Skip to main content
Log in

Treatment of Complicated Urinary Tract Infections With an Emphasis on Drug-Resistant Gram-Negative Uropathogens

  • Genitourinary Infections (J Sobel, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Complicated urinary tract infection is a challenging infection, since cure is difficult and either persistence or recurrence is common. The challenge is frequently increased because complicated urinary tract infection is often caused by gram-negative bacilli resistant to multiple antimicrobial drugs. In this review, we approach the therapy of complicated urinary tract infection with an emphasis on those caused by antimicrobial drug-resistant gram-negative uropathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Pallett A, Hand K. Complicated urinary tract infections: practical solutions for the treatment of multiresistant Gram-negative bacteria. J Antimicrob Chemother. 2010;65 suppl 3:iii25–33. This is one of the few reviews of the subject of treatment of complicated UTIs caused by multidrug-resistant gram-negative bacteria.

    Article  PubMed  CAS  Google Scholar 

  2. Nicolle L. Complicated urinary tract infection in adults. Can J Infect Dis Med Microbiol. 2005;16:349–60.

    PubMed  CAS  Google Scholar 

  3. Lichtenberger P, Hooton TM. Complicated urinary tract infections. Curr Infect Dis Rep. 2008;10:499–504.

    Article  PubMed  Google Scholar 

  4. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14:933–51.

    Article  PubMed  CAS  Google Scholar 

  5. • Peirano G, Pitout JD. Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents. 2010;35:316–21. This article describes the worldwide dissemination of an ESBL-producing E. coli.

    Article  PubMed  CAS  Google Scholar 

  6. Rodríguez-Baño J, Navarro MD. Extended-spectrum beta-lactamases in ambulatory care: a clinical perspective. Clin Microbiol Infect. 2008;14 Suppl 1:104–10.

    Article  PubMed  Google Scholar 

  7. • Johnson JR, Johnston B, Connie C, et al. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis. 2010;51:286–94. This describes the dissemination of an ESBL-producing E. coli in the U.S.

    Article  PubMed  Google Scholar 

  8. Paterson DL. Recommendations for treatment of severe infections caused by Enterobacteriaceae producing extended- spectrum beta-lactamases (ESBLs). Clin Microbiol Infect. 2000;6:460–3.

    Article  PubMed  CAS  Google Scholar 

  9. Ahmad M, Urban C, Mariano N, et al. Clinical characteristics and molecular epidemiology associated with imipenem-resistant Klebsiella pneumoniae. Clin Infect Dis. 1999;29:352–5.

    Article  PubMed  CAS  Google Scholar 

  10. Go ES, Urban C, Burns J, et al. Clinical and molecular epidemiology of Acinetobacter infections sensitive only to polymixin B and sulbactam. Lancet. 1994;344:1329–32.

    Article  PubMed  CAS  Google Scholar 

  11. Gavin PJ, Suseno MT, Thomson Jr RB, et al. Clinical correlation of the CLSI susceptibility breakpoint for piperacillin-tazobactam against extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella species. Antimicrob Agents Chemother. 2006;50:2244–7.

    Article  PubMed  CAS  Google Scholar 

  12. • Falagas ME, Kastoris AC, Kapaskelis AM, et al. Fosfomcyin for the treatment of multidrug resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis. 2010;10:43–50. This paper is a review of the use of fosfomycin for treatment of urinary tract infection caused by multidrug-resistant Enterobacteriaceae .UTIs.

    Article  PubMed  CAS  Google Scholar 

  13. Martínez-Martínez L, Pascual A, Hernández-Allés S, et al. Roles of beta-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob Agents Chemother. 1999;43:1669–73.

    PubMed  Google Scholar 

  14. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20:440–58.

    Article  PubMed  CAS  Google Scholar 

  15. CDC. Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR. 2009;58:256–60.

    Google Scholar 

  16. Kumarasamy KK, Tolman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10:597–602.

    Article  PubMed  CAS  Google Scholar 

  17. Walsh TR, Weeks J, Livermore DM, et al. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11:355–62.

    Article  PubMed  Google Scholar 

  18. Arpin C, Noury P, Boraud D, et al. NDM-1-producing Klebsiella pneumoniae resistant to colistin in a French community patient without history of foreign travel. Antimicrob Agents Chemother. 2012;56:3432–4.

    Article  PubMed  CAS  Google Scholar 

  19. • CDC. Carbapenem-resistant Enterobacteriaceae containing New Delhi metallo-beta-lactamase in two patients — Rhode Island, March 2012. MMWR. 2012;61:446–8. This is a report of urinary tract infection caused by carbapenemase-resistant bacteria in the U.S.

    Google Scholar 

  20. • Gupta K, Hooton TM, Naber KG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52:e103–20. These are the guidelines on treatment of uncomplicated UTIs in women from the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Patients with complicated UTIs may not be recognized initially to have a complication and, therefore, will be started on treatment for uncomplicated infection.

    Article  PubMed  Google Scholar 

  21. Falagas ME, Kotsantis IK, Vouloumanou EK, et al. Antibiotics versus placebo in the treatment of women with uncomplicated cystitis: a meta-analysis of randomized controlled trials. J Infect. 2009;58:91–102.

    Article  PubMed  Google Scholar 

  22. • Bleidorn J, Gágyor I, Kochen MM, et al. Symptomatic treatment (ibuprofen) or antibiotics (ciprofloxacin) for uncomplicated urinary tract infection?--results of a randomized controlled pilot trial. BMC Med. 2010;8:30. This is a double-blind, randomized controlled drug trial that shows the noninferiority of ibuprofen, as compared with ciprofloxacin, each given for 3 days for treatment of symptomatic uncomplicated UTIs in healthy women 18–85 years of age. However, up to day 9, 12/36 (33%) of patients in the ibuprofen group received secondary antibiotic treatment due to ongoing or worsening symptoms, as compared with 6/33 (18%) in the ciprofloxacin group (nonsignificant).

    Article  PubMed  Google Scholar 

  23. • Falagas ME, Vouloumanou EK, Togias AG, et al. Fosfomycin versus other antibiotics for the treatment of cystitis: a meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2010;65:1862–77. This is a meta-analysis of randomized controlled trials, which involved mostly nonpregnant female patients with cystitis. It found no difference between fosfomycin and comparators in clinical and microbiological success/relapse/reinfection.

    Article  PubMed  CAS  Google Scholar 

  24. Ronald AR, Boutros P, Mourtada H. Bacteriuria localization and response to single-dose therapy in women. JAMA. 1976;235:1854–6.

    Article  PubMed  CAS  Google Scholar 

  25. Chen YH, Ko WC, Hsueh PR. The role of fluoroquinolones in the management of urinary tract infections in areas with high rates of fluoroquinolone-resistant uropathogens. Eur J Clin Microbiol Infect Dis. 2012;31:1699–704.

    Article  PubMed  CAS  Google Scholar 

  26. Lee SS, Kim Y, Chung DR. Impact of discordant empirical therapy on outcome of community-acquired bacteremic acute pyelonephritis. J Infect. 2011;62:159–64.

    Article  PubMed  Google Scholar 

  27. Jeon JH, Kim K, Han WD, et al. Empirical use of ciprofloxacin for acute uncomplicated pyelonephritis caused by Escherichia coli in communities where the prevalence of fluoroquinolone resistance is high. Antimicrob Agents Chemother. 2012;56:3043–6.

    Article  PubMed  CAS  Google Scholar 

  28. Johnson CC, Livornese L, Gold MJ, et al. Activity of cefepime against ceftazidime-resistant gram-negative bacilli using low and high inocula. J Antimicrob Chemother. 1995;35:765–73.

    Article  PubMed  CAS  Google Scholar 

  29. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9:228–36.

    Article  PubMed  CAS  Google Scholar 

  30. Kelesidis T, Karageorgopoulos DE, Kelesidis I, et al. Tigecycline for the treatment of multidrug-resistant Enterobacteriaceae: a systematic review of the evidence from micro biological and clinical studies. J Antimicrob Chemother. 2008;62:895–904.

    Article  PubMed  CAS  Google Scholar 

  31. Li J, Milne RW, Nation RL, et al. Pharmacokinetics of colistin methanesulphonate and colistin in rats following an intravenous dose of colistin methanesulphonate. J Antimicrob Chemother. 2004;53:837–40.

    Article  PubMed  CAS  Google Scholar 

  32. Paul M, Bishara J, Levcovich A, et al. Effectiveness and safety of colistin: prospective comparative cohort study. J Antimicrob Chemother. 2010;65:1019–27.

    Article  PubMed  CAS  Google Scholar 

  33. Pogue JM, Marchaim D, Kaye D, et al. Re-visiting “older” antimicrobials in the era of multidrug resistance. Pharmacotherapy. 2011;31:912–21.

    Article  PubMed  Google Scholar 

  34. Pogue JM, Lee J, Marchaim D, et al. Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin Infect Dis. 2011;53:879–84.

    Article  PubMed  CAS  Google Scholar 

  35. Curcio D. Treatment of recurrent urosepsis with tigecycline: a pharmacological perspective. J Clin Microbiol. 2008;46:1892–3.

    Article  PubMed  Google Scholar 

  36. Prasad P, Sun J, Danner RL, et al. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin Infect Dis. 2012;54:1699–709.

    Article  PubMed  CAS  Google Scholar 

  37. • Rudenko N, Dorofeyev A. Prevention of recurrent lower urinary tract infections by long-term administration of fosfomycin trometamol. Double blind, randomized, parallel group, placebo controlled study. Arzneimittelforschung. 2005;55:420–7. This is a paper on long-term use of fosfomycin for oral prophylaxis of recurrent UTIs in women.

    PubMed  CAS  Google Scholar 

  38. Gupta K, Hooton TM. Duration of therapy for urinary tract infection: the long and the short of it. Clin Infect Dis. 2004;39:665–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Kaye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levison, M.E., Kaye, D. Treatment of Complicated Urinary Tract Infections With an Emphasis on Drug-Resistant Gram-Negative Uropathogens. Curr Infect Dis Rep 15, 109–115 (2013). https://doi.org/10.1007/s11908-013-0315-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-013-0315-7

Keywords

Navigation