Effects of neuromuscular electrical stimulation parameters on specific tension

Eur J Appl Physiol. 2006 Aug;97(6):737-44. doi: 10.1007/s00421-006-0232-7. Epub 2006 Jul 4.

Abstract

This study examined the effects of altering surface neuromuscular electrical stimulation (SNMES) parameters on the specific tension of the quadriceps femoris muscle. Seven able-bodied subjects had magnetic resonance images taken of both thighs prior to and immediately after four SNMES protocols to determine the activated muscle cross-sectional area (CSA). The four protocols were: (1) research (RES, 100 Hz, 450 micros, and amplitude set to evoke 75% of maximal voluntary isometric torque, MVIT); (2) pulse duration (PD, 100 Hz, 150 micros, same current as in RES); (3) frequency (FREQ, 25 Hz, 450 micros, and same current as in RES); (4) amplitude (AMP, 100 Hz, 450 mus, and current set to evoke the average of the initial torques of PD and FREQ, 45 +/- 9% of MVIT). Reducing the amplitude of the current from 75 to 45% of MVIT did not alter specific tension, 25 +/- 8 N/cm2, suggesting that the amplitude probably affects torque and the area of activated muscle proportionally. Shortening the pulse duration from 450 to 150 micros caused specific tension to drop from 25 +/- 6 to 20 +/- 6 N/cm2 (P < 0.05), indicating that pulse duration increased torque and the activated CSA disproportionally. Alternatively, reducing the frequency from 100 to 25 Hz decreased specific tension from 25 +/- 6 to 17 +/- 4 N/cm2 (P < 0.05), suggesting that the frequency increased torque without affecting the activated CSA. Clinicians who administer SNMES should be aware of the magnitude of adaptations to a given amplitude, pulse duration, and frequency.

Publication types

  • Clinical Trial
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Electric Stimulation / methods
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Muscle Contraction / physiology*
  • Quadriceps Muscle / anatomy & histology
  • Quadriceps Muscle / physiology*
  • Torque