Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors

Subjects

Abstract

Depending on the inflammatory milieu, injury can result either in a tissue's complete regeneration or in its degeneration and fibrosis, the latter of which could potentially lead to permanent organ failure. Yet how inflammatory cells regulate matrix-producing cells involved in the reparative process is unknown. Here we show that in acutely damaged skeletal muscle, sequential interactions between multipotent mesenchymal progenitors and infiltrating inflammatory cells determine the outcome of the reparative process. We found that infiltrating inflammatory macrophages, through their expression of tumor necrosis factor (TNF), directly induce apoptosis of fibro/adipogenic progenitors (FAPs). In states of chronic damage, however, such as those in mdx mice, macrophages express high levels of transforming growth factor β1 (TGF-β1), which prevents the apoptosis of FAPs and induces their differentiation into matrix-producing cells. Treatment with nilotinib, a kinase inhibitor with proposed anti-fibrotic activity, can block the effect of TGF-β1 and reduce muscle fibrosis in mdx mice. Our findings reveal an unexpected anti-fibrotic role of TNF and suggest that disruption of the precisely timed progression from a TNF-rich to a TGF-β−rich environment favors fibrotic degeneration of the muscle during chronic injury.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: After their damage-induced expansion, excess FAPs undergo apoptosis.
Figure 2: FAP clearance is impaired during skeletal muscle regeneration in Ccr2−/− mice.
Figure 3: Macrophages induce FAP death via TNF signaling.
Figure 4: TNF blockade leads to increased FAP survival and collagen deposition.
Figure 5: Tgf-β1 expression during muscle regeneration.
Figure 6: Inhibition of Tgf-β1 signaling by nilotinib restores FAP apoptosis in mdx mice.

References

  1. Mann, C.J. et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet. Muscle 1, 21 (2011).

    PubMed  PubMed Central  Google Scholar 

  2. Joe, A.W.B. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Uezumi, A. et al. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12, 143–152 (2010).

    CAS  PubMed  Google Scholar 

  4. Lemos, D.R. et al. Functionally convergent white adipogenic progenitors of different lineages participate in a diffused system supporting tissue regeneration. Stem Cells 30, 1152–1162 (2012).

    CAS  PubMed  Google Scholar 

  5. Uezumi, A. et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J. Cell Sci. 124, 3654–3664 (2011).

    CAS  PubMed  Google Scholar 

  6. Chazaud, B. et al. Dual and beneficial roles of macrophages during skeletal muscle regeneration. Exerc. Sport Sci. Rev. 37, 18–22 (2009).

    PubMed  Google Scholar 

  7. Brigitte, M. et al. Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis Rheum. 62, 268–279 (2010).

    CAS  PubMed  Google Scholar 

  8. Arnold, L. et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204, 1057–1069 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Murray, P.J. & Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu, H. et al. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J. 25, 358–369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pinto, A.R. et al. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS ONE 7, e36814 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl. Acad. Sci. USA 109, E3186–E3195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Summan, M. et al. Macrophages and skeletal muscle regeneration: a clodronate–containing liposome depletion study. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1488–R1495 (2006).

    CAS  PubMed  Google Scholar 

  14. Ruffell, D. et al. A CREB–C/EBPβ cascade induces M2 macrophage–specific gene expression and promotes muscle injury repair. Proc. Natl. Acad. Sci. USA 106, 17475–17480 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mounier, R. et al. AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 18, 251–264 (2013).

    CAS  PubMed  Google Scholar 

  16. Rhee, C.K. et al. Effect of nilotinib on bleomycin-induced acute lung injury and pulmonary fibrosis in mice. Respiration 82, 273–287 (2011).

    CAS  PubMed  Google Scholar 

  17. Liu, Y. et al. Inhibition of PDGF, TGF-β, and Abl signaling and reduction of liver fibrosis by the small molecule Bcr-Abl tyrosine kinase antagonist Nilotinib. J. Hepatol. 55, 612–625 (2011).

    CAS  PubMed  Google Scholar 

  18. Taki, H. et al. Interstitial pneumonitis associated with infliximab therapy without methotrexate treatment. Rheumatol. Int. 30, 275–276 (2009).

    PubMed  Google Scholar 

  19. Ostor, A.J., Crisp, A.J., Somerville, M.F. & Scott, D.G. Fatal exacerbation of rheumatoid arthritis associated fibrosing alveolitis in patients given infliximab. Br. Med. J. 329, 1266 (2004).

    Google Scholar 

  20. Huggett, M.T. & Armstrong, R. Adalimumab-associated pulmonary fibrosis. Rheumatology (Oxford) 45, 1312–1313 (2006).

    CAS  Google Scholar 

  21. Warren, G.L. et al. Chemokine receptor CCR2 involvement in skeletal muscle regeneration. FASEB J. 19, 413–415 (2005).

    CAS  PubMed  Google Scholar 

  22. Duffield, J.S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Shireman, P.K. et al. MCP–1 deficiency causes altered inflammation with impaired skeletal muscle regeneration. J. Leukoc. Biol. 81, 775–785 (2007).

    CAS  PubMed  Google Scholar 

  24. Tidball, J.G. & Villalta, S.A. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1173–R1187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kharraz, Y., Guerra, J., Mann, C.J., Serrano, A.L. & Muñoz–Cánoves, P. Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediators Inflamm. 2013, 491497 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Mann, P.B., Elder, K.D., Kennett, M.J. & Harvill, E.T. Toll-like receptor 4–dependent early elicited tumor necrosis factor alpha expression is critical for innate host defense against Bordetella bronchiseptica. Infect. Immun. 72, 6650–6658 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kruglov, A.A. & Nedospasov, S.A. Comment on “experimental arthritis triggers periodontal disease in mice: involvement of TNF-α and the oral microbiota.”. J. Immunol. 188, 4–5 (2012).

    CAS  PubMed  Google Scholar 

  28. Kalajzic, I. et al. Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J. Bone Miner. Res. 17, 15–25 (2002).

    CAS  PubMed  Google Scholar 

  29. Wang, C.Y., Mayo, M.W., Korneluk, R.G., Goeddel, D.V. & Baldwin, A.S. Jr. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).

    CAS  PubMed  Google Scholar 

  30. Bergmann, M.W., Loser, P., Dietz, R. & von Harsdorf, R. Effect of NF-κB Inhibition on TNF-α–induced apoptosis and downstream pathways in cardiomyocytes. J. Mol. Cell. Cardiol. 33, 1223–1232 (2001).

    CAS  PubMed  Google Scholar 

  31. Bulfield, G., Siller, W.G., Wight, P.A. & Moore, K.J. X chromosome–linked muscular dystrophy (mdx) in the mouse. Proc. Natl. Acad. Sci. USA 81, 1189–1192 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Porter, J.D. et al. A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum. Mol. Genet. 11, 263–272 (2002).

    CAS  PubMed  Google Scholar 

  33. Villalta, S.A., Nguyen, H.X., Deng, B., Gotoh, T. & Tidball, J.G. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum. Mol. Genet. 18, 482–496 (2009).

    CAS  PubMed  Google Scholar 

  34. Desguerre, I. & Arnold, L. et al. A new model of experimental fibrosis in hindlimb skeletal muscle of adult mdx mouse mimicking muscular dystrophy. Muscle Nerve 45, 803–814 (2012).

    PubMed  Google Scholar 

  35. Kramann, R., Dirocco, D.P. & Humphreys, B.D. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease. J. Pathol. 231, 273–289 (2013).

    CAS  PubMed  Google Scholar 

  36. Liu, Y. et al. Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat. Med. 17, 1594–1601 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng, C.F. et al. Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-α–induced apoptosis via NF-κB in mesenchymal stem cells. Biochem. Biophys. Res. Commun. 406, 601–607 (2011).

    CAS  PubMed  Google Scholar 

  38. Distler, J.H.W., Schett, G., Gay, S. & Distler, O. The controversial role of tumor necrosis factor α in fibrotic diseases. Arthritis Rheum. 58, 2228–2235 (2008).

    CAS  PubMed  Google Scholar 

  39. Chen, K., Wei, Y., Sharp, G.C. & Braley–Mullen, H. Decreasing TNF-α results in less fibrosis and earlier resolution of granulomatous experimental autoimmune thyroiditis. J. Leukoc. Biol. 81, 306–314 (2007).

    CAS  PubMed  Google Scholar 

  40. Zhang, K., Gharaee-Kermani, M., McGarry, B., Remick, D. & Phan, S.H. TNF-α–mediated lung cytokine networking and eosinophil recruitment in pulmonary fibrosis. J. Immunol. 158, 954–959 (1997).

    CAS  PubMed  Google Scholar 

  41. Hodgetts, S., Radley, H., Davies, M. & Grounds, M.D. Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFα function with Etanercept in mdx mice. Neuromuscul. Disord. 16, 591–602 (2006).

    PubMed  Google Scholar 

  42. Grounds, M.D. & Torrisi, J. Anti-TNFα (Remicade) therapy protects dystrophic skeletal muscle from necrosis. FASEB J. 18, 676–682 (2004).

    CAS  PubMed  Google Scholar 

  43. Bermudez, L.E. & Young, L.S. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-γ, is associated with macrophage killing of Mycobacterium avium complex. J. Immunol. 140, 3006–3013 (1988).

    CAS  PubMed  Google Scholar 

  44. Croft, M. The role of TNF superfamily members in T-cell function and diseases. Nat. Rev. Immunol. 9, 271–285 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vidal, B. et al. Fibrinogen drives dystrophic muscle fibrosis via a TGFβ /alternative macrophage activation pathway. Genes Dev. 22, 1747–1752 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lawrance, I.C. et al. A murine model of chronic inflammation–induced intestinal fibrosis down-regulated by antisense NF-κB. Gastroenterology 125, 1750–1761 (2003).

    CAS  PubMed  Google Scholar 

  47. Brack, A.S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    CAS  PubMed  Google Scholar 

  48. Huang, P., Zhao, X.S., Fields, M., Ransohoff, R.M. & Zhou, L. Imatinib attenuates skeletal muscle dystrophy in mdx mice. FASEB J. 23, 2539–2548 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dadgar, S.Z. et al. Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. J. Cell Biol. 207, 139–158 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Richeldi, L. et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2071–2082 (2014).

    PubMed  Google Scholar 

  51. Daniels, C.E. et al. Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am. J. Respir. Crit. Care Med. 181, 604–610 (2010).

    CAS  PubMed  Google Scholar 

  52. Heredia, J.E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376–388 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Grivennikov, S.I. et al. Distinct and nonredundant in vivo functions of TNF produced by T cells and macrophages/neutrophils: protective and deleterious effects. Immunity 22, 93–104 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Biomedical Research Centre Animal Facility and core staff as well as the University of British Columbia flow cytometry facility staff for their technical assistance. We are very grateful to Claudia Hopkins for schematic presented in Supplementary Figure 10. The Col1a1*3.6-eGFP mice were a gift from D.W. Rowe (Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center). This work was supported by a grant from the Heart and Stroke Foundation of Canada, the Canadian Institute for Health Research grant MOP 97856 (both to F.M.V.R.), and a Russian Science Foundation grant #14-50-00029 (to S.A.N.). F.B. was supported by a Four-Year Doctoral Fellowship (4YF) by the University of British Columbia, and M.L. was supported by a fellowship from the Chilean government.

Author information

Authors and Affiliations

Authors

Contributions

D.R.L. designed, directed and carried out experiments; analyzed data; and wrote the manuscript. F.B., M.L., C.-K.C., S.T.L., D.F., R.-H.Z. and A.N. carried out experiments and analyzed data. S.A.N. provided important advice on experimental design. F.M.V.R. designed experiments, directed the project and wrote the manuscript.

Corresponding author

Correspondence to Fabio M V Rossi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 & Supplementary Tables 1–3 (PDF 36097 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos, D., Babaeijandaghi, F., Low, M. et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21, 786–794 (2015). https://doi.org/10.1038/nm.3869

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing