Stress, visceral obesity, and metabolic complications

Ann N Y Acad Sci. 2006 Nov:1083:77-110. doi: 10.1196/annals.1367.008.

Abstract

Stress is a state of threatened homeostasis or disharmony caused by intrinsic or extrinsic adverse forces and is counteracted by an intricate repertoire of physiologic and behavioral responses that aim to reestablish the challenged body equilibrium. The adaptive stress response depends upon an elaborate neuroendocrine, cellular, and molecular infrastructure, the stress system. Crucial functions of the stress system response are mediated by the hypothalamic-pituitary-adrenal (HPA) axis and the central and peripheral components of the autonomic nervous system (ANS). The integrity of the HPA axis and the ANS and their precise interactions with other CNS components are essential for a successful response to the various stressors. Chronic stress represents a prolonged threat to homeostasis by persistent or frequently repeated stressors and may lead to manifestations that characterize a wide range of diseases and syndromes. Such states progressively lead to a deleterious overload with complications caused by both the persistent stressor and the detrimental prolongation of the adaptive response. The metabolic syndrome can be described as a state of deranged metabolic homeostasis characterized by the combination of central obesity, insulin resistance, dyslipidemia, and hypertension. The incidence of both obesity and the metabolic syndrome in modern Western societies has taken epidemic proportions over the past decades and often correlates with indices of stress in the affected populations. Stress, primarily through hyperactivation of the HPA axis, appears to contribute to the accumulation of fat tissue, and vice versa, obesity itself seems to constitute a chronic stressful state and may cause HPA axis dysfunction. In addition, the description of obesity as a systemic low grade inflammatory condition that contributes to the derangement of the metabolic equilibrium implies that the proinflammatory cytokines which are secreted by the adipocytes hold a potentially important pathogenetic role. In this article we describe the physiology of the stress system response, with emphasis on metabolism, and review the recent data that implicate several neuroendocrine and inflammatory mechanisms mobilized during chronic stress in the development of the metabolic complications that characterize central obesity and the metabolic syndrome.

Publication types

  • Review

MeSH terms

  • Autonomic Nervous System / physiopathology
  • Humans
  • Hypothalamo-Hypophyseal System / physiopathology
  • Intra-Abdominal Fat / metabolism*
  • Metabolic Syndrome / etiology*
  • Models, Biological
  • Obesity / epidemiology
  • Obesity / etiology*
  • Pituitary-Adrenal System / metabolism
  • Stress, Physiological / complications*