Skip to main content

Advertisement

Log in

Clinical characteristics of community-acquired acute pyelonephritis caused by ESBL-producing pathogens in South Korea

  • Clinical and Epidemiological Study
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to determine the risk factors and clinical characteristics of community-acquired acute pyelonephritis (CA-APN) caused by extended-spectrum β-lactamase (ESBL)-producing organisms.

Methods

From March 2010 to February 2011, patients with CA-APN were recruited in 11 hospitals in South Korea. Clinical and microbiological data were collected prospectively, and the ESBLs and multilocus sequence types of the ESBL-producing Escherichia coli were characterized. Comparison between CA-APN caused by ESBL-producing Enterobacteriaceae and those by non-ESBL-producing organisms was performed.

Results

A total of 566 patients were recruited. Enterobacteriaceae were detected in 526 patients. Forty-six isolates (46/526, 8.7 %) were positive for ESBLs. Clinical and microbiological failure did not differ between the two groups, despite there being fewer patients with ESBL-positive isolates provided with appropriate antibiotics initially (19.6 vs. 93.8 %, p < 0.001). However, the duration of hospitalization was longer in the ESBL group (10.5 vs. 7.0 days, p = 0.012). In a logistic regression model, Charlson score ≥1 point [odds ratio (OR) 3.4, 95 % confidence interval (CI) 1.6–7.0, p = 0.001], antibiotics usage during the previous year (OR 3.1, 95 % CI 1.4–7.2, p = 0.008), and urinary catheterization during the previous month (OR 4.4, 95 % CI 1.1–17.6, p = 0.035) were associated with the risks of CA-APN by ESBL producers. CTX-M-15 (48 %) and CTX-M-14 (38 %) were the most common ESBLs. ST131 was the most common clone (7/24, 29.1 %), which was more frequently resistant to cefepime, fosfomycin, and temocillin.

Conclusions

The risk factors for CA-APN by ESBL producers were Charlson score ≥1 point, antibiotics usage during the previous year, and urinary catheterization during the previous month.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nicolle LE. Urinary tract infection: traditional pharmacologic therapies. Am J Med. 2002;113(Suppl 1A):35S–44S. pii: S0002934302010586.

    Article  PubMed  Google Scholar 

  2. Kang CI, Song JH, Chung DR, Peck KR, Ko KS, Yeom JS, et al. Risk factors and treatment outcomes of community-onset bacteraemia caused by extended-spectrum beta-lactamase-producing Escherichia coli. Int J Antimicrob Agents. 2010;36:284–7. pii: S0924-8579(10)00227-X.

    Article  PubMed  CAS  Google Scholar 

  3. Kang CI, Cheong HS, Chung DR, Peck KR, Song JH, Oh MD, et al. Clinical features and outcome of community-onset bloodstream infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Eur J Clin Microbiol Infect Dis. 2008;27:85–8. doi:10.1007/s10096-007-0401-6.

    Article  PubMed  Google Scholar 

  4. Pitout JDD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8:159–66. doi:10.1016/S1473-3099(08)70041-0.

    Article  PubMed  CAS  Google Scholar 

  5. Shin J, Kim DH, Ko KS. Comparison of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J Infect. 2011;63:39–47. doi:10.1016/j.jinf.2011.05.003.

    Article  PubMed  Google Scholar 

  6. Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. Front Microbiol. 2012;3:110. doi:10.3389/fmicb.2012.00110.

    Article  PubMed  Google Scholar 

  7. Lee DS, Lee CB, Lee SJ. Prevalence and risk factors for extended spectrum beta-lactamase-producing uropathogens in patients with urinary tract infection. Korean J Urol. 2010;51:492–7. doi:10.4111/kju.2010.51.7.492.

    Article  PubMed  Google Scholar 

  8. Shin J, Kim J, Wie SH, Cho YK, Lim SK, Shin SY, et al. Fluoroquinolone resistance in uncomplicated acute pyelonephritis: epidemiology and clinical impact. Microb Drug Resist. 2012;18:169–75. doi:10.1089/mdr.2011.0139.

    Article  PubMed  CAS  Google Scholar 

  9. Calbo E, Romaní V, Xercavins M, Gómez L, Vidal CG, Quintana S, et al. Risk factors for community-onset urinary tract infections due to Escherichia coli harbouring extended-spectrum beta-lactamases. J Antimicrob Chemother. 2006;57:780–3. pii: dkl035.

    Article  PubMed  CAS  Google Scholar 

  10. Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, et al. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin Infect Dis. 2004;39:31–7. doi:10.1086/420816. pii: CID30647.

    Article  PubMed  CAS  Google Scholar 

  11. Colodner R, Kometiani I, Chazan B, Raz R. Risk factors for community-acquired urinary tract infection due to quinolone-resistant E. coli. Infection. 2008;36:41–5. doi:10.1007/s15010-007-7083-y.

    Article  PubMed  CAS  Google Scholar 

  12. Sotto A, De Boever CM, Fabbro-Peray P, Gouby A, Sirot D, Jourdan J. Risk factors for antibiotic-resistant Escherichia coli isolated from hospitalized patients with urinary tract infections: a prospective study. J Clin Microbiol. 2001;39:438–44. doi:10.1128/JCM.39.2.438-444.2001.

    Article  PubMed  CAS  Google Scholar 

  13. Mathew A, Harris AM, Marshall MJ, Ross GW. The use of analytical isoelectric focusing for detection and identification of beta-lactamases. J Gen Microbiol. 1975;88:169–78.

    Article  PubMed  CAS  Google Scholar 

  14. Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65:490–5. pii: dkp498.

    Article  PubMed  CAS  Google Scholar 

  15. Woodford N, Fagan EJ, Ellington MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. J Antimicrob Chemother. 2006;57:154–5. pii: dki412.

    Article  PubMed  CAS  Google Scholar 

  16. Johnson JR, Menard M, Johnston B, Kuskowski MA, Nichol K, Zhanel GG. Epidemic clonal groups of Escherichia coli as a cause of antimicrobial-resistant urinary tract infections in Canada, 2002 to 2004. Antimicrob Agents Chemother. 2009;53:2733–9. pii: AAC.00297-09.

    Article  PubMed  CAS  Google Scholar 

  17. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 19th informational supplement. CLSI document M100-S19. Wayne: CLSI; 2009.

  18. Azap OK, Arslan H, Serefhanoğlu K, Colakoğlu S, Erdoğan H, Timurkaynak F, et al. Risk factors for extended-spectrum beta-lactamase positivity in uropathogenic Escherichia coli isolated from community-acquired urinary tract infections. Clin Microbiol Infect. 2010;16:147–51. pii: CLM2941.

    Article  PubMed  CAS  Google Scholar 

  19. Rajagopalan S. Serious infections in elderly patients with diabetes mellitus. Clin Infect Dis. 2005;40:990–6. pii: CID30319.

    Article  Google Scholar 

  20. Auer S, Wojna A, Hell M. Oral treatment options for ambulatory patients with urinary tract infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli. Antimicrob Agents Chemother. 2010;54:4006–8. pii: AAC.01760-09.

    Article  PubMed  CAS  Google Scholar 

  21. Meier S, Weber R, Zbinden R, Ruef C, Hasse B. Extended-spectrum beta-lactamase-producing Gram-negative pathogens in community-acquired urinary tract infections: an increasing challenge for antimicrobial therapy. Infection. 2011;39:333–40. doi:10.1007/s15010-011-0132-6.

    Article  PubMed  CAS  Google Scholar 

  22. Kim YK, Pai H, Lee HJ, Park SE, Choi EH, Kim J, et al. Bloodstream infections by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob Agents Chemother. 2002;46:1481–91.

    Article  PubMed  CAS  Google Scholar 

  23. Kim BN, Woo JH, Kim MN, Ryu J, Kim YS. Clinical implications of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae bacteraemia. J Hosp Infect. 2002;52:99–106. pii: S0195670102912880.

    Article  PubMed  Google Scholar 

  24. Ben-Ami R, Rodríguez-Baño J, Arslan H, Pitout JD, Quentin C, Calbo ES, et al. A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing enterobacteriaceae in nonhospitalized patients. Clin Infect Dis. 2009;49:682–90. doi:10.1086/604713.

    Article  PubMed  Google Scholar 

  25. Du B, Long Y, Liu H, Chen D, Liu D, Xu Y, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome. Intensive Care Med. 2002;28:1718–23. doi:10.1007/s00134-002-1521-1.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Korea Healthcare Technology R&D Project, Ministry of Health & Welfare, Republic of Korea.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Pai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B., Kim, J., Seo, MR. et al. Clinical characteristics of community-acquired acute pyelonephritis caused by ESBL-producing pathogens in South Korea. Infection 41, 603–612 (2013). https://doi.org/10.1007/s15010-013-0441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-013-0441-z

Keywords

Navigation