Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5

Abstract

Obesity induced in mice by high-fat feeding activates the protein kinase Cdk5 (cyclin-dependent kinase 5) in adipose tissues. This results in phosphorylation of the nuclear receptor PPARγ (peroxisome proliferator-activated receptor γ), a dominant regulator of adipogenesis and fat cell gene expression, at serine 273. This modification of PPARγ does not alter its adipogenic capacity, but leads to dysregulation of a large number of genes whose expression is altered in obesity, including a reduction in the expression of the insulin-sensitizing adipokine, adiponectin. The phosphorylation of PPARγ by Cdk5 is blocked by anti-diabetic PPARγ ligands, such as rosiglitazone and MRL24. This inhibition works both in vivo and in vitro, and is completely independent of classical receptor transcriptional agonism. Similarly, inhibition of PPARγ phosphorylation in obese patients by rosiglitazone is very tightly associated with the anti-diabetic effects of this drug. All these findings strongly suggest that Cdk5-mediated phosphorylation of PPARγ may be involved in the pathogenesis of insulin-resistance, and present an opportunity for development of an improved generation of anti-diabetic drugs through PPARγ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific fat cell gene dysregulation by the Cdk5-mediated S273 phosphorylation of PPARγ.
Figure 2: Cdk5-mediated phosphorylation of PPARγ is increased in fat tissues of mice fed a high-fat diet.
Figure 3: Anti-diabetic PPARγ ligands block CDK5-mediated phosphorylation of PPARγ.
Figure 4: Differential HDX mass spectrometry data for PPARγ-ligand-binding domain (LBD) with and without rosiglitazone and MRL24.
Figure 5: Correlation between the inhibition of phosphorylation and improvement of insulin sensitivity by anti-diabetic PPARγ ligands.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Kershaw, E. E. & Flier, J. S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89, 2548–2556 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993)

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Lagathu, C. et al. Long-term treatment with interleukin-1β induces insulin resistance in murine and human adipocytes. Diabetologia 49, 2162–2173 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  5. Berg, A. H. et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Med. 7, 947–953 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703 (1996)

    Article  CAS  PubMed  Google Scholar 

  7. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med. 7, 941–946 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Morrison, R. F. & Farmer, S. R. Hormonal signaling and transcriptional control of adipocyte differentiation. J. Nutr. 130, 3116S–3121S (2000)

    Article  CAS  PubMed  Google Scholar 

  9. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPAR γ 2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994)

    Article  CAS  PubMed  Google Scholar 

  10. Willson, T. M., Lambert, M. H. & Kliewer, S. A. Peroxisome proliferator-activated receptor γ and metabolic disease. Annu. Rev. Biochem. 70, 341–367 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Jimenez, M. A. et al. Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade. Mol. Cell. Biol. 27, 743–757 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Wu, Z., Bucher, N. L. & Farmer, S. R. Induction of peroxisome proliferator-activated receptor γ during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPβ, C/EBPδ, and glucocorticoids. Mol. Cell. Biol. 16, 4128–4136 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPAR γ). J. Biol. Chem. 270, 12953–12956 (1995)

    Article  CAS  PubMed  Google Scholar 

  14. Trujillo, M. E. & Scherer, P. E. Adipose tissue-derived factors: impact on health and disease. Endocr. Rev. 27, 762–778 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. Sharma, A. M. & Staels, B. Peroxisome proliferator-activated receptor γ and adipose tissue — understanding obesity-related changes in regulation of lipid and glucose metabolism. J. Clin. Endocrinol. Metab. 92, 386–395 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. Lipscombe, L. L. et al. Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. J. Am. Med. Assoc. 298, 2634–2643 (2007)

    Article  CAS  Google Scholar 

  17. Willson, T. M. et al. The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J. Med. Chem. 39, 665–668 (1996)

    Article  CAS  PubMed  Google Scholar 

  18. Acton, J. J., III et al. Benzoyl 2-methyl indoles as selective PPARγ modulators. Bioorg. Med. Chem. Lett. 15, 357–362 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Dhavan, R. & Tsai, L. H. A decade of CDK5. Nature Rev. Mol. Cell Biol. 2, 749–759 (2001)

    Article  CAS  Google Scholar 

  20. Utreras, E. et al. Tumor necrosis factor-α regulates cyclin-dependent kinase 5 activity during pain signaling through transcriptional activation of p35. J. Biol. Chem. 284, 2275–2284 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosen, E. D. et al. C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev. 16, 22–26 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Musa, F. R. et al. Effects of luteinizing hormone, follicle-stimulating hormone, and epidermal growth factor on expression and kinase activity of cyclin-dependent kinase 5 in Leydig TM3 and Sertoli TM4 cell lines. J. Androl. 21, 392–402 (2000)

    CAS  PubMed  Google Scholar 

  23. Torti, F. M. et al. A macrophage factor inhibits adipocyte gene expression: an in vitro model of cachexia. Science 229, 867–869 (1985)

    Article  CAS  ADS  PubMed  Google Scholar 

  24. Cinti, S. The adipose organ. Prostaglandins Leukot. Essent. Fatty Acids 73, 9–15 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. Leesnitzer, L. M. et al. Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41, 6640–6650 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Sarraf, P. et al. Loss-of-function mutations in PPARγ associated with human colon cancer. Mol. Cell 3, 799–804 (1999)

    Article  CAS  PubMed  Google Scholar 

  27. Berger, J. P. et al. Distinct properties and advantages of a novel peroxisome proliferator-activated protein γ selective modulator. Mol. Endocrinol. 17, 662–676 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Gregoire, F. M. et al. MBX-102/JNJ39659100, a novel peroxisome proliferator-activated receptor-ligand with weak transactivation activity retains antidiabetic properties in the absence of weight gain and edema. Mol. Endocrinol. 23, 975–988 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ostberg, T. et al. A new class of peroxisome proliferator-activated receptor agonists with a novel binding epitope shows antidiabetic effects. J. Biol. Chem. 279, 41124–41130 (2004)

    Article  PubMed  Google Scholar 

  30. Hakak, Y. et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl Acad. Sci. USA 98, 4746–4751 (2001)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  31. Salim, C. et al. The giant protein AHNAK involved in morphogenesis and laminin substrate adhesion of myelinating Schwann cells. Glia 57, 535–549 (2009)

    Article  PubMed  Google Scholar 

  32. Merino-Trigo, A. et al. Sorting nexin 5 is localized to a subdomain of the early endosomes and is recruited to the plasma membrane following EGF stimulation. J. Cell Sci. 117, 6413–6424 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. Maier, C. S. & Deinzer, M. L. Protein conformations, interactions, and H/D exchange. Methods Enzymol. 402, 312–360 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. Nolte, R. T. et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395, 137–143 (1998)

    Article  CAS  ADS  PubMed  Google Scholar 

  35. Bruning, J. B. et al. Partial agonists activate PPARγ using a helix 12 independent mechanism. Structure 15, 1258–1271 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. Flier, J. S. et al. Severely impaired adipsin expression in genetic and acquired obesity. Science 237, 405–408 (1987)

    Article  CAS  ADS  PubMed  Google Scholar 

  37. Calle, E. E. et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348, 1625–1638 (2003)

    Article  PubMed  Google Scholar 

  38. Whitmer, R. A. et al. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. Br. Med. J. 330, 1360–1362 (2005)

    Article  Google Scholar 

  39. Patrick, G. N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622 (1999)

    Article  CAS  ADS  PubMed  Google Scholar 

  40. Kinsella, T. M. & Nolan, G. P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413 (1996)

    Article  CAS  PubMed  Google Scholar 

  41. Walkey, C. J. & Spiegelman, B. M. A functional peroxisome proliferator-activated receptor-γ ligand-binding domain is not required for adipogenesis. J. Biol. Chem. 283, 24290–24294 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996)

    Article  CAS  Google Scholar 

  43. Li, C. & Wong, W. H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl Acad. Sci. USA 98, 31–36 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  44. Moreno-Navarrete, J. M. et al. Complement factor H is expressed in adipose tissue in association with insulin resistance. Diabetes 59, 200–209 (2010)

    Article  CAS  PubMed  Google Scholar 

  45. Kloting, N. et al. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab. 6, 79–87 (2007)

    Article  PubMed  Google Scholar 

  46. Bluher, M. et al. Relation between glycaemic control, hyperinsulinaemia and plasma concentrations of soluble adhesion molecules in patients with impaired glucose tolerance or Type II diabetes. Diabetologia 45, 210–216 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Mootha for help with the analysis of microarray data and for critical comments. We thank M. Kirschner for a critical reading of the manuscript and for comments. We are grateful to R. Gupta and P. Cohen for critical comments on the manuscript. J.H.C., A.S.B., J.L.E., P.B., D.L., J.L.R. and B.M.S are supported by NIH DK31405. S.K. is supported by NIH grant DK087853. M.B. is supported by a grant from Deutsche Forschungsgemeinschaft (DFG) and the Clinical Research group ‘Atherobesity’ KFO 152 (project BL 833/1-1). P.R.G., M.J.C. and T.M.K. are supported in part by the by the Intramural Research Program of the N National Institute of Mental Health (P.R.G., M.J.C., T.M.K., U54-MH084512; H. Rosen Principal Investigator) and by the NIH National Institute of General Medical Sciences (P.R.G. and M.J.C., R01-GM084041).

Author information

Authors and Affiliations

Authors

Contributions

J.H.C. and B.M.S. conceived and designed the experiments. J.H.C., A.S.B., J.L.E., S.K., P.B., D.L., J.L.R., M.J.C., T.M.K, M.B. and P.R.G performed the experiments. All authors analysed the data. J.H.C., A.S.B., J.L.E. and B.M.S. wrote the manuscript.

Corresponding author

Correspondence to Bruce M. Spiegelman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Microarray data have been deposited in Gene Expression Omnibus: GSE22033.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-16 with legends and Supplementary Tables 1-4. (PDF 1157 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J., Banks, A., Estall, J. et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature 466, 451–456 (2010). https://doi.org/10.1038/nature09291

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09291

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing