Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alcoholic liver disease: pathogenesis and new targets for therapy

Abstract

Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. The spectrum of disease ranges from fatty liver to hepatic inflammation, necrosis, progressive fibrosis and hepatocellular carcinoma. In developed countries, ALD is a major cause of end-stage liver disease that requires transplantation. The most effective therapy for ALD is alcohol abstinence. However, for patients with severe forms of ALD (that is, alcoholic hepatitis) and for those who do not achieve abstinence from alcohol, targeted therapies are urgently needed. The development of new drugs for ALD is hampered by the scarcity of studies and the drawbacks of existing animal models, which do not reflect all the features of the human disease. However, translational research using liver samples from patients with ALD has identified new potential therapeutic targets, such as CXC chemokines, osteopontin and tumor necrosis factor receptor superfamily member 12A. The pathogenetic roles of these targets, however, remain to be confirmed in animal models. This Review summarizes the epidemiology, natural history, risk factors and current knowledge of the pathogenetic mechanisms of ALD. In addition, this article provides a detailed description of the findings of these translational studies and of the animal models used to study ALD.

Key Points

  • Alcohol abuse is a major cause of preventable morbidity and mortality worldwide, and a major health problem in both the EU and the USA

  • Alcoholic liver disease is a major cause of end-stage liver disease requiring liver transplantation

  • The spectrum of alcoholic liver disease encompasses simple steatosis, steatohepatitis, progressive fibrosis, cirrhosis and hepatocellular carcinoma

  • The basic mechanisms of alcoholic liver disease have been evaluated in both animal models and translational studies, but further research is needed to confirm the results

  • Studies in human liver samples have identified novel therapeutic targets for alcoholic liver disease, including CXC chemokines, osteopontin, tumor necrosis factor receptor superfamily member 12A receptor and nostrin

  • New experimental models of severe alcoholic liver disease that include profound hepatocellular damage and fibrosis should be developed

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The spectrum of alcoholic liver disease.
Figure 2: Proposed algorithm for the treatment of alcoholic hepatitis.
Figure 3: Proposed algorithm for the treatment of alcoholic liver disease.
Figure 4: Pathogenetic pathways leading to progression of alcoholic liver disease.

Similar content being viewed by others

References

  1. Becker, U. et al. Prediction of risk of liver disease by alcohol intake, sex, and age: a prospective population study. Hepatology 23, 1025–1029 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Tome, S. & Lucey, M. R. Review article: current management of alcoholic liver disease. Aliment. Pharmacol. Ther. 19, 707–714 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Gao, B. et al. Innate immunity in alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G516–G525 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Goodman, Z., Makhlouf, H. & Younossi, Z. Reply. Hepatology 54, 370–371 (2011).

    Article  Google Scholar 

  5. Gleeson, D. et al. HFE genotypes in decompensated alcoholic liver disease: phenotypic expression and comparison with heavy drinking and with normal controls. Am. J. Gastroenterol. 101, 304–310 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Singal, A. K., Sagi, S., Kuo, Y. F. & Weinman, S. Impact of hepatitis C virus infection on the course and outcome of patients with acute alcoholic hepatitis. Eur. J. Gastroenterol. Hepatol. 23, 204–209 (2011).

    Article  PubMed  Google Scholar 

  7. Gitto, S., Micco, L., Conti, F., Andreone, P. & Bernardi, M. Alcohol and viral hepatitis: a mini-review. Dig. Liver Dis. 41, 67–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Clouston, A. D., Jonsson, J. R. & Powell, E. E. Steatosis as a cofactor in other liver diseases: hepatitis C virus, alcohol, hemochromatosis, and others. Clin. Liver Dis. 11, 173–189 (2007).

    Article  PubMed  Google Scholar 

  9. The world health report (2002)—reducing risks, promoting healthy life. World Health Organization[online], (2002).

  10. Cortez-Pinto, H. et al. The burden of disease and the cost of illness attributable to alcohol drinking-results of a national study. Alcohol. Clin. Exp. Res. 34, 1442–1449 (2010).

    PubMed  Google Scholar 

  11. Rehm, J. et al. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 373, 2223–2233 (2009).

    Article  PubMed  Google Scholar 

  12. Paula, H. et al. Alcoholic liver disease-related mortality in the United States: 1980–2003. Am. J. Gastroenterol. 105, 1782–1787 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  13. European liver transplant registry. ELTR.org[online], (2011).

  14. Mackie, J. et al. Orthotopic liver transplantation for alcoholic liver disease: a retrospective analysis of survival, recidivism, and risk factors predisposing to recidivism. Liver Transplant. 7, 418–427 (2001).

    Article  CAS  Google Scholar 

  15. Transplant fast facts. Arbor Research Collaborative for Health[online], (2011).

  16. Burra, P. et al. Liver transplantation for alcoholic liver disease in Europe: a study from the ELTR (European Liver Transplant Registry). Am. J. Transplant. 10, 138–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Lefkowitch, J. H. Morphology of alcoholic liver disease. Clin. Liver Dis. 9, 37–53 (2005).

    Article  PubMed  Google Scholar 

  18. Elphick, D. A., Dube, A. K., McFarlane, E., Jones, J. & Gleeson, D. Spectrum of liver histology in presumed decompensated alcoholic liver disease. Am. J. Gastroenterol. 102, 780–788 (2007).

    Article  PubMed  Google Scholar 

  19. Adachi, M. & Brenner, D. A. Clinical syndromes of alcoholic liver disease. Dig. Dis. 23, 255–263 (2005).

    Article  PubMed  Google Scholar 

  20. Lucey, M. R., Mathurin, P. & Morgan, T. R. Alcoholic hepatitis. N. Engl. J. Med. 360, 2758–2769 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Maddrey, W. C. et al. Corticosteroid therapy of alcoholic hepatitis. Gastroenterology 75, 193–199 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Dunn, W. et al. MELD accurately predicts mortality in patients with alcoholic hepatitis. Hepatology 41, 353–358 (2005).

    Article  PubMed  Google Scholar 

  23. Dominguez, M. et al. A new scoring system for prognostic stratification of patients with alcoholic hepatitis. Am. J. Gastroenterol. 103, 2747–2756 (2008).

    Article  PubMed  Google Scholar 

  24. Louvet, A. et al. The Lille model: a new tool for therapeutic strategy in patients with severe alcoholic hepatitis treated with steroids. Hepatology 45, 1348–1354 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Forrest, E. H. et al. Analysis of factors predictive of mortality in alcoholic hepatitis and derivation and validation of the Glasgow alcoholic hepatitis score. Gut 54, 1174–1179 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bortolotti, F., De Paoli, G. & Tagliaro, F. Carbohydrate-deficient transferrin (CDT) as a marker of alcohol abuse: a critical review of the literature 2001–2005. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 841, 96–109 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Hietala, J. et al. Comparison of the combined marker GGT–CDT and the conventional laboratory markers of alcohol abuse in heavy drinkers, moderate drinkers and abstainers. Alcohol Alcohol. 41, 528–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Pessione, F. et al. Five-year survival predictive factors in patients with excessive alcohol intake and cirrhosis. Effect of alcoholic hepatitis, smoking and abstinence. Liver Int. 23, 45–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Chedid, A. et al. Prognostic factors in alcoholic liver disease. VA Cooperative Study Group. Am. J. Gastroenterol. 86, 210–216 (1991).

    CAS  PubMed  Google Scholar 

  30. Amini, M. & Runyon, B. A. Alcoholic hepatitis 2010: a clinician's guide to diagnosis and therapy. World J. Gastroenterol. 16, 4905–4912 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  31. Addolorato, G. et al. Effectiveness and safety of baclofen for maintenance of alcohol abstinence in alcohol- dependent patients with liver cirrhosis: randomised, double-blind controlled study. Lancet 370, 1915–1922 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Palmer, A. J. et al. The long-term cost-effectiveness of improving alcohol abstinence with adjuvant acamprosate. Alcohol Alcohol. 35, 478–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Garbutt, J. C. et al. Efficacy and tolerability of long-acting injectable naltrexone for alcohol dependence: a randomized controlled trial. JAMA 293, 1617–1625 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Fuller, R. K. & Gordis, E. Does disulfiram have a role in alcoholism treatment today? Addiction 99, 21–24 (2004).

    Article  PubMed  Google Scholar 

  35. Stickel, F., Hoehn, B., Schuppan, D. & Seitz, H. K. Nutritional therapy in alcoholic liver disease. Aliment. Pharmacol. Ther. 18, 357–373 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Mendenhall, C. L. et al. Short-term and long-term survival in patients with alcoholic hepatitis treated with oxandrolone and prednisolone. N. Engl. J. Med. 311, 1464–1470 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. Mezey, E., Potter, J. J., Rennie-Tankersley, L., Caballeria, J. & Pares, A. A randomized placebo controlled trial of vitamin E for alcoholic hepatitis. J. Hepatol. 40, 40–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Parés, A. et al. Effects of silymarin in alcoholic patients with cirrhosis of the liver: results of a controlled, double-blind, randomized and multicentre trial. J. Hepatol. 28, 615–621 (1998).

    Article  PubMed  Google Scholar 

  39. Rambaldi, A. & Gluud, C. Meta-analysis of propylthiouracil for alcoholic liver disease—a Cochrane Hepato-Biliary Group Review. Liver 21, 398–404 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Akriviadis, E. A. et al. Failure of colchicine to improve short-term survival in patients with alcoholic hepatitis. Gastroenterology 99, 811–818 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Trinchet, J. C. et al. Treatment of severe alcoholic hepatitis by infusion of insulin and glucagon: a multicenter sequential trial. Hepatology 15, 76–81 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. O'Shea, R. S., Dasarathy, S. & McCullough, A. J. Alcoholic liver disease. Am. J. Gastroenterol. 105, 14–32 (2010).

    Article  PubMed  Google Scholar 

  43. Akriviadis, E. et al. Pentoxifylline improves short-term survival in severe acute alcoholic hepatitis: a double-blind, placebo-controlled trial. Gastroenterology 119, 1637–1648 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Mathurin, P. et al. Corticosteroids improve short-term survival in patients with severe alcoholic hepatitis: meta-analysis of individual patient data. Gut 60, 255–260 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Naveau, S. et al. A double-blind randomized controlled trial of infliximab associated with prednisolone in acute alcoholic hepatitis. Hepatology 39, 1390–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Spahr, L. et al. Combination of steroids with infliximab or placebo in severe alcoholic hepatitis: a randomized controlled pilot study. J. Hepatol. 37, 448–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Tilg, H. et al. Anti-tumor necrosis factor-α monoclonal antibody therapy in severe alcoholic hepatitis. J. Hepatol. 38, 419–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Menon, K. V. et al. A pilot study of the safety and tolerability of etanercept in patients with alcoholic hepatitis. Am. J. Gastroenterol. 99, 255–260 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. O'Shea, R. S., Dasarathy, S. & McCullough, A. J., Practice Guideline Committee of the American Association for the Study of Liver Diseases & Practice Parameters Committee of the American College of Gastroenterology. Alcoholic liver disease. Hepatology 51, 307–328 (2010).

    Article  PubMed  Google Scholar 

  50. Salaspuro, M. P., Shaw, S., Jayatilleke, E., Ross, W. A. & Lieber, C. S. Attenuation of the ethanol-induced hepatic redox change after chronic alcohol consumption in baboons: metabolic consequences in vivo and in vitro. Hepatology 1, 33–38 (1981).

    Article  CAS  PubMed  Google Scholar 

  51. Sozio, M. S., Liangpunsakul, S. & Crabb, D. The role of lipid metabolism in the pathogenesis of alcoholic and nonalcoholic hepatic steatosis. Semin. Liver Dis. 30, 378–390 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, J. et al. Hepatic fatty acid transporter CD36 is a common target of, LXR, PXR, and PPARγ in promoting steatosis. Gastroenterology 134, 556–567 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Coll, O., Colell, A., Garcia-Ruiz, C., Kaplowitz, N. & Fernández-Checa. J. C. Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion. Hepatology 38, 692–702 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Hoek, J. B., Cahill, A. & Pastorino, J. G. Alcohol and mitochondria: a dysfunctional relationship. Gastroenterology 122, 2049–2063 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Sozio, M. & Crabb, D. W. Alcohol and lipid metabolism. Am. J. Physiol. Endocrinol. Metab. 295, E10–E16 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Galli, A., Pinaire, J., Fischer, M., Dorris, R. & Crabb, D. W. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor α is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver. J. Biol. Chem. 276, 68–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. You, M., Fischer, M., Deeg, M. A. & Crabb, D. W. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J. Biol. Chem. 277, 29342–29347 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. You, M., Matsumoto, M., Pacold, C. M., Cho, W. K. & Crabb, D. W. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127, 1798–1808 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Sugimoto, T. et al. Decreased microsomal triglyceride transfer protein activity contributes to initiation of alcoholic liver steatosis in rats. J. Hepatol. 36, 157–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Bataller, R., Rombouts, K., Altamirano, J. & Marra, F. Fibrosis in alcoholic and nonalcoholic steatohepatitis. Best Pract. Res. Clin. Gastroenterol. 25, 231–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Tian, C., Stokowski, R. P., Kershenobich, D., Ballinger, D. G. & Hinds, D. A. Variant in PNPLA3 is associated with alcoholic liver disease. Nat. Genet. 42, 21–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Altamirano, J. et al. The amount of alcohol consumption negatively impacts short-term mortality in patients with alcoholic hepatitis. Am. J. Gastroenterol. doi:10.1038/ajg.2011.141.

    Article  CAS  PubMed  Google Scholar 

  63. MacSween, R. N. & Burt, A. D. Histologic spectrum of alcoholic liver disease. Semin. Liver Dis. 6, 221–232 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. Svegliati-Baroni, G., Baraona, E., Rosman, A. S. & Lieber, C. S. Collagen–acetaldehyde adducts in alcoholic and nonalcoholicliver diseases. Hepatology 20, 111–118 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. You, M. & Crabb, D. W. Recent advances in alcoholic liver disease II. Minireview: molecular mechanisms of alcoholic fatty liver. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G1–G6 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Zhou, Z., Sun, X. & Kang, Y. J. Ethanol-induced apoptosis in mouse liver: Fas- and cytochrome c-mediated caspase-3 activation pathway. Am. J. Pathol. 159, 329–338 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Bradham, C. A., Plümpe, J., Manns, M. P., Brenner, D. A. & Trautwein, C. Mechanisms of hepatic toxicity. I. TNF-induced liver injury. Am. J. Physiol. 275, G387–G392 (1998).

    CAS  PubMed  Google Scholar 

  68. Román, J. et al. Differential role of ethanol and acetaldehyde in the induction of oxidative stress in HEP G2 cells: effect on transcription factors AP-1 and NF-κB. Hepatology 30, 1473–1480 (1999).

    Article  PubMed  Google Scholar 

  69. Meagher, E. A. et al. Alcohol-induced generation of lipid peroxidation products in humans. J. Clin. Invest. 104, 805–813 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Bailey, S. M. & Cunningham, C. C. Acute and chronic ethanol increases reactive oxygen species generation and decreases viability in fresh, isolated rat hepatocytes. Hepatology 28, 1318–1328 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Mansouri, A. et al. An alcoholic binge causes massive degradation of hepatic mitochondrial DNA in mice. Gastroenterology 117, 181–190 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Ji, C. & Kaplowitz, N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology 124, 1488–1499 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Yin, M. et al. Alcohol-induced free radicals in mice: direct toxicants or signaling molecules? Hepatology 34, 935–942 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Bird, G. L., Sheron, N., Goka, A. K., Alexander, G. J. & Williams, R. S. Increased plasma tumor necrosis factor in severe alcoholic hepatitis. Ann. Intern. Med. 112, 917–920 (1990).

    Article  CAS  PubMed  Google Scholar 

  75. Dominguez, M. et al. Hepatic expression of CXC chemokines predicts portal hypertension and survival in patients with alcoholic hepatitis. Gastroenterology 136, 1639–1650 (2009).

    Article  PubMed  Google Scholar 

  76. Colmenero, J. et al. Hepatic expression of candidate genes in patients with alcoholic hepatitis: correlation with disease severity. Gastroenterology 132, 687–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Morales, O. et al. Osteopontin is a novel therapeutic target in patients with alcoholic hepatitis. J. Hepatol. 52 (Suppl. 1), S23 (2010).

    Article  Google Scholar 

  78. Horiguchi, N. et al. Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury. Gastroenterology 134, 1148–1158 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Ki, S. H. et al. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology 52, 1291–1300 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Lemmers, A. et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49, 646–657 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Yin, M. et al. Reduced early alcohol-induced liver injury in CD14-deficient mice. J. Immunol. 166, 4737–4742 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Donohue, T. M. Jr, Cederbaum, A. I. & French, S. W. Role of the proteasome in ethanol-induced liver pathology. Alcohol. Clin. Exp. Res. 31, 1446–1459 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Yip, W. W. & Burt, A. D. Alcoholic liver disease. Semin. Diagn. Pathol. 23, 149–160 (2006).

    Article  PubMed  Google Scholar 

  84. Friedman, S. L. Stellate cell activation in alcoholic fibrosis—an overview. Alcohol. Clin. Exp. Res. 23, 904–910 (1999).

    CAS  PubMed  Google Scholar 

  85. Wang, J. H., Batey, R. G. & George, J. Role of ethanol in the regulation of hepatic stellate cell function. World J. Gastroenterol. 12, 6926–6932 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Moreno, M. & Bataller, R. Cytokines and renin–angiotensin system signaling in hepatic fibrosis. Clin. Liver Dis. 12, 825–852 (2008).

    Article  PubMed  Google Scholar 

  87. Naveau, S. et al. Serum leptin in patients with alcoholic liver disease. Alcohol. Clin. Exp. Res. 30, 1422–1428 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Kluwe, J. et al. Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition. Gastroenterology 138, 347–359 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Houstis, N., Rosen, E. D. & Lander, E. S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944–948 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Lieber, C. S. et al. Value of fibrosis markers for staging liver fibrosis in patients with precirrhotic alcoholic liver disease. Alcohol. Clin. Exp. Res. 32, 1031–1039 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Arthur, M. J., Iredale, J. P. & Mann, D. A. Tissue inhibitors of metalloproteinases: role in liver fibrosis and alcoholic liver disease. Alcohol. Clin. Exp. Res. 23, 940–943 (1999).

    CAS  PubMed  Google Scholar 

  92. Zhu, L. et al. Hepatic deletion of Smad7 in mouse leads to spontaneous liver dysfunction and aggravates alcoholic liver injury. PLoS ONE 6, e17415 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Weber, S. N. & Lammert, F. Genetics of liver injury and fibrosis. Alcohol. Clin. Exp. Res. 35, 800–803 (2011).

    Article  PubMed  Google Scholar 

  94. Wilfred de Alwis, N. M. & Day, C. P. Genetics of alcoholic liver disease and nonalcoholic fatty liver disease. Semin. Liver Dis. 27, 44–54 (2007).

    Article  PubMed  CAS  Google Scholar 

  95. Altamirano, J. & Bataller, R. Cigarette smoking and chronic liver diseases. Gut 59, 1159–1162 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Stepanova, M., Rafiq, N. & Younossi, Z. M. Components of metabolic syndrome are independent predictors of mortality in patients with chronic liver disease: a population-based study. Gut 59, 1410–1415 (2010).

    Article  PubMed  Google Scholar 

  97. Hrubec, Z. & Omenn, G. S. Evidence of genetic predisposition to alcoholic cirrhosis and psychosis: twin concordances for alcoholism and its biological end points by zygosity among male veterans. Alcohol. Clin. Exp. Res. 5, 207–215 (1981).

    Article  CAS  PubMed  Google Scholar 

  98. Bataller, R., North, K. E. & Brenner, D. A. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology 37, 493–503 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Day, C. P. et al. Investigation of the role of polymorphisms at the alcohol and aldehyde dehydrogenase loci in genetic predisposition to alcohol-related end-organ damage. Hepatology 14, 798–801 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Zintzaras, E., Stefanidis, I., Santos, M. & Vidal, F. Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcoholic liver disease? Hepatology 43, 352–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Jarvelainen, H. A. et al. Promoter polymorphism of the CD14 endotoxin receptor gene as a risk factor for alcoholic liver disease. Hepatology 33, 1148–1153 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Stickel, F. et al. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians. Hepatology 53, 86–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Trépo, E. et al. Common polymorphism in the PNPLA3/adiponutrin gene confers higher risk of cirrhosis and liver damage in alcoholic liver disease. J. Hepatol. doi:10.1016/j.jhep.2011.01.028.

    Article  PubMed  CAS  Google Scholar 

  104. Bird, G. L. et al. Increased plasma tumor necrosis factor in severe alcoholic hepatitis. Ann. Intern. Med. 112, 917–920 (1990).

    Article  CAS  PubMed  Google Scholar 

  105. Domίnguez, M. et al. Functional analysis of hepatic gene expression profiling from patients with alcoholic hepatitis reveals new targets for therapy. J. Hepatol. 50 (Suppl. 1), S39 (2009).

    Article  Google Scholar 

  106. Horiguchi, N. et al. Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury. Gastroenterology 134, 1148–1158 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Domίnguez, M. et al. Identification of Fn14, a TNF receptor superfamily member, as a therapeutic target in patients with alcoholic hepatitis. Hepatology 50 (Suppl. 4), 609A (2009).

    Google Scholar 

  108. Ribeiro, P. S. et al. Hepatocyte apoptosis, expression of death receptors, and activation of NF-κB in the liver of nonalcoholic and alcoholic steatohepatitis patients. Am. J. Gastroenterol. 99, 1708–1717 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Ramalho, R. M. et al. Apoptosis and Bcl-2 expression in the livers of patients with steatohepatitis. Eur. J. Gastroenterol. Hepatol. 18, 21–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Kalaitzakis, E., Gunnarsdottir, S. A., Josefsson, A. & Björnsson, E. Increased risk for malignant neoplasms among patients with cirrhosis. Clin. Gastroenterol. Hepatol. 9, 168–174 (2011).

    Article  PubMed  Google Scholar 

  111. Ishikawa, M. et al. Potential role of enhanced cytokinemia and plasma inhibitor on the decreased activity of plasma ADAMTS13 in patients with alcoholic hepatitis: relationship to endotoxemia. Alcohol. Clin. Exp. Res. 34 (Suppl. 1), S25–S33 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Matsuyama, T. et al. Increased von Willebrand factor over decreased ADAMTS13 activity may contribute to the development of liver disturbance and multiorgan failure in patients with alcoholic hepatitis. Alcohol. Clin. Exp. Res. 31 (Suppl. 1), S27–S35 (2007).

    Article  PubMed  Google Scholar 

  113. Mookerjee, R. P. et al. Increased gene and protein expression of the novel eNOS regulatory protein NOSTRIN and a variant in alcoholic hepatitis. Gastroenterology 132, 2533–2541 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Bor, S. et al. Effect of ethanol on the structure and function of rabbit esophageal epithelium. Am. J. Physiol. 274, G819–G826 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Bor, S., Bor-Caymaz, C., Tobey, N. A., Abdulnour-Nakhoul, S. & Orlando, R. C. Esophageal exposure to ethanol increases risk of acid damage in rabbit esophagus. Dig. Dis. Sci. 44, 290–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Salo, J. A. Ethanol-induced mucosal injury in rabbit oesophagus. Scand. J. Gastroenterol. 18, 713–721 (1983).

    Article  CAS  PubMed  Google Scholar 

  117. Yamada, Y., Weller, R. O., Kleihues P & Ludeke, B. I. Effects of ethanol and various alcoholic beverages on the formation of O6-methyldeoxyguanosine from concurrently administered N-nitrosomethylbenzylamine in rats: a dose-–response study. Carcinogenesis 13, 1171–1175 (1992).

    Article  CAS  PubMed  Google Scholar 

  118. Tsukamoto, H., Towner, S. J., Yu, G. S. & French, S. W. Potentiation of ethanol-induced pancreatic injury by dietary fat. Induction of chronic pancreatitis by alcohol in rats. Am. J. Pathol. 131, 246–257 (1988).

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Tsukamoto, H., Reidelberger, R. D., French, S. W. & Largman, C. Long-term cannulation model for blood sampling and intragastric infusion in the rat. Am. J. Physiol. 247, R595–R599 (1984).

    CAS  PubMed  Google Scholar 

  120. Ciccocioppo, R. et al. Genetically selected Marchigian Sardinian alcohol-preferring (msP) rats: an animal model to study the neurobiology of alcoholism. Addict. Biol. 11, 339–355 (2006).

    Article  PubMed Central  PubMed  Google Scholar 

  121. Tsukamoto, H. et al. Severe and progressive steatosis and focal necrosis in rat liver induced by continuous intragastric infusion of ethanol and low fat diet. Hepatology 5, 224–232 (1985).

    Article  CAS  PubMed  Google Scholar 

  122. French, S. W. Intragastric ethanol infusion model for cellular and molecular studies of alcoholic liver disease. J. Biomed. Sci. 8, 20–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Lieber, C. S. & DeCarli, L. M. An experimental model of alcohol feeding and liver injury in the baboon. J. Med. Primatol. 3, 153–163 (1974).

    Article  CAS  PubMed  Google Scholar 

  124. Lieber, C. S., Jones, D. P. & DeCarli, L. M. Effects of prolonged ethanol intake: production of fatty liver despite adequate diets. J. Clin. Invest. 44, 1009–1021 (1965).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Lieber, C. S., DeCarli, L. & Rubin, E. Sequential production of fatty liver, hepatitis, and cirrhosis in sub-human primates fed ethanol with adequate diets, Proc. Natl Acad. Sci. USA 72, 437–441 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Niemelä, O. et al. Sequential acetaldehyde production, lipid peroxidation, and fibrogenesis in micropig model of alcohol-induced liver disease. Hepatology 22, 1208–1214 (1995).

    Article  PubMed  Google Scholar 

  127. Halsted, C. H. et al. Centrilobular distribution of acetaldehyde and collagen in the ethanol-fed micropig. Hepatology 18, 954–960 (1993).

    Article  CAS  PubMed  Google Scholar 

  128. Järveläinen, H. A., Fang, C., Ingelman-Sundberg, M. & Lindros K. O. Effect of chronic coadministration of endotoxin and ethanol on rat liver pathology and proinflammatory and anti-inflammatory cytokines. Hepatology 29, 1503–1510 (1999).

    Article  PubMed  Google Scholar 

  129. Bode, C., Gast, J., Zelder, O., Jerusalem, C. R. & Bode, J. C. Alcohol-induced liver injuries after jejunoileal bypass operation in rats. J. Hepatol. 5, 75–84 (1987).

    Article  CAS  PubMed  Google Scholar 

  130. Zhang, H. Y. et al. Multiple pathogenic factor-induced complications of cirrhosis in rats: a new model of hepatopulmonary syndrome with intestinal endotoxemia. World J. Gastroenterol. 13, 3500–3507 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Yin, M. et al. Essential role of tumor necrosis factor α in alcohol-induced liver injury in mice. Gastroenterology 117, 942–952 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Kono, H. et al. CYP2E1 is not involved in early alcohol-induced liver injury. Am. J. Physiol. 277, G1259–G1267 (1999).

    CAS  PubMed  Google Scholar 

  133. Kono, H. et al. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J. Clin. Invest. 106, 867–872 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Tsukamoto, H. et al. Experimental liver cirrhosis induced by alcohol and iron. J. Clin. Invest. 96, 620–630 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Crabb, D. W., Galli, A., Fischer, M. & You, M. Molecular mechanisms of alcoholic fatty liver: role of peroxisome proliferator-activated receptor α. Alcohol 34, 35–38 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Miller, A. M. et al. Inflammation-associated IL-6/STAT3 activation ameliorates alcoholic and nonalcoholic fatty liver diseases in IL-10 deficient mice. Hepatology doi:10.1002/hep.24517.

    Article  CAS  PubMed  Google Scholar 

  137. Kono, H. et al. ICAM-1 is involved in the mechanism of alcohol-induced liver injury: studies with knockout mice. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G1289–G1295 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. You, M., Matsumoto, M., Pacold, C. M., Cho, W. K. & Crabb, D. W. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127, 1798–1808 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Lamlé, J. et al. Nuclear factor-eythroid 2-related factor 2 prevents alcohol-induced fulminant liver injury. Gastroenterology 134, 1159–1168 (2008).

    Article  PubMed  CAS  Google Scholar 

  140. Morgan, K., French, S. W. & Morgan, T. R. Production of a cytochrome P450 2E1 transgenic mouse and initial evaluation of alcoholic liver damage. Hepatology 36, 122–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Stärkel, P., De Saeger, C., Strain, A. J., Leclercq, I. & Horsmans, Y. NFκB, cytokines, TLR 3 and 7 expression in human end-stage HCV and alcoholic liver disease. Eur. J. Clin. Invest. 40, 575–584 (2010).

    Article  PubMed  CAS  Google Scholar 

  142. Lemmers, A. et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49, 646–657 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Morales-Ibanez, O. et al. Proteomic analysis identifies P90RSK as a novel therapeutic target in patients with alcoholic hepatitis. J. Hepatol. 54 (Suppl. 1), S9 (2011).

    Article  Google Scholar 

  144. Mookerjee, R. P. et al. Increasing dimethylarginine levels are associated with adverse clinical outcome in severe alcoholic hepatitis. Hepatology 45, 62–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Lluch, P. et al. Plasma concentrations of nitric oxide and asymmetric dimethylarginine in human alcoholic cirrhosis. J. Hepatol. 41, 55–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Naveau, S. et al. Harmful effect of adipose tissue on liver lesions in patients with alcoholic liver disease. J. Hepatol. 52, 895–902 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this article are supported by grants from Fondo de Investigación Sanitaria (FIS PI080237 and FIS PS09/01164). J. Altamirano also holds a grant from Fundación Banco Bilbao Vizcaya Argentaria (FBBVA). CIBERehd is funded by the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this Review.

Corresponding author

Correspondence to Ramón Bataller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altamirano, J., Bataller, R. Alcoholic liver disease: pathogenesis and new targets for therapy. Nat Rev Gastroenterol Hepatol 8, 491–501 (2011). https://doi.org/10.1038/nrgastro.2011.134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2011.134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing