Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Environmental factors and their timing in adult-onset multiple sclerosis

Abstract

Multiple sclerosis (MS) is a common, complex neurological disease. Epidemiological data implicate both genetic and environmental factors in the etiology of MS, with various factors interacting with one another. Environmental exposures might occur long before the disease becomes clinically evident, as suggested by the wide range in onset age. In this Review, we examine the key time periods during which the environment might contribute to MS susceptibility, as well as the potential environmental factors involved. Understanding the nature of environmental influences in MS is highly relevant to the development of public health measures that are aimed at preventing this debilitating disease.

Key Points

  • Evidence from studies of disease risk in relation to the month of birth implicates early-life environmental factors in multiple sclerosis (MS) susceptibility

  • Migration data, and variability in disease onset and relapse rates, suggest that environmental factors might also act later in life and during the course of MS

  • Vitamin D is an attractive candidate factor implicated by the association of MS risk with latitude and month of birth, and is likely to act early in life

  • Epstein–Barr virus is also linked to MS and seems to act in adolescence or early adulthood to alter susceptibility

  • Smoking is associated with increased susceptibility to adult-onset MS when individuals are exposed later in life, and can alter the course of established MS

  • Strategies aimed at preventing or treating multiple sclerosis by manipulating environmental factors may provide a powerful way of reducing the prevalence of this often devastating disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: End-of-summer sunlight and MS prevalence in France.
Figure 2: Pedigree diagram showing maternal parent-of-origin effects in MS.
Figure 3: Vitamin D levels and MS.
Figure 4: Effect size of environmental factors on MS risk during different life periods.

Similar content being viewed by others

References

  1. Hemmer, B., Archelos, J. J. & Hartung, H. P. New concepts in the immunopathogenesis of multiple sclerosis. Nat. Rev. Neurosci. 3, 291–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Ramagopalan, S. V. & Ebers, G. C. Genes for multiple sclerosis. Lancet 371, 283–285 (2008).

    Article  PubMed  Google Scholar 

  3. Pugliatti, M., Sotgiu, S. & Rosati, G. The worldwide prevalence of multiple sclerosis. Clin. Neurol. Neurosurg. 104, 182–191 (2002).

    Article  PubMed  Google Scholar 

  4. Willer, C. J., Dyment, D. A., Risch, N. J., Sadovnick, A. D. & Ebers, G. C. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc. Natl Acad. Sci. USA 100, 12877–12882 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Islam, T. et al. Differential twin concordance for multiple sclerosis by latitude of birthplace. Ann. Neurol. 60, 56–64 (2006).

    Article  PubMed  Google Scholar 

  6. Ebers, G. C. Environmental factors and multiple sclerosis. Lancet Neurol. 7, 268–277 (2008).

    Article  PubMed  Google Scholar 

  7. Ascherio, A. & Munger, K. L. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann. Neurol. 61, 288–299 (2007).

    Article  PubMed  Google Scholar 

  8. Ascherio, A. & Munger, K. L. Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. Ann. Neurol. 61, 504–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Yeh, E. A. et al. Pediatric multiple sclerosis. Nat. Rev. Neurol. 5, 621–631 (2009).

    Article  PubMed  Google Scholar 

  10. Sadovnick, A. D., Bulman, D. & Ebers, G. C. Parent–child concordance in multiple sclerosis. Ann. Neurol. 29, 252–255 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Hoppenbrouwers, I. A. et al. Maternal transmission of multiple sclerosis in a Dutch population. Arch. Neurol. 65, 345–348 (2008).

    Article  PubMed  Google Scholar 

  12. Ebers, G. C. et al. Parent-of-origin effect in multiple sclerosis: observations in half-siblings. Lancet 363, 1773–1774 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Herrera, B. M. et al. Parent-of-origin effects in MS: observations from avuncular pairs. Neurology 71, 799–803 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Ramagopalan, S. V. et al. Parent-of-origin effect in multiple sclerosis: observations from interracial matings. Neurology 73, 602–605 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Willer, C. J. et al. Timing of birth and risk of multiple sclerosis: population based study. BMJ 330, 120 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Goodin, D. S. The causal cascade to multiple sclerosis: a model for MS pathogenesis. PLoS One 4, e4565 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bulman, D. E., Sadovnick, A. D. & Ebers, G. C. Age of onset in siblings concordant for multiple sclerosis. Brain 114, 937–950 (1991).

    Article  PubMed  Google Scholar 

  18. Chao, M. J. et al. Epigenetics in multiple sclerosis susceptibility: difference in transgenerational risk localizes to the major histocompatibility complex. Hum. Mol. Genet. 18, 261–266 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Dean, G. & Elian, M. Age at immigration to England of Asian and Caribbean immigrants and the risk of developing multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 63, 565–568 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alter, M., Leibowitz, U. & Speer, J. Risk of multiple sclerosis related to age at immigration to Israel. Arch. Neurol. 15, 234–237 (1966).

    Article  CAS  PubMed  Google Scholar 

  21. Hammond, S. R., English, D. R. & McLeod, J. G. The age-range of risk of developing multiple sclerosis: evidence from a migrant population in Australia. Brain 123, 968–974 (2000).

    Article  PubMed  Google Scholar 

  22. Orton, S. M. et al. Effect of immigration on multiple sclerosis sex ratio in Canada: the Canadian Collaborative Study. J. Neurol. Neurosurg. Psychiatry doi:10.1136/jnnp.2008.162784.

    Article  Google Scholar 

  23. Ramagopalan, S. V. et al. Age of puberty and the risk of multiple sclerosis: a population based study. Eur. J. Neurol. 16, 342–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Ong, K. K. et al. Genetic variation in LIN28B is associated with the timing of puberty. Nat. Genet. doi:10.1038/ng.382.

  25. Du, C. et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat. Immunol. 10, 1252–1259 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Riise, T. et al. Clustering of residence of multiple sclerosis patients at age 13 to 20 years in Hordaland, Norway. Am. J. Epidemiol. 133, 932–939 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Pugliatti, M. et al. Evidence of early childhood as the susceptibility period in multiple sclerosis: space-time cluster analysis in a Sardinian population. Am. J. Epidemiol. 164, 326–333 (2006).

    Article  PubMed  Google Scholar 

  28. Confavreux, C. & Vukusic, S. Natural history of multiple sclerosis: a unifying concept. Brain 129, 606–616 (2006).

    Article  PubMed  Google Scholar 

  29. Cooper, G. S. & Stroehla, B. C. The epidemiology of autoimmune diseases. Autoimmun. Rev. 2, 119–125 (2003).

    Article  PubMed  Google Scholar 

  30. Tremlett, H. et al. Monthly ambient sunlight, infections and relapse rates in multiple sclerosis. Neuroepidemiology 31, 271–279 (2008).

    Article  PubMed  Google Scholar 

  31. Embry, A. F., Snowdon, L. R. & Vieth, R. Vitamin D and seasonal fluctuations of gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann. Neurol. 48, 271–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Goldberg, P., Fleming, M. C. & Picard, E. H. Multiple sclerosis: decreased relapse rate through dietary supplementation with calcium, magnesium and vitamin D. Med. Hypotheses 21, 193–200 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Newhook, L. A. et al. Vitamin D insufficiency common in newborns, children and pregnant women living in Newfoundland and Labrador, Canada. Matern. Child Nutr. 5, 186–191 (2009).

    Article  PubMed  Google Scholar 

  34. Ramagopalan, S. V. et al. Expression of the multiple sclerosis-associated MHC class II allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet. 5, e1000369 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ramagopalan, S. V. et al. HLA-DRB1 and month of birth in multiple sclerosis. Neurology 73, 2107–2111 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Gardener, H. et al. Prenatal and perinatal factors and risk of multiple sclerosis. Epidemiology 20, 611–618 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ramagopalan, S. V., Dyment, D. A., Ebers, G. C. & Sadovnick, A. D. Gestational diabetes and multiple sclerosis. Epidemiology 20, 783–784 (2009).

    Article  PubMed  Google Scholar 

  38. Zhang, C. et al. Maternal plasma 25-hydroxyvitamin D concentrations and the risk for gestational diabetes mellitus. PLoS One 3, e3753 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Novakovic, B. et al. Placenta specific methylation of the vitamin D 24-hydroxylase gene: Implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J. Biol. Chem. 284, 14838–14848 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van der Mei, I. A. et al. Past exposure to sun, skin phenotype, and risk of multiple sclerosis: case-control study. BMJ 327, 316 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kampman, M. T., Wilsgaard, T. & Mellgren, S. I. Outdoor activities and diet in childhood and adolescence relate to MS risk above the Arctic Circle. J. Neurol. 254, 471–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Antonovsky, A. et al. Epidemiologic study of multiple sclerosis in Israel. I. An overall review of methods and findings. Arch. Neurol. 13, 183–193 (1965).

    Article  CAS  PubMed  Google Scholar 

  43. Cendrowski, W. et al. Epidemiological study of multiple sclerosis in western Poland. Eur. Neurol. 2, 90–108 (1969).

    Article  CAS  PubMed  Google Scholar 

  44. Islam, T., Gauderman, W. J., Cozen, W. & Mack, T. M. Childhood sun exposure influences risk of multiple sclerosis in monozygotic twins. Neurology 69, 381–388 (2007).

    Article  PubMed  Google Scholar 

  45. Orton, S. M. et al. Evidence for genetic regulation of vitamin D status in twins with multiple sclerosis. Am. J. Clin. Nutr. 88, 441–447 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Munger, K. L., Levin, L. I., Hollis, B. W., Howard, N. S. & Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296, 2832–2838 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Correale, J., Ysrraelit, M. C. & Gaitán, M. I. Immunomodulatory effects of vitamin D in multiple sclerosis. Brain 132, 1146–1160 (2009).

    Article  PubMed  Google Scholar 

  48. Freedman, D. M., Dosemeci, M. & Alavanja, M. C. Mortality from multiple sclerosis and exposure to residential and occupational solar radiation: a case-control study based on death certificates. Occup. Environ. Med. 57, 418–421 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Westberg, M., Feychting, M., Jonsson, F., Nise, G. & Gustavsson, P. Occupational exposure to UV light and mortality from multiple sclerosis. Am. J. Ind. Med. 52, 353–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Munger, K. L. et al. Vitamin D intake and incidence of multiple sclerosis. Neurology 62, 60–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Soilu-Hanninen, M. et al. A longitudinal study of serum 25–hydroxyvitamin D and intact parathyroid hormone levels indicate the importance of vitamin D and calcium homeostasis regulation in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 79, 152–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Avgil, M. & Ornoy, A. Herpes simplex virus and Epstein–Barr virus infections in pregnancy: consequences of neonatal or intrauterine infection. Reprod. Toxicol. 21, 436–445 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Sumaya, C. V., Myers, L. W. & Ellison, G. W. Epstein–Barr virus antibodies in multiple sclerosis. Arch. Neurol. 37, 94–96 (1980).

    Article  CAS  PubMed  Google Scholar 

  54. Bray, P. F., Bloomer, L. C., Salmon, V. C., Bagley, M. H. & Larsen, P. D. Epstein–Barr virus infection and antibody synthesis in patients with multiple sclerosis. Arch. Neurol. 40, 406–408 (1983).

    Article  CAS  PubMed  Google Scholar 

  55. Larsen, P. D., Bloomer, L. C. & Bray, P. F. Epstein–Barr nuclear antigen and viral capsid antigen antibody titers in multiple sclerosis. Neurology 35, 435–438 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Sumaya, C. V., Myers, L. W., Ellison, G. W. & Ench, Y. Increased prevalence and titer of Epstein–Barr virus antibodies in patients with multiple sclerosis. Ann. Neurol. 17, 371–377 (1985).

    Article  CAS  PubMed  Google Scholar 

  57. Shirodaria, P. V. et al. Viral antibody titers. Comparison in patients with multiple sclerosis and rheumatoid arthritis. Arch. Neurol. 44, 1237–1241 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. Munch, M., Riisom, K., Christensen, T., Møller-Larsen, A. & Haahr, S. The significance of Epstein–Barr virus seropositivity in multiple sclerosis patients? Acta Neurol. Scand. 97, 171–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Myhr, K. M. et al. Altered antibody pattern to Epstein–Barr virus but not to other herpesviruses in multiple sclerosis: a population based case–control study from western Norway. J. Neurol. Neurosurg. Psychiatry 64, 539–542 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wagner, H. J. et al. Altered prevalence and reactivity of anti-Epstein−Barr virus antibodies in patients with multiple sclerosis. Viral Immunol. 13, 497–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Ascherio, A. et al. Epstein–Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286, 3083–3088 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Sundström, P. et al. An altered immune response to Epstein–Barr virus in multiple sclerosis: a prospective study. Neurology 62, 2277–2282 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Haahr, S., Plesner, A. M., Vestergaard, B. F. & Höllsberg, P. A role of late Epstein–Barr virus infection in multiple sclerosis. Acta Neurol. Scand. 109, 270–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Ponsonby, A. L. et al. Exposure to infant siblings during early life and risk of multiple sclerosis. JAMA 293, 463–469 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Levin, L. I. et al. Temporal relationship between elevation of Epstein–Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 293, 2496–2500 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. DeLorenze, G. N. et al. Epstein–Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch. Neurol. 63, 839–844 (2006).

    Article  PubMed  Google Scholar 

  67. Goldacre, M. J., Wotton, C. J., Seagroatt, V. & Yeates, D. Multiple sclerosis after infectious mononucleosis: record linkage study. J. Epidemiol. Community Health 58, 1032–1035 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Thacker, E. L., Mirzaei, F. & Ascherio, A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann. Neurol. 59, 499–503 (2006).

    Article  PubMed  Google Scholar 

  69. Nielsen, T. R. et al. Multiple sclerosis after infectious mononucleosis. Arch. Neurol. 64, 72–75 (2007).

    Article  PubMed  Google Scholar 

  70. Ramagopalan, S. V. et al. Association of infectious mononucleosis with multiple sclerosis. a population-based study. Neuroepidemiology 32, 257–262 (2009).

    Article  PubMed  Google Scholar 

  71. Zaadstra, B. M., Chorus, A. M., van Buuren, S., Kalsbeek, H. & van Noort, J. M. Selective association of multiple sclerosis with infectious mononucleosis. Mult. Scler. 14, 307–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Hernán, M. A., Zhang, S. M., Lipworth, L., Olek, M. J. & Ascherio, A. Multiple sclerosis and age at infection with common viruses. Epidemiology 12, 301–306 (2001).

    Article  PubMed  Google Scholar 

  73. De Jager, P. L. et al. Integrating risk factors: HLA-DRB1*1501 and Epstein–Barr virus in multiple sclerosis. Neurology 70, 1113–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Marrie, R. A. et al. Multiple sclerosis and antecedent infections: a case–control study. Neurology 54, 2307–2310 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Kriesel, J. D. & Sibley, W. A. The case for rhinoviruses in the pathogenesis of multiple sclerosis. Mult. Scler. 11, 1–4 (2005).

    Article  PubMed  Google Scholar 

  76. Wandinger, K. et al. Association between clinical disease activity and Epstein–Barr virus reactivation in MS. Neurology 55, 178–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Lindsey, J. W., Hatfield, L. M., Crawford, M. P. & Patel, S. Quantitative PCR for Epstein–Barr virus DNA and RNA in multiple sclerosis. Mult. Scler. 15, 153–158 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Buljevac, D. et al. Epstein–Barr virus and disease activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 76, 1377–1381 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Torkildsen, Ø., Nyland, H., Myrmel, H. & Myhr, K. M. Epstein–Barr virus reactivation and multiple sclerosis. Eur. J. Neurol. 15, 106–108 (2008).

    CAS  PubMed  Google Scholar 

  80. Lünemann, J. D. et al. Elevated EBNA1 immune responses predict conversion to multiple sclerosis. Ann. Neurol. doi:10.1002/ana.21886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Farrell, R. A. et al. Humoral immune response to EBV in multiple sclerosis is associated with disease activity on MRI. Neurology 73, 32–38 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Edwards, S., Zvartau, M., Clarke, H., Irving, W. & Blumhardt, L. D. Clinical relapses and disease activity on magnetic resonance imaging associated with viral upper respiratory tract infections in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 64, 736–741 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sibley, W. A., Bamford, C. R. & Clark, K. Clinical viral infections and multiple sclerosis. Lancet 325, 1313–1315 (1985).

    Article  PubMed Central  Google Scholar 

  84. Montgomery, S. M., Bahmanyar, S., Hillert, J., Ekbom, A. & Olsson, T. Maternal smoking during pregnancy and multiple sclerosis amongst offspring. Eur. J. Neurol. 15, 1395–1399 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Charlton, A. Children and smoking: the family circle. Br. Med. Bull. 52, 90–107 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Hedström, A. K., Bäärnhielm, M., Olsson, T. & Alfredsson, L. Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology 73, 696–701 (2009).

    Article  PubMed  Google Scholar 

  87. Hernán, M. A. et al. Cigarette smoking and the progression of multiple sclerosis. Brain 128, 1461–1465 (2005).

    Article  PubMed  Google Scholar 

  88. Riise, T., Nortvedt, M. W. & Ascherio, A. Smoking is a risk factor for multiple sclerosis. Neurology 61, 1122–1124 (2003).

    Article  PubMed  Google Scholar 

  89. Villard-Mackintosh, L. & Vessey, M. P. Oral contraceptives and reproductive factors in multiple sclerosis incidence. Contraception 47, 161–168 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Thorogood, M. & Hannaford, P. C. The influence of oral contraceptives on the risk of multiple sclerosis. Br. J. Obstet. Gynaecol. 105, 1296–1299 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Hernán, M. A., Olek, M. J. & Ascherio, A. Cigarette smoking and incidence of multiple sclerosis. Am. J. Epidemiol. 154, 69–74 (2001).

    Article  PubMed  Google Scholar 

  92. Di Pauli, F. et al. Smoking is a risk factor for early conversion to clinically definite multiple sclerosis. Mult. Scler. 14, 1026–1030 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Healy, B. C. et al. Smoking and disease progression in multiple sclerosis. Arch. Neurol. 66, 858–864 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pittas, F. et al. Smoking is associated with progressive disease course and increased progression in clinical disability in a prospective cohort of people with multiple sclerosis. J. Neurol. 256, 577–585 (2009).

    Article  PubMed  Google Scholar 

  95. Celius, E. G. & Vandvik, B. Multiple sclerosis in Oslo, Norway: prevalence on 1 January 1995 and incidence over a 25-year period. Eur. J. Neurol. 8, 463–469 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Hernán, M. A., Olek, M. J. & Ascherio, A. Geographic variation of MS incidence in two prospective studies of US women. Neurology 53, 1711–1718 (1999).

    Article  PubMed  Google Scholar 

  97. Alonso, A. & Hernán, M. A. Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 71, 129–135 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Koch-Henriksen, N. The Danish Multiple Sclerosis Registry: a 50-year follow-up. Mult. Scler. 5, 293–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Barnett, M. H., Williams, D. B., Day, S., Macaskill, P. & McLeod, J. G. Progressive increase in incidence and prevalence of multiple sclerosis in Newcastle, Australia: a 35-year study. J. Neurol. Sci. 213, 1–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Sarasoja, T., Wikström, J., Paltamaa, J., Hakama, M. & Sumelahti, M. L. Occurrence of multiple sclerosis in central Finland: a regional and temporal comparison during 30 years. Acta Neurol. Scand. 110, 331–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Sundström, P., Nyström, L. & Forsgren, L. Incidence (1988–1997) and prevalence (1997). of multiple sclerosis in Vasterbotten County in northern Sweden. J. Neurol. Neurosurg. Psychiatry 74, 29–32 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ranzato, F. et al. Increasing frequency of multiple sclerosis in Padova, Italy: a 30 year epidemiological survey. Mult. Scler. 9, 387–392 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Orton, S. M. et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 5, 932–936 (2006).

    Article  PubMed  Google Scholar 

  104. Vukusic, S. et al. Pregnancy and multiple sclerosis (the PRIMS study): clinical predictors of post-partum relapse. Brain 127, 1353–1360 (2004).

    Article  PubMed  Google Scholar 

  105. Suarez, F., Rossignol, C. & Garabédian, M. Interactive effect of estradiol and vitamin D receptor gene polymorphisms as a possible determinant of growth in male and female infants. J. Clin. Endocrinol. Metab. 83, 3563–3568 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Spach, K. M. & Hayes, C. E. Vitamin D3 confers protection from autoimmune encephalomyelitis only in female mice. J. Immunol. 175, 4119–4126 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Celius, E. G. et al. Sex and age at diagnosis are correlated with the HLA-DR2, DQ6 haplotype in multiple sclerosis. J. Neurol. Sci. 178, 132–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Hayes, C. E. & Donald Acheson, E. A unifying multiple sclerosis etiology linking virus infection, sunlight, and vitamin D, through viral interleukin-10. Med. Hypotheses 71, 85–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Holmøy, T. Vitamin D status modulates the immune response to Epstein–Barr virus: Synergistic effect of risk factors in multiple sclerosis. Med. Hypotheses 70, 66–69 (2008).

    Article  PubMed  CAS  Google Scholar 

  110. Sadovnick, A. D., Duquette, P., Herrera, B., Yee, I. M. & Ebers, G. C. A timing-of-birth effect on multiple sclerosis clinical phenotype. Neurology 69, 60–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Vieth, R. et al. The urgent need to recommend an intake of vitamin D that is effective. Am. J. Clin. Nutr. 85, 649–650 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Wingerchuk, D. M., Lesaux, J., Rice, G. P., Kremenchutzky, M. & Ebers, G. C. A pilot study of oral calcitriol (1, 25-dihydroxyvitamin D3) for relapsing–remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 76, 1294–1296 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kimball, S. M., Ursell, M. R., O'Connor, P. & Vieth, R. Safety of vitamin D3 in adults with multiple sclerosis. Am. J. Clin. Nutr. 86, 645–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Macsween, K. F. & Crawford, D. H. Epstein–Barr virus-recent advances. Lancet Infect. Dis. 3, 131–140 (2003).

    Article  PubMed  Google Scholar 

  115. Multiple Sclerosis International Federation Atlas of MS database [online], (2010).

  116. Acheson, E. D., Bachrach, C. A. & Wright, F. M. Some comments on the relationship of the distribution of multiple sclerosis to latitude, solar radiation, and other variables. Acta Psychiatr. Scand. Suppl. 35, 132–147 (1960).

    Article  CAS  PubMed  Google Scholar 

  117. McGrath, J. J., Féron, F. P., Burne, T. H., Mackay-Sim, A. & Eyles, D. W. Vitamin D3—implications for brain development. J. Steroid Biochem. Mol. Biol. 89–90, 557–560 (2004).

    Article  PubMed  CAS  Google Scholar 

  118. Serafini, B. et al. Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain. J. Exp. Med. 204, 2899–2912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jilek, S. et al. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 131, 1712–1721 (2008).

    Article  PubMed  Google Scholar 

  120. Lang, H. L. et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3, 940–943 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Smith, K. J., Kapoor, R. & Felts, P. A. Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol. 9, 69–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Scolding, N. & Franklin, R. Axon loss in multiple sclerosis. Lancet 352, 340–341 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Pembrey, M. E. et al. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159–166 (2006).

    Article  PubMed  Google Scholar 

  124. Alonso, A. et al. Recent use of oral contraceptives and the risk of multiple sclerosis. Arch. Neurol. 62, 1362–1365 (2005).

    Article  PubMed  Google Scholar 

  125. Lee, M. & O'Brien, P. Pregnancy and multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 79, 1308–1311 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Hernán, M. A., Hohol, M. J., Olek, M. J., Spiegelman, D. & Ascherio, A. Oral contraceptives and the incidence of multiple sclerosis. Neurology 55, 848–854 (2000).

    Article  PubMed  Google Scholar 

  127. Zorgdrager, A. & De Keyser, J. Menstrually related worsening of symptoms in multiple sclerosis. J. Neurol. Sci. 149, 95–97 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Zorgdrager, A. & De Keyser, J. The premenstrual period and exacerbations in multiple sclerosis. Eur. Neurol. 48, 204–206 (2002).

    Article  PubMed  Google Scholar 

  129. Whitacre, C. C. Sex differences in autoimmune disease. Nat. Immunol. 2, 777–780 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Hince, M. et al. The role of sex steroids and gonadectomy in the control of thymic involution. Cell. Immunol. 252, 122–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Walker, L. S. & Abbas, A. K. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat. Rev. Immunol. 2, 11–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Li, S., Hursting, S. D., Davis, B. J., McLachlan, J. A. & Barrett, J. C. Environmental exposure, DNA methylation, and gene regulation: lessons from diethylstilbesterol-induced cancers. Ann. NY Acad. Sci. 983, 161–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Warren, S., Greenhill, S. & Warren, K. G. Emotional stress and the development of multiple sclerosis: case-control evidence of a relationship. J. Chronic Dis. 35, 821–831 (1982).

    Article  CAS  PubMed  Google Scholar 

  134. Grant, I. et al. Severely threatening events and marked life difficulties preceding onset or exacerbation of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 52, 8–13 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li, J. et al. The risk of multiple sclerosis in bereaved parents: A nationwide cohort study in Denmark. Neurology 62, 726–729 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Mohr, D. C., Hart, S. L., Julian, L., Cox, D. & Pelletier, D. Association between stressful life events and exacerbation in multiple sclerosis: a meta-analysis. BMJ 328, 731 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Fassbender, K. et al. Mood disorders and dysfunction of the hypothalamic-pituitary-adrenal axis in multiple sclerosis: association with cerebral inflammation. Arch. Neurol. 55, 66–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Souberbielle, B. E., Szawlowski, P. W. & Russell, W. C. Is there a case for a virus aetiology in multiple sclerosis? Scott. Med. J. 40, 55–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  139. Landtblom, A. M., Flodin, U., Söderfeldt, B., Wolfson, C. & Axelson, O. Organic solvents and multiple sclerosis: a synthesis of the current evidence. Epidemiology 7, 429–433 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Mortensen, J. T., Brønnum-Hansen, H. & Rasmussen, K. Multiple sclerosis and organic solvents. Epidemiology 9, 168–171 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Riise, T., Moen, B. E. & Kyvik, K. R. Organic solvents and the risk of multiple sclerosis. Epidemiology 13, 718–720 (2002).

    Article  PubMed  Google Scholar 

  142. Juntunen, J., Taskinen, E., Luisto, M., Iivanainen, M. & Nurminen, M. Cerebrospinal fluid cells and proteins in patients occupationally exposed to organic solvents. J. Neurol. Sci. 54, 413–425 (1982).

    Article  CAS  PubMed  Google Scholar 

  143. Swank, R. L., Lerstad, O., Strøm, A. & Backer, J. Multiple sclerosis in rural Norway its geographic and occupational incidence in relation to nutrition. N. Engl. J. Med. 246, 722–728 (1952).

    Article  CAS  PubMed  Google Scholar 

  144. Westlund, K. Distribution and mortality time trend of multiple sclerosis and some other diseases in Norway. Acta Neurol. Scand. 46, 455–483 (1970).

    Article  CAS  PubMed  Google Scholar 

  145. Brustad, M., Alsaker, E., Engelsen, O., Aksnes, L. & Lund, E. Vitamin D status of middle-aged women at 65–71 degrees N in relation to dietary intake and exposure to ultraviolet radiation. Public Health Nutr. 7, 327–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Brustad, M., Sandanger, T., Aksnes, L. & Lund, E. Vitamin D status in a rural population of northern Norway with high fish liver consumption. Public Health Nutr. 7, 783–789 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Canadian Collaborative Study Group for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Ebers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handel, A., Giovannoni, G., Ebers, G. et al. Environmental factors and their timing in adult-onset multiple sclerosis. Nat Rev Neurol 6, 156–166 (2010). https://doi.org/10.1038/nrneurol.2010.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing