Skip to main content
Log in

A Primer on Functional Magnetic Resonance Imaging

  • Original Paper
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

In this manuscript, basic principles of functional magnetic resonance imaging (fMRI) are reviewed. In the first section, two intrinsic mechanisms of magnetic resonance image contrast related to the longitudinal and transverse components of relaxing spins and their relaxation rates, T1 and T2, are described. In the second section, the biophysical mechanisms that alter the apparent transverse relaxation time, \(T_2^*\), in blood oxygenation level dependent (BOLD) studies and the creation of BOLD activation maps are discussed. The physiological complexity of the BOLD signal is emphasized. In the third section, arterial spin labeling (ASL) measures of cerebral blood flow are presented. Arterial spin labeling inverts or saturates the magnetization of flowing spins to measure the rate of delivery of blood to capillaries. In the fourth section, calibrated fMRI, which uses BOLD and ASL to infer alterations of oxygen utilization during behavioral activation, is reviewed. The discussion concludes with challenges confronting studies of individual cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguirre, G. K., Detre, J. A., & Wang, J. (2005). Perfusion fMRI for functional neuroimaging. International Review of Neurobiology, 66, 213–236.

    PubMed  Google Scholar 

  • Aguirre, G. K., Detre, J. A., Zarahn, E., & Alsop, D. C. (2002). Experimental design and the relative sensitivity of BOLD and perfusion fMRI. NeuroImage, 15, 488–500.

    Article  CAS  PubMed  Google Scholar 

  • Aguirre, G. K., Zarahn, E., & D’esposito, M. (1998). The variability of human, BOLD hemodynamic responses. NeuroImage, 8, 360–369.

    Article  CAS  PubMed  Google Scholar 

  • Alsop, D. C. (2006). Perfusion imaging of the brain: Contribution to clinical MRI. In R. R. Edelman, J. R. Hesselink, M. B. Zlatkin, & J. V. Cures III (Eds.), Clinical magnetic resonance imaging (3rd edn., Vol. 1, pp. 333–357). Philadelphia: Saunders Elsevier.

  • Attwell, D., & Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends in Neurosciences, 25, 621–625.

    Article  CAS  PubMed  Google Scholar 

  • Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21, 1133–1145.

    CAS  PubMed  Google Scholar 

  • Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25, 390–397.

    Article  CAS  PubMed  Google Scholar 

  • Bandettini, P. A., & Cox, R. W. (2000). Event-related fMRI contrast when using constant interstimulus interval: Theory and experiment. Magnetic Resonance in Medicine, 43, 540–548.

    Article  CAS  PubMed  Google Scholar 

  • Berger, T. W. (1984). Neural representation of associative learning in the hippocampus. In L. R. Squire & N. Butters (Eds.), Neuropsychology of memory (pp. 443–461). New York: The Guilford Press.

    Google Scholar 

  • Boxerman, J. L., Bandettini, P. A., Kwong, K. K., Baker, J. R., Davis, T. L., Rosen, B. R., & Weisskoff, R. M. (1995a). The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magnetic Resonance in Medicine, 34, 4–10.

    Article  CAS  PubMed  Google Scholar 

  • Boxerman, J. L., Hamberg, L. M., Rosen, B. R., & Weisskoff, R. M. (1995b). MR contrast due to intravascular magnetic susceptibility perturbations. Magnetic Resonance in Medicine, 34, 555–566.

    Article  CAS  PubMed  Google Scholar 

  • Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in humans. The Journal of Neuroscience, 16, 4207–4221.

    CAS  PubMed  Google Scholar 

  • Brown, G. G., Eyler Zorrilla, L. T., Georgy, B., Kindermann, S. S., Wong, E. C., & Buxton, R. B. (2003). BOLD and perfusion response to finger-thumb apposition after acetazolamide administration: Differential relationship to global perfusion. Journal of Cerebral Blood Flow and Metabolism, 23, 829–837.

    CAS  PubMed  Google Scholar 

  • Burock, M. A., Buckner, R. L., Woldorff, M. G., Rosen, B. R., & Dale, A. M. (1998). Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. NeuroReport, 9, 3735–3739.

    Article  CAS  PubMed  Google Scholar 

  • Buxton, R. B. (2002). Introduction to functional magnetic resonance imaging. Cambridge: Cambridge University Press.

    Google Scholar 

  • Buxton, R. B., Uludag, K., Dubowitz, D. J., & Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. Neuroimage, 23(Suppl. 1), 220–233.

    Article  Google Scholar 

  • Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magnetic Resonance in Medicine, 39, 855–864.

    Article  CAS  PubMed  Google Scholar 

  • Chiarelli, P., Bulte, D. P., Piechnik, S., & Jezzard, P. (2007). Sources of systematic bias in hpercapnia-calibrated functional MRI estimation of oxygen metabolism. NeuroImage, 34, 35–43.

    Article  PubMed  Google Scholar 

  • Cohen, M. S. (1997). Parametric analysis of fMRI data using linear systems methods. NeuroImage, 6, 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Dale, A. M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109–114.

    Article  CAS  PubMed  Google Scholar 

  • Dale, A. M., & Buckner, R. L. (1997). Selective averaging of rapidly presented individual trials using fMRI. Human Brain Mapping, 5, 329–340.

    Article  Google Scholar 

  • Daniels, F., & Alberty, R. A. (1966). Physical chemistry (3rd edn.). New York: John Wiley & Sons.

    Google Scholar 

  • Davis, T. L., Kwong, K. K., Weisskoff, R. M., & Rosen, B. R. (1998). Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proceedings of the National Academy of Science USA, 95, 1834–1839.

    Article  CAS  Google Scholar 

  • Detre, J. A., Leigh, J. S., WIlliams, D. S., & Koretsky, A. P. (1992). Perfusion imaging. Magnetic Resonance in Medicine, 23, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson, D. I., & Buckner, R. L. (2001). Effective paradigm design. In P. Jezzard, P. M. Matthews, & S. M. Smith (Eds.), Functional MRI: An Introduction to methods (pp. 177–195). New York: Oxford University Press.

    Google Scholar 

  • Edelman R. R., Siewert B., Darby D. G., Thangaraj V., Nobre A. C., Mesulam M. M., & Warach, S. (1994). Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology, 192, 513–520.

    CAS  PubMed  Google Scholar 

  • Elster, A. D., & Burdette, J. H. (2001). Questions & answers in magnetic resonance imaging (2nd edn.). St. Louis: Mosby.

    Google Scholar 

  • Frahm, J., Krüger, G., Merboldt, K.-D., & Kleinschmidt, A. (1996). Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal activation in man. Magnetic Resonance in Medicine, 35, 143–148.

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. J., Josephs, O., Rees, G., & Turner, R. (1998). Nonlinear event-related responses in fMRI. Magnetic Resonance in Medicine, 39, 41–52.

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. J., Price, C. J., Fletcher, P., Moore, C., Frackowiak, R. S. J., & Dolan, R. J. (1996). The trouble with cognitive subtraction. NeuroImage, 4, 97–104.

    Article  CAS  PubMed  Google Scholar 

  • Fujita, N., Matsumoto, K., Tanaka, H., Watanabe, Y., & Murase, K. (2006). Quantitative study of changes in oxidative metabolism during visual stimulation using absolute relaxation rates. NMR in Biomedicine, 19, 60–68.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, D. M., Bazelaire, C. D., & Alsop, D. (2005). Pseudo-continuous flow drive adiabatic inversion for arterial spin labeling. Paper presented at the 13th ISMRM Sicentific Meeting, Miami Beach.

  • Gjedde, A. (2001). Brain energy metabolism and the physiological basis of the haemodynamic response. In P. Jezzard, P. M. Matthews, & S. M. Smith (Eds.), Functional MRI: An Introduction to methods (pp. 37–65). New York: Oxford University Press.

    Google Scholar 

  • Grubb, R. L., Raichle, M. E., Eichling, J. O., & Ter-Pogossian, M. M. (1974). The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke, 5, 630–639.

    PubMed  Google Scholar 

  • Guyton, A. C. (1977). Basic human physiology: Normal function and mechanisms of disease (2nd edn.). Philadelphia: W.B. Saunders Company.

    Google Scholar 

  • Hajnal, J. V., Bydder, G. M., & Young, I. R. (1995). fMRI: Does correlation imply activation. NMR in Biomedicine, 8, 97–100.

    Article  CAS  PubMed  Google Scholar 

  • Hoge, R. D., Atkinson, J., Gill, B., Crelier, G. R., Marrett, S., & Pike, G. B. (1999). Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proceedings of the National Academy of Science USA, 96(16), 9403–9408.

    Article  CAS  Google Scholar 

  • Horvath, I., Sandor, N. T., Ruttner, Z., & McLaughlin, A. C. (1994). Role of nitric oxide in regulating cerebrocortical oxygen consumption and blood flow during hypercapnia. Journal of Cerebral Blood Flow and Metabolism, 14, 503–509.

    CAS  PubMed  Google Scholar 

  • Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional Magnetic Resonance Imaging. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Hyder, F. (2004). Neuroimaging with calibrated FMRI. Stroke, 35(Suppl 1), 2635–2641.

    Article  PubMed  Google Scholar 

  • Jezzard, P., Matthews, P. M., & Smith, S. M. (Eds.). (2001). Functional MRI: An Introduction to methods. New York: Oxford University Press.

    Google Scholar 

  • Jones, M., Berwick, J., Hewson-Stoate, N., Gias, C., & Mayhew, J. (2005). The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation. Neuroimage, 27, 609–623.

    Article  PubMed  Google Scholar 

  • Karu, Z. Z. (1995). Signals and systems made ridiculously simple. Cambridge, MA: ZiZi Press.

    Google Scholar 

  • Kastrup, A., Kruger, G., Neumann-Haefelin, T., Glover, G. H., & Moseley, M. E. (2002). Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation. Neuroimage, 15, 74–82.

    Article  PubMed  Google Scholar 

  • Kemeny S., Ye, F. Q., Birn, R., & Braun, A. R. (2005). Comparison of continuous overt speech fMRI using BOLD and arterial spin labeling. Human Brain Mapping, 24, 173–183.

    Article  PubMed  Google Scholar 

  • Kety, S. S., & Schmidt, C. F. (1948). The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. The Journal of Clinical Investigation, 27, 484–492.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. G., Rostrup, E., Larsson, H. B. W., Ogawa, S., & Paulson, O. B. (1999) Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magnetic Resonance in Medicine, 41, 1152–1161.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.-G., & Tsekos, N. V. (1997). Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: Application to functional brain imaging. Magnetic Resonance in Medicine, 37, 425–435.

    Article  CAS  PubMed  Google Scholar 

  • Kwong, K. K., Chesler, D. A., Weisskoff, R. M., Donahue, K. M., Davis, T. L., Ostergaard, L., Campbell, T. A., & Rosen, B. R. (1995). MR perfusion studies with T1-weighted echo planar imaging. Magnetic Resonance in Medicine, 34, 878–887.

    Article  CAS  PubMed  Google Scholar 

  • Latest IMV PET census shows fast growth in PET/CT installations. 2004 (Nov. 18). News from IMV’s Medical Information Division. http://www.imvlimited.com/mid/news_c.html.

  • Latest IMV study shows MRI clinical utilization expanding. 2005 (Feb. 19). News from IMV’s Medical Information Division. http://www.imvlimited.com/ mid/news_a.hmtl.

  • Leontiev, O., & Buxton, R. B. (2007). Reproducibility of BOLD, perfusion, and CMRO(2) measurements with calibrated-BOLD fMRI. NeuroImage, 35, 175–184.

    Article  PubMed  Google Scholar 

  • Leontiev, O., Dubowitz, D. J., & Buxton, R. B. (2007). CBF/CMRO2 coupling measured with calibrated-BOLD fMRI: Sources of bias. Manuscript submitted for publication.

  • Liu T. T. (2004). Efficiency, power, and entropy in event-related fMRI with multiple trial types. Part II: Design of experiments. NeuroImage, 21, 401–413.

    Article  PubMed  Google Scholar 

  • Liu T. T., Behzadi, Y., Restom, K., Uludag, K., Lu, K., Buracas, G. T., Dubowitz, D. J., & Buxton, R. B. (2004). Caffeine alters the temporal dynamics of the visual BOLD response. NeuroImage, 23, 1402–1413.

    Article  PubMed  Google Scholar 

  • Liu, T. T., & Brown, G. G. (2007). Measurement of cerebral perfusion with arterial spin labeling: Part 1. methods. Journal of the International Neuropsychological Society.

  • Liu T. T., & Frank, L. R. (2004). Efficiency, power, and entropy in event-related FMRI with multiple trial types. Part I: Theory. NeuroImage, 21, 387–400. Erratum in NeuroImage (2004), 22, 1427.

    Google Scholar 

  • Liu, T. T., Frank, L. R., Wong, E. C., & Buxton, R. B. (2001). Detection power, estimation efficiency, and predictability in event-related fMRI. NeuroImage, 13, 759–773.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T. T., & Wong, E. C. (2005). A signal processing model for arterial spin labeling functional MRI. NeuroImage, 24, 207–215.

    Article  PubMed  Google Scholar 

  • Liu, T. T., Wong, E. C., Frank, L. R., & Buxton, R. B. (2002). Analysis and design of perfusion-based event-related fMRI experiments. NeuroImage, 16, 269–282.

    Article  PubMed  Google Scholar 

  • Ly, C. V., & Verstreken, P. (2006). Mitochondria at the synapse. Neuroscientist, 12, 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Mandeville, J. B., Marota, J. J. A., Ayata, C., Zaharchuk, G., Moskowitz, M. A., Rosen, B. R., & Weisskoff, R. M. (1999b). Evidence of a cerebrovascular post-arteriole Windkessel with delayed compliance. Journal of Cerebral Blood Flow and Metabolism, 19, 679–689.

    CAS  PubMed  Google Scholar 

  • Mandeville, J. B., Marota, J. J. A., Kosofsky, B. E., Keltner, J. R., Weissleder, R., Rosen, B. R., & Weisskoff, R. M. (1998). Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magnetic Resonance in Medicine, 39, 615–624.

    Article  CAS  PubMed  Google Scholar 

  • Mildner, T., Zysset, S., Trampel, R., Driesel, W., & Möller, H. E. (2005). Towards quantification of blood-flow changes during cognitive task activation using perfusion-based fMRI. NeuroImage, 27, 919–926.

    Article  PubMed  Google Scholar 

  • Miller, K. L., Luh, W. M., Liu, T. T., Martinez, A., Obata, T., Wong, E. C., Frank, L. R., & Buxton, R. B. (2001). Nonlinear temporal dynamics of the cerebral blood flow response. Human Brain Mapping, 13, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Moncada, S., & Bolanos, J. P. (2006). Nitric oxide, cell bioenergetics and neurodegeneration. Journal of Neurochemistry, 97, 1676–1689.

    Article  CAS  PubMed  Google Scholar 

  • Mumford, J. A., Hernandez-Garcia, L., Lee, G. R., & Nichols, T. A. (2006) Estimation efficiency and statistical power in arterial spin labeling fMRI. NeuroImage, 33, 103–114.

    Article  PubMed  Google Scholar 

  • Novack, P., Shenkin, H. A., Bortin, L., Goluboff, B., & Soffe, A. M. (1953). The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease. The Journal of Clinical Investigation, 32, 696–702.

    CAS  PubMed  Google Scholar 

  • Obata, T., Liu, T. T., Miller, K. L., Luh, W. M., Wong, E. C., Frank, L. R., & Buxton, R. B. (2004). Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients. NeuroImage, 21, 144–153.

    Article  PubMed  Google Scholar 

  • Ogawa, S., Tso-Ming, L., Nayak, A. S., & Glynn, P. (1990). Oxygen-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine, 14, 68–78.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, S., Menon, R. S., Tank, D. W., Kim, S.-G., Merkle, H., Ellerman, J. M., & Ugurbil, K. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging: A comparison of signal characteristics with a biophysical model. Biophysical Journal, 64, 803–812.

    Article  CAS  PubMed  Google Scholar 

  • Rao, S. M., Salmeron, B. J., Durgerian S., Janowiak, J. A., Fischer, M., Risinger, R. C., Conant, L. L., & Stein, E. A. (2000). Effects of methylphenidate on functional MRI blood-oxygen-level-dependent contrast. American Journal of Psychiatry, 157, 1697–1699.

    Article  CAS  PubMed  Google Scholar 

  • Restom, K., Behzadi, Y., & Liu, T. T. (2006). Physiological noise reduction for arterial spin labeling functional MRI. NeuroImage, 31, 1104–1115.

    Article  PubMed  Google Scholar 

  • Rundus, D. (1971). Analysis of rehearsal processes in free recall. Journal of Experimental Psychology, 89, 63–77.

    Article  Google Scholar 

  • Shmuel, A., Yacoub, E., Pfeuffer, J., Van de Moortele, P. F., Adriany, G., Hu, X., Ugurbil, K. (2002). Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron, 36, 1195–1210.

    Article  CAS  PubMed  Google Scholar 

  • Sicard, K. M., & Duong, T. Q. (2005) Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. NeuroImage, 25, 850–858.

    Article  PubMed  Google Scholar 

  • St Lawrence, K. S., Ye, F. Q., Lewis, B. K., Frank, J. A., & McLaughlin, A. C. (2003). Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation. Magnetic Resonance in Medicine, 50, 99–106.

    Article  CAS  PubMed  Google Scholar 

  • Stefanovic, B., Warnking, J. M., Kobayashi, E., Bagshaw, A. P., Hawco, C., Dubeau, F., Gotman, J., & Pike, G. B. (2005). Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. NeuroImage, 28, 205–215.

    Article  PubMed  Google Scholar 

  • Stefanovic, B., Warnking, J. M., & Pike, G. B. (2004). Hemodynamic and metabolic responses to neuronal inhibition. NeuroImage, 22, 771–778.

    Article  PubMed  Google Scholar 

  • Sternberg, S. (1969). The discovery of processing stages: Extension of Donders method. Acta Psychologica, 30, 276–315.

    Article  Google Scholar 

  • Thulborn, K. R., Waterton, J. C., Matthews, P. M., & Rada, G. K. (1982). Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochimica et Biophysica Acta, 714, 265–270.

    CAS  PubMed  Google Scholar 

  • Tjandra, T., Brooks, J. C., Figueiredo, P., Wise, R., Matthews, P. M., & Tracey, I. (2005). Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: Implications for clinical trial design. NeuroImage, 27, 393–401.

    Article  PubMed  Google Scholar 

  • Townsend, J. T., & Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. New York: Cambridge University Press.

    Google Scholar 

  • Twieg, D. B. (1983) The k-trajectory formulation of the NMR imaging process with applications in analsysis and synthesis of imaging methods. Medical Physics, 10, 610–621.

    Article  CAS  PubMed  Google Scholar 

  • Uludag, K., & Buxton, R. B. (2004). Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation. Magnetic Resonance in Medicine, 51, 1088–1089; author reply 1090.

    Google Scholar 

  • Uludağ, K., Dubowitz, D. J., & Buxton, R. B. (2006). Basic principles of functional MRI. In R. R. Edelman, J. R. Hesselink, M. B. Zlatkin, & J. V. Crues III (Eds.), Clinical magnetic resonance imaging (3rd edn., Vol. 1, pp. 249–287). Philadelphia: Saunders Elsevier.

  • Uludag, K., Dubowitz, D. J., Yoder, E. J., Restom, K., Liu, T. T., & Buxton, R. B. (2004). Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. NeuroImage, 23, 148–155.

    Article  PubMed  Google Scholar 

  • Wang, J., Aguirre, G. K., Kimberg, D. Y., Roc, A. C., Li, L., & Detre, J. A. (2003). Arterial spin labeling perfusion fMRI with very low task frequency. Magnetic Resonance in Medicine, 49, 796–802.

    Article  PubMed  Google Scholar 

  • Wong, E. C., Buxton, R. B., & Frank, L. R. (1997). Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR in Biomedicine, 10, 237–249.

    Article  CAS  PubMed  Google Scholar 

  • Wong, E. C., Buxton, R. B., & Frank, L. R. (1998a). Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magnetic Resonance in Medicine, 39, 702–708.

    Article  CAS  PubMed  Google Scholar 

  • Wong, E. C., Buxton, R. B., & Frank, L. R. (1998b). A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magnetic Resonance in Medicine, 40, 348–355.

    Article  CAS  PubMed  Google Scholar 

  • Wong, E. C., Cronin, M., Wu, W. C., Inglis, B., Frank, L. R., & Liu, T. T. (2006). Velocity-selective arterial spin labeling. Magnetic Resonance in Medicine, 55, 1334–1341.

    Article  PubMed  Google Scholar 

  • Wong, E. C., Luh, W.-M., & Liu, T. T. (2000). Turbo ASL: Arterial spin labeling with higher SNR and temporal resolution. Magnetic Resonance in Medicine, 44, 511–515.

    Google Scholar 

  • Yang, S. P., & Krasny, J. A. (1995). Cerebral blood flow and metabolic responses to sustained hypercapnia in awake sheep. Journal of Cerebral Blood Flow and Metabololism, 15, 115– 123.

    CAS  Google Scholar 

  • Zappe, A. C., Uludag, K., Rainer, G., & Logothetis, N. K. (2005). Influence of moderate hypercapnia on neural activity in monkey by simultaneous intracortical recordings and fMRI at 4.7T. In: 35th meeting, Society for Neuroscience, Washington D.C., p 10.11.

  • Zarahn, E., Aguirre, G., & D’Esposito, M. (1997). A trial-based experimental design for fMRI. Neuroimage, 6, 122– 138.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Preparation of this paper was supported by the VISN 22 Mental Illness Research Education and Clinical Center, a Biomedical Engineering Research Grant from the Whitaker Foundation, and by NIH grants #1 U24 RR021992 to the Function Biomedical Informatics Research Network (FBIRN, http://www.nbirn.net), 1 RO1 NS051661 to Thomas Liu, and 1 RO1 NS051661 and 1 R01 NS367220 to Richard Buxton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory G. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, G.G., Perthen, J.E., Liu, T.T. et al. A Primer on Functional Magnetic Resonance Imaging. Neuropsychol Rev 17, 107–125 (2007). https://doi.org/10.1007/s11065-007-9028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-007-9028-8

Keywords

Navigation