Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The changing epidemiology of congenital heart disease

Abstract

Congenital heart disease is the most common congenital disorder in newborns. Advances in cardiovascular medicine and surgery have enabled most patients to reach adulthood. Unfortunately, prolonged survival has been achieved at a cost, as many patients suffer late complications, of which heart failure and arrhythmias are the most prominent. Accordingly, these patients need frequent follow-up by physicians with specific knowledge in the field of congenital heart disease. However, planning of care for this population is difficult, because the number of patients currently living with congenital heart disease is difficult to measure. Birth prevalence estimates vary widely according to different studies, and survival rates have not been well recorded. Consequently, the prevalence of congenital heart disease is unclear, with estimates exceeding the number of patients currently seen in cardiology clinics. New developments continue to influence the size of the population of patients with congenital heart disease. Prenatal screening has led to increased rates of termination of pregnancy. Improved management of complications has changed the time and mode of death caused by congenital heart disease. Several genetic and environmental factors have been shown to be involved in the etiology of congenital heart disease, although this knowledge has not yet led to the implementation of preventative measures. In this Review, we give an overview of the etiology, birth prevalence, current prevalence, mortality, and complications of congenital heart disease.

Key Points

  • The etiology of most forms of congenital heart disease is incompletely understood

  • Genetic and environmental factors probably interact in the etiology of most nonsyndromal forms of congenital heart disease

  • Epidemiological studies in congenital heart disease are hampered by diverging definitions, classifications, and methodology

  • Birth prevalence estimates vary widely according to different studies, but this measure seems to be declining overall

  • The prevalence of congenital heart disease is increasing

  • The reported prevalence does not reflect the number of patients currently receiving care for congenital heart disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of age at death in adult patients with congenital heart disease in the Netherlands (2002–2007).
Figure 2: Number and percentage of adult patients in the Netherlands with congenital heart disease who had arrhythmias in 2007.

Similar content being viewed by others

References

  1. Tennant, P. W. G., Pearce, M. S., Bythell, M. & Rankin, J. 20-year survival of children born with congenital anomalies: a population-based study. Lancet 375, 649–656 (2010).

    PubMed  Google Scholar 

  2. Dastgiri, S., Stone, D. H., Le-Ha, C. & Gilmour, W. H. Prevalence and secular trend of congenital anomalies in Glasgow, UK. Arch. Dis. Child 86, 257–263 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Samánek, M. Children with congenital heart disease: probability of natural survival. Pediatr. Cardiol. 13, 152–158 (1992).

    PubMed  Google Scholar 

  4. Warnes, C. A. The adult with congenital heart disease: born to be bad? J. Am. Coll. Cardiol. 46, 1–8 (2005).

    PubMed  Google Scholar 

  5. Mitchell, S. C., Korones, S. B. & Berendes, H. W. Congenital heart disease in 56,109 births. Incidence and natural history. Circulation 43, 323–332 (1971).

    CAS  PubMed  Google Scholar 

  6. Warnes, C. A. et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 52, e1–e121 (2008).

    Google Scholar 

  7. Connelly, M. S. et al. Canadian Consensus Conference on Adult Congenital Heart Disease 1996. Can. J. Cardiol. 14, 395–452 (1998).

    CAS  PubMed  Google Scholar 

  8. Warnes, C. A. et al. Task force 1: the changing profile of congenital heart disease in adult life. J. Am. Coll. Cardiol. 37, 1170–1175 (2001).

    CAS  PubMed  Google Scholar 

  9. Nora, J., Berg, K. & Nora, A. Cardiovascular Diseases. Genetics, Epidemiology and Prevention. (Oxford University Press, New York, 1991).

    Google Scholar 

  10. Vis, J. C. et al. Down syndrome: a cardiovascular perspective. J. Intellect. Disabil. Res. 53, 419–425 (2009).

    CAS  PubMed  Google Scholar 

  11. van Engelen, K. et al. 22q11.2 Deletion Syndrome is under-recognized in adult patients with tetralogy of Fallot and pulmonary atresia. Heart 96, 621–624 (2010).

    PubMed  Google Scholar 

  12. Joziasse, I. C. et al. Genes in congenital heart disease: atrioventricular valve formation. Basic Res. Cardiol. 103, 216–227 (2008).

    CAS  PubMed  Google Scholar 

  13. Botto, L. D. & Correa, A. Decreasing the burden of congenital heart anomalies: an epidemiologic evaluation of risk factors and survival. Prog. Ped. Cardiol. 18, 111–121 (2003).

    Google Scholar 

  14. Kuciene, R. & Dulskiene, V. Selected environmental risk factors and congenital heart defects. Medicina (Kaunas) 44, 827–832 (2008).

    Google Scholar 

  15. Jenkins, K. et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115, 2995–3014 (2007).

    PubMed  Google Scholar 

  16. Czeizel, A. E. Periconceptional folic acid containing multivitamin supplementation. Eur. J. Obstet. Gynecol. Reprod. Biol. 78, 151–161 (1998).

    CAS  PubMed  Google Scholar 

  17. Goh, Y. I., Bollano, E., Einarson, T. R. & Koren, G. Prenatal multivitamin supplementation and rates of congenital anomalies: a meta-analysis. J. Obstet. Gynaecol. Can. 28, 680–689 (2006).

    Google Scholar 

  18. Nora, J. J. Multifactorial inheritance hypothesis for the etiology of congenital heart diseases. The genetic-environmental interaction. Circulation 38, 604–617 (1968).

    CAS  PubMed  Google Scholar 

  19. Smith, K. A. et al. Dominant-negative ALK2 allele associates with congenital heart defects. Circulation 119, 3062–3069 (2009).

    CAS  PubMed  Google Scholar 

  20. Joziasse, I. C. et al. A duplication including GATA4 does not co-segregate with congenital heart defects. Am. J. Med. Genet. A 149A, 1062–1066 (2009).

    CAS  PubMed  Google Scholar 

  21. Burn, J. et al. Recurrence risks in offspring of adults with major heart defects: results from first cohort of British collaborative study. Lancet 351, 311–316 (1998).

    CAS  PubMed  Google Scholar 

  22. van Driel, L. M. et al. Eight-fold increased risk for congenital heart defects in children carrying the nicotinamide N-methyltransferase polymorphism and exposed to medicines and low nicotinamide. Eur. Heart J. 29, 1424–1431 (2008).

    CAS  PubMed  Google Scholar 

  23. Verkleij-Hagoort, A. C. et al. Genetic and lifestyle factors related to the periconception vitamin B12 status and congenital heart defects: a Dutch case-control study. Mol. Genet. Metab. 94, 112–119 (2008).

    CAS  PubMed  Google Scholar 

  24. van Beynum, I. M. et al. Common 894G>T single nucleotide polymorphism in the gene coding for endothelial nitric oxide synthase (eNOS) and risk of congenital heart defects. Clin. Chem. Lab. Med. 46, 1369–1375 (2008).

    CAS  PubMed  Google Scholar 

  25. Øyen, N. et al. Recurrence of congenital heart defects in families. Circulation 120, 295–301 (2009).

    PubMed  Google Scholar 

  26. Calcagni, G., Digilio, M. C., Sarkozy, A., Dallapiccola, B. & Marino, B. Familial recurrence of congenital heart disease: an overview and review of the literature. Eur. J. Pediatr. 166, 111–116 (2007).

    PubMed  Google Scholar 

  27. Loffredo, C. A. et al. Prevalence of congenital cardiovascular malformations among relatives of infants with hypoplastic left heart, coarctation of the aorta, and d-transposition of the great arteries. Am. J. Med. Genet. A 124A, 225–230 (2004).

    PubMed  Google Scholar 

  28. Gill, H. K., Splitt, M., Sharland, G. K. & Simpson, J. M. Patterns of recurrence of congenital heart disease: an analysis of 6,640 consecutive pregnancies evaluated by detailed fetal echocardiography. J. Am. Coll. Cardiol. 42, 923–929 (2003).

    PubMed  Google Scholar 

  29. Driscoll, D. J. et al. Occurrence risk for congenital heart defects in relatives of patients with aortic stenosis, pulmonary stenosis, or ventricular septal defect. Circulation 87, I114–I120 (1993).

    CAS  PubMed  Google Scholar 

  30. Wessels, M. W. & Willems, P. J. Genetic factors in non-syndromic congenital heart malformations. Clin. Genet 78, 103–123 (2010).

    CAS  PubMed  Google Scholar 

  31. Schott, J. J. et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5 Science 281, 108–111 (1998).

    CAS  PubMed  Google Scholar 

  32. Garg, V. et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424, 443–447 (2003).

    CAS  PubMed  Google Scholar 

  33. Mason, C. A., Kirby, R. S., Sever, L. E. & Langlois, P. H. Prevalence is the preferred measure of frequency of birth defects. Birth Defects Res. Part A Clin. Mol. Teratol. 73, 690–692 (2005).

    CAS  Google Scholar 

  34. Hoffman, J. I. & Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002).

    PubMed  Google Scholar 

  35. Bernier, P. L., Stefanescu, A., Samoukovic, G. & Tchervenkov, C. I. The challenge of congenital heart disease worldwide: epidemiologic and demographic facts. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 13, 26–34 (2010).

    PubMed  Google Scholar 

  36. Wren, C. & O'Sullivan, J. J. Survival with congenital heart disease and need for follow up in adult life. Heart 85, 438–443 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wren, C., Reinhardt, Z. & Khawaja, K. Twenty-year trends in diagnosis of life-threatening neonatal cardiovascular malformations. Arch. Dis. Child. Fetal Neonatal Ed. 93, F33–F35 (2008).

    CAS  PubMed  Google Scholar 

  38. Pradat, P., Francannet, C., Harris, J. A. & Robert, E. The epidemiology of cardiovascular defects, part I: a study based on data from three large registries of congenital malformations. Pediatr. Cardiol. 24, 195–221 (2003).

    CAS  PubMed  Google Scholar 

  39. Botto, L. D., Correa, A. & Erickson, J. D. Racial and temporal variations in the prevalence of heart defects. Pediatrics 107, E32 (2001).

    CAS  PubMed  Google Scholar 

  40. EUROCAT. Special Report: Congenital Heart Defects in Europe, 2000–2005 EUROCAT [online], (2009).

  41. Calzolari, E. et al. Congenital heart defects: 15 years of experience of the Emilia-Romagna Registry (Italy). Eur. J. Epidemiol. 18, 773–780 (2003).

    CAS  PubMed  Google Scholar 

  42. Stephensen, S. S. et al. Congenital cardiac malformations in Iceland from 1990 through 1999. Cardiol. Young 14, 396–401 (2004).

    PubMed  Google Scholar 

  43. Wu, M. H. et al. Prevalence of congenital heart disease at live birth in Taiwan. J. Pediatr. 156, 782–785 (2010).

    PubMed  Google Scholar 

  44. Robida, A., Folger, G. M. & Hajar, H. A. Incidence of congenital heart disease in Qatari children. Int. J. Cardiol. 60, 19–22 (1997).

    CAS  PubMed  Google Scholar 

  45. Roguin, N. et al. High prevalence of muscular ventricular septal defect in neonates. J. Am. Coll. Cardiol. 26, 1545–1548 (1995).

    CAS  PubMed  Google Scholar 

  46. Hiraishi, S. et al. Incidence and natural course of trabecular ventricular septal defect: two-dimensional echocardiography and color Doppler flow imaging study. J. Pediatr. 120, 409–415 (1992).

    CAS  PubMed  Google Scholar 

  47. Nembhard, W. N., Wang, T., Loscalzo, M. L. & Salemi, J. L. Variation in the prevalence of congenital heart defects by maternal race/ethnicity and infant sex. J. Pediatr. 156, 259–264 (2010).

    PubMed  Google Scholar 

  48. Somerville, J. The Denolin Lecture: The woman with congenital heart disease. Eur. Heart J. 19, 1766–1775 (1998).

    CAS  PubMed  Google Scholar 

  49. Engelfriet, P. & Mulder, B. J. Gender differences in adult congenital heart disease. Neth. Heart J. 17, 414–417 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Siddique, J., Lauderdale, D. S., VanderWeele, T. J. & Lantos, J. D. Trends in prenatal ultrasound use in the United States: 1995 to 2006. Med. Care 47, 1129–1135 (2009).

    PubMed  Google Scholar 

  51. Tomek, V., Marek, J., Jicínská, H. & Skovránek, J. Fetal cardiology in the Czech Republic: current management of prenatally diagnosed congenital heart diseases and arrhythmias. Physiol. Res. 58 (Suppl. 2), S159–S166 (2009).

    PubMed  Google Scholar 

  52. Tegnander, E., Williams, W., Johansen, O. J., Blaas, H. G. & Eik-Nes, S. H. Prenatal detection of heart defects in a non-selected population of 30,149 fetuses—detection rates and outcome. Ultrasound Obstet. Gynecol. 27, 252–265 (2006).

    CAS  PubMed  Google Scholar 

  53. Paladini, D. et al. Prenatal diagnosis of congenital heart disease in the Naples area during the years 1994–1999—the experience of a joint fetal-pediatric cardiology unit. Prenat. Diagn. 22, 545–552 (2002).

    PubMed  Google Scholar 

  54. Fesslova, V., Nava, S. & Villa, L. Evolution and long term outcome in cases with fetal diagnosis of congenital heart disease: Italian multicenter study. Fetal Cardiology Study Group of the Italian Society of Pediatric Cardiology. Heart 82, 594–599 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bull, C. Current and potential impact of fetal diagnosis on prevalence and spectrum of serious congenital heart disease at term in the UK. British Pediatric Cardiac Association. Lancet 354, 1242–1247 (1999).

    CAS  PubMed  Google Scholar 

  56. Germanakis, I. & Sifakis, S. The impact of fetal echocardiography on the prevalence of liveborn congenital heart disease. Pediatr. Cardiol. 27, 465–472 (2006).

    PubMed  Google Scholar 

  57. Dolk, H., Loane, M. A., Abramsky, L., de Walle, H. & Garne, E. Birth prevalence of congenital heart disease. Epidemiology 21, 275–277 (2010).

    PubMed  Google Scholar 

  58. EUROCAT Northern Netherlands. Prevalence of congenital malformations in the Northern Netherlands, 1981–2007 University of Groningen [online], (2009).

  59. Øyen, N. et al. National time trends in congenital heart defects, Denmark, 1977–2005. Am. Heart J. 157, 467–473e1 (2009).

    PubMed  Google Scholar 

  60. Ionescu-Ittu, R., Marelli, A. J., Mackie, A. S. & Pilote, L. Prevalence of severe congenital heart disease after folic acid fortification of grain products: time trend analysis in Quebec, Canada. BMJ 338, b1673 (2009).

    PubMed  PubMed Central  Google Scholar 

  61. EUROCAT. Prevention of Neural Tube Defects by Periconceptional Folic Acid Supplementation in Europe. EUROCAT [online], (2009).

  62. Nieminen, H. P., Jokinen, E. V. & Sairanen, H. I. Late results of pediatric cardiac surgery in Finland: a population-based study with 96% follow-up. Circulation 104, 570–575 (2001).

    CAS  PubMed  Google Scholar 

  63. Morris, C. D. & Menashe, V. D. 25-year mortality after surgical repair of congenital heart defect in childhood. A population-based cohort study. JAMA 266, 3447–3452 (1991).

    CAS  PubMed  Google Scholar 

  64. Marelli, A. J., Mackie, A. S., Ionescu-Ittu, R., Rahme, E. & Pilote, L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115, 163–172 (2007).

    PubMed  Google Scholar 

  65. Winter, M. M., Mulder, B. J. & van der Velde, E. T. Letter by Winter. et al. regarding article, “Children and adults with congenital heart disease lost to follow-up: who and when?”. Circulation 121, e252 (2010).

    PubMed  Google Scholar 

  66. Mackie, A. S. et al. Children and adults with congenital heart disease lost to follow-up: who and when? Circulation 120, 302–309 (2009).

    PubMed  Google Scholar 

  67. Moons, P. et al. Delivery of care for adult patients with congenital heart disease in Europe: results from the Euro Heart Survey. Eur. Heart J. 27, 1324–1330 (2006).

    PubMed  Google Scholar 

  68. van der Velde, E. T. et al. CONCOR, an initiative towards a national registry and DNA-bank of patients with congenital heart disease in the Netherlands: rationale, design, and first results. Eur. J. Epidemiol. 20, 549–557 (2005).

    CAS  PubMed  Google Scholar 

  69. Meberg, A., Otterstad, J. E., Frøland, G., Lindberg, H. & Sørland, S. J. Outcome of congenital heart defects—a population-based study. Acta Pediatr. 89, 1344–1351 (2000).

    CAS  Google Scholar 

  70. Shiina, Y. et al. Prevalence of adult patients with congenital heart disease in Japan. Int. J. Cardiol. doi: 10.1016/j.ijcard.2009.05.032.

    PubMed  Google Scholar 

  71. Verheugt, C. L. et al. The emerging burden of hospital admissions of adults with congenital heart disease. Heart 96, 872–878 (2010).

    PubMed  Google Scholar 

  72. Opotowsky, A. R., Siddiqi, O. K. & Webb, G. D. Trends in hospitalizations for adults with congenital heart disease in the US. J. Am. Coll. Cardiol. 54, 460–467 (2009).

    PubMed  Google Scholar 

  73. Boneva, R. S. et al. Mortality associated with congenital heart defects in the United States: trends and racial disparities, 1979–1997. Circulation 103, 2376–2381 (2001).

    CAS  PubMed  Google Scholar 

  74. Pillutla, P., Shetty, K. D. & Foster, E. Mortality associated with adult congenital heart disease: trends in the US population from 1979 to 2005. Am. Heart J. 158, 874–879 (2009).

    PubMed  Google Scholar 

  75. Billett, J., Majeed, A., Gatzoulis, M. & Cowie, M. Trends in hospital admissions, in-hospital case fatality and population mortality from congenital heart disease in England, 1994 to 2004. Heart 94, 342–348 (2008).

    CAS  PubMed  Google Scholar 

  76. Oechslin, E. N., Harrison, D. A., Connelly, M. S., Webb, G. D. & Siu, S. C. Mode of death in adults with congenital heart disease. Am. J. Cardiol. 86, 1111–1116 (2000).

    CAS  PubMed  Google Scholar 

  77. Verheugt, C. L. et al. Mortality in adult congenital heart disease. Eur. Heart J. 31, 1220–1229 (2010).

    PubMed  Google Scholar 

  78. Zomer, A. C. et al. Mortality in adult congenital heart disease: are national registries reliable for cause of death? Int. J. Cardiol. doi: 10.1016/j.ijcard.2010.07.018.

    PubMed  Google Scholar 

  79. Verheugt, C. L. et al. Gender and outcome in adult congenital heart disease. Circulation 118, 26–32 (2008).

    PubMed  Google Scholar 

  80. Lok, S. I. et al. Recurrence of cerebrovascular events in young adults with a secundum atrial septal defect. Int. J. Cardiol. 142, 44–49 (2010).

    PubMed  Google Scholar 

  81. Li, W. & Somerville, J. Infective endocarditis in the grown-up congenital heart (GUCH) population. Eur. Heart J. 19, 166–173 (1998).

    CAS  PubMed  Google Scholar 

  82. Morris, C. D., Reller, M. D. & Menashe, V. D. Thirty-year incidence of infective endocarditis after surgery for congenital heart defect. JAMA 279, 599–603 (1998).

    CAS  PubMed  Google Scholar 

  83. Dodo, H. & Child, J. S. Infective endocarditis in congenital heart disease. Cardiol. Clin. 14, 383–392 (1996).

    CAS  PubMed  Google Scholar 

  84. Fisher, M. C. Changing risk factors for pediatric infective endocarditis. Curr. Infect. Dis. Rep. 3, 333–336 (2001).

    PubMed  Google Scholar 

  85. Gersony, W. M. et al. Bacterial endocarditis in patients with aortic stenosis, pulmonary stenosis, or ventricular septal defect. Circulation 87, I121–I126 (1993).

    CAS  PubMed  Google Scholar 

  86. Tleyjeh, I. et al. Temporal trends in infective endocarditis: a population-based study in Olmsted County, Minnesota. JAMA 293, 3022–3028 (2005).

    CAS  PubMed  Google Scholar 

  87. Niwa, K., Nakazawa, M., Tateno, S., Yoshinaga, M. & Terai, M. Infective endocarditis in congenital heart disease: Japanese national collaboration study. Heart 91, 795–800 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Di Fillipo, S. et al. Current patterns of infective endocarditis in congenital heart disease. Heart 92, 1490–1495 (2006).

    Google Scholar 

  89. Takeda, S., Nakanishi, T. & Nakazawa, M. A 28-year trend of infective endocarditis associated with congenital heart diseases: a single institute experience. Pediatr. Int. 47, 392–396 (2005).

    PubMed  Google Scholar 

  90. Verheugt, C. L., Uiterwaal, C. S., Grobbee, D. E. & Mulder, B. J. Long-term prognosis of congenital heart defects: a systematic review. Int. J. Cardiol. 131, 25–32 (2008).

    PubMed  Google Scholar 

  91. Engelfriet, P. et al. The spectrum of adult congenital heart disease in Europe: morbidity and mortality in a 5 year follow-up period. The Euro Heart Survey on adult congenital heart disease. Eur. Heart J. 26, 2325–2333 (2005).

    PubMed  Google Scholar 

  92. Walsh, E. P. & Cecchin, F. Arrhythmias in adult patients with congenital heart disease. Circulation 115, 534–545 (2007).

    PubMed  Google Scholar 

  93. Khairy, P. et al. Arrhythmias in adult congenital heart disease. Expert. Rev. Cardiovasc. Ther. 4, 83–95 (2006).

    PubMed  Google Scholar 

  94. Silka, M. J., Hardy, B. G., Menashe, V. D. & Morris, C. D. A population-based prospective evaluation of risk of sudden cardiac death after operation for common congenital heart defects. J. Am. Coll. Cardiol. 32, 245–251 (1998).

    CAS  PubMed  Google Scholar 

  95. Sekar, R. P. Epidemiology of arrhythmias in children. Indian Pacing Electrophysiol. J. 8 (Suppl. 1), S8–S13 (2008).

    PubMed  PubMed Central  Google Scholar 

  96. Rekawek, J. et al. Risk factors for cardiac arrhythmias in children with congenital heart disease after surgical intervention in the early postoperative period. J. Thorac. Cardiovasc. Surg. 133, 900–904 (2007).

    PubMed  Google Scholar 

  97. Delaney, J. W., Moltedo, J. M., Dziura, J. D., Kopf, G. S. & Snyder, C. S. Early postoperative arrhythmias after pediatric cardiac surgery. J. Thorac. Cardiovasc. Surg. 131, 1296–1300 (2006).

    PubMed  Google Scholar 

  98. Hoffman, T. M. et al. The incidence of arrhythmias in a pediatric cardiac intensive care unit. Pediatr. Cardiol. 23, 598–604 (2002).

    CAS  PubMed  Google Scholar 

  99. Mildh, L. et al. Junctional ectopic tachycardia after surgery for congenital heart disease: incidence, risk factors and outcome. Eur. J. Cardiothorac. Surg. doi: 10.1016/j.ejcts.2010.04.002.

    PubMed  Google Scholar 

  100. Gelatt, M. et al. Risk factors for atrial tachyarrhythmias after the Fontan operation. J. Am. Coll. Cardiol. 24, 1735–1741 (1994).

    CAS  PubMed  Google Scholar 

  101. van den Bosch, A. E. et al. Long-term outcome and quality of life in adult patients after the Fontan operation. Am. J. Cardiol. 93, 1141–1145 (2004).

    PubMed  Google Scholar 

  102. Khairy, P. et al. for the AARCC. Arrhythmia burden in adults with surgically repaired tetralogy of Fallot: a multi-institutional study. Circulation 122, 868–875 (2010).

    PubMed  Google Scholar 

  103. Gelatt, M. et al. Arrhythmia and mortality after the Mustard procedure: a 30-year single-center experience. J. Am. Coll. Cardiol. 29, 194–201 (1997).

    CAS  PubMed  Google Scholar 

  104. Rhodes, L. A. et al. Arrhythmias and intracardiac conduction after the arterial switch operation. J. Thorac. Cardiovasc. Surg. 109, 303–310 (1995).

    CAS  PubMed  Google Scholar 

  105. Cecchin, F., Johnsrude, C. L., Perry, J. C. & Friedman, R. A. Effect of age and surgical technique on symptomatic arrhythmias after the Fontan procedure. Am. J. Cardiol. 76, 386–391 (1995).

    CAS  PubMed  Google Scholar 

  106. Srinathan, S. K. et al. Changing practice of cardiac surgery in adult patients with congenital heart disease. Heart 91, 207–212 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Giamberti, A. et al. Morbidity and mortality risk factors in adults with congenital heart disease undergoing cardiac reoperations. Ann. Thorac. Surg. 88, 1284–1289 (2009).

    PubMed  Google Scholar 

  108. Berdat, P. A., Immer, F., Pfammatter, J. P. & Carrel, T. Reoperations in adults with congenital heart disease: analysis of early outcome. Int. J. Cardiol. 93, 239–245 (2004).

    PubMed  Google Scholar 

  109. Vida, V. L. et al. Risk of surgery for congenital heart disease in the adult: a multicentered European study. Ann. Thorac. Surg. 83, 161–168 (2007).

    PubMed  Google Scholar 

  110. Oosterhof, T. et al. Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation 116, 545–551 (2007).

    PubMed  Google Scholar 

  111. Voskuil, M. et al. Postsurgical course of patients with congenitally corrected transposition of the great arteries. Am. J. Cardiol. 83, 558–562 (1999).

    CAS  PubMed  Google Scholar 

  112. Stellin, G., Vida, V. L., Padalino, M. A. & Rizzoli, G. Surgical outcome for congenital heart malformations in the adult age: a multicentric European study. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 7, 95–101 (2004).

    CAS  PubMed  Google Scholar 

  113. Daebritz, S. H. Update in adult congenital cardiac surgery. Pediatr. Cardiol. 28, 96–104 (2007).

    PubMed  Google Scholar 

  114. Vriend, J. W. et al. Predictive value of mild, residual descending aortic narrowing for blood pressure and vascular damage in patients after repair of aortic coarctation. Eur. Heart J. 26, 84–90 (2005).

    PubMed  Google Scholar 

  115. Vriend, J. W. & Mulder, B. J. Late complications in patients after repair of aortic coarctation: implications for management. Int. J. Cardiol. 101, 399–406 (2005).

    PubMed  Google Scholar 

  116. Padalino, M. A. et al. Midterm results of surgical intervention for congenital heart disease in adults: an Italian multicenter study. J. Thorac. Cardiovasc. Surg. 134, 106–113 (2007).

    PubMed  Google Scholar 

  117. Norozi, K. et al. Incidence and risk distribution of heart failure in adolescents and adults with congenital heart disease after cardiac surgery. Am. J. Cardiol. 97, 1238–1243 (2006).

    PubMed  Google Scholar 

  118. Winter, M. M. et al. Latest insights in therapeutic options for systemic right ventricular failure: a comparison with left ventricular failure. Heart 95, 960–963 (2009).

    CAS  PubMed  Google Scholar 

  119. Chaturvedi, V. & Saxena, A. Heart failure in children: clinical aspect and management. Indian J. Pediatr. 76, 195–205 (2009).

    PubMed  Google Scholar 

  120. Piran, S., Veldtman, G., Siu, S., Webb, G. D. & Liu, P. P. Heart failure and ventricular dysfunction in patients with single or systemic right ventricles. Circulation 105, 1189–1194 (2002).

    PubMed  Google Scholar 

  121. Tulevski, I. I. et al. Right ventricular function in congenital cardiac disease: noninvasive quantitative parameters for clinical follow-up. Cardiol. Young 13, 397–403 (2003).

    PubMed  Google Scholar 

  122. Tulevski, I. I. et al. Regional and global right ventricular dysfunction in asymptomatic or minimally symptomatic patients with congenitally corrected transposition. Cardiol. Young 14, 168–173 (2004).

    PubMed  Google Scholar 

  123. Winter, M. M. et al. Mechanisms for cardiac output augmentation in patients with a systemic right ventricle. Int. J. Cardiol. 143, 141–146 (2010).

    PubMed  Google Scholar 

  124. Winter, M. M. et al. Evaluating the systemic right ventricle by CMR: the importance of consistent and reproducible delineation of the cavity. J. Cardiovasc. Magn. Reson. 10, 40 (2008).

    PubMed  PubMed Central  Google Scholar 

  125. Tulevski, I. I. et al. Effect of pulmonary valve regurgitation on right ventricular function in patients with chronic right ventricular pressure overload. Am. J. Cardiol. 92, 113–116 (2003).

    PubMed  Google Scholar 

  126. Oosterhof, T., Tulevski, I. I., Vliegen, H. W., Spijkerboer, A. M. & Mulder, B. J. Effects of volume and/or pressure overload secondary to congenital heart disease (tetralogy of Fallot or pulmonary stenosis) on right ventricular function using cardiovascular magnetic resonance and B-type natriuretic peptide levels. Am. J. Cardiol. 97, 1051–1055 (2006).

    CAS  PubMed  Google Scholar 

  127. Tulevski, I. I. et al. Increased brain and atrial natriuretic peptides in patients with chronic right ventricular pressure overload: correlation between plasma neurohormones and right ventricular dysfunction. Heart 86, 27–30 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Barst, R. J. et al. Diagnosis and differential assessment of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 43, 40S–47S (2004).

    PubMed  Google Scholar 

  129. Duffels, M. G. et al. Pulmonary arterial hypertension in congenital heart disease: an epidemiologic perspective from a Dutch registry. Int. J. Cardiol. 120, 198–204 (2007).

    CAS  PubMed  Google Scholar 

  130. Vongpatanasin, W., Brickner, M. E., Hillis, L. D. & Lange, R. A. The Eisenmenger syndrome in adults. Ann. Intern. Med. 128, 745–755 (1998).

    CAS  PubMed  Google Scholar 

  131. Diller, G. & Gatzoulis, M. A. Pulmonary vascular disease in adults with congenital heart disease. Circulation 115, 1039–1050 (2007).

    PubMed  Google Scholar 

  132. Engelfriet, P. M. et al. Pulmonary arterial hypertension in adults born with a heart septal defect: the Euro Heart Survey on adult congenital heart disease. Heart 93, 682–687 (2007).

    PubMed  Google Scholar 

  133. Walsh, E. P. Interventional electrophysiology in patients with congenital heart disease. Circulation 115, 3224–3234 (2007).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T. van der Bom and A. C. Zomer equally contributed to this manuscript. Both contributed to discussion of content for the article, researched data to include in the manuscript, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments. A. H. Zwinderman reviewed and edited the manuscript before submission. F. J. Meijboom, B. J. Bouma, and B. J. M. Mulder contributed to discussion of content for the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Barbara J. M. Mulder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Bom, T., Zomer, A., Zwinderman, A. et al. The changing epidemiology of congenital heart disease. Nat Rev Cardiol 8, 50–60 (2011). https://doi.org/10.1038/nrcardio.2010.166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing