Skip to main content
Log in

Inpatient Hyperglycemia Following Aneurysmal Subarachnoid Hemorrhage: Relation to Cerebral Metabolism and Outcome

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Introduction

Despite its clear association with impaired prognosis, it remains controversial whether hyperglycemia after aneurysmal subarachnoid hemorrhage (SAH) actively contributes to neuronal damage. This study aimed to identify a threshold for blood glucose predicting unfavorable outcome, and to evaluate differences in cerebral metabolism in normo and hyperglycemic SAH patients.

Methods

Prospectively, blood glucose and cerebral metabolism, measured by cerebral microdialysis, were evaluated in 178 patients (WFNS grade I–V; age 51.6 ± 12.4 years) during days 1–7 after SAH. Patients were classified into groups with mean blood glucose levels ≤/> 6.1 mmol/l (110 mg/dl) and 7.8 mmol/l (140 mg/dl). Glasgow Outcome Score was assessed after 12 months.

Results

Higher inpatient blood glucose was associated with impaired prognosis, with a threshold of 7.5 mmol/l (135 mg/dl) distinguishing best between favorable and unfavorable outcome. Inpatient glucose levels >6.1 mmol/l (110 mg/dl) were associated with higher cerebral lactate and lactate/pyruvate ratio (P < 0.05). Cerebral glucose was elevated only at blood levels >7.8 mmol/l (140 mg/dl). Inpatient glucose levels above 7.8 mmol/l (140 mg/dl) were independent predictors of unfavorable outcome and mortality.

Conclusion

Blood glucose levels >7.8 mmol/l (140 mg/dl), but not levels >6.1 mmol/l (110 mg/dl), independently predicted unfavorable outcome. While blood glucose levels >6.1 mmol/l (110 mg/dl) were already associated with slight metabolic derangements, cerebral glucose increased only at blood levels >7.8 mmol/l (140 mg/dl). Considering the risks associated with tight glycemic control, a moderate regimen accepting blood glucose levels up to 7.8 mmol/l (140 mg/dl) might be more reasonable after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Frontera JA, Fernandez A, Claassen J, et al. Hyperglycemia after SAH: predictors, associated complications, and impact on outcome. Stroke. 2006;37:199–203. doi:10.1161/01.STR.0000194960.73883.0f.

    Article  PubMed  Google Scholar 

  2. Lanzino G, Kassell NF, Germanson T, Truskowski L, Alves W. Plasma glucose levels and outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg. 1993;79:885–91.

    Article  PubMed  CAS  Google Scholar 

  3. Falciglia M. Causes and consequences of hyperglycemia in critical illness. Curr Opin Clin Nutr Metab Care. 2007;10:498–503. doi:10.1097/MCO.0b013e3281a3bf0a.

    Article  PubMed  CAS  Google Scholar 

  4. van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345:1359–67. doi:10.1056/NEJMoa011300.

    Article  PubMed  Google Scholar 

  5. Prakash A, Matta BF. Hyperglycaemia and neurological injury. Curr Opin Anaesthesiol. 2008;21:565–9. doi:10.1097/ACO.0b013e32830f44e4.

    Article  PubMed  Google Scholar 

  6. Bilotta F, Spinelli A, Giovannini F, Doronzio A, Delfini R, Rosa G. The effect of intensive insulin therapy on infection rate, vasospasm, neurologic outcome, and mortality in neurointensive care unit after intracranial aneurysm clipping in patients with acute subarachnoid hemorrhage: a randomized prospective pilot trial. J Neurosurg Anesthesiol. 2007;19:156–60. doi:10.1097/ANA.0b013e3180338e69.

    Article  PubMed  Google Scholar 

  7. Van den Berghe G, Schoonheydt K, Becx P, Bruyninckx F, Wouters PJ. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology. 2005;64:1348–53.

    PubMed  Google Scholar 

  8. Vespa P, Boonyaputthikul R, McArthur DL, et al. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34:850–6. doi:10.1097/01.CCM.0000201875.12245.6F.

    Article  PubMed  CAS  Google Scholar 

  9. Oddo M, Schmidt JM, Carrera E, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36:3233–8. doi:10.1097/CCM.0b013e31818f4026.

    Article  PubMed  CAS  Google Scholar 

  10. Woo E, Ma JT, Robinson JD, Yu YL. Hyperglycemia is a stress response in acute stroke. Stroke. 1988;19:1359–64.

    PubMed  CAS  Google Scholar 

  11. Bell DA, Strong AJ. Glucose/insulin infusions in the treatment of subarachnoid haemorrhage: a feasibility study. Br J Neurosurg. 2005;19:21–4. doi:10.1080/02688690500089423.

    Article  PubMed  CAS  Google Scholar 

  12. Schlenk F, Nagel A, Graetz D, Sarrafzadeh AS. Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2008;34:1200–7. doi:10.1007/s00134-008-1044-5.

    Article  PubMed  CAS  Google Scholar 

  13. Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980;6:1–9. doi:10.1097/00006123-198001000-00001.

    Article  PubMed  CAS  Google Scholar 

  14. Drake C. Report of World Federation of Neurological Surgeons Committee on a universal subarachnoid hemorrhage grading scale. J Neurosurg. 1988;68:985–6.

    Google Scholar 

  15. Sarrafzadeh A, Haux D, Kuchler I, Lanksch WR, Unterberg AW. Poor-grade aneurysmal subarachnoid hemorrhage: relationship of cerebral metabolism to outcome. J Neurosurg. 2004;100:400–6.

    Article  PubMed  Google Scholar 

  16. Lanzino G, Kassell NF. Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part II. A cooperative study in North America. J Neurosurg. 1999;90:1018–24.

    Article  PubMed  CAS  Google Scholar 

  17. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet. 1975;1:480–4. doi:10.1016/S0140-6736(75)92830-5.

    Article  PubMed  CAS  Google Scholar 

  18. Hutchinson PJ, O’Connell MT, Nortje J, et al. Cerebral microdialysis methodology—evaluation of 20 kDa and 100 kDa catheters. Physiol Meas. 2005;26:423–8. doi:10.1088/0967-3334/26/4/008.

    Article  PubMed  CAS  Google Scholar 

  19. Hutchinson PJ, O’Connell MT, Al-Rawi PG, et al. Clinical cerebral microdialysis: a methodological study. J Neurosurg. 2000;93:37–43.

    Article  PubMed  CAS  Google Scholar 

  20. Nilsson OG, Saveland H, Boris-Moller F, Brandt L, Wieloch T. Increased levels of glutamate in patients with subarachnoid haemorrhage as measured by intracerebral microdialysis. Acta Neurochir Suppl (Wien). 1996;67:45–7.

    CAS  Google Scholar 

  21. Hillered L, Valtysson J, Enblad P, Persson L. Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry. 1998;64:486–91. doi:10.1136/jnnp.64.4.486.

    Article  PubMed  CAS  Google Scholar 

  22. Samuelsson C, Hillered L, Zetterling M, et al. Cerebral glutamine and glutamate levels in relation to compromised energy metabolism: a microdialysis study in subarachnoid hemorrhage patients. J Cereb Blood Flow Metab. 2007;27:1309–17. doi:10.1038/sj.jcbfm.9600433.

    Article  PubMed  CAS  Google Scholar 

  23. Frontera JA, Fernandez A, Schmidt JM, et al. Impact of nosocomial infectious complications after subarachnoid hemorrhage. Neurosurgery. 2008;62:80–7. doi:10.1227/01.NEU.0000311064.18368.EA. discussion 87.

    Article  PubMed  Google Scholar 

  24. Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47:701–9. doi:10.1097/00006123-200009000-00035. (discussion 709–710).

    Article  PubMed  CAS  Google Scholar 

  25. Hutchinson PJ, Gupta AK, Fryer TF, et al. Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study. J Cereb Blood Flow Metab. 2002;22:735–45. doi:10.1097/00004647-200206000-00012.

    Article  PubMed  Google Scholar 

  26. Sarrafzadeh AS, Sakowitz OW, Kiening KL, Benndorf G, Lanksch WR, Unterberg AW. Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med. 2002;30:1062–70. doi:10.1097/00003246-200205000-00018.

    Article  PubMed  Google Scholar 

  27. Ungerstedt U. Microdialysis—principles and applications for studies in animals and man. J Intern Med. 1991;230:365–73.

    Article  PubMed  CAS  Google Scholar 

  28. Diaz-Parejo P, Stahl N, Xu W, Reinstrup P, Ungerstedt U, Nordstrom CH. Cerebral energy metabolism during transient hyperglycemia in patients with severe brain trauma. Intensive Care Med. 2003;29:544–50.

    PubMed  Google Scholar 

  29. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20. doi:10.1038/414813a.

    Article  PubMed  CAS  Google Scholar 

  30. Black CT, Hennessey PJ, Andrassy RJ. Short-term hyperglycemia depresses immunity through nonenzymatic glycosylation of circulating immunoglobulin. J Trauma. 1990;30:830–2. doi:10.1097/00005373-199007000-00012. (discussion 832–833).

    Article  PubMed  CAS  Google Scholar 

  31. Li PA, Shamloo M, Katsura K, Smith ML, Siesjo BK. Critical values for plasma glucose in aggravating ischaemic brain damage: correlation to extracellular pH. Neurobiol Dis. 1995;2:97–108. doi:10.1006/nbdi.1995.0010.

    Article  PubMed  CAS  Google Scholar 

  32. Katsura K, Asplund B, Ekholm A, Siesjo BK. Extra- and intracellular pH in the brain during ischaemia, related to tissue lactate content in normo- and hypercapnic rats. Eur J NeuroSci. 1992;4:166–76. doi:10.1111/j.1460-9568.1992.tb00863.x.

    Article  PubMed  Google Scholar 

  33. Schlenk F, Graetz D, Nagel A, Schmidt M, Sarrafzadeh AS. Insulin-related decrease in cerebral glucose despite normoglycemia in aneurysmal subarachnoid hemorrhage. Crit Care. 2008;12:R9. doi:10.1186/cc6776.

    Article  PubMed  Google Scholar 

  34. Vespa PM, McArthur D, O’Phelan K, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23:865–77. doi:10.1097/01.WCB.0000076701.45782.EF.

    Article  PubMed  CAS  Google Scholar 

  35. Badjatia N, Topcuoglu MA, Buonanno FS, et al. Relationship between hyperglycemia and symptomatic vasospasm after subarachnoid hemorrhage. Crit Care Med. 2005;33:1603–9. doi:10.1097/01.CCM.0000168054.60538.2B. (quiz 1623).

    Article  PubMed  Google Scholar 

  36. Arabi YM, Dabbagh OC, Tamim HM, et al. Intensive versus conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. Crit Care Med. 2008;36:3190–7. doi:10.1097/CCM.0b013e31818f21aa.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sabine Seidlitz and Jasmin Kopetzki, our colleagues and the nursing staff of the interdisciplinary intensive care unit for excellent support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asita Sarrafzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlenk, F., Vajkoczy, P. & Sarrafzadeh, A. Inpatient Hyperglycemia Following Aneurysmal Subarachnoid Hemorrhage: Relation to Cerebral Metabolism and Outcome. Neurocrit Care 11, 56–63 (2009). https://doi.org/10.1007/s12028-009-9222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-009-9222-z

Keywords

Navigation