Skip to main content
Log in

Population Pharmacokinetics of Midazolam and Its Metabolites during Venoarterial Extracorporeal Membrane Oxygenation in Neonates

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Midazolam is used to sedate children during extracorporeal membrane oxygenation (ECMO). Pharmacokinetic changes are expected because of extracorporeal circulation and maturation. We present a population pharmacokinetic model for midazolam and its major metabolites in neonates during venoarterial ECMO.

Methods

We studied 20 neonates on venoarterial ECMO, with a median postnatal age of 0.79 (range 0.17–5.8) days and a bodyweight of 3.0 (range 2.7–3.9) kg at the onset of ECMO. The median ECMO duration was 124 (range 70–275) hours. Serum concentrations were measured at the initiation and discontinuation of the midazolam infusion (100–300 μg/kg/h). Analysis of concentrations of midazolam, 1-hydroxymidazolam and its glucuronide were performed using nonlinear mixed-effects modelling. A two-compartment model for midazolam and a one-compartment model for the metabolites 1-hydroxymidazolam and hydroxymidazolam glucuronide adequately described the data, with allometric scaling of all parameters.

Results

Following the start of ECMO, the volume of distribution of midazolam increased from 4.29 to 14.6 L/3kg, with an elimination half-life of 1.85 hours. The median midazolam and 1-hydroxymidazolam clearance values increased 3-fold within the first 5 days (up to 1.38 and 5.31 L/h/3 kg, respectively), whereas hydroxymidazolam glucuronide clearance remained constant at 0.18 L/h/3 kg. Interpatient variability estimates of midazolam, 1-hydroxymidazolam and hydroxymidazolam glucuronide clearance and midazolam and hydroxymidazolam glucuronide volumes of distribution varied between 87% and 129%. Concomitant inotropic infusion increased hydroxymidazolam glucuronide clearance by 23%.

Conclusion

After allometric scaling, clearance of midazolam and 1-hydroxymidazolam increases as a result of maturation or recovery from critical illness. In ECMO patients weighing 2.7–3.9 kg, continuously infused midazolam doses of 300 μg/kg/h for 6 hours and 150 μg/kg/h thereafter provide adequate serum concentrations for sedation. The dose must be increased substantially after 5–7 days. Hydroxymidazolam glucuronide accumulates during ECMO, providing an increased proportion of the overall effect, up to 34% after 7 days. Large unexplained interpatient variability warrants careful titration of sedation and adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Fig. 2
Fig. 3
Fig. 4
Table III
Fig. 5

Similar content being viewed by others

References

  1. Jacqz-Aigrain E, Daoud P, Burtin P, et al. Pharmacokinetics of midazolam during continuous infusion in critically ill neonates. Eur J Clin Pharmacol 1992; 42(3): 329–32

    Article  PubMed  CAS  Google Scholar 

  2. Buck ML. Pharmacokinetic changes during extracorporeal membrane oxygenation: implications for drug therapy of neonates. Clin Pharmacokinet 2003; 42(5): 403–17

    Article  PubMed  CAS  Google Scholar 

  3. Dagan O, Klein J, Gruenwald C, et al. Preliminary studies of the effects of extracorporeal membrane oxygenator on the disposition of common pediatric drugs. Ther Drug Monit 1993 Aug; 15(4): 263–6

    Article  PubMed  CAS  Google Scholar 

  4. Mulla H, Lawson G, von Anrep C, et al. In vitro evaluation of sedative drug losses during extracorporeal membrane oxygenation. Perfusion 2000 Jan; 15(1): 21–6

    PubMed  CAS  Google Scholar 

  5. Martens HJ, De Goede PN, Van Loenen AC. Sorption of various drugs in polyvinyl chloride, glass, and polyethylene-lined infusion containers. Am J Hosp Pharm 1990 Feb; 47(2): 369–73

    PubMed  CAS  Google Scholar 

  6. Mulla H, Lawson G, Woodland ED, et al. Effects of neonatal extracorporeal membrane oxygenation circuits on drug disposition. Curr Ther Res 2000; 61(11): 838–48

    Article  CAS  Google Scholar 

  7. Mulla H, McCormack P, Lawson G, et al. Pharmacokinetics of midazolam in neonates undergoing extracorporeal membrane oxygenation. Anesthesiology 2003 Aug; 99(2): 275–82

    Article  PubMed  CAS  Google Scholar 

  8. Zhu B, Bush D, Doss GA, et al. Characterization of 1′-hydroxymidazolam glucuronidation in human liver microsomes. Drug Metab Dispos 2008 Feb; 36(2): 331–8

    Article  PubMed  CAS  Google Scholar 

  9. Stevens JC. New perspectives on the impact of cytochrome P450 3A expression for pediatric pharmacology. Drug Discov Today 2006 May; 11(9–10): 440–5

    Article  PubMed  CAS  Google Scholar 

  10. Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med 2003 Sep 18; 349(12): 1157–67

    Article  PubMed  CAS  Google Scholar 

  11. Mandema JW, Tuk B, van Steveninck AL, et al. Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy volunteers. Clin Pharmacol Ther 1992 Jun; 51(6): 715–28

    Article  PubMed  CAS  Google Scholar 

  12. Bauer TM, Ritz R, Haberthur C, et al. Prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet 1995 Jul 15; 346(8968): 145–7

    Article  PubMed  CAS  Google Scholar 

  13. van Dijk M, Peters JW, van Deventer P, et al. The COMFORT Behavior Scale: a tool for assessing pain and sedation in infants. Am J Nurs 2005 Jan; 105(1): 33–6

    Article  PubMed  Google Scholar 

  14. Ista E, van Dijk M, Tibboel D, et al. Assessment of sedation levels in pediatric intensive care patients can be improved by using the COMFORT ‘Behavior’ Scale. Pediatr Crit Care Med 2005 Jan; 6(1): 58–63

    Article  PubMed  Google Scholar 

  15. Peeters MY, Prins SA, Knibbe CA, et al. Pharmacokinetics and pharmacodynamics of midazolam and metabolites in nonventilated infants after craniofacial surgery. Anesthesiology 2006 Dec; 105(6): 1135–46

    Article  PubMed  CAS  Google Scholar 

  16. Jonsson EN, Karlsson MO. Xpose: an S-Plus based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed 1999 Jan; 58(1): 51–64

    Article  PubMed  CAS  Google Scholar 

  17. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokineticpharmacodynamic models: I. Models for covariate effects. J Pharmacokinet Biopharm 1992 Oct; 20(5): 511–28

    CAS  Google Scholar 

  18. Anderson BJ, Allegaert K, Holford NH. Population clinical pharmacology of children: modelling covariate effects. Eur J Pediatr 2006 Dec; 165(12): 819–29

    Article  PubMed  Google Scholar 

  19. de Wildt SN, Kearns GL, Leeder JS, et al. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 1999 Dec; 37(6): 485–505

    Article  PubMed  Google Scholar 

  20. de Wildt SN, Kearns GL, Leeder JS, et al. Glucuronidation in humans: pharmacogenetic and developmental aspects. Clin Pharmacokinet 1999 Jun; 36(6): 439–52

    Article  PubMed  Google Scholar 

  21. Zuppa AF, Nadkarni V, Davis L, et al. The effect of a thyroid hormone infusion on vasopressor support in critically ill children with cessation of neurologic function. Crit Care Med 2004 Nov; 32(11): 2318–22

    PubMed  CAS  Google Scholar 

  22. Ette EI. Stability and performance of a population pharmacokinetic model. J Clin Pharmacol 1997 Jun; 37(6): 486–95

    PubMed  CAS  Google Scholar 

  23. Meibohm B, Laer S, Panetta JC, et al. Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J 2005; 7(2): E475–87

    Article  PubMed  Google Scholar 

  24. Bjorkman S. Prediction of cytochrome P450-mediated hepatic drug clearance in neonates, infants and children: how accurate are available scaling methods?. Clin Pharmacokinet 2006; 45(1): 1–11

    Article  PubMed  Google Scholar 

  25. Anderson BJ, McKee AD, Holford NH. Size, myths and the clinical pharmacokinetics of analgesia in paediatric patients. Clin Pharmacokinet 1997 Nov; 33(5): 313–27

    Article  PubMed  CAS  Google Scholar 

  26. Burtin P, Jacqz-Aigrain E, Girard P, et al. Population pharmacokinetics of midazolam in neonates. Clin Pharmacol Ther 1994 Dec; 56(6 Pt 1): 615–25

    Article  PubMed  CAS  Google Scholar 

  27. de Wildt SN, Kearns GL, Hop WC, et al. Pharmacokinetics and metabolism of intravenous midazolam in preterm infants. Clin Pharmacol Ther 2001 Dec; 70(6): 525–31

    Article  PubMed  Google Scholar 

  28. de Wildt SN, de Hoog M, Vinks AA, et al. Population pharmacokinetics and metabolism of midazolam in pediatric intensive care patients. Crit Care Med 2003 Jul; 31(7): 1952–8

    Article  PubMed  Google Scholar 

  29. Hartwig S, Roth B, Theisohn M. Clinical experience with continuous intravenous sedation using midazolam and fentanyl in the paediatric intensive care unit. Eur J Pediatr 1991 Sep; 150(11): 784–8

    Article  PubMed  CAS  Google Scholar 

  30. Lacroix D, Sonnier M, Moncion A, et al. Expression of CYP3A in the human liver: evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem 1997 Jul 15; 247(2): 625–34

    Article  PubMed  CAS  Google Scholar 

  31. Daly AK. Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet 2006; 45(1): 13–31

    Article  PubMed  CAS  Google Scholar 

  32. Williams JA, Ring BJ, Cantrell VE, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos 2002 Aug; 30(8): 883–91

    Article  PubMed  CAS  Google Scholar 

  33. Fragen RJ. Pharmacokinetics and pharmacodynamics of midazolam given via continuous intravenous infusion in intensive care units. Clin Ther 1997 May–Jun; 19(3): 405–19; discussion 367-8

    Article  PubMed  CAS  Google Scholar 

  34. Peters JW, Anderson BJ, Simons SH, et al. Morphine metabolite pharmacokinetics during venoarterial extra corporeal membrane oxygenation in neonates. Clin Pharmacokinet 2006; 45(7): 705–14

    Article  PubMed  CAS  Google Scholar 

  35. Smith JC, Davies MC, Melia CD, et al. Uptake of drugs by catheters: the influence of the drug molecule on sorption by polyurethane catheters. Biomaterials 1996 Aug; 17(15): 1469–72

    Article  PubMed  CAS  Google Scholar 

  36. Mehta NM, Halwick DR, Dodson BL, et al. Potential drug sequestration during extracorporeal membrane oxygenation: results from an ex vivo experiment. Intensive Care Med 2007 Jun; 33(6): 1018–24

    Article  PubMed  CAS  Google Scholar 

  37. Bhatt-Meht V, Annich G. Sedative clearance during extracorporeal membrane oxygenation. Perfusion 2005 Oct; 20(6): 309–15

    Article  PubMed  Google Scholar 

  38. Goldstein SL. Kidney function assessment in the critically ill child: is it time to leave creatinine behind?. Crit Care 2007; 11(3): 141

    Article  PubMed  Google Scholar 

  39. Harrison AM, Davis S, Eggleston S, et al. Serum creatinine and estimated creatinine clearance do not predict perioperatively measured creatinine clearance in neonates undergoing congenital heart surgery. Pediatr Crit Care Med 2003 Jan; 4(1): 55–9

    Article  PubMed  Google Scholar 

  40. Hughes J, Gill AM, Mulhearn H, et al. Steady-state plasma concentrations of midazolam in critically ill infants and children. Ann Pharmacother 1996 Jan; 30(1): 27–30

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Saskia N. de Wildt, MD, PhD, for her critical evaluation of this manuscript. This study was funded solely by institutional funding. The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron A. A. Mathot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahsman, M.J., Hanekamp, M., Wildschut, E.D. et al. Population Pharmacokinetics of Midazolam and Its Metabolites during Venoarterial Extracorporeal Membrane Oxygenation in Neonates. Clin Pharmacokinet 49, 407–419 (2010). https://doi.org/10.2165/11319970-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11319970-000000000-00000

Keywords

Navigation