Skip to main content
Log in

Ceramide Regulation of Apoptosis versus Differentiation: A Walk on a Fine Line. Lessons from Neurobiology

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

One of the characteristics of ceramide-mediated biology is the variety of biological outcomes observed in response to its intracellular accumulation. The molecular mechanisms that govern the cell “decision-making” in response to ceramide remain largely unclear. In this perspective, the study of neural models has begun to provide important insight into the understanding of these mechanisms that regulate differentiation and cell death. Indeed, differentiation and cell death are among the most common effects elicited by ceramide in most cell types and in neural cells, too. Therefore, the lessons we may learn from the study of ceramide regulation of neurobiology would also shed light on the regulation of ceramide-mediated biology in other cellular models. Since increasing evidence links aberrant metabolism of ceramide to different pathologies, the understanding of the mechanisms underlying these events may represent the key to the design of novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Taniwaki, T., Yamada, T., Asahara, H., Ohyagi, Y., and Kira, J. 1999. Ceramide induces apoptosis to immature cerebellar granule cells in culture. Neurochem. Res. 24:685-690.

    Google Scholar 

  2. Monti, B., Zanghellini, P., and Contestabile, A. 2001. Characterization of ceramide-induced apoptotic death in cerebellar granule cells in culture. Neurochem. Int. 39:11-18.

    Google Scholar 

  3. Hartfield, P. J., Mayne, G. C., and Murray, A. W. 1997. Ceramide induces apoptosis in PC12 cells. FEBS Lett. 401:148-152.

    Google Scholar 

  4. Willaime, S., Vanhoutte, P., Caboche, J., Lemaigre-Dubreuil, Y., Mariani, J., and Brugg, B. 2001. Ceramide-induced apoptosis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation. Eur. J. Neurosci. 13:2037-2046.

    Google Scholar 

  5. Larocca, J. N., Farooq, M., and Norton, W. T. 1997. Induction of oligodendrocyte apoptosis by C2-ceramide. Neurochem. Res. 22:529-534.

    Google Scholar 

  6. Colombaioni, L., Frago, L. M., Varela-Nieto, I., Pesi, R., and Garcia-Gil, M. 2002. Serum deprivation increases ceramide levels and induces apoptosis in undifferentiated HN9.10e cells. Neurochem. Int. 40:327-336.

    Google Scholar 

  7. Riboni, L., Prinetti, A., Bassi, R., Caminiti, A., and Tettamanti, G. 1995. A mediator role of ceramide in the regulation of neuroblastoma Neuro2a cell differentiation. J. Biol. Chem. 270:26868-26875.

    Google Scholar 

  8. Brann, A. B., Scott, R., Neuberger, Y., Abulafia, D., Boldin, S., Fainzilber, M., and Futerman, A. H. 1999. Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J. Neurosci. 19:8199-8206.

    Google Scholar 

  9. Dobrowsky, R. T., Werner, M. H., Castellino, A. M., Chao, M. V., and Hannun, Y. A. 1994. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science, 265:1596-1599.

    Google Scholar 

  10. Yoshimura, S., Banno, Y., Nakashima, S., Takenaka, K., Sakai, H., Nishimura, Y., Sakai, N., Shimizu, S., Eguchi, Y., Tsujimoto, Y., and Nozawa, Y. 1998. Ceramide formation leads to caspase-3 activation during hypoxic PC12 cell death. Inhibitory effects of Bcl-2 on ceramide formation and caspase-3 activation. J. Biol. Chem. 273:6921-6927.

    Google Scholar 

  11. Saito, M., Guidotti, A., Berg, M. J., and Marks, N. 1998. The semisynthetic glycosphingolipid LIGA20 potently protects neurons against apoptosis. Ann. N.Y. Acad. Sci. 845:253-262.

    Google Scholar 

  12. Casaccia-Bonnefil, P., Aibel, L., and Chao, M. V. 1996. Central glial and neuronal populations display differential sensitivity to ceramide-dependent cell death. J. Neurosci. Res. 43:382-389.

    Google Scholar 

  13. Ito, A. and Horigome, K. 1995. Ceramide prevents neuronal programmed cell death induced by nerve growth factor deprivation. J. Neurochem. 65:463-466.

    Google Scholar 

  14. De Chaves, E. I. P., Bussière, M., Vance, D. E., Campenot, R. B., and Vance, J. E. 1997. Elevation of ceramide within distal neurites inhibits neurite growth in cultured rat sympathetic neurons. J. Biol. Chem. 272:3028-3035.

    Google Scholar 

  15. Xie, H. and Johnson, G. V. 1997. Ceramide selectively decreases tau levels in differentiated PC12 cells through modulation of calpain I. J. Neurochem. 69:1020-1030.

    Google Scholar 

  16. Mitoma, J., Ito, M., Furuya, S., and Hirabayashi, Y. 1998. Bipotential roles of ceramide in the growth of hippocampal neurons: Promotion of cell survival and dendritic outgrowth in dose-and developmental stage-dependent manners. J. Neurosci. Res. 51:712-722.

    Google Scholar 

  17. Brann, A. B., Tcherpakov, M., Williams, I. M., Futerman, A. H., and Fainzilber, M. 2002. NGF-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. J. Biol. Chem. 3:3.

    Google Scholar 

  18. Prinetti, A., Chigorno, V., Prioni, S., Loberto, N., Marano, N., Tettamanti, G., and Sonnino, S. 2001. Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J. Biol. Chem. 276:21136-21145.

    Google Scholar 

  19. Irie, F. and Hirabayashi, Y. 1998. Application of exogenous ceramide to cultured rat spinal motoneurons promotes survival or death by regulation of apoptosis depending on its concentrations. J. Neurosci. Res. 54:475-485.

    Google Scholar 

  20. Schwarz, A. and Futerman, A. H. 1997. Distinct roles for ceramide and glucosylceramide at different stages of neuronal growth. J. Neurosci. 17:2929-2938.

    Google Scholar 

  21. Goodman, Y. and Mattson, M. P. 1996. Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid beta-peptide toxicity. J. Neurochem. 66:869-872.

    Google Scholar 

  22. Campenot, R. B., Walji, A. H., and Draker, D. D. 1991. Effects of sphingosine, staurosporine, and phorbol ester on neurites of rat sympathetic neurons growing in compartmented cultures. J. Neurosci. 11:1126-1139.

    Google Scholar 

  23. de Chaves, E. P., Bussiere, M., MacInnis, B., Vance, D. E., Campenot, R. B., and Vance, J. E. 2001. Ceramide inhibits axonal growth and nerve growth factor uptake without compromising the viability of sympathetic neurons. J. Biol. Chem. 276:36207-36214.

    Google Scholar 

  24. Birbes, H., El Bawab, S., Hannun, Y. A., and Obeid, L. M. 2001. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 15:2669-2679.

    Google Scholar 

  25. Riboni, L., Bassi, R., Prinetti, A., Viani, P., and Tettamanti, G. 1999. Predominance of the acylation route in the metabolic processing of exogenous sphingosine in neural and extraneural cells in culture. Biochem. J. 338:147-151.

    Google Scholar 

  26. Riboni, L., Viani, P., Bassi, R., Giussani, P., and Tettamanti, G. 2000. Cultured granule cells and astrocytes from cerebellum differ in metabolizing sphingosine. J. Neurochem. 75:503-510.

    Google Scholar 

  27. Sugiura, M., Kono, K., Liu, H., Shimizugawa, T., Minekura, H., Spiegel, S., and Kohama, T. 2002. Ceramide kinase, a novel lipid kinase. Molecular cloning and functional characterization. J. Biol. Chem. 277:23291-23300.

    Google Scholar 

  28. Sato, K., Tomura, H., Igarashi, Y., Ui, M., and Okajima, F. 1997. Exogenous sphingosine 1-phosphate induces neurite retraction possibly through a cell surface receptor in PC12 cells. Biochem. Biophys. Res. Commun. 240:329-334.

    Google Scholar 

  29. Van Brocklyn, J. R., Tu, Z., Edsall, L. C., Schmidt, R. R., and Spiegel, S. 1999. Sphingosine 1-phosphate-induced cell rounding and neurite retraction are mediated by the G protein-coupled receptor H218. J. Biol. Chem. 274:4626-4632.

    Google Scholar 

  30. Moore, A. N., Kampfl, A. W., Zhao, X., Hayes, R. L., and Dash, P. K. 1999. Sphingosine-1-phosphate induces apoptosis of cultured hippocampal neurons that requires protein phosphatases and activator protein-1 complexes. Neuroscience, 94:405-415.

    Google Scholar 

  31. Edsall, L. C., Pirianov, G. G., and Spiegel, S. 1997. Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J. Neurosci. 17: 6952-6960.

    Google Scholar 

  32. Edsall, L. C., Cuvillier, O., Twitty, S., Spiegel, S., and Milstien, S. 2001. Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells. J. Neurochem. 76:1573-1584.

    Google Scholar 

  33. Bieberich, E., MacKinnon, S., Silva, J., and Yu, R. K. 2001. Regulation of apoptosis during neuronal differentiation by ceramide and b-series complex gangliosides. J. Biol. Chem. 276:44396-44404.

    Google Scholar 

  34. Korkotian, E., Schwarz, A., Pelled, D., Schwarzmann, G., Segal, M., and Futerman, A. H. 1999. Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. J. Biol. Chem. 274:21673-21678.

    Google Scholar 

  35. Bajjalieh, S. M., Martin, T. F., and Floor, E. 1989. Synaptic vesicle ceramide kinase. A calcium-stimulated lipid kinase that co-purifies with brain synaptic vesicles. J. Biol. Chem. 264:14354-14360.

    Google Scholar 

  36. Shinghal, R. Scheller, R. H., and Bajjalieh, S. M. 1993. Ceramide 1-phosphate phosphatase activity in brain. J. Neurochem. 61:2279-2285.

    Google Scholar 

  37. Condorelli, F., Sortino, M. A., Stella, A. M., and Canonico, P. L. 2000. Relative contribution of different receptor subtypes in the response of neuroblastoma cells to tumor necrosis factor-alpha. J. Neurochem. 75:1172-1179.

    Google Scholar 

  38. Hida, H., Nagano, S., Takeda, M., and Soliven, B. 1999. Regulation of mitogen-activated protein kinases by sphingolipid products in oligodendrocytes. J. Neurosci. 19:7458-7467.

    Google Scholar 

  39. Brann, A. B., Tcherpakov, M., Williams, I. M., Futerman, A. H., and Fainzilber, M. 2002. Nerve growth factor-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. J. Biol. Chem. 277:9812-9818.

    Google Scholar 

  40. Yoshimura, S., Banno, Y., Nakashima, S., Hayashi, K., Yamakawa, H., Sawada, M., Sakai, N., and Nozawa, Y. 1999. Inhibition of neutral sphingomyelinase activation and ceramide formation by glutathione in hypoxic PC12 cell death. J. Neurochem. 73:675-683.

    Google Scholar 

  41. Blazquez, C., Galve-Roperh, I., and Guzman, M. 2000. De novo-synthesized ceramide signals apoptosis in astrocytes via extracellular signal-regulated kinase. FASEB J. 14:2315-2322.

    Google Scholar 

  42. Herget, T., Esdar, C., Oehrlein, S. A., Heinrich, M., Schutze, S., Maelicke, A., and van Echten-Deckert, G. 2000. Production of ceramides causes apoptosis during early neural differentiation in vitro. J. Biol. Chem. 275:30344-30354.

    Google Scholar 

  43. Esdar, C., Milasta, S., Maelicke, A., and Herget, T. 2001. Differentiation-associated apoptosis of neural stem cells is effected by Bcl-2 overexpression: Impact on cell lineage determination. Eur. J. Cell Biol. 80:539-553.

    Google Scholar 

  44. Gomez Del Pulgar, T., Velasco, G., Sanchez, C., Haro, A., and Guzman, M. 2002. De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis. Biochem. J. 363:183-188.

    Google Scholar 

  45. MacPhee, I. and Barker, P. A. 1999. Extended ceramide exposure activates the trkA receptor by increasing receptor homodimer formation. J. Neurochem. 72:1423-1430.

    Google Scholar 

  46. Pelled, D., Raveh, T., Riebeling, C., Fridkin, M., Berissi, H., Futerman, A. H., and Kimchi, A. 2002. Death-associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons. J. Biol. Chem. 277:1957-1961.

    Google Scholar 

  47. Ramos, B., Salido, G. M., Campo, M. L., and Claro, E. 2000. Inhibition of phosphatidylcholine synthesis precedes apoptosis induced by C2-ceramide: Protection by exogenous phosphatidylcholine. Neuroreport 11:3103-3108.

    Google Scholar 

  48. Kuroki, J., Hirokawa, M., Kitabayashi, A., Lee, M., Horiuchi, T., Kawabata, Y., and Miura, A. B. 1996. Cell-permeable ceramide inhibits the growth of B lymphoma Raji cells lacking TNF-alpha-receptors by inducing G0/G1 arrest but not apoptosis: A new model for dissecting cell-cycle arrest and apoptosis. Leukemia 10:1950-1958.

    Google Scholar 

  49. Alesse, E., Zazzeroni, F., Angelucci, A., Giannini, G., Di Marcotullio, L., and Gulino, A. 1998. The growth arrest and downregulation of c-myc transcription induced by ceramide are related events dependent on p21 induction, Rb underphosphorylation and E2F sequestering. Cell Death Differ. 5:381-389.

    Google Scholar 

  50. Lee, J. Y., Bielawska, A. E., and Obeid, L. M. 2000. Regulation of cyclin-dependent kinase 2 activity by ceramide. Exp. Cell Res. 261:303-311.

    Google Scholar 

  51. Lane, S. C., Jolly, R. D., Schmechel, D. E., Alroy, J., and Boustany, R. M. 1996. Apoptosis as the mechanism of neurodegeneration in Batten's disease. J. Neurochem. 67:677-683.

    Google Scholar 

  52. Puranam, K., Qian, W. H., Nikbakht, K., Venable, M., Obeid, L., Hannun, Y., and Boustany, R. M. 1997. Upregulation of Bcl-2 and elevation of ceramide in Batten disease. Neuropediatrics 28:37-41.

    Google Scholar 

  53. Puranam, K. L., Guo, W. X., Qian, W. H., Nikbakht, K., and Boustany, R. M. 1999. CLN3 defines a novel antiapoptotic pathway operative in neurodegeneration and mediated by ceramide. Mol. Genet. Metab. 66:294-308.

    Google Scholar 

  54. Rylova, S. N., Amalfitano, A., Persaud-Sawin, D. A., Guo, W. X., Chang, J., Jansen, P. J., Proia, A. D., and Boustany, R. M. 2002. The CLN3 gene is a novel molecular target for cancer drug discovery. Cancer Res. 62:801-808.

    Google Scholar 

  55. Cho, S., Dawson, P. E., and Dawson, G. 2001. Role of palmitoyl-protein thioesterase in cell death: Implications for infantile neuronal ceroid lipofuscinosis. Eur. J. Paediatr. Neurol. 5 (Suppl A):53-55.

    Google Scholar 

  56. Cho, S., Dawson, P. E., and Dawson, G. 2000. Antisense palmitoyl protein thioesterase 1 (PPT1) treatment inhibits PPT1 activity and increases cell death in LA-N-5 neuroblastoma cells. J. Neurosci. Res. 62:234-240.

    Google Scholar 

  57. Bejaoui, K., Wu, C., Scheffler, M. D., Haan, G., Ashby, P., Wu, L., de Jong, P., and Brown, R. H., Jr. 2001. SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat. Genet. 27:261-262.

    Google Scholar 

  58. Dawkins, J. L., Hulme, D. J., Brahmbhatt, S. B., Auer-Grumbach, M., and Nicholson, G. A. 2001. Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat. Genet. 27:309-312.

    Google Scholar 

  59. Gable, K., Han, G., Monaghan, E., Bacikova, D., Natarajan, M., Williams, R., and Dunn, T. M. 2002. Mutations in the yeast LCB1 and LCB2 genes, including those corresponding to the hereditary sensory neuropathy type I mutations, dominantly inactivate serine palmitoyltransferase. J. Biol. Chem. 277:10194-10200.

    Google Scholar 

  60. Toman, R. E., Spiegel, S., and Faden, A. I. 2000. Role of ceramide in neuronal cell death and differentiation. J. Neurotrauma 17:891-898.

    Google Scholar 

  61. Yu, Z. F., Nikolova-Karakashian, M., Zhou, D., Cheng, G., Schuchman, E. H., and Mattson, M. P. 2000. Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J. Mol. Neurosci. 15:85-97.

    Google Scholar 

  62. Herr, I., Martin-Villalba, A., Kurz, E., Roncaioli, P., Schenkel, J., Cifone, M. G., and Debatin, K. M. 1999. FK506 prevents stroke-induced generation of ceramide and apoptosis signaling. Brain Res. 826:210-219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luberto, C., Kraveka, J.M. & Hannun, Y.A. Ceramide Regulation of Apoptosis versus Differentiation: A Walk on a Fine Line. Lessons from Neurobiology. Neurochem Res 27, 609–617 (2002). https://doi.org/10.1023/A:1020267831851

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020267831851

Navigation