Skip to main content
Log in

Tiotropium Bromide Inhalation Powder

A Review of its Use in the Management of Chronic Obstructive Pulmonary Disease

  • Adis Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The anticholinergic agent tiotropium bromide (Spiriva®) is a long-acting bronchodilator that is indicated for the treatment of chronic obstructive pulmonary disease (COPD). This article reviews the clinical efficacy and tolerability of tiotropium bromide inhalation powder, administered using the HandiHaler® device, in patients with COPD, as well as reviewing its pharmacological properties and the results of pharmacoeconomic analyses.

Shorter-term placebo-controlled trials in patients with COPD demonstrated significantly higher trough forced expiratory volume in 1 second (FEV1) responses with tiotropium bromide than with placebo, confirming it has a duration of action of ≥24 hours and is suitable for once-daily administration. Lung function improved to a greater extent with tiotropium bromide than with ipratropium bromide or, in most instances, salmeterol. Indacaterol was shown to be non-inferior to tiotropium bromide in terms of the trough FEV1 response.

The large, 4-year UPLIFT® trial did not show a significant reduction in the annual rate of decline in FEV1 with tiotropium bromide versus placebo in patients with COPD, although subgroup analyses demonstrated a significantly lower rate of decline with tiotropium bromide than with placebo in some patient groups (e.g. patients with moderate COPD, patients aged ≥50 years, patients not receiving maintenance therapy at baseline).

Tiotropium bromide prevented exacerbations in patients with COPD, with a s3333ignificantly lower exacerbation rate and a significantly longer time to first exacerbation seen with tiotropium bromide than with placebo or salmeterol. Exacerbation rates did not significantly differ between patients receiving tiotropium bromide and those receiving salmeterol/fluticasone propionate. Tiotropium bromide also had beneficial effects on health-related quality of life (HR-QOL) and other endpoints, such as dyspnoea and rescue medication use.

Combination therapy with tiotropium bromide plus formoterol with or without budesonide improved lung function to a significantly greater extent than tiotropium bromide alone in patients with COPD. In addition, exacerbation rates were lower and HR-QOL was improved with tiotropium bromide plus budesonide/formoterol versus tiotropium bromide alone. Although the addition of salmeterol/fluticasone propionate to tiotropium bromide did not reduce the COPD exacerbation rate, it did improve lung function and HR-QOL.

Tiotropium bromide inhalation powder is generally well tolerated in patients with COPD, with anticholinergic adverse events (e.g. dry mouth, constipation, gastrointestinal obstruction, dysuria) among the most commonly reported adverse events. The UPLIFT® trial showed no significant difference between tiotropium bromide and placebo recipients in the risk of stroke, and the risk of serious cardiac adverse events (including congestive heart failure and myocardial infarction) was significantly lower with tiotropium bromide than with placebo. The absence of a detrimental effect on cardiovascular outcomes was supported by the results of a meta-analysis and pooled analyses. In addition, on-treatment mortality was lower with tiotropium bromide than with placebo in the UPLIFT® trial. Pooled analyses showed significantly lower cardiovascular mortality with tiotropium bromide than with placebo, with a meta-analysis demonstrating no significant difference between patients receiving tiotropium bromide and controls in cardiovascular mortality.

Results of modelled pharmacoeconomic analyses conducted from a healthcare payer perspective in several developed countries suggest that tiotropium bromide is a cost-effective option in patients with COPD.

In conclusion, tiotropium bromide inhalation powder is a useful option for the maintenance treatment of patients with COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V
Table VI

Similar content being viewed by others

References

  1. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, managment, and prevention of chronic obstructive pulmonary disease (updated 2010) [online]. Available from URL: http://www.goldcopd.org/uploads/users/files/GOLDReport_Apri112011.pdf [Accessed 2011 Oct 14]

  2. Qaseem A, Wilt TJ, Weinberger SE, et al. Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann Intern Med 2011 Aug 2; 155(3): 179–91

    Article  PubMed  Google Scholar 

  3. Barnes PJ. The pharmacological properties of tiotropium. Chest 2000 Feb; 117 (2 Suppl.): 63–66S

    Article  Google Scholar 

  4. Disse B, Speck GA, Rominger KL, et al. Tiotropium (Spiriva™): mechanistical considerations and clinical profile in obstructive lung disease. Life Sci 1999; 64(6–7): 457–64

    Article  CAS  PubMed  Google Scholar 

  5. Haddad E-B, Mak JCW, Barnes PJ. Characterization of [3H]Ba 679 BR, a slowly dissociating muscarinic antagonist, in human lung: radioligand binding and auto-radiographic mapping. Mol Pharmacol 1994 May; 45: 899–907

    CAS  PubMed  Google Scholar 

  6. Disse B, Reichl R, Speck G, et al. BA 679 BR, a novel long-acting anticholinergic bronchodilator. Life Sci 1993; 52(5-6): 537–44

    Article  CAS  PubMed  Google Scholar 

  7. Boehringer Ingelheim International GmbH. Spiriva® 18 microgram inhalation powder, hard capsule: UK summary of product characteristics [online]. Available from URL: http://www.medicines.org.uk/EMC/medicine/10039/SPC/Spiriva+18+microgram+inhalation+powder%2c+hard+capsule/ [Accessed 2011 Sep 30]

  8. Bateman ED, Rennard S, Barnes PJ, et al. Alternative mechanisms for tiotropium. Pulm Pharmacol Ther 2009; 22(6): 533–42

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi T, Belvisi MG, Patel H, et al. Effect of Ba 679 BR, a novel long-acting anticholinergic agent, on cholinergic neurotransmission in guinea pig and human airways. Am J Respir Crit Care Med 1994 Dec; 150 (6 Pt 1): 1640–5

    Article  CAS  PubMed  Google Scholar 

  10. Maesen FPV, Smeets JJ, Sledsens TJH, et al. Tiotropium bromide, a new long-acting antimuscarinic bronchodilator: a pharmacodynamic study in patients with chronic obstructive pulmonary disease (COPD). Eur Respir J 1995 Sep; 8(9): 1506–13

    CAS  PubMed  Google Scholar 

  11. Calverley PMA, Lee A, Towse L, et al. Effect of tiotropium bromide on circadian variation in airflow limitation in chronic obstructive pulmonary disease. Thorax 2003 Oct; 58(10): 855–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cazzola M, Di Marco F, Santus P, et al. The pharmacodynamic effects of single inhaled doses of formoterol, tiotropium and their combination in patients with COPD. Pulm Pharmacol Ther 2004; 17(1): 35–9

    Article  CAS  PubMed  Google Scholar 

  13. Littner MR, Ilowite JS, Tashkin DP, et al. Long-acting bronchodilation with once-daily dosing of tiotropium (Spiriva) in stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000; 161(4 I): 1136–42

    Article  CAS  PubMed  Google Scholar 

  14. van Noord JA, Smeets JJ, Custers FL, et al. Pharmacodynamic steady state of tiotropium in patients with chronic obstructive pulmonary disease. Eur Respir J 2002 Apr; 19(4): 639–44

    Article  PubMed  Google Scholar 

  15. van Noord JA, Bantje TA, Eland ME, et al. A randomised controlled comparison of tiotropium and ipratropium in the treatment of chronic obstructive pulmonary disease. Thorax 2000 Apr; 55(4): 289–94

    Article  PubMed Central  PubMed  Google Scholar 

  16. Casaburi R, Briggs DD, Donohue JF, et al. The spirometric efficacy of once-daily dosing with tiotropium in stable COPD: a 13-week multicenter trial. Chest 2000 Nov; 118(5): 1294–302

    Article  CAS  PubMed  Google Scholar 

  17. Celli B, ZuWallack R, Wang S, et al. Improvement in resting inspiratory capacity and hyperinflation with tiotropium in COPD patients with increased static lung volumes. Chest 2003 Nov; 124(5): 1743–8

    Article  PubMed  Google Scholar 

  18. O’Donnell DE, Flüge T, Gerken F, et al. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur Respir J 2004 Jun; 23(6): 832–40

    Article  PubMed  Google Scholar 

  19. Verkindre C, Bart F, Aguilaniu B, et al. The effect of tiotropium on hyperinflation and exercise capacity in chronic obstructive pulmonary disease. Respiration 2006; 73(4): 420–7

    Article  CAS  PubMed  Google Scholar 

  20. Maltais F, Hamilton A, Marciniuk D, et al. Improvements in symptom-limited exercise performance over 8 h with once-daily tiotropium in patients with COPD. Chest 2005 Sep; 128(3): 1168–78

    Article  CAS  PubMed  Google Scholar 

  21. Berton DC, Reis M, Siqueira ACB, et al. Effects of tiotropium and formoterol on dynamic hyperinflation and exercise endurance in COPD. Respir Med 2010 Sep; 104(9): 1288–96

    Article  PubMed  Google Scholar 

  22. Bédard M-E, Brouillard C, Pepin V, et al. Tiotropium improves walking endurance in chronic obstructive pulmonary disease. Eur Respir J. Epub 2011 Jun 23

  23. Legg D, Cooper CB, Celli B, et al. Treadmill endurance during 2 years treatment with tiotropium in patients with COPD [abstract]. 107th International Conference of the American Thoracic Society; 2011 May 13–18; Denver (CO)

  24. Casaburi R, Kukafka D, Cooper CB, et al. Improvement in exercise tolerance with the combination of tiotropium and pulmonary rehabilitation in patients with COPD. Chest 2005 Mar; 127(3): 809–17

    Article  CAS  PubMed  Google Scholar 

  25. Kesten S, Casaburi R, Kukafka D, et al. Improvement in self-reported exercise participation with the combination of tiotropium and rehabilitative exercise training in COPD patients. Int J Chron Obstruct Pulmon Dis 2008; 3(1): 127–36

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Ambrosino N, Foglio K, Balzano G, et al. Tiotropium and exercise training in COPD patients: effects on dyspnea and exercise tolerance. Int J Chron Obstruct Pulmon Dis 2008; 3(4): 771–80

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Incorvaia C, Riario-Sforza GG, Pravettoni C, et al. Impairment of small airways in COPD patients with frequent exacerbations and effects of treatment with tiotropium. Int J Chron Obstruct Pulmon Dis 2008; 3(1): 123–6

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Incorvaia C, Riario-Sforza GG, Pravettoni C, et al. Effects of replacing oxitropium with tiotropium on pulmonary function in patients with COPD: a randomized study. Respir Med 2007 Mar; 101(3): 476–80

    Article  PubMed  Google Scholar 

  29. Asano K, Shikama Y, Shoji N, et al. Tiotropium bromide inhibits TGF-β-induced MMP production from lung fibroblasts by interfering with Smad and MAPK pathways in vitro. Int J Chron Obstruct Pulmon Dis 2010; 5: 277–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Asano K, Shikama Y, Shibuya Y, et al. Suppressive activity of tiotropium bromide on matrix metalloproteinase production from lung fibroblasts in vitro. Int J Chron Obstruct Pulmon Dis 2008; 3(4): 781–9

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Powrie DJ, Wilkinson TMA, Donaldson GC, et al. Effect of tiotropium on sputum and serum inflammatory markers and exacerbations in COPD. Eur Respir J 2007 Sep; 30(3): 472–8

    Article  CAS  PubMed  Google Scholar 

  32. Hasani A, Toms N, Agnew JE, et al. The effect of inhaled tiotropium bromide on lung mucociliary clearance in patients with COPD. Chest 2004 May; 125(5): 1726–34

    Article  CAS  PubMed  Google Scholar 

  33. Covelli H, Bhattacharya S, Cassino C, et al. Absence of electrocardiographic findings and improved function with once-daily tiotropium in patients with chronic obstructive pulmonary disease. Pharmacotherapy 2005 Dec; 25(12): 1708–18

    Article  CAS  PubMed  Google Scholar 

  34. Boehringer Ingelheim International GmbH. Spiriva® Handihaler® (tiotropium bromide inhalation powder): US prescribing information [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021395s033lbl.pdf [Accessed 2011 Sep 30]

  35. Nakanishi T, Haruta T, Shirasaka Y, et al. Organic cation transporter-mediated renal secretion of ipratropium and tiotropium in rats and humans. Drug Metab Dispos 2011; 39(1): 117–22

    Article  CAS  PubMed  Google Scholar 

  36. Türck D, Weber W, Sigmund R, et al. Pharmacokinetics of intravenous, single-dose tiotropium in subjects with different degrees of renal impairment. J Clin Pharmacol 2004 Feb; 44(2): 163–72

    Article  PubMed  Google Scholar 

  37. Chan CKN, Maltais F, Sigouin C, et al. A randomized controlled trial to assess the efficacy of tiotropium in Canadian patients with chronic obstructive pulmonary disease. Can Respir J 2007 Nov/Dec; 14(8): 465–72

    PubMed Central  PubMed  Google Scholar 

  38. Freeman D, Lee A, Price D. Efficacy and safety of tiotropium in COPD patients in primary care: the SPiRiva Usual CarE (SPRUCE) study. Respir Res 2007; 8: 45

    Article  PubMed Central  PubMed  Google Scholar 

  39. Johansson G, Lindberg A, Romberg K, et al. Bronchodilator efficacy of tiotropium in patients with mild to moderate COPD. Prim Care Respir J 2008 Sep; 17(3): 169–75

    Article  PubMed  Google Scholar 

  40. Moita J, Bárbara C, Cardoso J, et al. Tiotropium improves FEV1 in patients with COPD irrespective of smoking status. Pulm Pharmacol Ther 2008; 21(1): 146–51

    Article  CAS  PubMed  Google Scholar 

  41. Sciurba FC, Siafakas N, Troosters T, et al. The efficacy and safety of tiotropium HandiHaler, 18 µg, once daily plus PRN salbutamol in COPD subjects naive to maintenance therapy [abstract]. 107th International Conference of the American Thoracic Society; 2011 May 13–18; Denver (CO)

  42. Briggs DD, Covelli H, Lapidus R, et al. Improved daytime spirometric efficacy of tiotropium compared with salmeterol in patients with COPD. Pulm Pharmacol Ther 2005; 18(6): 397–404

    Article  CAS  PubMed  Google Scholar 

  43. Donohue JF, van Noord JA, Bateman ED, et al. A 6-month, placebo-controlled study comparing lung function and health status changes in COPD patients treated with tiotropium or salmeterol. Chest 2002; 122(1): 47–55

    Article  CAS  PubMed  Google Scholar 

  44. Buhl R, Dunn LJ, Disdier C, et al. Blinded 12-week comparison of once-daily indacaterol and tiotropium in COPD. Eur Respir J 2011 Oct; 38(4): 797–803

    Article  CAS  PubMed  Google Scholar 

  45. Rabe KF, Timmer W, Sagkriotis A, et al. Comparison of a combination of tiotropium plus formoterol to salmeterol plus fluticasone in moderate COPD. Chest 2008 Aug; 134(2): 255–62

    Article  CAS  PubMed  Google Scholar 

  46. Tashkin DP, Pearle J, Iezzoni D, et al. Formoterol and tiotropium compared with tiotropium alone for treatment of COPD. COPD 2009 Feb; 6(1): 17–25

    Article  PubMed  Google Scholar 

  47. Welte T, Miravitlles M, Hernandez P, et al. Efficacy and tolerability of budesonide/formoterol added to tiotropium in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2009 Oct 15; 180(8): 741–50

    Article  CAS  PubMed  Google Scholar 

  48. Tashkin DP, Celli B, Senn S, et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med 2008 Oct 9; 359(15): 1543–54

    Article  CAS  PubMed  Google Scholar 

  49. Niewoehner DE, Rice K, Cote C, et al. Prevention of exacerbations of chronic obstructive pulmonary disease with tiotropium, a once-daily inhaled anticholinergic bronchodilator: a randomized trial. Ann Intern Med 2005 Sep 6; 143(5): 317–26

    Article  CAS  PubMed  Google Scholar 

  50. Vogelmeier C, Hederer B, Glaab T, et al. Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med 2011 Mar 24; 364(12): 1093–103

    Article  CAS  PubMed  Google Scholar 

  51. Wedzicha JA, Calverley PMA, Seemungal TA, et al. The prevention of chronic obstructive pulmonary disease exacerbations by salmeterol/fluticasone propionate or tiotropium bromide. Am J Respir Crit Care Med 2008 Jan 1; 177(1): 19–26

    Article  CAS  PubMed  Google Scholar 

  52. Aaron SD, Vandemheen KL, Fergusson D, et al. Tiotropium in combination with placebo, salmeterol, or fluticasone-salmeterol for treatment of chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med 2007 Apr 17; 146(8): 545–55

    Article  PubMed  Google Scholar 

  53. Tonnel A-B, Perez T, Grosbois J-M, et al. Effect of tiotropium on health-related quality of life as a primary efficacy endpoint in COPD. Int J Chron Obstruct Pulmon Dis 2008; 3(2): 301–10

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Center for Drug Evaluation and Research. Application number: 21-396. Medical review(s) [online]. Available from URL: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/21-395.pdf_Spiriva_Medr_P1.pdf [Accessed 2011 Oct 4]

  55. Casaburi R, Mahler DA, Jones PW, et al. A long-term evaluation of once-daily inhaled tiotropium in chronic obstructive pulmonary disease. Eur Respir J 2002 Feb; 19(2): 217–24

    Article  CAS  PubMed  Google Scholar 

  56. Brusasco V, Hodder R, Miravitlles M, et al. Health outcomes following treatment for six months with once daily tiotropium compared with twice daily salmeterol in patients with COPD. Thorax 2003 May; 58(5): 399–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Vincken W, van Noord JA, Greefhorst APM, et al. Improved health outcomes in patients with COPD during 1 yr’s treatment with tiotropium. Eur Respir J 2002 Feb; 19(2): 209–16

    Article  CAS  PubMed  Google Scholar 

  58. Boehringer Ingelheim Pharmaceuticals. Trial comparing tiotropium inhalation capsules vs placebo in chronic obstructive pulmonary disease (COPD) [ClinicalTrials.gov identifier NCT00523991]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2011 Oct 18]

  59. Adams SG, Anzueto A, Briggs DD, et al. Evaluation of withdrawal of maintenance tiotropium in COPD. Respir Med 2009 Oct; 103(10): 1415–20

    Article  PubMed  Google Scholar 

  60. Donohue JF, Menjoge S, Kesten S. Tolerance to bronchodilating effects of salmeterol in COPD. Respir Med 2003 Sep; 97(9): 1014–20

    Article  CAS  PubMed  Google Scholar 

  61. Tashkin DP, Varghese ST. Combined treatment with formoterol and tiotropium is more efficacious than treatment with tiotropium alone in patients with chronic obstructive pulmonary disease, regardless of smoking status, inhaled corticosteroid use, baseline severity, or gender. Pulm Pharmacol Ther 2011 Feb; 24(1): 147–52

    Article  CAS  PubMed  Google Scholar 

  62. Tashkin D, Celli B, Kesten S, et al. Effect of tiotropium in men and women with COPD: results of the 4-year UPLIFT trial. Respir Med 2010 Oct; 104(10): 1495–504

    Article  PubMed  Google Scholar 

  63. Tashkin DP, Celli B, Kesten S, et al. Long-term efficacy of tiotropium in relation to smoking status in the UPLIFT trial. Eur Respir J 2010 Feb; 35(2): 287–94

    Article  CAS  PubMed  Google Scholar 

  64. Fukuchi Y, Fernandez L, Kuo H-P, et al. Efficacy of tiotropium in COPD patients from Asia: a subgroup analysis from the UPLIFT trial. Respirology 2011 Jul; 16(5): 825–35

    Article  PubMed  Google Scholar 

  65. Decramer M, Celli B, Kesten S, et al. Effect of tiotropium on outcomes in patients with moderate chronic obstructive pulmonary disease (UPLIFT): a prespecified subgroup analysis of a randomised controlled trial. Lancet 2009 Oct 3; 374(9696): 1171–8

    Article  CAS  PubMed  Google Scholar 

  66. Morice AH, Celli B, Kesten S, et al. COPD in young patients: a pre-specified analysis of the four-year trial of tiotropium (UPLIFT). Respir Med 2010 Nov; 104(11): 1659–67

    Article  CAS  PubMed  Google Scholar 

  67. Troosters T, Celli B, Lystig T, et al. Tiotropium as a first maintenance drug in COPD: secondary analysis of the UPLIFT trial. Eur Respir J 2010 Jul; 36(1): 65–73

    Article  CAS  PubMed  Google Scholar 

  68. Cooper CB, Anzueto A, Decramer M, et al. Tiotropium reduces risk of exacerbations irrespective of previous use of inhaled anticholinergics in placebo-controlled clinical trials. Int J Chron Obstruct Pulmon Dis 2011; 6: 269–75

    Article  PubMed Central  PubMed  Google Scholar 

  69. Dusser D, Bravo ML, Iacono P. The effect of tiotropium on exacerbations and airflow in patients with COPD. Eur Respir J 2006 Mar; 27(3): 547–55

    Article  CAS  PubMed  Google Scholar 

  70. Beeh KM, Vogelmeier C, Rutten-van Mölkem MPHH, et al. Tiotropium vs salmeterol in GOLD II and Maintenancenaïve COPD patients: subgroup analyses of POET-COPD™ trial [abstract no. P251]. 21st Annual Congress of the European Respiratory Society; 2011 Sep 24–28; Amsterdam

  71. Celli B, Decramer M, Kesten S, et al. Mortality in the 4-year trial of tiotropium (UPLIFT) in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2009 Nov 15; 180(10): 948–55

    Article  CAS  PubMed  Google Scholar 

  72. Rodrigo GJ, Castro-Rodriguez JA, Nannini LJ, et al. Tiotropium and risk for fatal and nonfatal cardiovascular events in patients with chronic obstructive pulmonary disease: systematic review with meta-analysis. Respir Med 2009 Oct; 103(10): 1421–9

    Article  PubMed  Google Scholar 

  73. Kesten S, Celli B, Decramer M, et al. Tiotropium HandiHaler® in the treatment of COPD: a safety review. Int J Chron Obstruct Pulmon Dis 2009; 4: 397–409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Celli B, Decramer M, Leimer I, et al. Cardiovascular safety of tiotropium in patients with COPD. Chest 2010 Jan; 137(1): 20–30

    Article  CAS  PubMed  Google Scholar 

  75. Calverley PMA, Stockley RA, Seemungal TA, et al. Reported pneumonia in patients with COPD: findings from the INSPIRE study. Chest 2011 Mar; 139(3): 505–12

    Article  PubMed  Google Scholar 

  76. US Food and Drug Administration. Early communication about an ongoing safety review of tiotropium (marketed as Spiriva HandiHaler) [online]. Available from URL: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/ucm070651.htm [Accessed 2011 Oct 13]

  77. Singh S, Loke YK, Furberg CD. Inhaled anticholinergics and risk of major adverse cardiovascular events in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA 2008 Sep 24; 300(12): 1439–50

    Article  CAS  PubMed  Google Scholar 

  78. Gani R, Griffin J, Kelly S, et al. Economic analyses comparing tiotropium with ipratropium or salmeterol in UK patients with COPD. Prim Care Respir J 2010 Mar; 19(1): 68–74

    Article  PubMed  Google Scholar 

  79. Maniadakis N, Tzanakis N, Fragoulakis V, et al. Economic evaluation of tiotropium and salmeterol in the treatment of chronic obstructive pulmonary disease (COPD) in Greece. Curr Med Res Opin 2006 Aug; 22(8): 1599–607

    Article  PubMed  Google Scholar 

  80. Naik S, Kamal KM, Keys PA, et al. Evaluating the cost-effectiveness of tiotropium versus salmeterol in the treatment of chronic obstructive pulmonary disease. Clin Outcomes Res 2010; 2(1): 25–36

    Google Scholar 

  81. Rutten-van Mölken MPMH, Oostenbrink JB, Miravitlles M, et al. Modelling the 5-year cost effectiveness of tiotropium, salmeterol and ipratropium for the treatment of chronic obstructive pulmonary disease in Spain. Eur J Health Econ 2007 Jun; 8(2): 123–35

    Article  PubMed Central  PubMed  Google Scholar 

  82. Oostenbrink JB, Rutten-van Mölken MPMH, Monz BU, et al. Probabilistic Markov model to assess the cost-effectiveness of bronchodilator therapy in COPD patients in different countries. Value Health 2005 Jan–Feb; 8(1): 32–46

    Article  PubMed  Google Scholar 

  83. Rennard SI, Anderson W, ZuWallack R, et al. Use of a long-acting inhaled β2-adrenergic agonist, salmeterol xinafoate, in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001 Apr; 163(5): 1087–92

    Article  CAS  PubMed  Google Scholar 

  84. Mittmann N, Hernandez P, Mellström C, et al. Cost effectiveness of budesonide/formoterol added to tiotropium bromide versus placebo added to tiotropium bromide in patients with chronic obstructive pulmonary disease: Australian, Canadian and Swedish healthcare perspectives. Pharmacoeconomics 2011 May 1; 29(5): 403–14

    Article  PubMed  Google Scholar 

  85. Center for Drug Evaluation and Research. Approval letter: NDA 21-395 [online]. Available from URL: http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2004/21395ltr.pdf [Accessed 2011 Nov 30]

  86. Anthonisen NR, Connett JE, Kiley JP, et al. Effects of smoking intervention and the use of an inhaled anti-cholinergic bronchodilator on the rate of decline of FEV1: the Lung Health Study. JAMA 1994 Nov 16; 272(19): 1497–505

    Article  CAS  PubMed  Google Scholar 

  87. Celli BR, Thomas NE, Anderson JA, et al. Effect of pharmacotherapy on rate of decline of lung function in chronic obstructive pulmonary disease: results from the TORCH study. Am J Respir Crit Care Med 2008 Aug 15; 178(4): 332–8

    Article  PubMed  Google Scholar 

  88. Decramer M, Molenberghs G, Liu D, et al. Premature discontinuation during the UPLIFT study. Respir Med 2011 Oct; 105(10): 1523–30

    Article  PubMed  Google Scholar 

  89. Tashkin DP. Preventing and managing exacerbations in COPD: critical appraisal of the role of tiotropium. Int J Chron Obstruct Pulmon Dis 2010; 5: 41–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Rabe KF. Anticholinergic drugs for the treatment of COPD are safe: are they? Chest 2010 Jan; 137(1): 1–3

    Article  CAS  PubMed  Google Scholar 

  91. Anthonisen NR, Connett JE, Enright PL, et al. Hospitalizations and mortality in the Lung Health Study. Am J Respir Crit Care Med 2002 Aug 1; 166(3): 333–9

    Article  PubMed  Google Scholar 

  92. Lee TA, Pickard AS, Au DH, et al. Risk for death associated with medications for recently diagnosed chronic obstructive pulmonary disease. Ann Intern Med 2008 Sep 16; 149(6): 380–90

    Article  PubMed  Google Scholar 

  93. Michele TM, Pinheiro S, Iyasu S. The safety of tiotropium: the FDA’s conclusions. N Engl J Med 2010 Sep 16; 363(12): 1097–9

    Article  CAS  PubMed  Google Scholar 

  94. Lanes S, Golisch W, Mikl J. Ipratropium and lung health study [letter]. Am J Respir Crit Care Med 2003 Mar 1; 167(5): 801

    Article  PubMed  Google Scholar 

  95. Reilly JJ. COPD and declining FEV1: time to divide and conquer? N Engl J Med 2008 Oct 9; 359(15): 1616–8

    Article  CAS  PubMed  Google Scholar 

  96. Singh S, Loke YK, Enright PL, et al. Mortality associated with tiotropium mist inhaler in patients with chronic obstructive pulmonary disease: systematic review and meta-analysis of randomised controlled trials. BMJ 2011; 342: d3215

    Article  PubMed Central  PubMed  Google Scholar 

  97. Disse E, Metzdorf N, Martin A, et al. Mortality associated with tiotropium mist inhaler? A critical appraisal of the authors’ selection and use of previously communicated tiotropium Respimat data [online]. Available from URL: http://www.bmj.com/content/342/bmj.d3215?tab=responses [Accessed 2011 Nov 29]

  98. Boehringer Ingelheim Pharmaceuticals. Comparison of tiotropium in the HandhiHaler versus the Respimat in chronic obstructive pulmonary disease [ClinicalTrials.gov identifier NCT01126437]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2011 Oct 14]

  99. Boehringer Ingelheim GmbH. Boehringer Ingelheim/Pfizer position regarding the recent publication by Singh et al. in the British Medical Journal, June 15, 2011 [media release]. Available from URL: http://www.boehringer-ingelheim.com/news/news_releases/press_releases/2011/15_june_2011_copd.html [Accessed 2011 Oct 14]

  100. Cazzola M, Calzetta L, Matera MG. The cardiovascular risk of tiotropium: is it real? Expert Opin Drug Saf 2010 Sep; 9(5): 783–92

    Article  CAS  PubMed  Google Scholar 

  101. Peters SP, Kunselman SJ, Icitovic N, et al. Tiotropium bromide step-up therapy for adults with uncontrolled asthma. N Engl J Med 2010 Oct 28; 363(18): 1715–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian M. Keating.

Additional information

Various sections of the manuscript reviewed by: J.F. Donohue, Division of Pulmonary Disease and Critical Care Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; A.D. D’Urzo, Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada; C. Incorvaia, Department of Rehabilitation, Pulmonary Rehabilitation Unit, ICP Hospital, Milan, Italy; A. Wanner, Division of Pulmonary and Critical Care Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.

Data Selection

Sources: Medical literature (including published and unpublished data) on tiotropium bromide in chronic obstructive pulmonary disease was identified by searching databases since 1996 (including MEDLINE and EMBASE and in-house AdisBase), bibliographies from published literature, clinical trial registries/databases and websites (including those of regional regulatory agencies and the manufacturer). Additional information (including contributory unpublished data) was also requested from the company developing the drug.

Search strategy: MEDLINE, EMBASE and AdisBase search terms were ‘tiotropium’ or ‘tiotropium bromide’ and (‘COPD’ or ‘chronic obstructive pulmonary disease’ or ‘pulmonary disease, chronic obstructive’ or ‘chronic obstructive lung disease’). Searches were last updated 19 December 2011.

Selection: Studies in patients with chronic obstructive pulmonary disease who received tiotropium bromide. Inclusion of studies was based mainly on the methods section of the trials. When available, large, well controlled trials with appropriate statistical methodology were preferred. Relevant pharmacodynamic and pharmacokinetic data are also included.

Index terms: Tiotropium bromide, chronic pulmonary obstructive disease, pharmacodynamics, pharmacokinetics, therapeutic use, tolerability, pharmacoeconomics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keating, G.M. Tiotropium Bromide Inhalation Powder. Drugs 72, 273–300 (2012). https://doi.org/10.2165/11208620-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11208620-000000000-00000

Keywords

Navigation