Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

Interplay between Helicobacter pylori and immune cells in immune pathogenesis of gastric inflammation and mucosal pathology

Abstract

Helicobacter pylori infection is associated with an inflammatory response in the gastric mucosa, leading to chronic gastritis, peptic ulcers, gastric carcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphomas. Recent studies have shown that apoptosis of gastric epithelial cells is increased during H. pylori infection. Apoptosis induced by microbial infections are factors implicated in the pathogenesis of H. pylori infection. The enhanced gastric epithelial cell apoptosis in H. pylori infection has been suggested to play an important role in the pathogenesis of chronic gastritis and gastric pathology. In addition to directly triggering apoptosis, H. pylori induces sensitivity to tumor-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in gastric epithelial cells via modulation of TRAIL apoptosis signaling. Moreover, H. pylori infection induces infiltration of T lymphocytes and triggers inflammation to augment apoptosis. In H. pylori infection, there was significantly increased CCR6+CD3+T-cell infiltration in the gastric mucosa, and the CCR6 ligand, CCL20 chemokine, was selectively expressed in inflamed gastric tissues. These results implicate that the interaction between CCL20 and CCR6 may play a role in recruiting T cells to the sites of inflammation in the gastric mucosa during Helicobacter infection. Through these mechanisms, chemokine-mediated T lymphocyte trafficking into inflamed epithelium is initiated and the mucosal injury in Helicobacter infection is induced. This article will review the recent novel findings on the interactions of H. pylori with diverse host epithelial signaling pathways and events involved in the initiation of gastric pathology, including gastric inflammation, mucosal damage and development of MALT lymphomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N et al. Helicobacter pylori infection and risk of gastric carcinoma. N Engl J Med 1994; 325: 1127–1131.

    Article  Google Scholar 

  2. Parsonnet J . Molecular mechanisms for inflammation-promoted pathogenesis of cancer – The Sixteenth International Symposium of the Sapporo Cancer Seminar. Cancer Res 1997; 57: 3620–3624.

    CAS  PubMed  Google Scholar 

  3. Jones NL, Shannon PT, Cutz E, Yeger H, Sherman PM . Increase in proliferation and apoptosis of gastric epithelial cells early in the natural history of Helicobacter pylori infection. Am J Pathol 1997; 151: 1685–1703.

    Google Scholar 

  4. Mannick EE, Bravo LE, Zarama G, Realpe JL, Zhang XJ, Ruiz B et al. Inducible nitric oxide synthase, nitrotyrosine and apoptosis in Helicobacter pylori gastritis: effect of antibiotics and antioxidants. Cancer Res 1996; 56: 3238–3243.

    CAS  PubMed  Google Scholar 

  5. Moss SF, Calam J, Agarwal B, Wang S, Holt PR . Induction of gastric epithelial apoptosis by Helicobacter pylori. Gut 1996; 38: 498–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rudi J, Kuck D, Strand S, von Herbay A, Mariani SM, Krammer PH et al. Involvement of the CD95 (APO-1/Fas) receptor and ligand system in Helicobacter pylori-induced gastric epithelial apoptosis. J Clin Invest 1998; 102: 1506–1514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu YY, Tsai HF, Lin WC, Chou AH, Chen HT, Yang JC et al. Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells. World J Gastroenterol 2004; 10: 2334–2339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fan XJ, Crowe SE, Behar S, Gunasena H, Ye G, Haeberle H et al. The effect of class II major histocompatibility complex expression on adherence of Helicobacter pylori and induction of apoptosis in gastric epithelial cells: a mechanism for T helper cell type 1-mediated damage. J Exp Med 1998; 187: 1659–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones NL, Day AS, Jennings HA, Sherman PM . Helicobacter pylori induces gastric epithelial cell apoptosis in association with increased Fas receptor expression. Infect Immun 1999; 67: 4237–4242.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wagner S, Beil W, Westermann J, Logan RP, Bock CT, Trautwein C et al. Regulation of gastric epithelial cell growth by Helicobacter pylori: offdence for a major role of apoptosis. Gastroenterology 1997; 113: 1836–1847.

    Article  CAS  PubMed  Google Scholar 

  11. Bamford KB, Fan XJ, Crowe SE, Leary JF, Gourley WK, Luthra GK et al. Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology 1998; 114: 482–492.

    Article  CAS  PubMed  Google Scholar 

  12. D’Elios MM, Manghetti M, de Carli M, Costa F, Baldari CT, Burroni D et al. T helper 1 effector cells specific for Helicobacter pylori in gastric antrum of patients with peptic ulcer disease. J Immunol 1997; 158: 962–967.

    PubMed  Google Scholar 

  13. Karttunen R, Karttunen T, Ekre HP, MacDonald TT . Interferon gamma and interleukin 4 secreting cells in the gastric antrum in Helicobacter pylori positive and negative gastritis. Gut 1995; 36: 341–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindholm C, Quiding-Jalrbrink M, Lonroth H, Hamlet A, Svennerholm AM . Local cytokine response in Helicobacter pylori-infected subjects. Infect Immun 1998; 66: 5964–5971.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu YY, Tsai HF, Lin WC, Hsu PI, Shun CT, Wu MS et al. Upregulation of CCL20 and recruitment of CCR6+ gastric infiltrating lymphocytes in Helicobacter pylori gastritis. Infect Immun 2007; 75: 4357–4363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang J, Fan X, Lindholm C, Bennett M, O’Connoll J, Shanahan F et al. Helicobacter pylori modulates lymphoepithelial cell interactions leading to epithelial cell damage through Fas/Fas ligand interactions. Infect Immun 2000; 68: 4303–4311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao LY, Kwaik YA . The modulation of host cell apoptosis by intracellular bacterial pathogens. Trends Microbiol 2000; 8: 306–313.

    Article  CAS  PubMed  Google Scholar 

  18. Kuck D, Kolmerer B, Iking-Konert C, Krammer PH, Stremmel W, Rudi J . Vacuolating cytotoxin of Helicobacter pylori induces apoptosis in the human gastric epithelial cell line AGS. Infect Immun 2001; 69: 5080–5087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Le’Negrate G, Ricci V, Hofman V, Mograbi B, Hofman P, Rossi B . Epithelial intestinal cell apoptosis induced by Helicobacter pylori depends on expression of the cag pathogenicity island phenotype. Infect Immun 2001; 69: 5001–5009.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Odenbreit S, Püls J, Sedlmaier B, Gerland E, Fischer W, Haas R . Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 2000; 287: 1497–1500.

    Article  CAS  PubMed  Google Scholar 

  21. Asahi M, Azuma T, Ito S, Ito Y, Suto H, Nagai Y et al. Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J Exp Med 2000; 191: 593–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stein M, Rappuoli R, Covacci A . Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci USA 2000; 97: 1263–1268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA. Science 2002; 295: 683–686.

    Article  CAS  PubMed  Google Scholar 

  24. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl. et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3: 673–682.

    Article  CAS  PubMed  Google Scholar 

  25. Griffith TS, Lynch DH . TRAIL: a molecule with multiple receptors and control mechanisms. Curr Opin Immunol 1998; 10: 559–563.

    Article  CAS  PubMed  Google Scholar 

  26. Kayagaki N, Yamaguchi N, Nakayama M, Kawasaki A, Akiba H, Okumura K et al. Involvement of TNF-related apoptosis-inducing ligand in human CD4+ T cell-mediated cytotoxicity. J Immunol 1999; 162: 2639–2647.

    CAS  PubMed  Google Scholar 

  27. Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H . Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. J Exp Med 1999; 189: 1451–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomas WD, Hersey P . TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J Immunol 1998; 161: 2195–2200.

    CAS  PubMed  Google Scholar 

  29. Nieda M, Nicol A, Koezuka Y, Kikuchi A, Lapteva N, Tanaka Y et al. TRAIL expression by activated human CD4+V alpha 24NKT cells induces in vitro and in vivo apoptosis of human acute myeloid leukemia cells. Blood 2001; 97: 2067–2074.

    Article  CAS  PubMed  Google Scholar 

  30. Kaplan MJ, Ray D, Mo RR, Yung RL, Richardson BC . TRAIL (Apo2 ligand) and TWEAK (Apo3 ligand) mediate CD4+ T cell killing of antigen-presenting macrophages. J Immunol 2000; 164: 2897–2904.

    Article  CAS  PubMed  Google Scholar 

  31. Dörr J, Waiczies S, Wendling U, Seeger B, Zipp F . Induction of TRAIL-mediated glioma cell death by human T cells. J Neuroimmunol 2002; 122: 117–124.

    Article  PubMed  Google Scholar 

  32. Mattapallil JJ, Dandekar S, Canfield DR, Solnick JV . A predominant Th1 type of immune response is induced early during acute Helicobacter pylori infection in rhesus macaques. Gastroenterology 2000; 118: 307–315.

    Article  CAS  PubMed  Google Scholar 

  33. D’Elios MM, Manghetti M, de Carli M, Costa F, Baldari CT, Burroni D et al. T helper 1 effector cells specific for Helicobacter pylori in gastric antrum of patients with peptic ulcer disease. J Immunol 1997; 158: 962–967.

    PubMed  Google Scholar 

  34. Baggiolini M, Loetscher P . Chemokines in inflammation and immunity. Immunol Today 2000; 21: 418–420.

    Article  CAS  PubMed  Google Scholar 

  35. Butcher EC, Williams M, Youngman K, Rott L, Briskin M . Lymphocyte trafficking and regional immunity. Adv Immunol 1999; 72: 209–253.

    Article  CAS  PubMed  Google Scholar 

  36. Campbell JJ, Butcher EC . Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr Opin Immunol 2000; 12: 336–341.

    Article  CAS  PubMed  Google Scholar 

  37. Dwinell MB, Lugering N, Eckmann L, Kagnoff MF . Regulated production of interferon-inducible T-cell chemoattractants by human intestinal epithelial cells. Gastroenterology 2001; 120: 49–59.

    Article  CAS  PubMed  Google Scholar 

  38. Baggiolini M . Chemokines and leukocyte traffic. Nature 1998; 392: 565–568.

    Article  CAS  PubMed  Google Scholar 

  39. Luster AD . Chemokines: chemotactic cytokines that mediate inflammation. N Engl J Med 1998; 338: 436–445.

    Article  CAS  PubMed  Google Scholar 

  40. Papadakis KA, Prehn J, Nelson V, Cheng L, Binder SW, Ponath PD et al. The role of thymus-expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the mucosal immune system. J Immunol 2000; 165: 5069–5076.

    Article  CAS  PubMed  Google Scholar 

  41. Shibahara T, Wilcox JN, Couse T, Madara JL . Characterization of epithelial chemoattractants for human intestinal intraepithelial lymphocytes. Gastroenterology 2001; 120: 60–70.

    Article  CAS  PubMed  Google Scholar 

  42. Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 2000; 406: 309–314.

    Article  CAS  PubMed  Google Scholar 

  43. Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 1999; 400: 776–780.

    Article  CAS  PubMed  Google Scholar 

  44. Eck M, Schmausser B, Scheller K, Toksoy A, Kraus M, Menzel T et al. CXC chemokines Gro(alpha)/IL-8 and IP-10/MIG in Helicobacter pylori gastritis. Clin Exp Immunol 2000; 122: 192–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wen S, Felley CP, Bouzourene H, Reimers M, Michetti P, Pan-Hammarstrom Q . Inflammatory gene profiles in gastric mucosa during Helicobacter pylori infection in humans. J Immunol 2004; 172: 2595–2606.

    Article  CAS  PubMed  Google Scholar 

  46. Yamaoka Y, Kita M, Kodama T, Sawai N, Tanahashi T, Kashima K et al. Chemokines in the gastric mucosa in Helicobacter pylori infection. Gut 1998; 42: 609–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998; 188: 373–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baba M, Imai T, Nishimura M, Kakizaki M, Takagi S, Hieshima K et al. Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. J Biol Chem 1997; 272: 14893–14898.

    Article  CAS  PubMed  Google Scholar 

  49. Cook DN, Prosser DM, Forster R, Zhang J, Kuklin NA, Abbondanzo SJ et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 2000; 12: 495–503.

    Article  CAS  PubMed  Google Scholar 

  50. Power CA, Church DJ, Meyer A, Alouani S, Proudfoot AE, Clark-Lewis I et al. Cloning and characterization of a specific receptor for the novel CC chemokine MIP-3alpha from lung dendritic cells. J Exp Med 1997; 186: 825–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Greaves DR, Wang W, Dairaghi DJ, Dieu MC, Saint-Vis BD, Franz-Bacon K et al. CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3alpha and is highly expressed in human dendritic cells. J Exp Med 1997; 186: 837–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liao F, Rabin RL, Smith CS, Sharma G, Nutman TB, Farber JM . CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J Immunol 1999; 162: 186–194.

    CAS  PubMed  Google Scholar 

  53. Izadpanah A, Dwinell MB, Eckmann L, Varki NM, Kagnoff MF . Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol 2001; 280: G710–G719.

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka Y, Imai T, Baba M, Ishikawa I, Uehira M, Nomiyama H et al. Selective expression of liver and activation-regulated chemokine (LARC) in intestinal epithelium in mice and humans. Eur J Immunol 1999; 29: 633–642.

    Article  CAS  PubMed  Google Scholar 

  55. Nishi T, Okazaki K, Kawasaki K, Fukui T, Tamaki H, Matsuura M et al. Involvement of myeloid dendritic cells in the development of gastric secondary lymphoid follicles in Helicobacter pylori-infected neonatally thymectomized BALB/c mice. Infect Immun 2003; 71: 2153–2162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tomimori K, Uema E, Teruya H, Ishikawa C, Okudaira T, Senba M et al. Helicobacter pylori induces CCL20 expression. Infect Immun 2007; 75: 5223–5232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yoshida A, Isomoto H, Hisatsune J, Nakayama M, Nakashima Y, Matsushim K et al. Enhanced expression of CCL20 in human Helicobacter pylori-associated gastritis. Clin Immunol 2009; 130: 290–297.

    Article  CAS  PubMed  Google Scholar 

  58. Peek RM Jr, Blaser MJ . Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2002; 2: 28–37.

    Article  CAS  PubMed  Google Scholar 

  59. Hussell T, Isaacson PG, Crabtree JE, Spencer J . The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet 1993; 342: 571–574.

    Article  CAS  PubMed  Google Scholar 

  60. Wotherspoon AC, Doglioni C, Diss TC, Pan L, Moschini A, de Boni M et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet 1993; 342: 575–577.

    Article  CAS  PubMed  Google Scholar 

  61. Eck M, Schmausser B, Haas R, Greiner A, Czub S, Müller-Hermelink HK . MALT-type lymphoma of the stomach is associated with Helicobacter pylori strains expressing the CagA protein. Gastroenterology 1997; 112: 1482–1486.

    Article  CAS  PubMed  Google Scholar 

  62. Peng H, Ranaldi R, Diss TC, Isaacson PG, Bearzi I, Pan L . High frequency of CagA+Helicobacter pylori infection in high-grade gastric MALT B-cell lymphomas. J Pathol 1998; 185: 409–412.

    Article  CAS  PubMed  Google Scholar 

  63. Fan XJ, Chua A, Shahi CN, McDevitt J, Keeling PW, Kelleher D . Gastric T lymphocyte response to Helicobacter pylori in patients with H. pyloricolonisation. Gut 1994; 35: 1379–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Greiner A, Knörr C, Qin Y, Sebald W, Schimpl A, Banchereau J et al. Low-grade B cell lymphomas of mucosa-associated lymphoid tissue (MALT-type) require CD40-mediated signaling and Th2-type cytokines for in vitro growth and differentiation. Am J Pathol 1997; 150: 1583–1593.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hussell T, Isaacson PG, Crabtree JE, Spencer J . Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J Pathol 1996; 178: 122–127.

    Article  CAS  PubMed  Google Scholar 

  66. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS . Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci USA 1999; 96: 14559–14564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Selbach M, Moese S, Hauck CR, Meyer TF, Backert S . Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 2002; 277: 6775–6778.

    Article  CAS  PubMed  Google Scholar 

  68. Stein M, Bagnoli F, Halenbeck R, Rappuoli R, Fantl WJ, Covacci A . c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol 2002; 43: 971–980.

    Article  CAS  PubMed  Google Scholar 

  69. Poppe M, Feller SM, Römer G, Wessler S . Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene 2007; 26: 3462–3472.

    Article  CAS  PubMed  Google Scholar 

  70. Zhu Y, Wang C, Huang J, Ge Z, Dong Q, Zhong X et al. The Helicobacter pylori virulence factor CagA promotes Erk1/2-mediated Bad phosphorylation in lymphocytes: a mechanism of CagA-inhibited lymphocyte apoptosis. Cell Microbiol 2007; 9: 952–961.

    Article  CAS  PubMed  Google Scholar 

  71. Umehara S, Higashi H, Ohnishi N, Asaka M, Hatakeyama M . Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma. Oncogene 2003; 22: 8337–8342.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Health Research Institute (NHRI-EX95-9532SI), National Science Council, Taiwan (NSC90-2314B-075B003 and NSC91-2320B-002) and China Medical University (CMU96-266, CMU97-299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-Ning Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, HF., Hsu, PN. Interplay between Helicobacter pylori and immune cells in immune pathogenesis of gastric inflammation and mucosal pathology. Cell Mol Immunol 7, 255–259 (2010). https://doi.org/10.1038/cmi.2010.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.2

Keywords

This article is cited by

Search

Quick links