Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The vascular depression hypothesis: mechanisms linking vascular disease with depression

Abstract

The ‘Vascular Depression’ hypothesis posits that cerebrovascular disease may predispose, precipitate or perpetuate some geriatric depressive syndromes. This hypothesis stimulated much research that has improved our understanding of the complex relationships between late-life depression (LLD), vascular risk factors, and cognition. Succinctly, there are well-established relationships between LLD, vascular risk factors and cerebral hyperintensities, the radiological hallmark of vascular depression. Cognitive dysfunction is common in LLD, particularly executive dysfunction, a finding predictive of poor antidepressant response. Over time, progression of hyperintensities and cognitive deficits predicts a poor course of depression and may reflect underlying worsening of vascular disease. This work laid the foundation for examining the mechanisms by which vascular disease influences brain circuits and influences the development and course of depression. We review data testing the vascular depression hypothesis with a focus on identifying potential underlying vascular mechanisms. We propose a disconnection hypothesis, wherein focal vascular damage and white matter lesion location is a crucial factor, influencing neural connectivity that contributes to clinical symptomatology. We also propose inflammatory and hypoperfusion hypotheses, concepts that link underlying vascular processes with adverse effects on brain function that influence the development of depression. Testing such hypotheses will not only inform the relationship between vascular disease and depression, but also provide guidance on the potential repurposing of pharmacological agents that may improve LLD outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Alexopoulos GS . Depression in the elderly. Lancet 2005; 365: 1961–1970.

    Article  PubMed  Google Scholar 

  2. Alexopoulos GS, Meyers BS, Young RC, Campbell S, Silbersweig D, Charlson M . ‘Vascular depression’ hypothesis. Arch Gen Psychiatry 1997; 54: 915–922.

    Article  CAS  PubMed  Google Scholar 

  3. Alexopoulos GS, Meyers BS, Young RC, Kakuma T, Silbersweig D, Charlson M . Clinically defined vascular depression. Am J Psychiatry 1997; 154: 562–565.

    Article  CAS  PubMed  Google Scholar 

  4. Alexopoulos GS . ‘The Depression-Executive Dysfunction Syndrome of Late Life’: a specific target for D3 agonists? Am J Geriatr Psychiatry 2001; 9: 22–29.

    CAS  PubMed  Google Scholar 

  5. Krishnan KRR, Hays JC, Blazer DG . MRI-defined vascular depression. Am J Psychiatry 1997; 154: 497–501.

    Article  CAS  PubMed  Google Scholar 

  6. Sneed JR, Rindskopf D, Steffens DC, Krishnan KR, Roose SP . The vascular depression subtype: evidence of internal validity. Biol Psychiatry 2008; 64: 491–497.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Awad IA, Spetzler RF, Hodak JA, Awad CA, Carey R . Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. I. Correlation with age and cerebrovascular risk factors. Stroke 1986; 17: 1084–1089.

    Article  CAS  PubMed  Google Scholar 

  8. Dufouil C, de Kersaint-Gilly A, Besancon V, Levy C, Auffray E, Brunnereau L et al. Longitudinal study of blood pressure and white matter hyperintensities. The EVA MRI cohort. Neurology 2001; 56: 921–926.

    Article  CAS  PubMed  Google Scholar 

  9. Longstreth WTJ, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people: the cardiovascular health study. Stroke 1996; 27: 1274–1282.

    Article  PubMed  Google Scholar 

  10. Taylor WD, MacFall JR, Payne ME, McQuoid DR, Steffens DC, Provenzale JM et al. Greater MRI lesion volumes in elderly depressed subjects than in control subjects. Psychiatry Res 2005; 139: 1–7.

    Article  PubMed  Google Scholar 

  11. Taylor WD, MacFall JR, Provenzale JM, Payne ME, McQuoid DR, Steffens DC et al. Serial MR imaging of hyperintense white matter lesion volumes in elderly subjects: correlation with vascular risk factors. Am J Roentgenol 2003; 181: 571–576.

    Article  Google Scholar 

  12. Jokinen H, Kalska H, Ylikoski R, Madureira S, Verdelho A, Gouw A et al. MRI-defined subcortical ischemic vascular disease: baseline clinical and neuropsychological findings. The LADIS Study. Cerebrovasc Dis 2009; 27: 336–344.

    Article  PubMed  Google Scholar 

  13. Pantoni L, Garcia JH, Gutierrez JA . Cerebral white matter is highly vulnerable to ischemia. Stroke 1996; 27: 1641–1646.

    Article  CAS  PubMed  Google Scholar 

  14. Thomas AJ, O’Brien JT, Davis S, Ballard C, Barber R, Kalaria RN et al. Ischemic basis for deep white matter hyperintensities in major depression. Arch Gen Psychiatry 2002; 59: 785–792.

    Article  PubMed  Google Scholar 

  15. Thomas AJ, Perry R, Barber R, Kalaria RN, O'Brien JT . Pathologies and pathological mechanisms for white matter hyperintensities in depression. Ann NY Acad Sci 2002; 977: 333–339.

    Article  PubMed  Google Scholar 

  16. Taylor WD, McQuoid DR, Krishnan KR . Medical comorbidity in late-life depression. Int J Geriatr Psychiatry 2004; 19: 935–943.

    Article  PubMed  Google Scholar 

  17. Vasudev A, O'Brien JT, Tan MP, Parry SW, Thomas AJ . A study of orthostatic hypotension, heart rate variability and baroreflex sensitivity in late-life depression. J Affect Disord 2011; 131: 374–378.

    Article  PubMed  Google Scholar 

  18. Lavretsky H, Lesser IM, Wohl M, Miller BL . Relationship of age, age at onset, and sex to depression in older adults. Am J Geriatr Psychiatry 1998; 6: 248–256.

    Article  CAS  PubMed  Google Scholar 

  19. Matsubayashi K, Okumiya K, Wada T, Osaki Y, Fujisawa M, Doi Y et al. Postural dysregulation in systolic blood pressure is associated with worsened scoring on neurobehavioral function tests and leukoaraiosis in the older elderly living in a community. Stroke 1997; 28: 2169–2173.

    Article  CAS  PubMed  Google Scholar 

  20. Puisieux F, Monaca P, Deplanque D, Delmaire C, di Pompeo C, Monaca C et al. Relationship between leuko-araiosis and blood pressure variability in the elderly. Eur Neurol 2001; 46: 115–120.

    Article  CAS  PubMed  Google Scholar 

  21. Isaka Y, Okamoto M, Ashida K, Imaizumi M . Decreased cerebrovascular dilatory capacity in subjects with asymptomatic periventricular hyperintensities. Stroke 1994; 25: 375–381.

    Article  CAS  PubMed  Google Scholar 

  22. Bakker SL, de Leeuw FE, de Groot JC, Hofman A, Koudstaal PJ, Breteler MM . Cerebral vasomotor reactivity and cerebral white matter lesions in the elderly. Neurology 1999; 52: 578–583.

    Article  CAS  PubMed  Google Scholar 

  23. Marstrand JR, Garde E, Rostrup E, Ring P, Rosenbaum S, Mortensen EL et al. Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke 2002; 33: 972–976.

    Article  CAS  PubMed  Google Scholar 

  24. Oishi M, Mochizuki Y . Regional cerebral blood flow and cerebrospinal fluid glutamate in leukoaraiosis. J Neurol 1998; 245: 777–780.

    Article  CAS  PubMed  Google Scholar 

  25. Coffey CE, Figiel GS, Djang WT, Cress M, Saunders WB, Weiner RD . Leukoencephalopathy in elderly depressed patients referred for ECT. Biol Psychiatry 1988; 24: 143–161.

    Article  CAS  PubMed  Google Scholar 

  26. Coffey CE, Figiel GS, Djang WT, Saunders WB, Weiner RD . White matter hyperintensities on magnetic resonance imaging: clinical and anatomic correlates in the depressed elderly. J Neuropsychiatry Clin Neurosci 1989; 1: 135–144.

    Article  CAS  PubMed  Google Scholar 

  27. Dolan RJ, Poynton AM, Bridges PK, Trimble MR . Altered magnetic resonance white-matter T1 values in patients with affective disorder. Br J Psychiatry 1990; 157: 107–110.

    Article  CAS  PubMed  Google Scholar 

  28. Fujikawa T, Yamawaki S, Touhouda Y . Incidence of silent cerebral infarction in patients with major depression. Stroke 1993; 24: 1631–1634.

    Article  CAS  PubMed  Google Scholar 

  29. Greenwald BS, Kramer-Ginsberg E, Krishnan KRR, Ashtari M, Aupperle PM, Patel M . MRI signal hyperintensities in geriatric depression. Am J Psychiatry 1996; 153: 1212–1215.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar A, Bilker W, Jin Z, Udupa J . Atrophy and high intensity lesions: complementary neurobiological mechanisms in late-life depression. Neuropsychopharmacology 2000; 22: 264–274.

    Article  CAS  PubMed  Google Scholar 

  31. Herrmann LL, Le Masurier M, Ebmeier KP . White matter hyperintensities in late life depression: a systematic review. J Neurol Neurosurg Psychiatry 2008; 79: 619–624.

    Article  CAS  PubMed  Google Scholar 

  32. Steffens DC, Krishnan KRR . Structural neuroimaging and mood disorders: recent findings, implications for classification, and future directions. Biol Psychiatry 1998; 43: 705–712.

    Article  CAS  PubMed  Google Scholar 

  33. Krishnan KRR, Tayor WD, McQuoid DR, MacFall JR, Payne ME, Provenzale JM et al. Clinical characteristics of magnetic resonance imaging-defined subcortical ischemic depression. Biol Psychiatry 2004; 55: 390–397.

    Article  PubMed  Google Scholar 

  34. de Groot JC, de Leeuw F, Oudkerk M, Hofman A, Jolles J, MMB Breteler . Cerebral white matter lesions and depressive symptoms in elderly adults. Arch Gen Psychiatry 2000; 57: 1071–1076.

    Article  CAS  PubMed  Google Scholar 

  35. Figiel GS, Krishnan KRR, Doraiswamy PM, Rao VP, Nemeroff CB, Boyko OB . Subcortical hyperintensities on brain magnetic resonance imaging: a comparison between late age onset and early onset elderly depressed subjects. Neurobiol Aging 1991; 12: 245–247.

    Article  CAS  PubMed  Google Scholar 

  36. Hickie I, Scott E, Mitchell P, Wilhelm K, Austin MP, Bennett B . Subcortical hyperintensities on magnetic resonance imaging: clinical correlates and prognostic significance in patients with severe depression. Biol Psychiatry 1995; 37: 151–160.

    Article  CAS  PubMed  Google Scholar 

  37. Salloway S, Malloy P, Kohn R, Gillard E, Duffy J, Rogg J et al. MRI and neuropsychological differences in early- and late-life-onset geriatric depression. Neurology 1996; 46: 1567–1574.

    Article  CAS  PubMed  Google Scholar 

  38. Kumar A, Bilker W, Jin Z, Udupa J, Gottlieb G . Age of onset of depression and quantitative neuroanatomic measures: absence of specific correlates. Psychiatry Res 1999; 91: 101–110.

    Article  CAS  PubMed  Google Scholar 

  39. Dillon C, Allegri RF, Serrano CM, Iturry M, Salgado P, Glaser FB et al. Late- versus early-onset geriatric depression in a memory research center. Neuropsychiatr Dis Treat 2009; 5: 517–526.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rapp MA, Dahlman K, Sano M, Grossman HT, Haroutunian V, Gorman JM . Neuropsychological differences between late-onset and recurrent geriatric major depression. Am J Psychiatry 2005; 162: 691–698.

    Article  PubMed  Google Scholar 

  41. Wassertheil-Smoller S, Applegate WB, Berge K, Chang CJ, Davis BR, Grimm R et al. Change in depression as a precursor of cardiovascular events. SHEP Cooperative Research Group (Systoloc Hypertension in the elderly). Arch Intern Med 1996; 156: 553–561.

    Article  CAS  PubMed  Google Scholar 

  42. Krishnan M, Mast BT, Ficker LJ, Lawhorne L, Lichtenberg PA . The effects of preexisting depression on cerebrovascular health outcomes in geriatric continuing care. J Gerontol A Biol Sci Med Sci 2005; 60: 915–919.

    Article  PubMed  Google Scholar 

  43. Frasure-Smith N, Lesperance F, Talajic M . Depression and 18-month prognosis after myocardial infarction. Circulation 1995; 91: 999–1005.

    Article  CAS  PubMed  Google Scholar 

  44. Musselman DL, Evans DL, Nemeroff CB . The relationship of depression to cardiovascular disease: Epidemiology, biology, and treatment. Arch Gen Psychiatry 1998; 55: 580–592.

    Article  CAS  PubMed  Google Scholar 

  45. Glassman AH, Bigger JT, Gaffney M, Shapiro PA, Swenson JR . Onset of major depression associated with acute coronary syndromes: relationship of onset, major depressive disorder history, and episode severity to sertraline benefit. Arch Gen Psychiatry 2006; 63: 283–288.

    Article  PubMed  Google Scholar 

  46. Frasure-Smith N, Lesperance F, Irwin MR, Sauve C, Lesperance J, Theroux P . Depression, C-reactive protein and two-year major adverse cardiac events in men after acute coronary syndromes. Biol Psychiatry 2007; 62: 302–308.

    Article  CAS  PubMed  Google Scholar 

  47. Surtees PG, Wainwright NW, Boekholdt SM, Luben RN, Wareham NJ, Khaw KT . Major depression, C-reactive protein, and incident ischemic heart disease in healthy men and women. Psychosom Med 2008; 70: 850–855.

    Article  CAS  PubMed  Google Scholar 

  48. Miller AH, Maletic V, Raison CL . Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009; 65: 732–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zill P, Baghai TC, Schule C, Born C, Frustuck C, Buttner A et al. DNA methylation analysis of the angiotensin converting enzyme (ACE) gene in major depression. PLoS ONE 2012; 7: e40479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van den Heuvel DM, ten Dam VH, de Craen AJ, Admiraal-Behloul F, Olofsen H, Bollen EL et al. Increase in periventricular white matter hyperintensities parallels decline in mental processing speed in a non-demented elderly population. J Neurol Neurosurg Psychiatry 2006; 77: 149–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Debette S, Bombois S, Bruandet A, Delbeuck X, Lepoittevin S, Delmaire C et al. Subcortical hyperintensities are associated with cognitive decline in patients with mild cognitive impairment. Stroke 2007; 38: 2924–2930.

    Article  PubMed  Google Scholar 

  52. de Groot JC, De Leeuw FE, Oudkerk M, Van Gijn J, Hofman A, Jolles J et al. Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann Neurol 2002; 52: 335–341.

    Article  PubMed  Google Scholar 

  53. Filley CM . The behavioral neurology of cerebral white matter. Neurology 1998; 50: 1535–1540.

    Article  CAS  PubMed  Google Scholar 

  54. DeCarli C, Fletcher E, Ramey V, Harvey D, Jagust WJ . Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke 2005; 36: 50–55.

    Article  PubMed  Google Scholar 

  55. Firbank MJ, Lloyd AJ, Ferrier N, O'Brien JT . A volumetric study of MRI signal hyperintensities in late-life depression. Am J Geriatr Psychiatry 2004; 12: 606–612.

    Article  PubMed  Google Scholar 

  56. MacFall JR, Payne ME, Provenzale JM, Krishnan KRR . Medial orbital frontal lesions in late-onset depression. Biol Psychiatry 2001; 49: 803–806.

    Article  CAS  PubMed  Google Scholar 

  57. MacFall JR, Taylor WD, Rex DE, Pieper S, Payne ME, McQuoid DR et al. Lobar distribution of lesion volumes in late-life depression: the Biomedical Informatics Research Network (BIRN). Neuropsychopharmacology 2005; 31: 1500–1507.

    Article  PubMed  Google Scholar 

  58. Taylor WD, MacFall JR, Steffens DC, Payne ME, Provenzale JM, Krishnan KRR . Localization of age-associated white matter hyperintensities in late-life depression. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 539–544.

    Article  PubMed  Google Scholar 

  59. O'Brien JT, Firbank MJ, Krishnan MS, van Straaten EC, van der Flier WM, Petrovic K et al. White matter hyperintensities rather than lacunar infarcts are associated with depressive symptoms in older people: the LADIS study. Am J Geriatr Psychiatry 2006; 14: 834–841.

    Article  PubMed  Google Scholar 

  60. Taylor WD, Zhao Z, Ashley-Koch A, Payne ME, Steffens DC, Krishnan RR et al. Fiber tract-specific white matter lesion severity Findings in late-life depression and by AGTR1 A1166C genotype. Hum Brain Mapp 201122; 34: 295–303.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sheline YI, Price JL, Vaishnavi SN, Mintun MA, Barch DM, Epstein AA et al. Regional white matter hyperintensity burden in automated segmentation distinguishes late-life depressed subjects from comparison subjects matched for vascular risk factors. Am J Psychiatry 2008; 165: 524–532.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dalby RB, Chakravarty MM, Ahdidan J, Sorensen L, Frandsen J, Jonsdottir KY et al. Localization of white-matter lesions and effect of vascular risk factors in late-onset major depression. Psychol Med 2010; 40: 1389–1399.

    Article  CAS  PubMed  Google Scholar 

  63. Patel MJ, Boada FE, Price JC, Sheu LK, Reynolds CF, Aizenstein HJ . Association of small vessel ischemic white matter changes with BOLD fMRI imaging in the elderly. Psychiatry Res 2012; 204: 117–122.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mayda AB, Westphal A, Carter CS, DeCarli C . Late life cognitive control deficits are accentuated by white matter disease burden. Brain 2011; 134 (Pt 6): 1673–1683.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Venkatraman VK, Aizenstein H, Guralnik J, Newman AB, Glynn NW, Taylor C et al. Executive control function, brain activation and white matter hyperintensities in older adults. Neuroimage 2010; 49: 3436–3442.

    Article  PubMed  Google Scholar 

  66. Wu M, Andreescu C, Butters MA, Tamburo R, Reynolds CF, Aizenstein H . Default-mode network connectivity and white matter burden in late-life depression. Psychiatry Res 2011; 194: 39–46.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Aizenstein HJ, Andreescu C, Edelman KL, Cochran JL, Price J, Butters MA et al. fMRI correlates of white matter hyperintensities in late-life depression. Am J Psychiatry 2011; 168: 1075–1082.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993; 43: 1683–1689.

    Article  CAS  PubMed  Google Scholar 

  69. Chimowitz MI, Estes ML, Furlan AJ, Awad IA . Further observations on the pathology of subcortical lesions identified on magnetic resonance imaging. Arch Neurol 1992; 49: 747–752.

    Article  CAS  PubMed  Google Scholar 

  70. Schmidt R, Schmidt H, Haybaeck J, Loitfelder M, Weis S, Cavalieri M et al. Heterogeneity in age-related white matter changes. Acta neuropathologica 2011; 122: 171–185.

    Article  PubMed  Google Scholar 

  71. Thomas AJ, Ferrier IN, Kalaria RN, Davis S, O’Brien JT . Cell adhesion molecule expression in the dorsolateral prefrontal cortex and anterior cingulate cortex in major depression in the elderly. Br J Psychiatry 2002; 181: 129–134.

    Article  PubMed  Google Scholar 

  72. Thomas AJ, Ferrier IN, Kalaria RN, Woodward SA, Ballard C, Oakley A et al. Elevation in late-life depression of intercellular adhesion molecule-1 expression in the dorsolateral prefrontal cortex. Am J Psychiatry 2000; 157: 1682–1684.

    Article  CAS  PubMed  Google Scholar 

  73. Thomas AJ, Perry R, Kalaria RN, Oakley A, McMeekin W, O'Brien JT . Neuropathological evidence for ischemia in the white matter of the dorsolateral prefrontal cortex in late-life depression. Int J Geriatr Psychiatry 2003; 18: 7–13.

    Article  PubMed  Google Scholar 

  74. Rajkowska G, Miguel-Hidalgo JJ, Dubey P, Stockmeier CA, Krishnan KR . Prominent reduction in pyramidal neurons density in the orbitofrontal cortex of elderly depressed patients. Biol Psychiatry 2005; 58: 297–306.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Miguel-Hidalgo JJ, Jiang W, Konick L, Overholser JC, Jurjus GJ, Stockmeier CA et al. Morphometric analysis of vascular pathology in the orbitofrontal cortex of older subjects with major depression. Int J Geriatr Psychiatry, advance online publication, 3 December 2012.

  76. Miguel-Hidalgo JJ, Overholser JC, Jurjus GJ, Meltzer HY, Dieter L, Konick L et al. Vascular and extravascular immunoreactivity for intercellular adhesion molecule 1 in the orbitofrontal cortex of subjects with major depression: age-dependent changes. J Affect Disord 2011; 132: 422–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Santos M, Gold G, Kovari E, Herrmann FR, Hof PR, Bouras C et al. Neuropathological analysis of lacunes and microvascular lesions in late-onset depression. Neuropathol Appl Neurobiol 2010; 36: 661–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tsopelas C, Stewart R, Savva GM, Brayne C, Ince P, Thomas A et al. Neuropathological correlates of late-life depression in older people. Br J Psychiatry 2011; 198: 109–114.

    Article  PubMed  Google Scholar 

  79. Thomas AJ, Ferrier IN, Kalaria RN, Perry RH, Brown A, O'Brien JT . A neuropathological study of vascular factors in late-life depression. J Neurol Neurosurg Psychiatry 2001; 70: 83–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Murphy CF, Gunning-Dixon FM, Hoptman MJ, Lim KO, Ardekani B, Shields JK et al. White-matter integrity predicts Stroop performance in patients with geriatric depression. Biol Psychiatry 2007; 61: 1007–1010.

    Article  PubMed  Google Scholar 

  81. Lockwood KA, Alexopoulos GS, van Gorp WG . Executive dysfunction in geriatric depression. Am J Psychiatry 2002; 159: 1119–1126.

    Article  PubMed  Google Scholar 

  82. Elderkin-Thompson V, Kumar A, Bilker WB, Dunkin JJ, Mintz J, Moberg PJ et al. Neuropsychological deficits among patients with late-onset minor and major depression. Archives of Clinical Neuropsychology 2003; 18: 529–549.

    Article  PubMed  Google Scholar 

  83. Nebes RD, Butters MA, Houck PR, Zmuda MD, Aizenstein H, Pollock BG et al. Dual-task performance in depressed geriatric patients. Psychiatry Res 2001; 102: 139–151.

    Article  CAS  PubMed  Google Scholar 

  84. Boone KB, Lesser IM, Miller BL, Wohl M, Berman N, Lee ABP et al. Cognitive functioning in older depressed outpatients: relationship of presence and severity of depression to neuropsychological test scores. Neuropsychology 1995; 9: 390–398.

    Article  Google Scholar 

  85. Beats BC, Sahakian BJ, Levy R . Cognitive performance in tests sensitive to frontal lobe dysfunction in the elderly depressed. Psychol Med 1996; 26: 591–603.

    Article  CAS  PubMed  Google Scholar 

  86. Lesser IM, Boone KB, Mehringer CM, Wohl MA, Miller BL, Berman NG . Cognition and white matter hyperintensities in older depressed patients. Am J Psychiatry 1996; 153: 1280–1287.

    Article  CAS  PubMed  Google Scholar 

  87. Sexton CE, McDermott L, Kalu UG, Herrmann LL, Bradley KM, Allan CL et al. Exploring the pattern and neural correlates of neuropsychological impairment in late-life depression. Psychol Med 2011; 26: 1–8.

    Google Scholar 

  88. Herrmann LL, Goodwin GM, Ebmeier KP . The cognitive neuropsychology of depression in the elderly. Psychol Med 2007; 37: 1693–1702.

    Article  PubMed  Google Scholar 

  89. Alexopoulos GS, Kiosses DN, Klimstra S, Kalayam B, Bruce ML . Clinical presentation of the ‘depression-executive dysfunction syndrome’ of late life. Am J Geriatr Psychiatry 2002; 10: 98–106.

    PubMed  Google Scholar 

  90. Kim BS, Lee DH, Lee DW, Bae JN, Chang SM, Kim S et al. The role of vascular risk factors in the development of DED syndrome among an elderly community sample. Am J Geriatr Psychiatry 2011; 19: 104–114.

    Article  PubMed  Google Scholar 

  91. Hajjar I, Yang F, Sorond F, Jones RN, Milberg W, Cupples LA et al. A novel aging phenotype of slow gait, impaired executive function, and depressive symptoms: relationship to blood pressure and other cardiovascular risks. J Gerontol A Biol Sci Med Sci 2009; 64: 994–1001.

    Article  PubMed  Google Scholar 

  92. Alexopoulos GS, Kiosses DN, Murphy C, Heo M . Executive dysfunction, heart disease burden, and remission of geriatric depression. Neuropsychopharmacology 2004; 29: 2278–2284.

    Article  PubMed  Google Scholar 

  93. Bogner HR, Bruce ML, Reynolds CF, Mulsant BH, Cary MS, Morales K et al. The effects of memory, attention, and executive dysfunction on outcomes of depression in a primary care intervention trial: the PROSPECT study. Int J Geriatr Psychiatry 2007; 22: 922–929.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kalayam B, Alexopoulos GS . Prefrontal dysfunction and treatment response in geriatric depression. Arch Gen Psychiatry 1999; 56: 713–718.

    Article  CAS  PubMed  Google Scholar 

  95. Potter GG, Kittinger JD, Wagner HR, Steffens DC, Krishnan KR . Prefrontal neuropsychological predictors of treatment remission in late-life depression. Neuropsychopharmacology 2004; 29: 2266–2271.

    Article  PubMed  Google Scholar 

  96. Baldwin R, Jeffries S, Jackson A, Sutcliffe C, Thacker N, Scott M et al. Treatment response in late-onset depression: relationship to neuropsychological, neuroradiological and vascular risk factors. Psychol Med 2004; 34: 125–136.

    Article  CAS  PubMed  Google Scholar 

  97. Sneed JR, Roose SP, Keilp JG, Krishnan KR, Alexopoulos GS, Sackeim HA . Response inhibition predicts poor antidepressant treatment response in very old depressed patients. Am J Geriatr Psychiatry 2007; 15: 553–563.

    Article  PubMed  Google Scholar 

  98. Sheline YI, Pieper CF, Barch DM, Welsh-Boehmer K, McKinstry RC, MacFall JR et al. Support for the vascular depression hypothesis in late-life depression: results of a 2-site, prospective, antidepressant treatment trial. Arch Gen Psychiatry 2010; 67: 277–285.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bella R, Pennisi G, Cantone M, Palermo F, Pennisi M, Lanza G et al. Clinical presentation and outcome of geriatric depression in subcortical ischemic vascular disease. Gerontology 2010; 56: 298–302.

    Article  CAS  PubMed  Google Scholar 

  100. Nebes RN, Pollock BG, Houck PR, Butters MA, Mulsant BH, Zmuda MD et al. Persistence of cognitive impairment in geriatric patients following antidepressant treament: a randomized, double-blind clinical trial with nortriptyline and paroxetine. J Psychiatr Res 2003; 37: 99–108.

    Article  PubMed  Google Scholar 

  101. Kramer-Ginsberg E, Greenwald BS, Krishnan KRR, Christiansen B, Hu J, Ashtari M et al. Neuropsychological functioning and MRI signal hyperintensities in geraitric depression. Am J Psychiatry 1999; 156: 438–444.

    CAS  PubMed  Google Scholar 

  102. Kohler S, Thomas AJ, Lloyd A, Barber R, Almeida OP, O'Brien JT . White matter hyperintensities, cortisol levels, brain atrophy and continuing cognitive deficits in late-life depression. Br J Psychiatry 2010; 196: 143–149.

    Article  PubMed  Google Scholar 

  103. Butters MA, Whyte EM, Nebes RD, Begley AE, Dew MA, Mulsant BH et al. The nature and determinants of neuropsychological functioning in late-life depression. Arch Gen Psychiatry 2004; 61: 587–595.

    Article  PubMed  Google Scholar 

  104. Sheline YI, Barch DM, Garcia K, Gersing K, Piper C, Welsh-Bohmer KA et al. Cognitive function in late life depression: relationships to depression severity, cerebrovascular risk factors and processing speed. Biol Psychiatry 2006; 60: 58–65.

    Article  PubMed  Google Scholar 

  105. Nebes RD, Butters MA, Mulsant BH, Pollock BG, Zmuda MD, Houck PR et al. Decreased working memory and processing speed mediate cognitive impairment in geriatric depression. Psychol Med 2000; 30: 679–691.

    Article  CAS  PubMed  Google Scholar 

  106. Delaloye C, Baudois S, de Bilbao F, Dubois Remund C, Hofer F, Lamon M et al. Cognitive impairment in late-onset depression. Limited to a decrement in information processing resources? Eur Neurol 2008; 60: 149–154.

    Article  CAS  PubMed  Google Scholar 

  107. Bhalla RK, Butters MA, Mulsant BH, Begley AE, Zmuda MD, Schoderbek B et al. Persistence of neuropsychologic deficits in the remitted state of late-life depression. Am J Geriatr Psychiatry 2006; 14: 419–427.

    Article  PubMed  Google Scholar 

  108. Butters MA, Becker JT, Nebes RD, Zmuda MD, Mulsant BH, Pollock BG et al. Changes in cognitive functioning following treatment of late-life depression. Am J Psychiatry 2000; 157: 1949–1954.

    Article  CAS  PubMed  Google Scholar 

  109. Murphy CF, Alexopoulos GS . Longitudinal association of initiation/perseveration and severity of geriatric depression. Am J Geriatr Psychiatry 2004; 12: 50–56.

    Article  PubMed  Google Scholar 

  110. Vasudev A, Saxby BK, O'Brien JT, Colloby SJ, Firbank MJ, Brooker H et al. Relationship between cognition, magnetic resonance white matter hyperintensities, and cardiovascular autonomic changes in late-life depression. Am J Geriatr Psychiatry 2012; 20: 691–699.

    Article  PubMed  Google Scholar 

  111. Perlmuter LC, Sarda G, Casavant V, O'Hara K, Hindes M, Knott PT et al. A review of orthostatic blood pressure regulation and its association with mood and cognition. Clin Auton Res 2012; 22: 99–107.

    Article  PubMed  Google Scholar 

  112. Novak V, Hajjar I . The relationship between blood pressure and cognitive function. Nat Rev Cardiol 2010; 7: 686–698.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB . Probability of stroke: A risk profile from the Framingham Study. Stroke 1991; 22: 312–318.

    Article  CAS  PubMed  Google Scholar 

  114. Gunning-Dixon FM, Raz N . Neuroanatomical correlates of selected executive functions in middle-aged and older adults: a prospective MRI study. Neuropsychologia 2003; 41: 1929–1941.

    Article  PubMed  Google Scholar 

  115. Kramer JH, Mungas D, Reed BR, Wetzel ME, Burnett MM, Miller BL et al. Longitudinal MRI and cognitive change in healthy elderly. Neuropsychology 2007; 21: 412–418.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Vannorsdall TD, Waldstein SR, Kraut M, Pearlson GD, Schretlen DJ . White matter abnormalities and cognition in a community sample. Arch Clin Neuropsychol 2009; 24: 209–217.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wright CB, Festa JR, Paik MC, Schmiedigen A, Brown TR, Yoshita M et al. White matter hyperintensities and subclinical infarction: associations with psychomotor speed and cognitive flexibility. Stroke 2008; 39: 800–805.

    Article  PubMed  PubMed Central  Google Scholar 

  118. de Groot JC, de Leeuw FE, Oudkerk M, van Gijn J, Hofman A, Jolles J et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol 2000; 47: 145–151.

    Article  CAS  PubMed  Google Scholar 

  119. Au R, Massaro JM, Wolf PA, Young ME, Beiser A, Seshadri S et al. Association of white matter hyperintensity volume with decreased cognitive functioning: the Framingham Heart Study. Arch Neurol 2006; 63: 246–250.

    Article  PubMed  Google Scholar 

  120. Marquine MJ, Attix DK, Goldstein LB, Samsa GP, Payne ME, Chelune GJ et al. Differential patterns of cognitive decline in anterior and posterior white matter hyperintensity progression. Stroke 2010; 41: 1946–1950.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Longstreth WT, Arnold AM, Beauchamp NJ, Manolio TA, Lefkowitz D, Jungreis C et al. Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study. Stroke 2005; 36: 56–61.

    Article  PubMed  Google Scholar 

  122. Silbert LC, Nelson C, Howieson DB, Moore MM, Kaye JA . Impact of white matter hyperintensity volume progression on rate of cognitive and motor decline. Neurology 2008; 71: 108–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Smith EE, Salat DH, Jeng J, McCreary CR, Fischl B, Schmahmann JD et al. Correlations between MRI white matter lesion location and executive function and episodic memory. Neurology 2011; 76: 1492–1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bocti C, Swartz RH, Gao FQ, Sahlas DJ, Behl P, Black SE . A new visual rating scale to assess strategic white matter hyperintensities within cholinergic pathways in dementia. Stroke 2005; 36: 2126–2131.

    Article  PubMed  Google Scholar 

  125. Alexopoulos GS, Kiosses DN, Heo M, Murphy CF, Shanmugham B, Gunning-Dixon F . Executive dysfunction and the course of geriatric depression. Biol Psychiatry 2005; 58: 204–210.

    Article  PubMed  Google Scholar 

  126. Alexopoulos GS, Meyers BS, Young RC, Kalayam B, Kakuma T, Gabrielle M et al. Executive dysfunction and long-term outcomes of geriatric depression. Arch Gen Psychiatry 2000; 57: 285–290.

    Article  CAS  PubMed  Google Scholar 

  127. Butters MA, Bhalla RK, Mulsant BH, Mazumdar S, Houck PR, Begley AE et al. Executive functioning, illness course, and relapse/recurrence in continuation and maintenance treatment in late-life depression: Is there a relationship? Am J Geriatr Psychiatry 2004; 12: 387–394.

    PubMed  Google Scholar 

  128. Morimoto SS, Wexler BE, Alexopoulos GS . Neuroplasticity-based computerized cognitive remediation for geriatric depression. Int J Geriatr Psychiatry 2012; 27.

  129. McLennan SN, Mathias JL . The depression-executive dysfunction (DED) syndrome and response to antidepressants: a meta-analytic review. Int J Geriatr Psychiatry 2010; 25: 933–944.

    Article  PubMed  Google Scholar 

  130. Morimoto SS, Gunning FM, Murphy CF, Kanellopoulos D, Kelly RE, Alexopoulos GS . Executive function and short-term remission of geriatric depression: the role of semantic strategy. Am J Geriatr Psychiatry 2011; 19: 115–122.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Morimoto SS, Gunning FM, Kanellopoulos D, Murphy CF, Klimstra SA, Kelly RE et al. Semantic organizational strategy predicts verbal memory and remission rate of geriatric depression. Int J Geriatr Psychiatry 2012; 27: 506–512.

    Article  PubMed  Google Scholar 

  132. Pimontel MA, Culang-Reinlieb ME, Morimoto SS, Sneed JR . Executive dysfunction and treatment response in late-life depression. Int J Geriatr Psychiatry 2011; 27: 893–899.

    Article  PubMed  Google Scholar 

  133. Alexopoulos GS, Hoptman MJ, Kanellopoulos D, Murphy CF, Lim KO, Gunning FM . Functional connectivity in the cognitive control network and the default mode network in late-life depression. J Affect Disord 2012; 139: 56–65.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Story TJ, Potter GG, Attix DK, Welsh-Bohmer KA, Steffens DC . Neurocognitive correlates of response to treatment in late-life depression. Am J Geriatr Psychiatry 2008; 16: 752–759.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Simpson S, Baldwin RC, Jackson A, Burns AS . Is subcortical disease associated with a poor response to antidepressants? Neurological, neuropsychological and neuroradiological findings in late-life depression. Psychol Med 1998; 28: 1015–1026.

    Article  CAS  PubMed  Google Scholar 

  136. Patankar TF, Baldwin R, Mitra D, Jeffries S, Sutcliffe C, Burns A et al. Virchow-Robin space dilatation may predict resistance to antidepressant monotherapy in elderly patients with depression. J Affect Disord 2007; 97: 265–270.

    Article  CAS  PubMed  Google Scholar 

  137. Gunning-Dixon FM, Walton M, Cheng J, Acuna J, Klimstra S, Zimmerman ME et al. MRI signal hyperintensities and treatment remission of geriatric depression. J Affect Disord 2010; 126: 395–401.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sneed JR, Culang-Reinlieb ME, Brickman AM, Gunning-Dixon FM, Johnert L, Garcon E et al. MRI signal hyperintensities and failure to remit following antidepressant treatment. J Affect Disord 2011; 135: 315–320.

    Article  CAS  PubMed  Google Scholar 

  139. Janssen J, Pol HEH, Schnack HG, Kok RM, Lampe IK, de Leeuw FE et al. Cerebral volume measurements and subcortical white matter lesions and short-term treatment response in late life depression. Int J Geriatr Psychiatry 2007; 22: 468–474.

    Article  PubMed  Google Scholar 

  140. Krishnan KR, Hays JC, George LK, Blazer DG . Six-month outcomes for MRI-related vascular depression. Depress Anxiety 1998; 8: 142–146.

    Article  CAS  PubMed  Google Scholar 

  141. Salloway S, Boyle PA, Correia S, Malloy PF, Cahn-Weiner DA, Schneider L et al. The relationship of MRI subcortical hyperintensities to treatment response in a trial of sertraline in geriatric depressed outpatients. Am J Geriatr Psychiatry 2002; 10: 107–111.

    Article  PubMed  Google Scholar 

  142. Salloway S, Correia S, Boyle P, Malloy P, Schneider L, Lavretsky H et al. MRI subcortical hyperintensities in old and very old depressed outpatients: the important role of age in late-life depression. J Neurol Sci 2002; 203-204: 227–233.

    Article  PubMed  Google Scholar 

  143. Sneed JR, Roose SP, Sackeim HA . Vascular depression: A distinct diagnostic subtype? Biol Psychiatry 2006; 60: 1295–1298.

    Article  PubMed  Google Scholar 

  144. Sneed JR, Culang-Reinlieb ME . The vascular depression hypothesis: an update. Am J Geriatr Psychiatry 2011; 19: 99–103.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Raz N, Rodrigue KM, Kennedy KM, Acker JD . Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults. Neuropsychology 2007; 21: 149–157.

    Article  PubMed  Google Scholar 

  146. Taylor WD, Steffens DC, MacFall JR, McQuoid DR, Payne ME, Provenzale JM et al. White matter hyperintensity progression and late-life depression outcomes. Arch Gen Psychiatry 2003; 60: 1090–1096.

    Article  PubMed  Google Scholar 

  147. Chen PS, McQuoid DR, Payne ME, Steffens DC . White matter and subcortical gray matter lesion volume changes and late-life depression outcome: a 4-year magnetic resonance imaging study. Int Psychogeriatr 2006; 18: 445–456.

    Article  PubMed  Google Scholar 

  148. Alexopoulos GS, Murphy CF, Gunning-Dixon FM, Latoussakis V, Kanellopoulos D, Klimstra S et al. Microstructural white matter abnormalities and remission of geriatric depression. Am J Psychiatry 2008; 165: 238–244.

    Article  PubMed  Google Scholar 

  149. Alexopoulos GS, Glatt CE, Hoptman MJ, Kanellopoulos D, Murphy CF, Kelly RE et al. BDNF Val66met polymorphism, white matter abnormalities and remission of geriatric depression. J Affect Disord 2010; 24.

  150. Taylor WD, Kuchibhatla M, Payne ME, MacFall JR, Sheline YI, Krishnan KR et al. Frontal white matter anisotropy and antidepressant response in late-life depression. PLoS ONE 2008; 3: e3267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sheline YI, Price JL, Yan Z, Mintun MA . Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci USA 2010; 107: 11020–11025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Alexopoulos GS, Murphy CF, Gunning-Dixon FM, Glatt CE, Latoussakis V, Kelly RE et al. Serotonin transporter polymorphisms, microstructural white matter abnormalities and remission of geriatric depression. J Affect Disord 2009; 119: 132–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lotrich FE . Gene-environment interactions in geriatric depression. Psychiatr Clin North Am 2011; 34: 357–376, viii.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Benjamin S, Taylor W . Nature and nurture: genetic influences and gene-environment interactions in depression. Curr Psychiatry Rev 2010; 6: 82–90.

    Article  Google Scholar 

  155. Annerbrink K, Jonsson EG, Olsson M, Nilsson S, Sedvall GC, Anckarsater H et al. Associations between the angiotensin-converting enzyme insertion/deletion polymorphism and monoamine metabolite concentrations in cerebrospinal fluid. Psychiatry Res 2010; 179: 231–234.

    Article  CAS  PubMed  Google Scholar 

  156. Baghai TC, Schule C, Zwanzger P, Minov C, Zill P, Ella R et al. Hypothalamic-pituitary-adrenocortical axis dysregulation in patients with major depression is influenced by the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene. Neurosci Lett 2002; 328: 299–303.

    Article  CAS  PubMed  Google Scholar 

  157. Wu Y, Wang X, Shen X, Tan Z, Yuan Y . The I/D polymorphism of angiotensin-converting enzyme gene in major depressive disorder and therapeutic outcome: a case-control study and meta-analysis. J Affect Disord 2012; 136: 971–978.

    Article  CAS  PubMed  Google Scholar 

  158. Arinami T, Li L, Mitsushio H, Itokawa M, Hamaguchi H, Toru M . An insertion/deletion polymorphism in the angiotensin converting enzyme gene is associated with both brain substance P contents and affective disorders. Biol Psychiatry 1996; 40: 1122–1127.

    Article  CAS  PubMed  Google Scholar 

  159. Saab YB, Gard PR, Yeoman MS, Mfarrej B, El-Moalem H, Ingram MJ . Renin-angiotensin-system gene polymorphisms and depression. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 1113–1118.

    Article  CAS  PubMed  Google Scholar 

  160. Lopez-Leon S, Janssens AC, Hofman A, Claes S, Breteler MM, Tiemeier H et al. No association between the angiotensin-converting enzyme gene and major depression: a case-control study and meta-analysis. Psychiatr Genet 2006; 16: 225–226.

    Article  PubMed  Google Scholar 

  161. Baghai TC, Binder EB, Schule C, Salyakina D, Eser D, Lucae S et al. Polymorphisms in the angiotensin-converting enzyme gene are associated with unipolar depression, ACE activity and hypercortisolism. Mol Psychiatry 2006; 11: 1003–1015.

    Article  CAS  PubMed  Google Scholar 

  162. Sparks DL, Hunsaker JC, Amouyel P, Malafosse A, Bellivier F, Leboyer M et al. Angiotensin I-converting enzyme I/D polymorphism and suicidal behaviors. Am J Med Genet B Neuropsychiatr Genet 2009; 150: 290–294.

    Article  CAS  Google Scholar 

  163. Hishimoto A, Shirakawa O, Nishiguchi N, Hashimoto T, Yanagi M, Nushida H et al. Association between a functional polymorphism in the renin-angiotensin system and completed suicide. J Neural Transm 2006; 113: 1915–1920.

    Article  CAS  PubMed  Google Scholar 

  164. Fudalej S, Fudalej M, Kostrzewa G, Kuzniar P, Franaszczyk M, Wojnar M et al. Angiotensin-converting enzyme polymorphism and completed suicide: an association in Caucasians and evidence for a link with a method of self-injury. Neuropsychobiology 2009; 59: 151–158.

    Article  CAS  PubMed  Google Scholar 

  165. Angunsri R, Sritharathikhun T, Suttirat S, Tencomnao T . Association of angiotensin-converting enzyme gene promoter single nucleotide polymorphisms and haplotype with major depression in a northeastern Thai population. J Renin Angiotensin Aldosterone Syst 2009; 10: 179–184.

    Article  CAS  PubMed  Google Scholar 

  166. Firouzabadi N, Shafiei M, Bahramali E, Ebrahimi SA, Bakhshandeh H, Tajik N . Association of angiotensin-converting enzyme (ACE) gene polymorphism with elevated serum ACE activity and major depression in an Iranian population. Psychiatry Res 2012; 200: 336–342.

    Article  CAS  PubMed  Google Scholar 

  167. Spiering W, Kroon AA, Fuss-Lejeune MM, Daemen MJ, de Leeuw PW, de Leeuw PW . Angiotensin II sensitivity is associated with the angiotensin II type 1 receptor A(1166)C polymorphism in essential hypertensives on a high sodium diet. Hypertension 2000; 36: 411–416.

    Article  CAS  PubMed  Google Scholar 

  168. Taylor WD, Steffens DC, Ashley-Koch A, Payne ME, MacFall JR, Potocky C et al. Angiotensin receptor gene polymorphisms and 2-year change in cerebral hyperintense lesion volume in men. Mol Psychiatry 2010; 15: 816–822.

    Article  CAS  PubMed  Google Scholar 

  169. Sleegers K, den Heijer T, van Dijk EJ, Hofman A, Bertoli-Avella AM, Koudstaal PJ et al. ACE gene is associated with Alzheimer's disease and atrophy of hippocampus and amygdala. Neurobiol Aging 2005; 26: 1153–1159.

    Article  CAS  PubMed  Google Scholar 

  170. Zhang Z, Deng L, Bai F, Shi Y, Yu H, Yuan Y et al. ACE I/D polymorphism affects cognitive function and gray-matter volume in amnestic mild cognitive impairment. Behav Brain Res 2011; 218: 114–120.

    Article  CAS  PubMed  Google Scholar 

  171. Taylor WD, Benjamin S, McQuoid DR, Payne ME, Krishnan RR, MacFall JR et al. AGTR1 gene variation: association with depression and frontotemporal morphology. Psychiatry Res 2012; 202: 104–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hou Z, Yuan Y, Zhang Z, Hou G, You J, Bai F . The D-allele of ACE insertion/deletion polymorphism is associated with regional white matter volume changes and cognitive impairment in remitted geriatric depression. Neurosci Lett 2010; 479: 262–266.

    Article  CAS  PubMed  Google Scholar 

  173. Wang Z, Yuan Y, Bai F, You J, Li L, Zhang Z . Abnormal default-mode network in angiotensin converting enzyme D allele carriers with remitted geriatric depression. Behav Brain Res 2012; 230: 325–332.

    Article  CAS  PubMed  Google Scholar 

  174. Baghai TC, Schule C, Zill P, Deiml T, Eser D, Zwanzger P et al. The angiotensin I converting enzyme insertion/deletion polymorphism influences therapeutic outcome in major depressed women, but not in men. Neurosci Lett 2004; 363: 38–42.

    Article  CAS  PubMed  Google Scholar 

  175. Bondy B, Baghai TC, Zill P, Schule C, Eser D, Deiml T et al. Genetic variants in the angiotensin I-converting-enzyme (ACE) and angiotensin II receptor (AT1) gene and clinical outcome in depression. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 1094–1099.

    Article  CAS  PubMed  Google Scholar 

  176. Kondo DG, Speer MC, Krishnan KR, McQuoid DR, Slifer SH, Pieper CF et al. Association of AGTR1 with 18-month treatment outcome in late-life depression. Am J Geriatr Psychiatry 2007; 15: 564–572.

    Article  PubMed  Google Scholar 

  177. Taylor WD, Bae JN, MacFall JR, Payne ME, Provenzale JM, Steffens DC et al. Widespread effects of hyperintense lesions on cerebral white matter structure. Am J Roentgenol 2007; 188: 1695–1704.

    Article  Google Scholar 

  178. Alexopoulos GS . Frontostriatal and limbic dysfunction in late-life depression. Am J Geriatr Psychiatry 2002; 10: 687–695.

    Article  PubMed  Google Scholar 

  179. Dalby RB, Frandsen J, Chakravarty MM, Ahdidan J, Sorensen L, Rosenberg R et al. Depression severity is correlated to the integrity of white matter fiber tracts in late-onset major depression. Psychiatry Res 2010; 184: 38–48.

    Article  PubMed  Google Scholar 

  180. Taylor WD, Payne ME, Krishnan KRR, Wagner HR, Provenzale JM, Steffens DC et al. Evidence of white matter tract disruption in MRI hyperintensities. Biol Psychiatry 2001; 50: 179–183.

    Article  CAS  PubMed  Google Scholar 

  181. Sexton CE, Le Masurier M, Allan CL, Jenkinson M, McDermott L, Kalu UG et al. Magnetic resonance imaging in late-life depression: vascular and glucocorticoid cascade hypotheses. Br J Psychiatry 2012; 201: 46–51.

    Article  PubMed  Google Scholar 

  182. Taylor WD, MacFall JR, Gerig G, Krishnan KR . Structural integrity of the uncinate fasciculus in geriatric depression: Relationship with age of onset. Neuropsychiatr Dis Treat 2007; 3: 669–674.

    PubMed  PubMed Central  Google Scholar 

  183. Ebeling U, Cramon DV . Topography of the uncinate fascicle and adjacent temporal fiber tracts. Acta Neurochir (Wien) 1992; 115: 143–148.

    Article  CAS  Google Scholar 

  184. Kier EL, Staib LH, Davis LM, Bronen RAMR . imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer's loop of the optic radiation. AJNR Am J Neuroradiol 2004; 25: 677–691.

    PubMed  PubMed Central  Google Scholar 

  185. Petrides M, Pandya DN . Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. J Neurosci 2007; 27: 11573–11586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mufson EJ, Pandya DN . Some observations on the course and composition of the cingulum bundle in the rhesus monkey. J Comp Neurol 1984; 225: 31–43.

    Article  CAS  PubMed  Google Scholar 

  187. Morris R, Pandya DN, Petrides M . Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J Comp Neurol 1999; 407: 183–192.

    Article  CAS  PubMed  Google Scholar 

  188. Rudrauf D, Mehta S, Grabowski TJ . Disconnection's renaissance takes shape: Formal incorporation in group-level lesion studies. Cortex 2008; 44: 1084–1096.

    Article  PubMed  Google Scholar 

  189. Gaffan D, Wilson CR . Medial temporal and prefrontal function: recent behavioural disconnection studies in the macaque monkey. Cortex 2008; 44: 928–935.

    Article  PubMed  Google Scholar 

  190. Zhang A, Leow A, Ajilore O, Lamar M, Yang S, Joseph J et al. Quantitative tract-specific measures of uncinate and cingulum in major depression using diffusion tensor imaging. Neuropsychopharmacology 2012; 37: 959–967.

    Article  CAS  PubMed  Google Scholar 

  191. Keedwell PA, Chapman R, Christiansen K, Richardson H, Evans J, Jones DK . Cingulum White Matter in Young Women at Risk of Depression: The Effect of Family History and Anhedonia. Biol Psychiatry 2012; 72: 296–302.

    Article  PubMed  Google Scholar 

  192. Damoiseaux JS, Greicius MD . Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 2009; 213: 525–533.

    Article  PubMed  Google Scholar 

  193. Skudlarski P, Jagannathan K, Calhoun VD, Hampson M, Skudlarska BA, Pearlson G . Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage 2008; 43: 554–561.

    Article  PubMed  Google Scholar 

  194. Teipel SJ, Bokde AL, Meindl T, Amaro E, Soldner J, Reiser MF et al. White matter microstructure underlying default mode network connectivity in the human brain. Neuroimage 2010; 49: 2021–2032.

    Article  PubMed  Google Scholar 

  195. van den Heuvel M, Mandl R, Luigjes J, Hulshoff Pol H . Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci 2008; 28: 10844–10851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Steffens DC, Taylor WD, Denny KL, Bergman SR, Wang L . Structural integrity of the uncinate fasciculus and resting state functional connectivity of the ventral prefrontal cortex in late life depression. PLoS ONE 2011; 6: e22697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Godbout JP, Johnson RW . Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Neurol Clin 2006; 24: 521–538.

    Article  PubMed  Google Scholar 

  198. Dilger RN, Johnson RW . Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol 2008; 84: 932–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Maes M . Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 664–675.

    Article  CAS  PubMed  Google Scholar 

  200. Raison CL, Demetrashvili M, Capuron L, Miller AH . Neuropsychiatric adverse effects of interferon-alpha: recognition and management. CNS Drugs 2005; 19: 105–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Alexopoulos GS, Morimoto SS . The inflammation hypothesis in geriatric depression. Int J Geriatr Psychiatry, advance online publication, 2 March 2011.

  202. Brydon L, Harrison NA, Walker C, Steptoe A, Critchley HD . Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol Psychiatry 2008; 63: 1022–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD . Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry 2009; 66: 407–414.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Raison CL, Capuron L, Miller AH . Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 2006; 27: 24–31.

    Article  CAS  PubMed  Google Scholar 

  205. Zorrilla EP, Luborsky L, McKay JR, Rosenthal R, Houldin A, Tax A et al. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun 2001; 15: 199–226.

    Article  CAS  PubMed  Google Scholar 

  206. Sutcigil L, Oktenli C, Musabak U, Bozkurt A, Cansever A, Uzun O et al. Pro- and anti-inflammatory cytokine balance in major depression: effect of sertraline therapy. Clin Dev Immunol 2007; 2007: 76396.

    Article  PubMed  Google Scholar 

  207. Kim YK, Na KS, Shin KH, Jung HY, Choi SH, Kim JB . Cytokine imbalance in the pathophysiology of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 1044–1053.

    Article  CAS  PubMed  Google Scholar 

  208. Miller AH, Norman Cousins Lecture. Mechanisms of cytokine-induced behavioral changes: psychoneuroimmunology at the translational interface. Brain Behav Immun 2009; 23: 149–158.

    Article  CAS  PubMed  Google Scholar 

  209. O'Connor JC, Andre C, Wang Y, Lawson MA, Szegedi SS, Lestage J et al. Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci 2009; 29: 4200–4209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. O'Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 2009; 14: 511–522.

    Article  CAS  PubMed  Google Scholar 

  211. Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R . The new ‘5-HT’ hypothesis of depression: Cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 2010; 35: 702–721.

    Article  CAS  PubMed  Google Scholar 

  212. Stone TW, Behan WM . Interleukin-1beta but not tumor necrosis factor-alpha potentiates neuronal damage by quinolinic acid: protection by an adenosine A2A receptor antagonist. J Neurosci Res 2007; 85: 1077–1085.

    Article  CAS  PubMed  Google Scholar 

  213. Tsao CW, Lin YS, Chen CC, Bai CH, Wu SR . Cytokines and serotonin transporter in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 899–905.

    Article  CAS  PubMed  Google Scholar 

  214. Pace TW, Hu F, Miller AH . Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun 2007; 21: 9–19.

    Article  CAS  PubMed  Google Scholar 

  215. Koo JW, Duman RS . IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 2008; 105: 751–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Slavich GM, Way BM, Eisenberger NI, Taylor SE . Neural sensitivity to social rejection is associated with inflammatory responses to social stress. Proc Natl Acad Sci USA 2010; 107: 14817–14822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. O’Connor MF, Irwin MR, Wellisch DK . When grief heats up: pro-inflammatory cytokines predict regional brain activation. Neuroimage 2009; 47: 891–896.

    Article  CAS  PubMed  Google Scholar 

  218. Wong ML, Dong C, Maestre-Mesa J, Licinio J . Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry 2008; 13: 800–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Cerri AP, Arosio B, Viazzoli C, Confalonieri R, Vergani C, Annoni G . The -308 (G/A) single nucleotide polymorphism in the TNF-alpha gene and the risk of major depression in the elderly. Int J Geriatr Psychiatry 2010; 25: 219–223.

    Article  PubMed  Google Scholar 

  220. Hwang JP, Tsai SJ, Hong CJ, Yang CH, Hsu CD, Liou YJ . Interleukin-1 beta -511C/T genetic polymorphism is associated with age of onset of geriatric depression. Neuromolecular Med 2009; 11: 322–327.

    Article  CAS  PubMed  Google Scholar 

  221. Halder I, Marsland AL, Cheong J, Muldoon MF, Ferrell RE, Manuck SB . Polymorphisms in the CRP gene moderate an association between depressive symptoms and circulating levels of C-reactive protein. Brain Behav Immun 2010; 24: 160–167.

    Article  CAS  PubMed  Google Scholar 

  222. Baune BT, Dannlowski U, Domschke K, Janssen DG, Jordan MA, Ohrmann P et al. The interleukin 1 beta (IL1B) gene is associated with failure to achieve remission and impaired emotion processing in major depression. Biol Psychiatry 2010 Mar 15; 67: 543–549.

    Article  CAS  PubMed  Google Scholar 

  223. Gruver AL, Hudson LL, Sempowski GD . Immunosenescence of ageing. J Pathol 2007; 211: 144–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Penninx BW, Kritchevsky SB, Yaffe K, Newman AB, Simonsick EM, Rubin S et al. Inflammatory markers and depressed mood in older persons: results from the Health, Aging and Body Composition study. Biol Psychiatry 2003; 54: 566–572.

    Article  CAS  PubMed  Google Scholar 

  225. Dentino AN, Pieper CF, Rao MK, Currie MS, Harris T, Blazer DG et al. Association of interleukin-6 and other biologic variables with depression in older people living in the community. J Am Geriatr Soc 1999; 47: 6–11.

    Article  CAS  PubMed  Google Scholar 

  226. Tiemeier H, Hofman A, van Tuijl HR, Kiliaan AJ, Meijer J, Breteler MM . Inflammatory proteins and depression in the elderly. Epidemiology 2003; 14: 103–107.

    Article  PubMed  Google Scholar 

  227. Bremmer MA, Beekman AT, Deeg DJ, Penninx BW, Dik MG, Hack CE et al. Inflammatory markers in late-life depression: results from a population-based study. J Affect Disord 2008; 106: 249–255.

    Article  CAS  PubMed  Google Scholar 

  228. Baune BT, Smith E, Reppermund S, Air T, Samaras K, Lux O et al. Inflammatory biomarkers predict depressive, but not anxiety symptoms during aging: The prospective Sydney Memory and Aging Study. Psychoneuroendocrinology 2012; 37: 1521–1530.

    Article  CAS  PubMed  Google Scholar 

  229. Elderkin-Thompson V, Irwin MR, Hellemann G, Kumar A . Interleukin-6 and memory functions of encoding and recall in healthy and depressed elderly adults. Am J Geriatr Psychiatry 2012; 20: 753–763.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Schram MT, Euser SM, de Craen AJ, Witteman JC, Frolich M, Hofman A et al. Systemic markers of inflammation and cognitive decline in old age. J Am Geriatr Soc 2007; 55: 708–716.

    Article  PubMed  Google Scholar 

  231. Marioni RE, Strachan MW, Reynolds RM, Lowe GD, Mitchell RJ, Fowkes FG et al. Association between raised inflammatory markers and cognitive decline in elderly people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes 2010; 59: 710–713.

    Article  CAS  PubMed  Google Scholar 

  232. Fornage M, Chiang YA, O’Meara ES, Psaty BM, Reiner AP, Siscovick DS et al. Biomarkers of inflammation and MRI-defined small vessel disease of the brain: The Cardiovascular Health Study. Stroke 2008; 39: 1952–1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. van Dijk EJ, Prins ND, Vermeer SE, Vrooman HA, Hofman A, Koudstaal PJ et al. C-reactive protein and cerebral small-vessel disease: the Rotterdam Scan Study. Circulation 2005; 112: 900–905.

    Article  CAS  PubMed  Google Scholar 

  234. Raz N, Yang Y, Dahle CL, Land S . Volume of white matter hyperintensities in healthy adults: contribution of age, vascular risk factors, and inflammation-related genetic variants. Biochim Biophys Acta 2012; 1822: 361–369.

    Article  CAS  PubMed  Google Scholar 

  235. Satizabal CL, Zhu YC, Mazoyer B, Dufouil C, Tzourio C . Circulating IL-6 and CRP are associated with MRI findings in the elderly: the 3C-Dijon Study. Neurology 2012; 78: 720–727.

    Article  CAS  PubMed  Google Scholar 

  236. Janssen DG, Caniato RN, Verster JC, Baune BT . A psychoneuroimmunological review on cytokines involved in antidepressant treatment response. Hum Psychopharmacol 2010; 25: 201–215.

    Article  CAS  PubMed  Google Scholar 

  237. Xia Z, DePierre JW, Nassberger L . Tricyclic antidepressants inhibit IL-6, IL-1 beta and TNF-alpha release in human blood monocytes and IL-2 and interferon-gamma in T cells. Immunopharmacology 1996; 34: 27–37.

    Article  CAS  PubMed  Google Scholar 

  238. Maes M, Song C, Lin AH, Bonaccorso S, Kenis G, De Jongh R et al. Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacology 1999; 20: 370–379.

    Article  CAS  PubMed  Google Scholar 

  239. Szuster-Ciesielska A, Tustanowska-Stachura A, Slotwinska M, Marmurowska-Michalowska H, Kandefer-Szerszen M . In vitro immunoregulatory effects of antidepressants in healthy volunteers. Pol J Pharmacol 2003; 55: 353–362.

    Article  CAS  PubMed  Google Scholar 

  240. Kenis G, Maes M . Effects of antidepressants on the production of cytokines. Int J Neuropsychopharmacol 2002; 5: 401–412.

    Article  CAS  PubMed  Google Scholar 

  241. Hannestad J, DellaGioia N, Bloch M . The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 2011; 36: 2452–2459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet 2006; 367: 29–35.

    Article  CAS  PubMed  Google Scholar 

  243. Kekow J, Moots RJ, Emery P, Durez P, Koenig A, Singh A et al. Patient-reported outcomes improve with etanercept plus methotrexate in active early rheumatoid arthritis and the improvement is strongly associated with remission: the COMET trial. Ann Rheum Dis 2010; 69: 222–225.

    Article  CAS  PubMed  Google Scholar 

  244. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 2006; 11: 680–684.

    Article  CAS  PubMed  Google Scholar 

  245. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. Arch Gen Psychiatry 2012; 3: 1–11.

    Google Scholar 

  246. Koyama A, O'Brien J, Weuve J, Blacker D, Metti AL, Yaffe K . The role of peripheral inflammatory markers in Dementia and Alzheimer's disease: a meta-analysis. J Gerontol A Biol Sci Med Sci, advance online publication, 14 September 2012.

  247. Rubio-Perez JM, Morillas-Ruiz JM . A review: inflammatory process in Alzheimer's disease, role of cytokines. Scientific World Journal 2012; 2012: 756357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Corbett A, Pickett J, Burns A, Corcoran J, Dunnett SB, Edison P et al. Drug repositioning for Alzheimer’s disease. Nat Rev Drug Discov 2012; 11: 833–846.

    Article  CAS  PubMed  Google Scholar 

  249. Paranthaman R, Greenstein AS, Burns AS, Cruickshank JK, Heagerty AM, Jackson A et al. Vascular function in older adults with depressive disorder. Biol Psychiatry 2010; 68: 133–139.

    Article  PubMed  Google Scholar 

  250. Greenstein AS, Paranthaman R, Burns A, Jackson A, Malik RA, Baldwin RC et al. Cerebrovascular damage in late-life depression is associated with structural and functional abnormalities of subcutaneous small arteries. Hypertension 2010; 56: 734–740.

    Article  CAS  PubMed  Google Scholar 

  251. Broadley AJ, Korszun A, Jones CJ, Frenneaux MP . Arterial endothelial function is impaired in treated depression. Heart 2002; 88: 521–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Rajagopalan S, Brook R, Rubenfire M, Pitt E, Young E, Pitt B . Abnormal brachial artery flow-mediated vasodilation in young adults with major depression. Am J Cardiol 2001; 88: 196–198.

    Article  CAS  PubMed  Google Scholar 

  253. Tiemeier H, Breteler MM, van Popele NM, Hofman A, Witteman JC . Late-life depression is associated with arterial stiffness: a population-based study. J Am Geriatr Soc 2003; 51: 1105–1110.

    Article  PubMed  Google Scholar 

  254. Chen CS, Chen CC, Kuo YT, Chiang IC, Ko CH, Lin HF . Carotid intima-media thickness in late-onset major depressive disorder. Int J Geriatr Psychiatry 2006; 21: 36–42.

    Article  CAS  PubMed  Google Scholar 

  255. Iadecola C . Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 2004; 5: 347–360.

    Article  CAS  PubMed  Google Scholar 

  256. de la Torre JC . Cerebral hemodynamics and vascular risk factors: setting the stage for Alzheimer’s disease. J Alzheimers Dis 2012; 27.

  257. Touyz RM . Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II. Exp Physiol 2005; 90: 449–455.

    Article  CAS  PubMed  Google Scholar 

  258. Dandona P, Chaudhuri A, Aljada A . Endothelial dysfunction and hypertension in diabetes mellitus. Med Clin North Am 2004; 88: 911–931, x-xi.

    Article  CAS  PubMed  Google Scholar 

  259. Paranthaman R, Greenstein A, Burns AS, Heagerty AM, Malik RA, Baldwin RC . Relationship of endothelial function and atherosclerosis to treatment response in late-life depression. Int J Geriatr Psychiatry 2012; 27: 967–973.

    Article  CAS  PubMed  Google Scholar 

  260. Tiemeier H, Bakker SL, Hofman A, Koudstaal PJ, Breteler MM . Cerebral haemodynamics and depression in the elderly. J Neurol Neurosurg Psychiatry 2002; 73: 34–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Direk N, Koudstaal PJ, Hofman A, Ikram MA, Hoogendijk WJ, Tiemeier H . Cerebral hemodynamics and incident depression: the rotterdam study. Biol Psychiatry 2012; 72: 318–323.

    Article  PubMed  Google Scholar 

  262. Mies G, Ishimaru S, Xie Y, Seo K, Hossmann KA . Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 1991; 11: 753–761.

    Article  CAS  PubMed  Google Scholar 

  263. Martin KC, Barad M, Kandel ER . Local protein synthesis and its role in synapse-specific plasticity. Curr Opin Neurobiol 2000; 10: 587–592.

    Article  CAS  PubMed  Google Scholar 

  264. Debiec J, LeDoux JE, Nader K . Cellular and systems reconsolidation in the hippocampus. Neuron 2002; 36: 527–538.

    Article  CAS  PubMed  Google Scholar 

  265. Kleim JA, Bruneau R, Calder K, Pocock D, VandenBerg PM, MacDonald E et al. Functional organization of adult motor cortex is dependent upon continued protein synthesis. Neuron 2003; 40: 167–176.

    Article  CAS  PubMed  Google Scholar 

  266. Moody DM, Bell MA, Challa VR . Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study. AJNR Am J Neuroradiol 1990; 11: 431–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Matsushita K, Kuriyama Y, Nagatsuka K, Nakamura M, Sawada T, Omae T . Periventricular white matter lucency and cerebral blood flow autoregulation in hypertensive patients. Hypertension 1994; 23: 565–568.

    Article  CAS  PubMed  Google Scholar 

  268. Markus HS, Lythgoe DJ, Ostegaard L, O'Sullivan M, Williams SC . Reduced cerebral blood flow in white matter in ischaemic leukoaraiosis demonstrated using quantitative exogenous contrast based perfusion MRI. J Neurol Neurosurg Psychiatry 2000; 69: 48–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Oda K, Okubo Y, Ishida R, Murata Y, Ohta K, Matsuda T et al. Regional cerebral blood flow in depressed patients with white matter magnetic resonance hyperintensity. Biol Psychiatry 2003; 53: 150–156.

    Article  PubMed  Google Scholar 

  270. Brickman AM, Zahra A, Muraskin J, Steffener J, Holland CM, Habeck C et al. Reduction in cerebral blood flow in areas appearing as white matter hyperintensities on magnetic resonance imaging. Psychiatry Res 2009; 172: 117–120.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Vardi N, Freedman N, Lester H, Gomori JM, Chisin R, Lerer B et al. Hyperintensities on T2-weighted images in the basal ganglia of patients with major depression: cerebral perfusion and clinical implications. Psychiatry Res 2011; 192: 125–130.

    Article  PubMed  Google Scholar 

  272. Nitschke JB, Mackiewicz KL . Prefrontal and anterior cingulate contributions to volition in depression. Int Rev Neurobiol 2005; 67: 73–94.

    Article  PubMed  Google Scholar 

  273. Videbech P, Ravnkilde B, Pedersen TH, Hartvig H, Egander A, Clemmensen K et al. The Danish PET/depression project: clinical symptoms and cerebral blood flow. A regions-of-interest analysis. Acta Psychiatr Scand 2002; 106: 35–44.

    Article  CAS  PubMed  Google Scholar 

  274. Lui S, Parkes LM, Huang X, Zou K, Chan RC, Yang H et al. Depressive disorders: focally altered cerebral perfusion measured with arterial spin-labeling MR imaging. Radiology 2009; 251: 476–484.

    Article  PubMed  Google Scholar 

  275. Duhameau B, Ferre JC, Jannin P, Gauvrit JY, Verin M, Millet B et al. Chronic and treatment-resistant depression: a study using arterial spin labeling perfusion MRI at 3Tesla. Psychiatry Res 2010; 182: 111–116.

    Article  PubMed  Google Scholar 

  276. Jarnum H, Eskildsen SF, Steffensen EG, Lundbye-Christensen S, Simonsen CW, Thomsen IS et al. Longitudinal MRI study of cortical thickness, perfusion, and metabolite levels in major depressive disorder. Acta Psychiatr Scand 2011; 124: 435–446.

    Article  PubMed  Google Scholar 

  277. Asllani I, Habeck C, Borogovac A, Brown TR, Brickman AM, Stern Y . Separating function from structure in perfusion imaging of the aging brain. Hum Brain Mapp 2009; 30: 2927–2935.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Claus JJ, Breteler MM, Hasan D, Krenning EP, Bots ML, Grobbee DE et al. Regional cerebral blood flow and cerebrovascular risk factors in the elderly population. Neurobiol Aging 1998; 19: 57–64.

    Article  CAS  PubMed  Google Scholar 

  279. Dotson VM, Beason-Held L, Kraut MA, Resnick SM . Longitudinal study of chronic depressive symptoms and regional cerebral blood flow in older men and women. Int J Geriatr Psychiatry 2009; 24: 809–819.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Lesser IM, Mena I, Boone KB, Miller BL, Mehringer MC, Wohl M . Reduction of cerebral blood flow in older depressed patients. Arch Gen Psychiatry 1994; 51: 677–686.

    Article  CAS  PubMed  Google Scholar 

  281. Ishizaki J, Yamamoto H, Takahashi T, Takeda M, Yano M, Mimura M . Changes in regional cerebral blood flow following antidepressant treatment in late-life depression. Int J Geriatr Psychiatry 2008; 23: 805–811.

    Article  PubMed  Google Scholar 

  282. Vasile RG, Schwartz RB, Garada B, Holman BL, Alpert M, Davidson PB et al. Focal cerebral perfusion defects demonstrated by 99mTc-hexamethylpropyleneamine oxime SPECT in elderly depressed patients. Psychiatry Res 1996; 67: 59–70.

    Article  CAS  PubMed  Google Scholar 

  283. Ebmeier KP, Glabus MF, Prentice N, Ryman A, Goodwin GM . A voxel-based analysis of cerebral perfusion in dementia and depression of old age. Neuroimage 1998; 7: 199–208.

    Article  CAS  PubMed  Google Scholar 

  284. Vangu MD, Esser JD, Boyd IH, Berk M . Effects of electroconvulsive therapy on regional cerebral blood flow measured by 99mtechnetium HMPAO SPECT. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 15–19.

    Article  PubMed  Google Scholar 

  285. Kohn Y, Freedman N, Lester H, Krausz Y, Chisin R, Lerer B et al. 99mTc-HMPAO SPECT study of cerebral perfusion after treatment with medication and electroconvulsive therapy in major depression. J Nucl Med 2007; 48: 1273–1278.

    Article  PubMed  Google Scholar 

  286. Milo TJ, Kaufman GE, Barnes WE, Konopka LM, Crayton JW, Ringelstein JG et al. Changes in regional cerebral blood flow after electroconvulsive therapy for depression. J ECT 2001; 17: 15–21.

    Article  CAS  PubMed  Google Scholar 

  287. Vlassenko A, Sheline YI, Fischer K, Mintun MA . Cerebral perfusion response to successful treatment of depression with different serotoninergic agents. J Neuropsychiatry Clin Neurosci 2004; 16: 360–363.

    Article  PubMed  Google Scholar 

  288. Bench CJ, Frackowiak RS, Dolan RJ . Changes in regional cerebral blood flow on recovery from depression. Psychol Med 1995; 25: 247–261.

    Article  CAS  PubMed  Google Scholar 

  289. Mazza M, Marano G, Traversi G, Bria P, Mazza S . Primary cerebral blood flow deficiency and Alzheimer's disease: shadows and lights. J Alzheimers Dis 2011; 23: 375–389.

    Article  PubMed  Google Scholar 

  290. Chao LL, Buckley ST, Kornak J, Schuff N, Madison C, Yaffe K et al. ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord 2010; 24: 19–27.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Chao LL, Pa J, Duarte A, Schuff N, Weiner MW, Kramer JH et al. Patterns of cerebral hypoperfusion in amnestic and dysexecutive MCI. Alzheimer Dis Assoc Disord 2009; 23: 245–252.

    Article  PubMed  PubMed Central  Google Scholar 

  292. Heo S, Prakash RS, Voss MW, Erickson KI, Ouyang C, Sutton BP et al. Resting hippocampal blood flow, spatial memory and aging. Brain Res 2010; 1315: 119–127.

    Article  CAS  PubMed  Google Scholar 

  293. Terada S, Sato S, Honda H, Kishimoto Y, Takeda N, Oshima E et al. Perseverative errors on the Wisconsin Card Sorting Test and brain perfusion imaging in mild Alzheimer’s disease. Int Psychogeriatr 2011; 23: 1552–1559.

    Article  PubMed  Google Scholar 

  294. Takeda N, Terada S, Sato S, Honda H, Yoshida H, Kishimoto Y et al. Wisconsin card sorting test and brain perfusion imaging in early dementia. Dement Geriatr Cogn Disord 2010; 29: 21–27.

    Article  PubMed  Google Scholar 

  295. Rabbitt P, Scott M, Thacker N, Lowe C, Jackson A, Horan M et al. Losses in gross brain volume and cerebral blood flow account for age-related differences in speed but not in fluid intelligence. Neuropsychology 2006; 20: 549–557.

    Article  PubMed  Google Scholar 

  296. Ghiadoni L, Virdis A, Magagna A, Taddei S, Salvetti A . Effect of the angiotensin II type 1 receptor blocker candesartan on endothelial function in patients with essential hypertension. Hypertension 2000; 35 (1 Pt 2): 501–506.

    Article  CAS  PubMed  Google Scholar 

  297. Nagata R, Kawabe K, Ikeda K . Olmesartan an angiotensin II receptor blocker, restores cerebral hypoperfusion in elderly patients with hypertension. J Stroke Cerebrovasc Dis 2010; 19: 236–240.

    Article  PubMed  Google Scholar 

  298. Virdis A, Schiffrin EL . Vascular inflammation: a role in vascular disease in hypertension? Curr Opin Nephrol Hypertens 2003; 12: 181–187.

    Article  CAS  PubMed  Google Scholar 

  299. Almeida OP, McCaul K, Hankey GJ, Norman P, Jamrozik K, Flicker L . Homocysteine and depression in later life. Arch Gen Psychiatry 2008; 65: 1286–1294.

    Article  CAS  PubMed  Google Scholar 

  300. Weiss N . Mechanisms of increased vascular oxidant stress in hyperhomocys-teinemia and its impact on endothelial function. Curr Drug Metab 2005; 6: 27–36.

    Article  CAS  PubMed  Google Scholar 

  301. Pariante CM . Risk factors for development of depression and psychosis. Glucocorticoid receptors and pituitary implications for treatment with antidepressant and glucocorticoids. Ann N Y Acad Sci 2009; 1179: 144–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Grinevich V, Harbuz M, Ma XM, Jessop D, Tilders FJ, Lightman SL et al. Hypothalamic pituitary adrenal axis and immune responses to endotoxin in rats with chronic adjuvant-induced arthritis. Exp Neurol 2002; 178: 112–123.

    Article  CAS  PubMed  Google Scholar 

  303. Chalon S . Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins, leukotrienes, and essential fatty acids 2006; 75: 259–269.

    Article  CAS  PubMed  Google Scholar 

  304. Bloch MH, Hannestad J . Response to critiques on 'Omega-3 fatty acids for the treatment of depression: systematic review and meta-analysis'. Mol Psychiatry 2012; 17: 1163–1167.

    Article  CAS  Google Scholar 

  305. Bloch MH, Hannestad J . Omega-3 fatty acids for the treatment of depression: systematic review and meta-analysis. Mol Psychiatry 2012; 17: 1272–1282.

    Article  CAS  PubMed  Google Scholar 

  306. Fogari R, Mugellini A, Zoppi A, Derosa G, Pasotti C, Fogari E et al. Influence of losartan and atenolol on memory function in very elderly hypertensive patients. J Hum Hypertens 2003; 17: 781–785.

    Article  CAS  PubMed  Google Scholar 

  307. Saxby BK, Harrington F, Wesnes KA, McKeith IG, Ford GA . Candesartan and cognitive decline in older patients with hypertension: a substudy of the SCOPE trial. Neurology 2008; 70: 1858–1866.

    Article  CAS  PubMed  Google Scholar 

  308. Hajjar I, Hart M, Chen YL, Mack W, Milberg W, Chui H et al. Effect of antihypertensive therapy on cognitive function in early executive cognitive impairment: a double-blind randomized clinical trial. Arch Intern Med 2012; 172: 442–444.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by NIH grants R01 MH077745, R01 MH076079, R01 MH079414 and P30 MH085943. Dr. Alexopoulos reports research grant support from Forest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W D Taylor.

Ethics declarations

Competing interests

Dr. Alexopoulos reports serving as a consultant for Lilly and on the speakers’ bureau for Astra Zeneca, Forest, Merck, Avanir and Lundbeck. Dr. Alexopoulos also is a stockholder of Johnson and Johnson. The remaining authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, W., Aizenstein, H. & Alexopoulos, G. The vascular depression hypothesis: mechanisms linking vascular disease with depression. Mol Psychiatry 18, 963–974 (2013). https://doi.org/10.1038/mp.2013.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.20

Keywords

This article is cited by

Search

Quick links