Skip to main content
Log in

Peripheral photoplethysmography variability analysis of sepsis patients

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Sepsis is associated with impairment in autonomic regulatory function. This work investigates the application of heart rate and photoplethysmogram (PPG) waveform variability analysis in differentiating two categories of sepsis, namely systemic inflammatory response syndrome (SIRS) and severe sepsis. Electrocardiogram-derived heart period (RRi) and PPG waveforms, measured from fingertips (Fin-PPG) and earlobes (Ear-PPG), of Emergency Department sepsis patients (n = 28) with different disease severity, were analysed by spectral technique, and were compared to control subjects (n = 10) in supine and 80° head-up tilted positions. Analysis of covariance (ANCOVA) was applied to adjust for the confounding factor of age. Low-frequency (LF, 0.04–0.15 Hz), mid-frequency (MF, 0.09–0.15 Hz) and high-frequency (HF, 0.15–0.60 Hz) powers were computed. The normalised MF power in Ear-PPG (MFnuEar) was significantly reduced in severe sepsis patients with hyperlactataemia (lactate > 2 mmol/l), compared to SIRS patients (P < 0.05). Moreover, in a group of normal controls, MFnuEar was not altered by head-up tilting (P > 0.05), suggesting that there may be a link between 0.1 Hz ear blood flow oscillation and tissue metabolic changes in sepsis, in addition to autonomic factors. The study highlighted the value of PPG spectral analysis in the non-invasive assessment of peripheral vascular regulation in sepsis patients, with potential implications in monitoring the progression of sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Awad AA, Ghobashy MA, Ouda W, Stout RG, Silverman DG, Shelley KH (2001) Different responses of ear and finger pulse oximeter wave form to cold pressor test. Anesth Analg 92:1483–1486

    Article  PubMed  CAS  Google Scholar 

  2. Barnett SR, Morin RJ, Kiely DK, Gagnon M, Azhar G, Knight EL, Nelson JC, Lipsitz LA (1999) Effects of age and gender on autonomic control of blood pressure dynamics. Hypertension 33:1195–1200

    PubMed  CAS  Google Scholar 

  3. Bendjelid K (2008) The pulse oximetry plethysmographic curve revisited. Curr Opin Crit Care 14:348–353

    Article  PubMed  Google Scholar 

  4. Berger RD, Akselrod S, Gordon D, Cohen RJ (1986) An efficient algorithm for spectral analysis of heart rate variability. IEEE Trans Biomed Eng 33:900–904

    Article  PubMed  CAS  Google Scholar 

  5. Bernardi L, Radaelli A, Solda PL, Coats AJ, Reeder M, Calciati A, Garrard CS, Sleight P (1996) Autonomic control of skin microvessels: assessment by power spectrum of photoplethysmographic waves. Clin Sci 90:345–355

    PubMed  CAS  Google Scholar 

  6. Bernardi L, Hayoz D, Wenzel R, Passino C, Calciati A, Weber R, Noll G (1997) Synchronous and baroceptor-sensitive oscillations in skin microcirculation: evidence for central autonomic control. Am J Physiol 273:H1867–H1878

    PubMed  CAS  Google Scholar 

  7. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1644–1655

    Article  PubMed  CAS  Google Scholar 

  8. Buckley JF, Singer M, Clapp LH (2006) Role of KATP channels in sepsis. Cardiovasc Res 72:220–230

    Article  PubMed  CAS  Google Scholar 

  9. Chen CC, Chong CF, Liu YL, Chen KC, Wang TL (2006) Risk stratification of severe sepsis patients in the emergency department. Emerg Med J 23:281–285

    Article  PubMed  Google Scholar 

  10. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  PubMed  Google Scholar 

  11. Hagblad J, Lindberg LG, Andersson AK, Bergstrand S, Lindgren M, Ek AC, Folke M, Lindén M (2010) A technique based on laser Doppler flowmetry and photoplethysmography for simultaneously monitoring blood flow at different tissue depths. Med Biol Eng Comput 48:415–422

    Article  PubMed  CAS  Google Scholar 

  12. Intaglietta M (1991) Arteriolar vasomotion: implications for tissue ischemia. Blood Vessels 28(Suppl 1):1–7

    PubMed  Google Scholar 

  13. James JH, Luchette FA, McCarter FD, Fischer JE (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508

    Article  PubMed  CAS  Google Scholar 

  14. Jubran A (1999) Pulse oximetry. Crit Care 3:R11–R17

    Article  PubMed  Google Scholar 

  15. Kilbourn RG, Traber DL, Szabó C (1997) Nitric oxide and shock. Dis Mon 43:277–348

    PubMed  CAS  Google Scholar 

  16. Kim SW, Kim SC, Nam KC, Kang ES, Im JJ, Kim DW (2008) A new method of screening for diabetic neuropathy using laser Doppler and photoplethysmography. Med Biol Eng Comput 46:61–67

    Article  PubMed  Google Scholar 

  17. Knotzer H, Maier S, Dünser M, Stadlbauer KH, Ulmer H, Pajk W, Hasibeder WR (2007) Oscillation frequency of skin microvascular blood flow is associated with mortality in critically ill patients. Acta Anaesthesiol Scand 51:701–707

    Article  PubMed  CAS  Google Scholar 

  18. Krogstad AL, Elam M, Karlsson T, Wallin BG (1995) Atriovenous anastomoses and the thermoregulatory shift between cutaneous vasoconstrictor and vasodilator reflexes. J Auton Nerv Syst 53:215–222

    Article  PubMed  CAS  Google Scholar 

  19. Landry DW, Oliver JA (1992) The ATP-sensitive K+ channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog. J Clin Invest 89:2071–2074

    Article  PubMed  CAS  Google Scholar 

  20. Landry DW, Oliver JA (2001) The pathogenesis of vasodilatory shock. N Engl J Med 345:588–595

    Article  PubMed  CAS  Google Scholar 

  21. Lee SW, Hong YS, Park DW, Choi SH, Moon SW, Park JS, Kim JY, Baek KJ (2008) Lactic acidosis not hyperlactatemia as a predictor of in hospital mortality in septic emergency patients. Emerg Med J 25:659–665

    Article  PubMed  Google Scholar 

  22. Levy B (2006) Lactate and shock state: the metabolic view. Curr Opin Crit Care 12:315–321

    Article  PubMed  Google Scholar 

  23. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Intensive Care Med 29:530–538

    PubMed  Google Scholar 

  24. Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, Schwartz PJ (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381

    Google Scholar 

  25. Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482–492

    PubMed  CAS  Google Scholar 

  26. Middleton PM, Chan GS, O’ Lone E, Steel E, Carroll R, Celler BG, Lovell NH (2008) Spectral analysis of finger photoplethysmographic waveform variability in a model of mild to moderate haemorrhage. J Clin Monit Comput 22:343–353

    Article  PubMed  Google Scholar 

  27. Mikkelsen ME, Miltiades AN, Gaieski DF, Goyal M, Fuchs BD, Shah CV, Bellamy SL, Christie JD (2009) Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit Care Med 37:1670–1677

    Article  PubMed  CAS  Google Scholar 

  28. Monahan KD (2007) Effects of aging on baroreflex function in humans. Am J Physiol Regul Integr Comp Physiol 293:R3–R12

    PubMed  CAS  Google Scholar 

  29. Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A, Ressler JA, Tomlanovich MC (2004) Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 32:1637–1642

    Article  PubMed  Google Scholar 

  30. Piepoli M, Garrard CS, Kontoyannis DA, Bernardi L (1995) Autonomic control of the heart and peripheral vessels in human septic shock. Intensive Care Med 21:112–119

    Article  PubMed  CAS  Google Scholar 

  31. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  32. Rubins U (2008) Finger and ear photoplethysmogram waveform analysis by fitting with Gaussians. Med Biol Eng Comput 46:1271–1276

    Article  PubMed  Google Scholar 

  33. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831

    Article  PubMed  Google Scholar 

  34. Sasano H, Hayano J, Tsuda T, Katsuya H (1999) Effects of sympathetic nerve blockades on low-frequency oscillations of human earlobe skin blood flow. J Auton Nerv Syst 77:60–67

    Article  PubMed  CAS  Google Scholar 

  35. Shelley KH (2007) Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate. Anesth Analg 105:S31–S36

    Article  PubMed  Google Scholar 

  36. Slade E, Tamber PS, Vincent JL (2003) The Surviving Sepsis Campaign: raising awareness to reduce mortality. Crit Care 7(1):1

    Article  PubMed  Google Scholar 

  37. Spronk PE, Zandstra DF, Ince C (2004) Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care 8:462–468

    Article  PubMed  Google Scholar 

  38. Teng XF, Zhang YT (2004) The effect of contacting force on photoplethysmographic signals. Physiol Meas 25:1323–1335

    Article  PubMed  CAS  Google Scholar 

  39. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    Article  PubMed  CAS  Google Scholar 

  40. Young JD, Cameron EM (1995) Dynamics of skin blood flow in human sepsis. Intensive Care Med 21:669–674

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the staffs in Emergency Department, Prince of Wales Hospital, Sydney for their assistance in data collection. This work was supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Middleton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middleton, P.M., Tang, C.H.H., Chan, G.S.H. et al. Peripheral photoplethysmography variability analysis of sepsis patients. Med Biol Eng Comput 49, 337–347 (2011). https://doi.org/10.1007/s11517-010-0713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0713-z

Keywords

Navigation