.5 - 9.2)
33	Mixed	87	(1.4)	720	(1.2)	10.8	(8.1 - 13.9)
34	Asian						(16.8 -
35		809	(12.8)	3,621	(6.1)	18.3	19.8)
36	Black/African/Cari	140	(2.2)	1.000	(1.0)	11.0	(0, -1, -1, -1)
37	bbean Chinasa	148	(2.3)	1,096	(1.8)	11.9	(9.6 - 14.4)
38 39	Chinese	31	(0.5)	427	(0.7)	6.8	(4.1 - 10.4)
40	Other	116	(1.8)	831	(1.4)	12.2	(9.6 - 15.2)
41	Not known	359	(5.7)	3,310	(5.6)	9.8	(8.6 - 11.1)
42	Gestational diabetes						
43	Not present in						
44 45	current pregnancy	1,475	(97.7)	58,007	(97.5)	9.7	(9.4 - 10.0)
45 46	Present in current	·					
47	pregnancy	146	(2.3)	1,475	(2.5)	9.0	(7.3 - 11)
48	Systolic blood						
49	pressure	C 275	(22.2)		(00.0)	. –	
50	<140 mm Hg	6,275	(99.0)	58,578	(98.6)	9.7	(9.4 - 10)
51 52	>=140 mm Hg	64	(1.0)	812	(1.4)	7.3	(5.2 - 9.9)
53	Overall	6,343	(100)	59,482	(100)	9.6	(9.4 - 9.9)
54		SGA	4	Non	-SGA		
55		Mean	(SD)	Mean	(SD)	p-valu	e for t-test
56	Maternal BMI	24.5	5.2	25.7	5.5	<	0.001
57	Maternal Age	27.9	5.8	28.8	5.5	<	0.001
58 59	Maternal Systolic						
60	blood pressure	107.5	16.2	108.4	17.0	<	0.001

Source: UHS antenatal records for live singleton births (2004-2016). Records with a late antenatal booking (over 24 weeks gestation) were excluded. Variables with missing information include maternal education (68), maternal employment (492) and partner's employment (4,328). The percentage SGA column indicates the percentage of babies born SGA for this characteristic, and the accompanying 99% confidence interval. The t-test indicates whether the mean of each variable differs between those born SGA and non-SGA.

⁹ 237

238 SES differences in SGA risk in the whole cohort

Estimates of the association between maternal SES indicators and risk of SGA are presented in Table 2. The univariable associations between each SES indicator and the risk of SGA are presented in the unadjusted risk row, with all SES indicators being associated with SGA. The size of these effects increase in the first adjusted model (controlling for maternal age, ethnicity, parity, gestational diabetes, gestational hypertension and systolic blood pressure), and attenuate once other SES indicators are controlled for (model 2). Accounting for maternal BMI class had limited impact on effect sizes (model 3). After including maternal smoking all SES inequalities reduced in size (model 4), with the ORs for college qualification compared to university degree (OR 1.10, 99% CI 1.00-1.22) and lone motherhood compared to partnered status attenuating at the 99% level (OR 1.06, 99% CI 0.93-1.20). The full results for model 4 are presented in Supplementary Table 1.

BMJ Open

1 2 3 4 5	249 250	Table 2– Risk of beir L	•	Small for Gesta y Hospital Sout	•	-	• ·		•	• · ·				r in the
6 7				others with a col	•		/lothers with a so			ers unemployed a			ne mothers at th	
8			•	ation vs universit	y degree	-	cation vs univers	ity degree		ntenatal appoint			tenatal appoint	ment
9			OR	99% CI	р	OR	99% CI	р	OR	99% CI	р	OR	99% CI	р
10		Unadjusted risk	1.12	1.02 - 1.23	0.002	1.53	1.39 - 1.68	<0.001	1.38	1.28 - 1.49	<0.001	1.37	1.22 - 1.54	<0.001
11		Adjusted risk - Model 1	1.19	1.08 - 1.31	<0.001	1.62	1.46 - 1.78	<0.001	1.55	1.42 - 1.68	<0.001	1.41	1.25 - 1.59	<0.001
12 13		Adjusted risk - Model 2	1.16	1.05 - 1.27	<0.001	1.49	1.34 - 1.64	<0.001	1.43	1.31 - 1.55	<0.001	1.26	1.11 - 1.42	<0.001
14		Adjusted risk - Model 3	1.19	1.08 - 1.32	<0.001	1.53	1.38 - 1.69	< 0.001	1.41	1.30 - 1.54	< 0.001	1.25	1.10 - 1.41	<0.001
15		Adjusted risk - Model 4	1.10	1.00 - 1.22	0.011	1.30	1.17 - 1.44	<0.001	1.26	1.16 - 1.38	<0.001	1.06	0.93 - 1.20	0.256
16		Model 1 adjusts for matern	al age, etł	nnicity, parity, gesta	ational diabe	etes and s	ystolic blood press	ure.						
17		Model 2 is model 1 plus the	other SES	6 indicators (n birth	s = 65,331, i	n mothers	; = 44,158).							
18 19		Model 3 is model 2 plus ma	ternal boo	dy mass index as a l	potential me	ediator (n	births = 65,331, n	mothers = 44,	158).					
20		Model 4 is model 3 plus ma	ternal sm	oking history as an	additional n	nediator (n births = 65,331, r	n mothers = 4	4,158).					
21		OR = odds ratio; CI = confid	ence inter	val. In all models th	ne standard	errors are	adjusted for mult	iple births per	mother.					
22	251													
23 24														
24 25														
26														
27														
28														
29 30														
31														
32														
33														
34														
35														
36 37														
38														
39														
40														
41														11
42														11
43 44				For p	peer review	/ only - h	ttp://bmjopen.b	mj.com/site	/about/	guidelines.xhtml				
45														
46														

In unadjusted estimates presented in Table 3, those born to mothers with unemployed partners at the antenatal booking appointment are 68% more likely to be born SGA (OR 1.68 99% CI 1.51-1.88) in comparison to those born to mothers with employed partners. This association slightly attenuates once maternal education and employment are controlled for (model 2). The association attenuates further once maternal BMI is controlled for (model 3) and remains similar once smoking is accounted for (model 4 OR 1.27, 99% CI 1.13-1.43). The full results for model 4 are presented in Supplementary Table 2.

. ar . for (mc .43). The full.

46

BMJ Open

59	Table 3 – Risk of being born Small for Gestational Age (bi	irthweight <10th perce	entile for gestational ag	e) by partner's emp
60	University Hospital Southampton (UHS)	maternity population	-based cohort (singleto	n live births 2004-2
		Mot	thers with an unemployed	partner
		OR	99% Cl	p
	Unadjusted risk	1.68	1.51 - 1.88	<0.001
	Adjusted risk - Model 1	1.69	1.51 - 1.89	<0.001
	Adjusted risk - Model 2	1.48	1.32 - 1.66	<0.001
	Adjusted risk - Model 3	1.49	1.33 - 1.68	<0.001
	Adjusted risk - Model 4	1.27	1.13 - 1.43	<0.001
	Model 1 adjusts for maternal age, ethnic	ity, parity, gestational diabe		
	Model 2 is model 1 plus the other two SE	S indicators (n births = 61,1	.70, n mothers = 42,217).	
	Model 3 is model 2 plus maternal body m	nass index as a potential me	ediator (n births = 61,170, n m	others = 42,217).
	Model 4 is model 3 plus maternal smokin	ng history as an additional m	nediator (n births = 61,170, n	mothers = 42,217).
	OR = odds ratio; CI = confidence interval.	In all models the standard	errors are adjusted for multip	le births per mother.
			en on	
	For peer review only -	http://bmjopen.bmj.com	n/site/about/guidelines.x	html

As a sensitivity analysis, we repeated the modelling for a subgroup of women who were resident in Southampton at the time of delivery to address the potential that the whole sample results may be biased by including potential high-risk referrals from other regions to this specialised maternity centre. The geographical residence data (lower super output areas) were retrieved from health visitor records, and linked to births in this cohort as part of a bigger research project utilising an anonymised linked mother-child dataset. Each child in England and Wales is followed up by health visitor teams for at least 5 key appointments which start at 28 weeks into pregnancy [40], so this sub-sample is unlikely to be affected by selection bias. From the sample of 65,412 births, 32,147 (49%) were resident in Southampton at this 28 week appointment. In a model that adjusts for all confounders, maternal BMI category and smoking, the confidence intervals for the SES factors overlap in the Southampton only sample, and those results presented in Tables 2 and 3 (see Supplementary Table 3 for full results), indicating largely similar risk estimates between the two samples.

²⁰ 275 Time trend in SES inequalities in the risk of SGA between 2004 and 2016

276 To test whether SES inequalities are narrowing or widening over time, interactions between year
277 (continuous) and SES ('slope') were included to model 4 in Table 2 and Table 3, and expressed as
278 ORs. A positive slope OR indicates that the disadvantaged SES group are becoming at greater risk of

25 279 SGA relative to the advantaged group over calendar year, and vice versa for a negative effect.
 26

281 List of Figures:

Figure 1a-d displays the adjusted ORs for each SES indicator by year in the cohort (UHS), and the accompanying p-value for the slope over calendar year. The slopes for maternal college and school qualifications (OR 1.00, 99% CI 0.98-1.03; OR 1.00, 99% CI 0.97-1.02), maternal employment (OR 1.00, 99% CI 0.98-1.02), lone motherhood (OR 1.00, 99% CI 0.98-1.02) and partner unemployment (OR 1.00, 99% CI 0.97-1.03) were not statistically significant. Models using a binary indicator for pre-and post-2008 (2003-2008 and 2009-2016) showed no significant differences in the magnitude of

12 288 SES inequalities (results not shown).

for perteries only

BMJ Open

<Figure 1>

For beer review only

290 SES differences in SGA risk by maternal parity status

For this analysis, the sample was restricted to the first antenatal care record per mother included in our dataset with no missing information (21,200 records dropped, with a new total of 44,212). Interaction terms between each SES indicator and parity (accounting for control variables) were conducted utilising this sample showing a significant interaction between maternal employment status and SGA (p=0.010). We then stratified the sample by parity (n primiparous (0 previous live births) = 28,519; n multiparous (1 or more previous live births) = 15,693). The modelling strategy

 $\frac{2}{2}$ 297 used in the first analysis is repeated on these sub-samples to assess the risk estimates by parity.

The association between secondary school qualification versus university degree and the risk of SGA appeared less pronounced among primiparous (OR 1.26, 99% Cl 1.11-1.44) than multiparous women (OR 1.38, Cl 1.09-1.75). Maternal unemployment (relative to mothers who were employed) was associated with higher risk of SGA in primiparous women (aOR 1.29, 99% Cl 1.14-1.47) than among multiparous women (aOR 1.18, 99% Cl 1.00-1.39). The associations between college qualification versus university degree, and lone motherhood versus partnered status, with SGA risk appeared to be mediated by smoking in all sub-samples (Table 4).

Table 5Table 5 displays the results for partner's employment (total n mothers = 42,265; 26,838 primiparous, 15,427 multiparous). The association between partner's employment and risk of SGA appeared to be mediated by maternal smoking among multiparous women (aOR 1.16, CI 0.93-1.40), but not primiparous women (aOR 1.34, CI 1.13-1.58). The estimates of SES differences in the risk of SGA were similar in the reduced sample (Tables 4 and 5) and the whole sample (Tables 2 and 3).

310 To summarise the above models, both maternal and partner's employment status appeared to be
311 more strongly associated with SGA risk in primiparous than multiparous women, and the reverse is
312 true for maternal educational attainment.

BMJ Open

Table 4 - Risk of being born Small for Gestational Age (birthweight <10th percentile for gestational age) by maternal socioeconomic indicator and stratified by parity in the University Hospital Southampton (UHS) maternity population-based cohort (singleton live births 2004-2016, one live birth per mother)

		Mothers with a college qualification vs university degree				others with a so ification vs uni degree			iers unemploy antenatal appo			ne mothers at t tenatal appoin	
Sample	Model	OR	99% CI	р	OR	99% CI	р	OR	99% CI	р	OR	99% CI	р
	Unadjusted risk	1.08	0.98 - 1.20	0.036	1.41	1.28 - 1.56	<0.001	1.37	1.26 - 1.49	<0.001	1.33	1.17 - 1.52	<0.0
Whole	Adjusted risk - Model 1	1.17	1.05 - 1.30	<0.001	1.54	1.38 - 1.71	<0.001	1.48	1.35 - 1.63	<0.001	1.40	1.22 - 1.60	<0.0
sample n mothers =	Adjusted risk - Model 2	1.15	1.04 - 1.28	<0.001	1.45	1.30 - 1.62	<0.001	1.39	1.26 - 1.53	<0.001	1.27	1.10 - 1.45	<0.0
44,158	Adjusted risk - Model 3	1.18	1.06 - 1.31	< 0.001	1.48	1.33 - 1.66	<0.001	1.37	1.24 - 1.51	<0.001	1.21	1.02 - 1.44	0.0
	Adjusted risk - Model 4	1.10	0.99 - 1.23	0.020	1.28	1.15 - 1.44	<0.001	1.24	1.12 - 1.37	<0.001	1.09	0.95 - 1.25	0.1
Primiparous	Unadjusted risk	1.11	0.99 - 1.24	0.020	1.48	1.31 - 1.67	<0.001	1.78	1.59 - 1.99	<0.001	1.78	1.59 - 1.99	<0.0
women	Adjusted risk - Model 1	1.13	1.00 - 1.27	0.009	1.43	1.26 - 1.63	<0.001	1.50	1.33 - 1.69	<0.001	1.33	1.12 - 1.57	<0.0
only	Adjusted risk - Model 2	1.12	0.99 - 1.26	0.014	1.37	1.20 - 1.56	<0.001	1.42	1.25 - 1.61	<0.001	1.21	1.02 - 1.44	0.0
n births = 28,469	Adjusted risk - Model 3	1.14	1.01 - 1.29	0.004	1.39	1.22 - 1.58	<0.001	1.39	1.23 - 1.58	<0.001	1.37	1.09 - 1.72	<0.0
28,409	Adjusted risk - Model 4	1.09	0.96 - 1.23	0.081	1.26	1.10 - 1.44	<0.001	1.29	1.13 - 1.46	<0.001	1.08	0.91 - 1.29	0.2
Multiparou	Unadjusted risk	1.24	0.99 - 1.55	0.014	1.80	1.46 - 2.23	<0.001	1.52	1.31 - 1.77	<0.001	1.52	1.31 - 1.77	<0.0
Multiparou s women	Adjusted risk - Model 1	1.33	1.06 - 1.68	0.001	1.87	1.50 - 2.33	<0.001	1.44	1.23 - 1.69	<0.001	1.55	1.23 - 1.94	<0.0
only	Adjusted risk - Model 2	1.29	1.03 - 1.63	0.004	1.72	1.37 - 2.15	<0.001	1.31	1.11 - 1.53	<0.001	1.27	1.10 - 1.45	<0.0
n births = 15,699	Adjusted risk - Model 3	1.35	1.07 - 1.70	0.001	1.81	1.44 - 2.27	<0.001	1.31	1.11 - 1.54	<0.001	1.37	1.09 - 1.73	<0.0
13,033	Adjusted risk - Model 4	1.18	0.93 - 1.50	0.065	1.38	1.09 - 1.75	<0.001	1.17	0.99 - 1.38	0.015	1.10	0.87 - 1.39	0.3

Model 1 adjusts for maternal age, ethnicity, gestational diabetes and systolic blood pressure.

Model 2 is model 1 plus the other two SES indicators (e.g. the maternal unemployment column is adjusted for maternal education and partnership).

Model 3 is model 2 plus maternal body mass index as a potential mediator.

Model 4 is model 3 plus maternal smoking history as an additional mediator.

OR = odds ratio; CI = confidence interval. All models for the whole sample are adjusted for parity.

46

BMJ Open

	•			cohort (singleto	II IIVE DII LI
			Une	mployed partner ntenatal appointm	at first
Sam	ple	Model	OR	99% CI	р
		Unadjusted risk	1.61	1.42 - 1.81	< 0.001
		Adjusted risk - Model 1	1.61	1.42 - 1.83	< 0.001
Whole s n mothers		Adjusted risk - Model 2	1.44	1.26 - 1.64	<0.001
il mothers	- 42,217	Adjusted risk - Model 3	1.44	1.27 - 1.65	<0.001
		Adjusted risk - Model 4	1.27	1.11 - 1.45	< 0.001
		Unadjusted risk	1.75	1.50 - 2.05	<0.001
5		Adjusted risk - Model 1	1.60	1.36 - 1.88	<0.001
Primiparous n births =	•	Adjusted risk - Model 2	1.43	1.21 - 1.70	<0.001
	- 20,792	Adjusted risk - Model 3	1.44	1.22 - 1.71	<0.001
		Adjusted risk - Model 4	1.33	1.12 - 1.58	<0.001
		Unadjusted risk	1.67	1.37 - 2.03	<0.001
		Adjusted risk - Model 1	1.63	1.33 - 1.99	<0.001
Multiparous n births =		Adjusted risk - Model 2	1.43	1.16 - 1.76	<0.001
	- 13,423	Adjusted risk - Model 3	1.45	1.17 - 1.78	<0.001
		Adjusted risk - Model 4	1.16	0.94 - 1.44	0.070
Model 1 adjus	ts for maternal	age, ethnicity, gestational dia	betes and	systolic blood press	ure.
Model 2 is mo	del 1 plus mate	ernal education and employme	ent		
Model 3 is mo	del 2 plus mate	ernal body mass index as a pot	tential med	liator.	
Model 4 is mo	del 3 plus mate	ernal smoking history as an ad	ditional me	ediator	
OR = odds ratio	o; CI = confider	nce interval. All models for the	e whole sar	nple are adjusted fo	or parity.
For pe	er review onl	ly - http://bmjopen.bmj.co	m/site/ab	out/guidelines.xl	html

³ 4 320 Discussion

In this analysis of routine maternity healthcare data from a regional hospital in Southampton, UK, multivariable logistic regression was used to examine the relationship between SES indicators (education, employment and partnership) and SGA, and whether these relationships are stable over time and different by parity. Educational attainment and employment (of the mother and her partner) were independently associated with the risk of SGA, although differences between the association between single motherhood and SGA were attenuated by adjusting for smoking status. SES differences in the risk of SGA were stable over the study period (2004-2016). The strength of these SES differences varied between mothers at their first and higher order births. Maternal and partner unemployment were associated with a higher risk of SGA in mothers with no previous live births, with lower educational qualification being more strongly associated with SGA risk in mothers with previous live births.

¹⁹₂₀ 332 Comparison with other studies

The evidence for SES inequalities by maternal educational attainment, employment and partner's employment in the risk of SGA is consistent with the literature, and the third analysis shows that these associations remain robust after limiting the sample to one record per mother. Within a systematic review of socioeconomic disparities in birth outcomes conducted in 2010 [7], 6 of the 9 (66%) studies of SGA and maternal education reported a significant association, in addition to single studies finding an association for maternal [41] and paternal employment [42]. Part of the complexity in the relationship between maternal SES and SGA results from many analyses using only one measure of SES, with maternal education [15,43] and employment [44] being the main indicators used. Factors related to the mother's partner are usually excluded, due to a lack of appropriate data or small sample sizes, despite the potential of these factors to influence pregnancy conditions and outcomes [45]. Whether the mother has a partner or not is largely overlooked as a risk factor in this area, with the exception of Kleijer et al [46], who found that single mothers are at higher risk of SGA. The final estimates of SES inequalities in this study are adjusted for other SES indicators, suggesting that there are multiple pathways through which SES is linked to gestational growth.

Since the publication of Blumenshine *et al*'s systematic review [6] there has been an increased focus on how SES differences in weight outcomes at birth and during early life may be mediated through maternal BMI and smoking. In a Dutch cohort, maternal smoking and height during pregnancy were reported to explain 75% of the difference in risk of SGA between mothers with low and high education [15]. In an Australian cohort maternal smoking and the BMI of both parents were reported to explain 83.5% of SES differences in their children's BMI Z-score at age 10-11 years [47]. In the present analysis, accounting for maternal smoking reduced the magnitude of the SGA risk difference by SES from a 36% increase in risk to 20% among mothers without a university degree, and from a 48% to 31% increase in risk among unemployed mothers. Maternal smoking also explained the relatively high risk of SGA among single mothers. This attenuation corroborates previous research indicating that single mothers are more likely to smoke, and that this may be related to the level of stress that they report, relative to partnered mothers [48]. Single mothers may be relying on smoking as a means of stress relief or management during pregnancy, and smoking cessation and support programmes may be effective in reducing inequalities in birth outcomes as a result.

To our knowledge, there has been no analysis of socioeconomic inequality time trends in SGA from
 364 the mid-2000s onwards in England. Inequalities in birthweight (adjusting for gestational age) were

stable between 1961 and 2000 in a regional city-based study in North East England [30], and the
same is found between 2004 and 2016 in this study. The stability of SES inequalities in SGA implies
that further interventions and initiatives are required to narrow SES inequalities in SGA births.

Our hypothesis was that the extent of SES inequalities in the risk of SGA may differ by parity, as the birth of the first child is a period which brings about significant physiological, lifestyle and social changes, in addition to postpartum weight retention [18]. An analysis of birth register data in Norway found that mothers who had several SGA births were characterized by low educational attainment and partners employed in low SES occupations [19]. In the present analysis, the strength of the association between SES indicators and the risk of SGA varied between primiparous and multiparous women, with education inequalities being greater for multiparous women, and employment inequalities being greater for primiparous women. The explanation may be that more advantaged women are economically able to leave the workforce after their first birth when planning further pregnancies (thus attenuating the differences between those in and outside employment when having subsequent births), whilst educational differences in terms of health behaviours, health literacy and mental wellbeing are risk factors of having repeat or new SGA outcomes [49]. This group may benefit from additional support following the birth of their first baby to promote mental and physical wellbeing, access appropriate services, enhance health literacy and facilitate healthy behaviours.

2627 383 Strengths and limitations of the study

This study benefits from a large regionally-representative sample over many years. The exposure measures are prospectively collected in the course of routine antenatal care. As data from the local hospital system are used, there is no selection bias which may arise from participation in a research cohort, and the sample is therefore representative of all those receiving care under this NHS site. The outcome (SGA) is derived from birthweight, which is objectively measured by a health professional at birth. The most recent birth centiles for England and Wales were used [29] to reflect changes in birth weight since the oft-used 1990 birth centiles [50]. The measures of SES used are also collected within the usual course of NHS care before birth, so the results may be used to inform risk stratification interventions at or following the booking appointment to curtail SGA births and other associated adverse health outcomes. The antenatal booking appointment is a critical point for intervention as health professionals see all mothers receiving care under the NHS. The results herein find that women who report low educational qualifications, are unemployed, or their partner is unemployed at this stage are at higher risk of SGA delivery. These groups, as well as women with no partners and/or other social support at the time of the booking appointment, may then be referred for additional support to minimize the risk of an SGA birth and other adverse maternal and health outcomes. A limitation of our dataset is that such processes were not electronically recorded and hence not includes in our analyses. In addition, as this research is based on a cohort, we cannot infer that SES has a causal effect on SGA risk.

Some potential risk factors were not adjusted for in this study due to inconsistency of data for those specific variables as captured routinely in antenatal care, including diet during pregnancy and alcohol intake. These factors may also mediate the effect of SES on SGA risk, wherein disadvantaged SES groups could be more likely to engage in risky health behaviours. Other important SES factors such as sector of employment and income have been related to SGA outcomes in previous research [9], but are also not routinely collected in antenatal practice. The same is true for other measures of deprivation level such as housing, transportation methods and access to healthcare and other facilities.

For the parity analysis, we did not account for the length of the interpregnancy interval which has been related to birth outcomes previously [51,52]. It was not possible to control for this in our study due to a lack of data on this variable in the whole sample, because we have included the first pregnancy in the database per mother and some multiparous mothers would have given birth before the study period, or at other hospitals, hence this information is lacking for them. In addition, this analysis did not account for characteristics of the residential environments mothers lived in during pregnancy. Systematic reviews indicate that social, built and air characteristics of the environment experienced during pregnancy are strongly associated with birth outcomes [6,53], and this will be addressed in a follow-up study on the associations between environmental characteristics and birth outcomes for the cohort. As the data used in this study are limited to a hospital serving the city of Southampton and the surrounding region, the results may not apply to hospitals serving populations with differing characteristics. Southampton is a provincial urban city which is more deprived than the average Local Authority in England, although the surrounding area (Hampshire) is relatively affluent [54]. Southampton has a similar ethnicity profile to the rest of England and Wales [55], but with a relatively large university student population, and women in Southampton are underrepresented in managerial, administrative and professional occupations, relative to others in England [56]. As a result, findings from this study may not be replicated using healthcare records in areas with predominantly rural populations, or areas with non-student and managerial populations.

The UHS is a regional maternity centre to which high-risk pregnancies may be referred leading to potential over-representation of them. We have addressed this through excluding pregnancies booking in the UHS system after 24 weeks gestation. Mothers attending later than this date may have been referred to UHS due to their pregnancy being identified as high-risk. We have also conducted sensitivity analyses restricting the sample to those who were living in the city of Southampton at the time of birth, and there was no significant difference in effect sizes. The proportion of mothers in employment (64%) and with a university degree (28%) were similar in our cohort in comparison to Census figures for Southampton women aged 20-39 (69%) and 16-34 (29%), respectively, indicating that our sample is representative of the catchment area for the UHS [57,58].

³⁹ 438 Implications for research and practice

The persistence of educational and employment inequalities in the risk of SGA found within this study justifies further interventions and initiatives in order to narrow SES inequalities in the risk of SGA, and subsequently their long-term adverse health impact. The antenatal booking appointment offers an opportune moment for risk stratification and signposting of additional support for women with low educational qualification, in unemployed households and low social support. Smoking appeared as a potential mediator for SES inequalities in this study, despite support in smoking cessation being offered in the course of NHS care [59]. This suggests that further support is required for mothers of low SES, and pre- and interconception programmes may have the added benefit of reducing the extent of SES inequalities in SGA, in addition to overall SGA rates. For research, this study aligns with recent calls to incorporate paternal/partner influences in developmental health research [45], in that similar levels of SGA risk are found for maternal and partner unemployment. Research in this area should adopt a more family-centred approach in relation to offspring health outcomes, taking into account contributing exposures from others within the household structure (partners and siblings).

1		
2		
3 4	453	Conclusions
5	454	This study confirms that socioeconomic status indicators, including educational attainment,
6 7	455	employment status and single motherhood, are strongly and independently associated with the risk
8	456 457	of small for gestational age birth, and they are not narrowing over time. Maternal smoking appears to play a significant role in these inequalities, particularly for lone mothers. However, the
9 10	458	associations between educational attainment and employment status with SGA risk remain strong
11	459	even after accounting for maternal smoking and BMI. Inequalities in SGA risk by maternal
12 13	460	educational attainment appear greater for multiparous compared to primiparous women, while the
14	461	opposite is true by maternal and partner employment status. Further research is needed to identify
15 16	462 463	critical windows of opportunity (preconception/pregnancy/interconception) and effective interventions in order to narrow these inequalities. Prevention programmes targeting
17	464	socioeconomically disadvantaged women which incorporate smoking cessation and social support
18 19	465	are vital to tackling health inequalities in SGA.
20	466	
21 22	400	
23		
24 25		
26 27		
28		
29 30		
31		
32 33		
34 35		
35 36		
37 38		are vital to tackling health inequalities in SGA.
39		
40 41		
42		
43 44		
45 46		
47		
48 49		
50		
51 52		
53 54		
55		
56 57		
58		
59 60		

3 4	467	What is already known on this topic
5 6 7	468 469	- Babies born to mothers in low socioeconomic status (SES) are at higher risk of being born small for gestational age (SGA).
, 8 9	470	- These SES inequalities were found to be stable between 1961 and 2000 in a previous English study.
9 10 11 12	471 472	- The relationship between maternal SES and SGA is linked to a higher prevalence of smoking and maternal underweight among mothers in low SES.
13 14	473	
15	474	What this study adds
16 17 18 19 20 21	475 476 477 478	- Indicators of parental SES (maternal education, maternal and partner employment) are independently associated with the risk of being born SGA with some variation in the magnitude of risk between primiparous and multiparous women, while the risk difference between lone and partnered mothers is attenuated by accounting for maternal smoking.
22 23	479	-These SES inequalities remained stable between 2004 and 2016 in this English population-based
24 25 26	480 481	cohort.
$\begin{array}{c} 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$		-These SES inequalities remained stable between 2004 and 2016 in this English population-based cohort.

1		
2		
3 4	482	Footnotes
5 6	483	Contributorship statement
7 8 9 10 11 12 13 14	484 485 486 487 488 489	NAA is the Principal Investigator of the project, and acts as the guarantor of this study. SW, NZ, PR, DS, DC, NM, MH and NAA contributed to study conception and design. NM provided input on the statistical analysis for this study. SW conducted the statistical analyses, and drafted the initial report. NZ checked the accuracy of the reported estimates from the statistical models. All authors contributed to interpretation of data and revising the manuscript critically for important intellectual content. All authors read and approved the final manuscript.
15 16	490	Funding
17 18 19 20 21 22 23	491 492 493 494 495 496	This research is supported by an Academy of Medical Sciences and Wellcome Trust grant to NAA [Grant no: AMS_HOP001\1060], and the National Institute for Health Research through the NIHR Southampton Biomedical Research Centre. The research funders had no input on research design or manuscript drafting. MAH is supported by the British Heart Foundation and the National Institute for Health Research through the NIHR Southampton Biomedical Research Centre.
24 25	497	Acknowledgments
25 26 27 28 29 30 31	498 499 500 501 502	We thank Ravita Taheem (Senior Public Health Practitioner, Southampton City Council) for her input in the conception of this paper, David Cable (Electronic Patient Records Implementation and Service Manager) and Florina Borca (Senior Information Analyst for R&D, NIHR Southampton Biomedical Research Centre) at University Hospital Southampton NHS Foundation Trust for their support in extracting the data used in this study.
32 33	503	Competing interests
34 35 36 37 38 39 40 41 42	504 505 506 507 508 509 510	All authors have completed the ICMJE uniform disclosure form at <u>www.icmje.org/coi_disclosure.pdf</u> and declare: NAA had financial support from the Academy of Medical Sciences/Wellcome Trust and the NIHR Southampton Biomedical Research Centre for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; NAA is a member of the National Institute for Health and Care Excellence (NICE) Antenatal Care Guideline Committee; no other relationships or activities that could appear to have influenced the submitted work.
43 44	511	Ethical approval
45 46 47 48 49 50 51 52 53 54	512 513 514 515	This study used anonymised antenatal record data supplied by University Hospital Southampton Trust. This analysis forms part of a research project reviewed and approved by the University of Southampton Faculty of Medicine Ethics Committee (ref 24433) and the National Health Service Health Research Authority (ref 242031).
55 56 57		

Data availability

- The authors' ethical approval from the Faculty of Medicine Ethics Committee, University of
- Southampton (Reference number 24433) restricts public sharing of the data used in this study. The
- data owner is University Hospital Southampton NHS Trust. Please contact NAA to request data
- access beyond that included in the manuscript. Further ethical and research governance approval
- may be required.
- Transparency
 - The first author, SW, affirms that the manuscript is an honest, accurate, and transparent account of the study being reported. tor peer teries only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	526	Def	
4	526	Rele	erences
5 6 7 8	527 528 529	1	Mendez-Figueroa H, Truong V, Pedroza C, <i>et al</i> . Morbidity and mortality with small for gestational age: Secondary analysis of nine MFMU network studies. Am. J. Obstet. Gynecol. 2016; 214 :S320–1. doi:10.1055/s-0036-1586502
9 10 11	530 531	2	Reilly JJ, Armstrong J, Emmett P, <i>et al.</i> Early life risk factors for obesity in childhood. <i>Bmj</i> 2005; 331 :454.1. doi:10.1136/bmj.331.7514.454
12 13 14	532 533	3	Barker DJP. The Developmental Origins of Adult Disease. <i>J Am Coll Nutr</i> 2004; 23 :5885–595S. doi:10.1080/07315724.2004.10719428
15 16 17	534 535	4	McCowan L, Horgan RP. Risk factors for small for gestational age infants. <i>Best Pract Res Clin</i> Obstet Gynaecol 2009; 23 :779–93. doi:10.1016/j.bpobgyn.2009.06.003
18 19 20 21	536 537 538	5	Mitchell EA, Robinson E, Clark PM, <i>et al.</i> Maternal nutritional risk factors for small for gestational age babies in a developed country: A case-control study. <i>Arch Dis Child Fetal Neonatal Ed</i> 2004; 89 :F431–5. doi:10.1136/adc.2003.036970
22 23 24 25	539 540 541	6	Vos AA, Posthumus AG, Bonsel GJ, <i>et al.</i> Deprived neighborhoods and adverse perinatal outcome: a systematic review and meta-analysis. <i>Acta Obstet Gynecol Scand</i> 2014; 93 :727–40. doi:10.1111/aogs.12430
26 27 28 29	542 543 544	7	Blumenshine P, Egerter S, Barclay CJ, <i>et al.</i> Socioeconomic Disparities in Adverse Birth Outcomes: A Systematic Review. <i>Am J Prev Med</i> 2010; 39 :263–72. doi:10.1016/j.amepre.2010.05.012
30 31 32 33	545 546 547	8	Ruiz M, Goldblatt P, Morrison J, <i>et al</i> . Mother's education and the risk of preterm and small for gestational age birth: a DRIVERS meta-analysis of 12 European cohorts. <i>J Epidemiol Community Health</i> 2015; 69 :826 LP-833. doi:10.1136/jech-2014-205387
34 35 36 37	548 549 550	9	Sadovsky ADI, Matijasevich A, Santos IS, <i>et al</i> . LBW and IUGR temporal trend in 4 population- based birth cohorts: The role of economic inequality. <i>BMC Pediatr</i> 2016; 16 . doi:10.1186/s12887-016-0656-0
38 39 40 41	551 552 553	10	Gao W, Paterson J, Carter S, <i>et al.</i> Risk factors for preterm and small-for-gestational-age babies: a cohort from the Pacific Islands Families Study. <i>J Paediatr Child Health</i> 2006; 42 :785–92. doi:10.1111/j.1440-1754.2006.00978.x
42 43 44 45	554 555 556	11	Luo Z-C, Wilkins R, Kramer MS, <i>et al.</i> Effect of neighbourhood income and maternal education on birth outcomes: a population-based study. <i>C Can Med Assoc J</i> 2006; 174 :1415–20. doi:10.1503/cmaj.051096
46 47 48 49	557 558 559	12	Masi CM, Hawkley LC, Piotrowski ZH, <i>et al.</i> Neighborhood economic disadvantage, violent crime, group density, and pregnancy outcomes in a diverse, urban population. <i>Soc Sci Med</i> 2007; 65 :2440–57. doi:10.1016/j.socscimed.2007.07.014
50 51 52	560 561	13	Pevalin DJ, Wade TJ, Brannigan A, <i>et al</i> . Beyond biology: The social context of prenatal behaviour and birth outcomes. <i>Soz Praventivmed</i> 2001; 46 :233–9. doi:10.1007/BF01593178
53 54 55	562 563	14	Savitz DA, Kaufman JS, Dole N, <i>et al</i> . Poverty, education, race, and pregnancy outcome. <i>Ethn Dis</i> 2004; 14 :322–9.
56 57 58 59	564 565 566	15	van den Berg G, van Eijsden M, Galindo-Garre F, <i>et al</i> . Smoking overrules many other risk factors for small for gestational age birth in less educated mothers. <i>Early Hum Dev</i> 2013; 89 :497–501. doi:10.1016/j.earlhumdev.2013.03.007
60	567	16	Love C, David RJ, Rankin KM, et al. Exploring Weathering: Effects of Lifelong Economic

1 2			
3 4 5 6	568 569 570		Environment and Maternal Age on Low Birth Weight, Small for Gestational Age, and Preterm Birth in African-American and White Women. <i>Am J Epidemiol</i> 2010; 172 :127–34. doi:10.1093/aje/kwq109
7 8 9 10	571 572 573	17	Taylor-Robinson D, Agarwal U, Diggle PJ, <i>et al.</i> Quantifying the Impact of Deprivation on Preterm Births: A Retrospective Cohort Study. <i>PLoS One</i> 2011; 6 :e23163. doi:10.1371/journal.pone.0023163
11 12 13 14	574 575 576	18	Hollis JL, Crozier SR, Inskip HM, <i>et al.</i> Modifiable risk factors of maternal postpartum weight retention: An analysis of their combined impact and potential opportunities for prevention. <i>Int J Obes</i> 2017; 41 :1091–8. doi:10.1038/ijo.2017.78
15 16 17 18	577 578 579	19	Bakketeig LS, Bjerkedal T, Hoffman HJ. Small-for-gestational age births in successive pregnancy outcomes: results from a longitudinal study of births in Norway. <i>Early Hum Dev</i> 1986; 14 :187–200. doi:10.1016/0378-3782(86)90180-5
19 20 21	580 581	20	Milgrom J, Gemmill AW, Bilszta JL, <i>et al.</i> Antenatal risk factors for postnatal depression: A large prospective study. <i>J Affect Disord</i> 2008; 108 :147–57. doi:10.1016/j.jad.2007.10.014
22 23 24	582 583	21	Patel V, Rodrigues M, DeSouza N. Gender, poverty, and postnatal depression: A study of mothers in Goa, India. <i>Am J Psychiatry</i> 2002; 159 :43–7. doi:10.1176/appi.ajp.159.1.43
25 26 27 28	584 585 586	22	Local Government Association. Fit for and during pregnancy: a key role for local government. 2018.https://www.local.gov.uk/sites/default/files/documents/15.52 Fit for and during pregnancy_03.pdf (accessed 4 Jun 2019).
29 30 31 32	587 588 589	23	Public Health England. Public Health Outcomes Framework for England. 2019.https://web.archive.org/web/20190406232547/https://fingertips.phe.org.uk/profile/pu blic-health-outcomes-framework (accessed 4 Jun 2019).
33 34 35 36	590 591 592	24	Kana MA, Correia S, Peleteiro B, <i>et al</i> . Impact of the global financial crisis on low birth weight in Portugal: a time-trend analysis. <i>BMJ Glob Heal</i> 2017; 2 :e000147. doi:10.1136/bmjgh-2016-000147
37 38 39	593 594	25	Richard B, Monica CD, Costas M, <i>et al</i> . Female Labor Supply, Human Capital, and Welfare Reform. <i>Econometrica</i> 2016; 84 :1705–53. doi:10.3982/ECTA11576
40 41 42 43	595 596 597	26	Rafferty A, Wiggan J. The Time-related Underemployment of Lone Parents during Welfare Reform, Recession and Austerity: A Challenge to In-work Conditionality? <i>Soc Policy Adm</i> 2017; 51 :511–38. doi:10.1111/spol.12190
44 45 46 47	598 599 600	27	Jofre-Bonet M, Serra-Sastre V, Vandoros S. The impact of the Great Recession on health- related risk factors, behaviour and outcomes in England. <i>Soc Sci Med</i> 2018; 197 :213–25. doi:10.1016/j.socscimed.2017.12.010
48 49 50 51 52	601 602 603 604	28	National Institute for Clinical Excellence. Antenatal care for uncomplicated pregnancies: schedule of appointments. 2012.https://pathways.nice.org.uk/pathways/antenatal-care-for-uncomplicated-pregnancies/antenatal-care-for-uncomplicated-pregnancies-schedule-of-appointments.pdf (accessed 4 Jun 2019).
53 54 55 56	605 606 607	29	Norris T, Seaton SE, Manktelow BN, <i>et al.</i> Updated birth weight centiles for England and Wales. <i>Arch Dis Child Fetal Neonatal Ed</i> 2018; 103 :F577–82. doi:10.1136/archdischild-2017- 313452
57 58 59 60	608 609 610	30	Glinianaia S V, Ghosh R, Rankin J, <i>et al.</i> No improvement in socioeconomic inequalities in birthweight and preterm birth over four decades: a population-based cohort study. <i>BMC Public Health</i> 2013; 13 :345. doi:10.1186/1471-2458-13-345

 World Health Organization. Physical status: The use and interpretation of anthropome 611 31 World Health Organization. Physical status: The use and interpretation of anthropome 612 Benort of a WHO Expert Committee World Heal Organ - Tech Rep Ser 1995 	etry:
612 Report of a WHO Expert Committee. World Heal. Organ Tech. Rep. Ser. 1995.	
661332Royal College of Obstetricians and Gynaecologists. The investigation and management7614Small-for-Gestational-Age Fetus. Green-top Guidel. No. 31.86152014.https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_31.pdf (access9616Jun 2019).	
 11 617 33 National Maternity and Perinatal Audit Team. National Maternity and Perinatal Audit: 12 618 report 2017. London: : Royal College of Obstetricians and Gynaecologists 2017. 	Clinical
1461934Kozuki N, Lee ACC, Silveira MF, et al. The associations of parity and maternal age with15620for-gestational-age, preterm, and neonatal and infant mortality: a meta-analysis. BMC16621Health 2013;13:S2–S2. doi:10.1186/1471-2458-13-S3-S2	
1862235Block-Abraham DM, Adamovich D, Turan OM, et al. Maternal blood pressures during19623pregnancy and the risk of delivering a small-for-gestational-age neonate. Hypertens20624pregnancy 2016;35:350–60. doi:10.3109/10641955.2016.1150487	
22 23 24 2536World Health Organization. Body mass index. 2019.http://www.euro.who.int/en/heal topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accesse 2019).	
26 27 2837Ranganathan P, Pramesh CS, Buyse M. Common pitfalls in statistical analysis: The peri multiple testing. Perspect Clin Res 2016;7:106–7. doi:10.4103/2229-3485.179436	ls of
2963038Baron RM, Kenny DA. The moderator-mediator variable distinction in social psycholog30631research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol316321986; 51 :1173–82.	ical
33 34 35 3639Galobardes B, Costanza MC, Bernstein MS, et al. Trends in Risk Factors for Lifestyle-Re Diseases by Socioeconomic Position in Geneva, Switzerland, 1993–2000: Health Inequ Persist. Am J Public Health 2003;93:1302–9. doi:10.2105/AJPH.93.8.1302	
 37 636 40 Department of Health. Healthy Child Programme: Pregnancy and the first five years of 38 637 2009. 39 	life.
4063841Gissler M, Rahkonen O, Arntzen A, <i>et al.</i> Trends in socioeconomic differences in Finnis41639perinatal health 1991-2006. J Epidemiol Community Health 2009;63:420–5.42640doi:10.1136/jech.2008.079921	h
44 641 42 L. F, A.H. L. Social class inequalities in perinatal outcomes: Scotland 1980-2000. J Epide 45 642 Community Health 2006;60:31–6. doi:10.1136/jech.2005.038380 46	emiol
4764343Agyemang C, Vrijkotte TGM, Droomers M, et al. The effect of neighbourhood income a48644deprivation on pregnancy outcomes in Amsterdam, The Netherlands. J Epidemiol Com49645Health 2009;63:755 LP-760. doi:10.1136/jech.2008.08040850	
505164644Räisänen S, Gissler M, Sankilampi U, <i>et al.</i> Contribution of socioeconomic status to the52647small for gestational age infants – a population-based study of 1,390,165 singleton live53648in Finland. Int J Equity Health 2013;12:28. doi:10.1186/1475-9276-12-28	
545564945Sharp GC, Lawlor DA, Richardson SS. It's the mother!: How assumptions about the cau56650primacy of maternal effects influence research on the developmental origins of health57651disease. Soc Sci Med 2018;213:20-7. doi:10.1016/j.socscimed.2018.07.03558	
505059652466065360 </td <td>ocio-</td>	ocio-

BMJ Open

1 2			
3 4	654		doi:10.1080/14767050500127674
5 6 7 8	655 656 657	47	Iguacel I, Chung A, Gearon E, <i>et al.</i> Influence of early-life risk factors on socioeconomic inequalities in weight gain. <i>J Public Health (Oxf)</i> 2018; 40 :e447–55. doi:10.1093/pubmed/fdy056
9 10 11	658 659	48	Sperlich S, Maina MN, Noeres D. The effect of psychosocial stress on single mothers' smoking. BMC Public Health 2013; 13 :1125. doi:10.1186/1471-2458-13-1125
12 13	660 661	49	Güneş PM. The role of maternal education in child health: Evidence from a compulsory schooling law. <i>Econ Educ Rev</i> 2015; 47 :1–16. doi:10.1016/j.econedurev.2015.02.008
14 15 16 17 18	662 663 664	50	Cole TJ, Freeman J V., Preece MA. British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. <i>Stat Med</i> 1998; 17 :407–29. doi:10.1002/(SICI)1097-0258(19980228)17:4<407::AID-SIM742>3.0.CO;2-L
19 20 21 22	665 666 667	51	Kozuki N, Lee AC, Silveira MF, <i>et al.</i> The associations of birth intervals with small-for- gestational-age, preterm, and neonatal and infant mortality: A meta-analysis. BMC Public Health. 2013. doi:10.1186/1471-2458-13-S3-S3
23 24 25 26	668 669 670	52	Ziauddeen N, Roderick PJ, Macklon N, <i>et al</i> . Is the duration of the preceding inter-pregnancy interval associated with offspring's size at birth?—analysis of a UK population-based cohort. <i>J Epidemiol Community Heal</i> 2018; 1 :72. doi:10.1136/jech-2018-SSMabstracts.89
27 28 29 30	671 672 673	53	Li X, Huang S, Jiao A, <i>et al.</i> Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis. <i>Environ Pollut</i> 2017; 227 :596–605. doi:10.1016/j.envpol.2017.03.055
31 32 33 34	674 675 676	54	Department for Communities and Local Government. English Indices of Deprivation 2015. 2015.https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/4677 64/File_1_ID_2015_Index_of_Multiple_Deprivation.xlsx (accessed 4 Jun 2019).
35 36 37 38	677 678 679	55	Office for National Statistics. Ethnicity and National Identity in England and Wales 2011. 2012.https://www.ons.gov.uk/peoplepopulationandcommunity/culturalidentity/ethnicity/art icles/ethnicityandnationalidentityinenglandandwales/2012-12-11 (accessed 4 Jun 2019).
38 39 40 41 42 43 44	680 681 682 683 684	56	Office for National Statistics. 2011 Census: Key statistics and quick statistics for local authorities in the United Kingdom - part 2. 2014.https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentand employeetypes/datasets/2011censuskeystatisticsandquickstatisticsforlocalauthoritiesintheun itedkingdompart2 (accessed 4 Jun 2019).
45 46 47	685 686	57	Nomis. Highest level of qualification by sex by age (DC5102EW). 2013.https://www.nomisweb.co.uk/census/2011/dc5102ew (accessed 4 Jun 2019).
48 49 50	687 688	58	Nomis. Economic activity by sex by age [DC6107ew]. 2013.https://www.nomisweb.co.uk/census/2011/dc6107ew (accessed 4 Jun 2019).
50 51 52 53 54 55 56 57 58 59 60	689 690	59	National Institute for Clinical Excellence. Smoking: stopping in pregnancy and after childbirth. 2010.https://www.nice.org.uk/guidance/ph26 (accessed 4 Jun 2019).

1 2		
3	692	List of Figures:
4 5 6 7	693 694	Figure 1 - Risk of being born Small for Gestational Age (birthweight <10th percentile for gestational age) by parental SES indicators in the University Hospital Southampton (UHS) maternity population-
8 9	695	based cohort (singleton live births 2004-2016).
10	696	
11 12		
13 14		
15 16		
17		
18 19		
20 21		
22 23		
24 25		
26		
27 28		
29 30		
31 32		
33 34		
35 36		
37		
38 39		
40 41		
42 43		
44 45		
46		
47 48		
49 50		
51 52		
53 54		
55		
56 57		
58 59		
60		

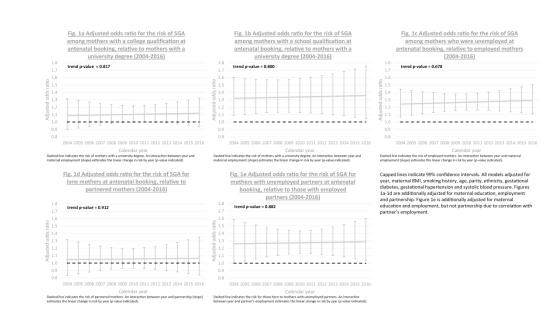


Figure 1 - Risk of being born Small for Gestational Age (birthweight <10th percentile for gestational age) by parental SES indicators in the University Hospital Southampton (UHS) maternity population-based cohort (singleton live births 2004-2016).

338x190mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Table 1– Full results of model 4 in Table 2. Risk of being born Small for Gestational Age (birthweight <10th percentile for gestational age) by maternal socioeconomic indicator in the University Hospital Southampton (UHS) maternity population-based cohort (singleton live births 2004-2016).

	OR	99%	% CI	р
Highest qualification (ref = Degree)				
College qualification	1.104	0.999	1.220	0.011
Secondary school or lower qualification	1.301	1.171	1.445	<0.001
Maternal unemployment	1.267	1.162	1.381	<0.001
Lone mother	1.055	0.930	1.198	0.274
Gestational Diabetes	0.924	0.722	1.182	0.406
Gestational Hypertension	1.928	1.550	2.398	<0.001
Systolic blood pressure >=140 mm Hg	0.999	0.997	1.001	0.447
Multiparous	0.478	0.442	0.517	<0.001
Maternal age at booking	1.013	1.005	1.021	<0.001
Maternal ethnicity (ref = White)				
Mixed	1.300	0.950	1.780	0.031
Asian	2.624	2.291	3.005	<0.001
Black/African/Caribbean	1.788	1.399	2.284	<0.001
Chinese	0.717	0.427	1.204	0.098
Other	1.483	1.123	1.958	<0.001
Not known	1.167	0.998	1.363	0.011
Maternal BMI (ref = Normal weight 18.5-24.9)				
<18.5 (underweight)	1.748	1.479	2.066	<0.001
25-29.9 (overweight)	0.755	0.690	0.826	<0.001
30+ (obese)	0.696	0.622	0.778	<0.001
Maternal smoking (ref = Never smoked)				
Ex-smoker	0.948	0.863	1.042	0.145
Up to 10 cigarettes per day	2.248	1.997	2.531	<0.001
10-20 cigarettes per day	2.884	2.504	3.321	<0.001
>20 cigarettes per day	3.780	2.618	5.458	<0.001
Constant	0.133	0.093	0.188	<0.001

n births = 65,412, n mothers = 44,212. OR = odds ratio; CI = confidence interval. In all models the standard errors are adjusted for multiple births per mother.

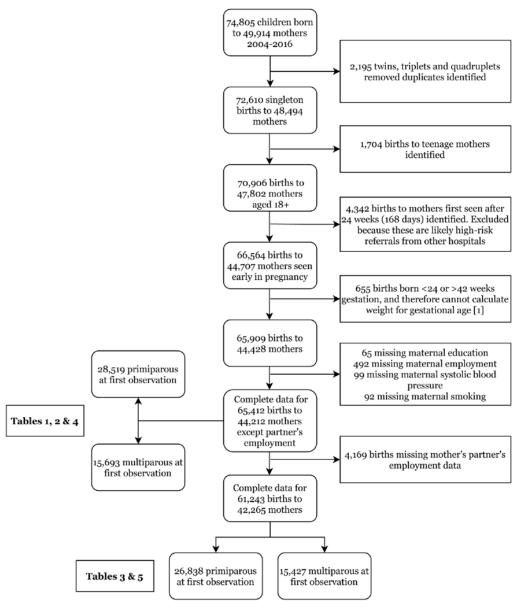
Supplementary Table 2– Full results of model 4 in Table 3. Risk of being born Small for Gestational Age (birthweight <10th percentile for gestational age) by maternal socioeconomic indicator in the University Hospital Southampton (UHS) maternity population-based cohort (singleton live births 2004-2016).

	OR	99%	6 CI	р
Highest qualification (ref = Degree)				
College qualification	1.094	0.987	1.212	0.024
Secondary school or lower qualification	1.284	1.153	1.431	<0.001
Maternal unemployment	1.234	1.126	1.352	<0.001
Partner unemployment	1.274	1.132	1.434	<0.001
Gestational Diabetes	0.940	0.730	1.210	0.529
Gestational Hypertension	2.005	1.603	2.507	<0.001
Systolic blood pressure >=140 mm Hg	0.999	0.997	1.002	0.497
Multiparous	0.476	0.439	0.516	<0.001
Maternal age at booking	1.014	1.006	1.023	<0.001
Maternal ethnicity (ref = White)				
Mixed	1.270	0.919	1.755	0.057
Asian	2.616	2.278	3.004	<0.001
Black/African/Caribbean	1.716	1.319	2.231	<0.001
Chinese	0.679	0.397	1.162	0.064
Other	1.467	1.100	1.956	0.001
Not known	1.197	1.019	1.406	0.004
Maternal BMI (ref = Normal weight 18.5-24.9)				
<18.5 (underweight)	1.788	1.503	2.127	<0.001
25-29.9 (overweight)	0.755	0.688	0.829	<0.001
30+ (obese)	0.682	0.607	0.767	<0.001
Maternal smoking (ref = Never smoked)				
Ex-smoker	0.943	0.856	1.039	0.120
Up to 10 cigarettes per day	2.219	1.959	2.513	<0.001
10-20 cigarettes per day	2.853	2.451	3.322	<0.001
>20 cigarettes per day	3.363	2.225	5.082	<0.001
Constant	0.072	0.051	0.102	<0.001

n births = 61,243, n mothers = 42,265. OR = odds ratio; CI = confidence interval. In all models the standard errors are adjusted for multiple births per mother.

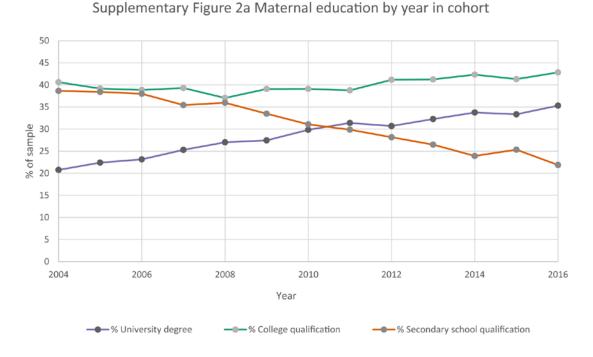
Page 35 of 44

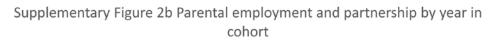
 BMJ Open

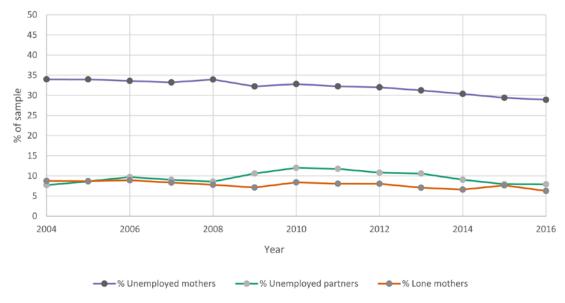

Supplementary Table 3– Risk of being born Small for Gestational Age (birthweight <10th percentile for gestational age) by place of residence and
maternal socioeconomic indicator in the University Hospital Southampton (UHS) maternity population-based cohort (singleton live births 2004-2016).

Socioeconomic factor	Sample	OR	99% CI	р
Mothers with a college qualification vs	All	1.10	1.00 - 1.22	0.011
university degree [1]	Southampton	1.10	0.95 - 1.27	0.100
Mothers with a secondary school qualification	All	1.30	1.17 - 1.45	<0.001
vs university degree [1]	Southampton	1.29	1.11 - 1.51	<0.001
Maternal unemployment at the first antenatal	All	1.27	1.16 - 1.38	<0.001
appointment vs employed [1]	Southampton	1.38	1.23 - 1.56	<0.001
Lone motherhood at the first antenatal	All	1.06	0.93 - 1.20	0.274
appointment vs partnered status [1]	Southampton	1.02	0.86 - 1.20	0.805
Mothers with an unemployed partner vs	All	1.27	1.13 - 1.43	<0.001
employed partner	Southampton	1.19	1.03 - 1.39	<0.001

All models adjusted for maternal education, employment, age, ethnicity, parity, gestational diabetes, gestational hypertension and systolic blood pressure. Standard errors are adjusted for multiple births per mother. [1] Also adjusted for maternal partnership. OR = odds ratio; CI = confidence interval.


Supplementary Figure 1 – Sample selection flowchart for the University Hospital Southampton cohort analysis of socioeconomic inequalities in small for gestational age births


Supplementary Figure 1: Sample selection flowchart for the University Hospital Southampton cohort analysis of socioeconomic inequalities in small for gestational age births



[1] In line with reference data provided in Norris *et al.* Updated birth weight centiles for England and Wales. *Arch Dis Child - Fetal Neonatal Ed.* 2017;103(6):577-582.

Supplementary Figure 2: Trends in socioeconomic factors over time in the University Hospital Southampton cohort analysis of socioeconomic inequalities in small for gestational age births

	Item No.	STROBE items	Location in manuscript where items are reported	RECORD items	Location in manuscript where items are reported
Title and abstra	act		1		T
	1	(a) Indicate the study's design with a commonly used term in the title or the abstract(b) Provide in the abstract an	Page 1 Page 2	RECORD 1.1: The type of data used should be specified in the title or abstract. When possible, the name of the databases used should be included.	Page 1
		(b) Frovide in the abstract an informative and balanced summary of what was done and what was found		RECORD 1.2: If applicable, the geographic region and timeframe within which the study took place should be reported in the title or abstract.	Page 2
			evie	RECORD 1.3: If linkage between databases was conducted for the study, this should be clearly stated in the title or abstract.	N/A
Introduction					
Background rationale	2	Explain the scientific background and rationale for the investigation being reported	Page 3	0/1	
Objectives	3	State specific objectives, including any prespecified hypotheses	Lines 106-110		
Methods					
Study Design	4	Present key elements of study design early in the paper	Pages 3-4		
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Pages 4-5		

The RECORD statement – checklist of items, extended from the STRORE statement, that should be reported in observational studies using

Participants	6	 (a) Cohort study - Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study - Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study - Give the eligibility criteria, and the sources and methods of selection 	Page 4; Supplementary Figure 1	 RECORD 6.1: The methods of study population selection (such as codes or algorithms used to identify subjects) should be listed in detail. If this is not possible, an explanation should be provided. RECORD 6.2: Any validation studies of the codes or algorithms used to select the population should be referenced. If validation was conducted for this study and not published elsewhere, detailed methods and results should be provided. 	Page 4-6 N/A
		 <i>(b)</i> Cohort study - For matched studies, give matching criteria and number of exposed and unexposed <i>Case-control study</i> - For matched studies, give matching criteria and the number of controls per case 	or revie	RECORD 6.3: If the study involved linkage of databases, consider use of a flow diagram or other graphical display to demonstrate the data linkage process, including the number of individuals with linked data at each stage.	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable.	Page 4-6	RECORD 7.1: A complete list of codes and algorithms used to classify exposures, outcomes, confounders, and effect modifiers should be provided. If these cannot be reported, an explanation should be provided.	Pages 4-6
Data sources/ measurement	8	 For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 	Pages 4-6		

Bias	9	Describe any efforts to address	Lines 113-126; 155-
		potential sources of bias	169; 181-185; 260-
			272
Study size	10	Explain how the study size was	Page 4;
		arrived at	Supplementary
			Figure 1
Quantitative	11	Explain how quantitative	Pages 4-6
variables		variables were handled in the	
		analyses. If applicable, describe	
		which groupings were chosen,	
		and why	
Statistical	12	(a) Describe all statistical	Pages 5-6
methods		methods, including those used to	
		control for confounding	
		(b) Describe any methods used	Pages 5-6
		to examine subgroups and interactions	
			Lines 186-188
		(c) Explain how missing data were addressed	
		(d) <i>Cohort study</i> - If	N/A
		applicable, explain how loss to	
		follow-up was addressed	
		Case-control study - If	N/A
		applicable, explain how matching	
		of cases and controls was	N/A N/A N/A
		addressed	
		Cross-sectional study - If	N/A
		applicable, describe analytical	
		methods taking account of	
		sampling strategy	
		(e) Describe any sensitivity	Lines 260-272
		analyses	

Page 41	of 44
---------	-------

 BMJ Open

Data access and				RECORD 12.1: Authors should	Page 4				
cleaning methods				describe the extent to which the					
				investigators had access to the database					
				population used to create the study					
				population.					
				RECORD 12.2: Authors should provide	N/A				
				information on the data cleaning					
		\sim		methods used in the study.					
Linkage				RECORD 12.3: State whether the study	N/A				
-				included person-level,					
				institutional-level, or other data linkage					
		6		across two or more databases. The					
				methods of linkage and methods of					
				linkage quality evaluation should be					
		- C	P4	provided.					
Results									
Participants	13	(a) Report the numbers of	Page 4;	RECORD 13.1: Describe in detail the	Pages 4-6;				
		individuals at each stage of the	Supplementary	selection of the persons included in the	Supplementar				
		study (e.g., numbers potentially	Figure 1	study (<i>i.e.</i> , study population selection)	Figure 1				
		eligible, examined for		including filtering based on data					
		eligibility, confirmed eligible,		quality, data availability and linkage.					
		included in the study,		The selection of included persons can					
		completing follow-up, and		be described in the text and/or by					
		analysed)		means of the study flow diagram.					
		(b) Give reasons for	Page 4;						
		nonparticipation at each stage.	Supplementary						
			Figure 1						
		(c) Consider use of a flow	Supplementary						
		diagram	Figure 1						
				1					

Descriptive data	14	(a) Give characteristics of	Table 1	
		study participants (e.g.,		
		demographic, clinical, social)		
		and information on exposures		
		and potential		
		confounders		
		(b) Indicate the number of	Table 1	
		participants with missing data for		
		each variable of interest		
		(c) <i>Cohort study</i> - summarise	N/A	
		follow-up time (<i>e.g.</i> , average and		
		total amount)		
Outcome data	15	Cohort study - Report numbers of	Table 1,	
		outcome events or summary	Supplementary Figure	
		measures over time	2	
		Case-control study - Report		
		numbers in each exposure	N/A	
		category, or summary measures		
		of exposure	N/A	
		Cross-sectional study - Report		
		numbers of outcome events or		
	1.5	summary measures	T 11 05 D 5	
Main results	16	(a) Give unadjusted estimates	Tables 2-5; Page 5	
		and, if applicable,		
		confounderadjusted estimates		
		and their precision (e.g., 95%		
		confidence interval). Make		
		clear which confounders were		
		adjusted for and why they were		
		included		
		(b) Report category boundaries	T 11 1	
		when continuous variables were	Table 1	
		categorized		
		(c) If relevant, consider	N/A	
		translating estimates of relative		
	1			1

Report other analyses done— .g., analyses of subgroups and	Tables 4-5; lines		
nteractions, and sensitivity and sensitivity	260-272		
	·		
Summarise key results with efference to study objectives	Page 18		
Discuss limitations of the study, aking into account sources of potential bias or imprecision. Discuss both direction and nagnitude of any potential bias	Pages 19-20	RECORD 19.1: Discuss the implications of using data that were not created or collected to answer the specific research question(s). Include discussion of misclassification bias, unmeasured confounding, missing data, and changing eligibility over time, as they pertain to the study being reported.	Pages 19-20
Give a cautious overall nterpretation of results considering objectives, imitations, multiplicity of nalyses, results from similar tudies, and other relevant evidence	Pages 19-20		
nter ons imit naly tudi	pretation of results idering objectives, cations, multiplicity of yses, results from similar ies, and other relevant ence	pretation of results idering objectives, cations, multiplicity of yses, results from similar ies, and other relevant ence	pretation of results idering objectives, rations, multiplicity of yses, results from similar ies, and other relevant

Generalisability	21	Discuss the generalisability (external validity) of the study results	Lines 418-435		
Other Information	n				
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Lines 488-493		
Accessibility of protocol, raw data, and programming code				RECORD 22.1: Authors should provide information on how to access any supplemental information such as the study protocol, raw data, or programming code.	Lines 514-519

*Reference: Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, Sørensen HT, von Elm E, Langan SM, the RECORD Working Committee. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement. *PLoS Medicine* 2015; in press.

*Checklist is protected under Creative Commons Attribution (CC BY) license.