Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A role for motoneuron subtype–selective ER stress in disease manifestations of FALS mice

Abstract

The mechanisms underlying disease manifestations in neurodegeneration remain unclear, but their understanding is critical to devising effective therapies. We carry out a longitudinal analysis in vivo of identified motoneurons selectively vulnerable (VUL) or resistant (RES) to motoneuron disease (amyotrophic lateral sclerosis, ALS) and show that subtype-selective endoplasmic reticulum (ER) stress responses influence disease manifestations. VUL motoneurons were selectively prone to ER stress and showed gradually upregulated ER stress markers from birth on in three mouse models of familial ALS (FALS). 25–30 days before the earliest denervations, ubiquitin signals increased in both VUL and RES motoneurons, but an unfolded protein response coupled with microglial activation was initiated selectively in VUL motoneurons. This transition was followed by selective axonal degeneration and spreading stress. The ER stress–protective agent salubrinal attenuated disease manifestations and delayed progression, whereas chronic enhancement of ER stress promoted disease. Thus, whereas all motoneurons are preferentially affected in ALS, ER stress responses in specific motoneuron subtypes influence the progressive manifestations of weakening and paralysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene profiling of small numbers of identified VUL and RES motoneurons (MNs) in mice.
Figure 2: Stress and abrupt transition to UPR in VUL motoneurons (MNs), paired to microglial activation in G93A-fast mice.
Figure 3: Comparable patterns of increasing ER stress selectively in VUL motoneurons (MNs) in three disease models with distinct kinetics.
Figure 4: Early ubiquitin accumulation in VUL and RES motoneurons (MNs), but late ER stress responses in RES MNs.
Figure 5: Selective vulnerability to ER stress in VUL motoneurons (MNs).
Figure 6: The ER stress-protective agent salubrinal alleviates disease manifestations and delays disease.
Figure 7: Chronic ER stress anticipates disease manifestations in G93A-slow mice.

Similar content being viewed by others

References

  1. Boillee, S., Vande Velde, C. & Cleveland, D.W. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52, 39–59 (2006).

    Article  CAS  Google Scholar 

  2. Matsumoto, G., Stojanovic, A., Holmberg, C.I., Kim, S. & Morimoto, R.I. Structural properties and neuronal toxicity of amyotrophic lateral sclerosis-associated Cu/Zn superoxide dismutase 1 aggregates. J. Cell Biol. 171, 75–85 (2005).

    Article  CAS  Google Scholar 

  3. De Vos, K.J. et al. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum. Mol. Genet. 16, 2720–2728 (2007).

    Article  CAS  Google Scholar 

  4. Gurney, M.E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  Google Scholar 

  5. Bruijn, L.I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854 (1998).

    Article  CAS  Google Scholar 

  6. Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006).

    Article  CAS  Google Scholar 

  7. Lobsiger, C.S. & Cleveland, D.W. Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat. Neurosci. 10, 1355–1360 (2007).

    Article  CAS  Google Scholar 

  8. Yamanaka, K. et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat. Neurosci. 11, 251–253 (2008).

    Article  CAS  Google Scholar 

  9. Zhong, Z. et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat. Neurosci. 11, 420–422 (2008).

    Article  CAS  Google Scholar 

  10. Maragakis, N.J. & Rothstein, J.D. Mechanisms of disease: astrocytes in neurodegenerative disease. Nat. Clin. Pract. Neurol. 2, 679–689 (2006).

    Article  CAS  Google Scholar 

  11. Jaarsma, D., Teuling, E., Haasdijk, E.D., De Zeeuw, C.I. & Hoogenraad, C.C. Neuron-specific expression of mutant superoxide dismutase is sufficient to induce amyotrophic lateral sclerosis in transgenic mice. J. Neurosci. 28, 2075–2088 (2008).

    Article  CAS  Google Scholar 

  12. Turner, B.J. & Talbot, K. Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog. Neurobiol. 85, 94–134 (2008).

    Article  CAS  Google Scholar 

  13. Frey, D. et al. Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J. Neurosci. 20, 2534–2542 (2000).

    Article  CAS  Google Scholar 

  14. Fischer, L.R. & Glass, J.D. Axonal degeneration in motor neuron disease. Neurodegener. Dis. 4, 431–442 (2007).

    Article  Google Scholar 

  15. Pun, S., Santos, A.F., Saxena, S., Xu, L. & Caroni, P. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat. Neurosci. 9, 408–419 (2006).

    Article  CAS  Google Scholar 

  16. Liu, J. et al. Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43, 5–17 (2004).

    Article  CAS  Google Scholar 

  17. Atkin, J.D. et al. Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J. Biol. Chem. 281, 30152–30165 (2006).

    Article  CAS  Google Scholar 

  18. Nagata, T. et al. Increased ER stress during motor neuron degeneration in a transgenic mouse model of amyotrophic lateral sclerosis. Neurol. Res. 29, 767–771 (2007).

    Article  Google Scholar 

  19. Saxena, S. & Caroni, P. Mechanisms of axon degeneration: from development to disease. Prog. Neurobiol. 83, 174–191 (2007).

    Article  CAS  Google Scholar 

  20. Hegedus, J., Putman, C.T. & Gordon, T. Time course of preferential motor unit loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 28, 154–164 (2007).

    Article  CAS  Google Scholar 

  21. Lindholm, D., Wootz, H. & Korhonen, L. ER stress and neurodegenerative diseases. Cell Death Differ. 13, 385–392 (2006).

    Article  CAS  Google Scholar 

  22. Zhao, L. & Ackerman, S.L. Endoplasmic reticulum stress in health and disease. Curr. Opin. Cell Biol. 18, 444–452 (2006).

    Article  CAS  Google Scholar 

  23. Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    Article  CAS  Google Scholar 

  24. Lobsiger, C.S., Boillée, S. & Cleveland, D.W. Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons. Proc. Natl. Acad. Sci. USA 104, 7319–7326 (2007).

    Article  CAS  Google Scholar 

  25. Burke, R.E. Physiology of motor units. in Myology (eds. Engel, A.G. & Franzini-Armstrong, C.) 464–484 (McGraw-Hill, New York, 1994).

  26. McHanwell, S. & Biscoe, T.J. The localization of motoneurons supplying the hindlimb muscles of the mouse. J. Physiol. (Lond.) 293, 477–508 (1981).

    CAS  Google Scholar 

  27. Schweizer, U. et al. Conditional gene ablation of Stat3 reveals differential signaling requirements for survival of motoneurons during development and after nerve injury in the adult. J. Cell Biol. 156, 287–297 (2002).

    Article  CAS  Google Scholar 

  28. Rutkowski, D.T. & Kaufman, R.J. That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem. Sci. 32, 469–476 (2007).

    Article  CAS  Google Scholar 

  29. Teuling, E. et al. Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates. J. Neurosci. 28, 2075–2088 (2008).

    Article  Google Scholar 

  30. Atkin, J.D. et al. Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol. Dis. 30, 400–407 (2008).

    Article  CAS  Google Scholar 

  31. Ilieva, E.V. et al. Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130, 3111–3123 (2007).

    Article  Google Scholar 

  32. Kikuchi, H. et al. Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc. Natl. Acad. Sci. USA 103, 6025–6030 (2006).

    Article  CAS  Google Scholar 

  33. Urushitani, M., Ezzi, S.A., Matsuo, A., Tooyama, I. & Julien, J.P. The endoplasmic reticulum-Golgi pathway is a target for translocation and aggregation of mutant superoxide dismutase linked to ALS. FASEB J. 22, 2476–2487 (2008).

    Article  CAS  Google Scholar 

  34. Tobisawa, S. et al. Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice. Biochem. Biophys. Res. Commun. 303, 496–503 (2003).

    Article  CAS  Google Scholar 

  35. Yamagishi, S. et al. An in vitro model for Lewy body-like hyaline inclusion/astrocytic hyaline inclusion: induction by ER stress with an ALS-linked SOD1 mutation. PLoS ONE 2, e1030 (2007).

    Article  Google Scholar 

  36. Oh, Y.K., Shin, K.S., Yuan, J. & Kang, S.J. Superoxide dismutase 1 mutants related to amyotrophic lateral sclerosis induce endoplasmic stress in neuro2a cells. J. Neurochem. 104, 993–1005 (2008).

    Article  CAS  Google Scholar 

  37. Uehara, T. et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513–517 (2006).

    Article  CAS  Google Scholar 

  38. Raoul, C. et al. Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations. Neuron 35, 1067–1083 (2002).

    Article  CAS  Google Scholar 

  39. Rane, N.S., Kang, S.W., Chakrabarti, O., Feigenbaum, L. & Hegde, R.S. Reduced translocation of nascent prion protein during ER stress contributes to neurodegeneration. Dev. Cell 15, 359–370 (2008).

    Article  CAS  Google Scholar 

  40. Puttaparthi, K., Wojcik, C., Rajendran, B., DeMartino, G.N. & Elliott, J.L. Aggregate formation in the spinal cord of mutant SOD1 transgenic mice is reversible and mediated by proteasomes. J. Neurochem. 87, 851–860 (2003).

    Article  CAS  Google Scholar 

  41. Kieran, D., Woods, I., Villunger, A., Strasser, A. & Prehn, J.H. Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice. Proc. Natl. Acad. Sci. USA 104, 20606–20611 (2007).

    Article  CAS  Google Scholar 

  42. Pennuto, M. et al. Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice. Neuron 57, 393–405 (2008).

    Article  CAS  Google Scholar 

  43. Ito, D. & Suzuki, N. Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain 132, 8–15 (2008).

    Article  Google Scholar 

  44. Matus, S. et al. The stress rheostat: an interplay between the unfolded protein response (UPR) and autophagy in neurodegeneration. Curr. Mol. Med. 8, 157–172 (2008).

    Article  CAS  Google Scholar 

  45. Zhao, L., Longo-Guess, C., Harris, B.S., Lee, J.W. & Ackerman, S.L. protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1 a cochaperone of BiP. Nat. Genet. 37, 974–979 (2005).

    Article  CAS  Google Scholar 

  46. Sharp, P.S., Dick, J.R. & Greensmith, L. The effect of peripheral nerve injury on disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neuroscience 130, 897–910 (2005).

    Article  CAS  Google Scholar 

  47. David, G., Nguyen, K. & Barrett, E.F. Early vulnerability to ischemia/reperfusion injury in motor terminals innervating fast muscles of SOD1–G93A mice. Exp. Neurol. 204, 411–420 (2007).

    Article  CAS  Google Scholar 

  48. Coleman, P.D. & Yao, P.J. Synaptic slaughter in Alzheimer's disease. Neurobiol. Aging 24, 1023–1027 (2003).

    Article  CAS  Google Scholar 

  49. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. London (Univ. of Paris 7, France) for generously providing to us the transgenic mice overexpressing wild-type human SOD1. We are grateful to our colleagues S. Arber, B. Roska and D. Schübeler (FMI, Basel) for critically reading the manuscript and providing valuable comments. We thank E. Oakley (FMI, Basel) for valuable assistance with the bioinformatics analysis. S.S. was supported by a grant from the European Union (FP6, Network of Excellence NeuroNE). The Friedrich Miescher Institut is a branch of the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.S. performed all experiments, analyzed the gene profiling data and wrote parts of the manuscript. E.C. established the procedure for gene profiling small numbers of laser-dissected cells and carried out the gene chip hybridizations. P.C. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Pico Caroni.

Ethics declarations

Competing interests

The authors have applied for a patent on biomarkers of motoneuron and related neurodegenerative disease under patent application PCT/EP2008/066291.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Methods (PDF 9285 kb)

Supplementary Video 1

P132 G93A-fast mouse treated with vehicle from P30 on (this mouse will die at P136). (MOV 1653 kb)

Supplementary Video 2

P132 G93A-fast mouse treated with Salubrinal from P30 on (this mouse will die at P163). (MOV 1659 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, S., Cabuy, E. & Caroni, P. A role for motoneuron subtype–selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12, 627–636 (2009). https://doi.org/10.1038/nn.2297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2297

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing