Skip to main content

Advertisement

Log in

Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The widespread occurrence of cadmium in the environment continues to pose a threat to human health despite attempts at limiting its technological uses. The biologically significant ionic form of cadmium, Cd2+, binds to many bio-molecules and these interactions underlie the toxicity mechanisms of cadmium. Some of the molecules specialized in the handling of alkaline earth (Mg2+, Ca2+) and transition metal ions (e.g. Zn2+, Cu2+/+, Fe3+/2+) should be particularly sensitive to the presence of Cd2+, because they enclose cationic sites to which the toxic metal can bind. The possible molecular targets of this kind for cadmium are considered herein. Whereas in vitro evidence for native cation replacement by Cd2+ in bio-molecules has been largely provided, the demonstration of such occurrences in vivo is scarce, with the notable exception of metallothionein. One reason might be that realistic low-level Cd2+ contaminations involve cellular concentrations far smaller than those of endogenous cations that usually saturate their binding sites. It is very likely that cadmium toxicity is most often mediated by biological systems amplifying the signals triggered by the presence of Cd2+. The interference of Cd2+ with redox sensitive systems acting at the transcriptional and post-transcriptional levels is instrumental in such processes. A better understanding of cadmium toxicity to tackle the environmental challenges lying ahead thus requires properly designed studies implementing biologically relevant cadmium concentrations on different cell types, improved knowledge of the homeostasis of essential metals, and use of these data in a theoretical framework integrating all cellular aspects of cadmium effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DMT1:

Divalent metal-ion transporter 1 (SLC11A2)

FPN:

Ferroportin (SLC40A1)

FT:

Ferritin

Hepc:

Hepcidin

IRP:

Iron regulatory protein(s)

MAPK:

Mitogen activated protein kinases

MT:

Metallothionein(s)

MTF-1:

Metal-response element-binding transcription factor

PKC:

Protein kinase C

PPIX:

Protoporphyrin IX

ROS:

Reactive oxygen species

HO-1:

Heme oxygenase 1

SOD:

Superoxide dismutase

Tf:

Transferrin

ZnT:

Zinc transporter (SLC30)

ZIP:

Zinc regulated and iron regulated metal transporter-like protein(s) (SLC39)

References

  • Abouhamed M, Wolff NA, Lee WK, Smith CP, Thévenod F (2007) Knockdown of endosomal/lysosomal divalent metal transporter 1 by RNA interference prevents cadmium-metallothionein-1 cytotoxicity in renal proximal tubule cells. Am J Physiol Renal Physiol 293:F705–F712

    PubMed  Google Scholar 

  • Åkesson A, Berglund M, Schütz A, Bjellerup P, Bremme K, Vahter M (2002) Cadmium exposure in pregnancy and lactation in relation to iron status. Am J Public Health 92:284–287

    PubMed  Google Scholar 

  • Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313

    PubMed  Google Scholar 

  • Berg JM, Godwin HA (1997) Lessons from zinc-binding peptides. Annu Rev Biophys Biomol Struct 26:357–371

    PubMed  Google Scholar 

  • Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341

    PubMed  Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    PubMed  Google Scholar 

  • Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 144:247–261

    PubMed  Google Scholar 

  • Bhattacharyya MH (2009) Cadmium osteotoxicity in experimental animals: mechanisms and relationship to human exposures. Toxicol Appl Pharmacol 238:258–265

    PubMed  Google Scholar 

  • Bianchi A, Becuwe P, Franck P, Dauca M (2002) Induction of MnSOD gene by arachidonic acid is mediated by reactive oxygen species and p38 MAPK signaling pathway in human HepG2 hepatoma cells. Free Radic Biol Med 32:1132–1142

    PubMed  Google Scholar 

  • Bressler JP, Olivi L, Cheong JH, Kim Y, Bannon D (2004) Divalent metal transporter 1 in lead and cadmium transport. Ann N Y Acad Sci 1012:142–152

    PubMed  Google Scholar 

  • Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB (2009) Cadmium—a metallohormone? Toxicol Appl Pharmacol 238:266–271

    PubMed  Google Scholar 

  • Cairo G, Recalcati S (2007) Iron-regulatory proteins: molecular biology and pathophysiological implications. Expert Rev Mol Med 9:1–13

    PubMed  Google Scholar 

  • Carvalho E, Gothe PO, Bauer R, Danielsen E, Hemmingsen L (1995) Effect of inhibitors on the coordination geometries of cadmium at the metal sites in angiotensin-I-converting enzyme. Eur J Biochem 234:780–785

    PubMed  Google Scholar 

  • Chang W, Shoback D (2004) Extracellular Ca2+-sensing receptors—an overview. Cell Calcium 35:183–196

    PubMed  Google Scholar 

  • Chen J, Shi YH, Li MY (2008a) Changes in transferrin and hepcidin genes expression in the liver of the fish Pseudosciaena crocea following exposure to cadmium. Arch Toxicol 82:525–530

    PubMed  Google Scholar 

  • Chen X, Hua H, Balamurugan K, Kong X, Zhang L, George GN, Georgiev O, Schaffner W, Giedroc DP (2008b) Copper sensing function of Drosophila metal-responsive transcription factor-1 is mediated by a tetranuclear Cu(I) cluster. Nucleic Acids Res 36:3128–3138

    PubMed  Google Scholar 

  • Chimienti F, Jourdan E, Favier A, Sève M (2001) Zinc resistance impairs sensitivity to oxidative stress in HeLa cells: protection through metallothioneins expression. Free Radic Biol Med 31:1179–1190

    PubMed  Google Scholar 

  • Chou DK, Zhao Y, Gao S, Chou IN, Toselli P, Stone P, Li W (2007) Perturbation of copper (Cu) homeostasis and expression of Cu-binding proteins in cadmium-resistant lung fibroblasts. Toxicol Sci 99:267–276

    PubMed  Google Scholar 

  • Couce MD, Varela JM, Sanchez A, Casas JS, Sordo J, Lopez-Rivadulla M (1991) Effects of vitamin B12 on cadmium toxicity in rats. J Inorg Biochem 41:1–6

    PubMed  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium: an oxidative challenge. Biometals. doi:10.1007/s10534-010-9329-x

  • Dalton TP, He L, Wang B, Miller ML, Jin L, Stringer KF, Chang X, Baxter CS, Nebert DW (2005) Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis. Proc Natl Acad Sci USA 102:3401–3406

    PubMed  Google Scholar 

  • De Domenico I, Ward DM, Kaplan J (2009) Specific iron chelators determine the route of ferritin degradation. Blood 114:4546–4551

    PubMed  Google Scholar 

  • Dijkstra M, Havinga R, Vonk RJ, Kuipers F (1996) Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems. Life Sci 59:1237–1246

    PubMed  Google Scholar 

  • Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992–996

    PubMed  Google Scholar 

  • Edwards JR, Prozialeck WC (2009) Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 238:289–293

    PubMed  Google Scholar 

  • Eide DJ (2004) The SLC39 family of metal ion transporters. Pflugers Arch 447:796–800

    PubMed  Google Scholar 

  • El Heni J, Messaoudi I, Hammouda F, Kerkeni A (2009) Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver of the rat: effects on the oxidative stress. Ecotoxicol Environ Saf 72:1559–1564

    Google Scholar 

  • Elinder F, Arhem P (2003) Metal ion effects on ion channel gating. Q Rev Biophys 36:373–427

    PubMed  Google Scholar 

  • Eng BH, Guerinot ML, Eide D, Saier MH Jr (1998) Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. J Membr Biol 166:1–7

    PubMed  Google Scholar 

  • Erikson KM, Thompson K, Aschner J, Aschner M (2007) Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther 113:369–377

    PubMed  Google Scholar 

  • Fadigan A, Dailey HA (1987) Inhibition of ferrochelatase during differentiation of murine erythroleukaemia cells. Biochem J 243:419–424

    PubMed  Google Scholar 

  • Fillebeen C, Caltagirone A, Martelli A, Moulis J-M, Pantopoulos K (2005) IRP1 Ser-711 is a phosphorylation site, critical for regulation of RNA-binding and aconitase activities. Biochem J 388:143–150

    PubMed  Google Scholar 

  • Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, Andrews NC (1998) Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci USA 95:1148–1153

    PubMed  Google Scholar 

  • Frank A, McPartlin J, Danielsson R (2004) Nova Scotia moose mystery—a moose sickness related to cobalt- and vitamin B12 deficiency. Sci Total Environ 318:89–100

    PubMed  Google Scholar 

  • Frederickson CJ, Bush AI (2001) Synaptically released zinc: physiological functions and pathological effects. Biometals 14:353–366

    PubMed  Google Scholar 

  • Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    PubMed  Google Scholar 

  • Fried W (2009) Erythropoietin and erythropoiesis. Exp Hematol 37:1007–1015

    PubMed  Google Scholar 

  • Fujishiro H, Okugaki S, Nagao S, Satoh M, Himeno S (2006) Characterization of gene expression profiles of metallothionein-null cadmium-resistant cells. J Health Sci 52:292–299

    Google Scholar 

  • Fujishiro H, Okugaki S, Yasumitsu S, Enomoto S, Himeno S (2009) Involvement of DNA hypermethylation in down-regulation of the zinc transporter ZIP8 in cadmium-resistant metallothionein-null cells. Toxicol Appl Pharmacol 241:195–201

    PubMed  Google Scholar 

  • Ganz T, Nemeth E (2006) Regulation of iron acquisition and iron distribution in mammals. Biochim Biophys Acta 1763:690–699

    PubMed  Google Scholar 

  • Garrick MD, Garrick LM (2009) Cellular iron transport. Biochim Biophys Acta 1790:309–325

    PubMed  Google Scholar 

  • Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73:1413–1423

    PubMed  Google Scholar 

  • Granier T, Comberton G, Gallois B, d’Estaintot BL, Dautant A, Crichton RR, Precigoux G (1998) Evidence of new cadmium binding sites in recombinant horse L-chain ferritin by anomalous Fourier difference map calculation. Proteins 31:477–485

    PubMed  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    PubMed  Google Scholar 

  • Gyulkhandanyan AV, Lee SC, Bikopoulos G, Dai F, Wheeler MB (2006) The Zn-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+ channel. J Biol Chem 281:9361–9372

    PubMed  Google Scholar 

  • Haase H, Beyersmann D (2002) Intracellular zinc distribution and transport in C6 rat glioma cells. Biochem Biophys Res Commun 296:923–928

    PubMed  Google Scholar 

  • Haase H, Rink L (2009) Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 29:133–152

    PubMed  Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    PubMed  Google Scholar 

  • Harris WR, Madsen LJ (1988) Equilibrium studies on the binding of cadmium(II) to human serum transferrin. Biochemistry 27:284–288

    PubMed  Google Scholar 

  • Hart BA, Potts RJ, Watkin RD (2001) Cadmium adaptation in the lung—a double-edged sword? Toxicology 160:65–70

    PubMed  Google Scholar 

  • Hartwig A (2010) Mechanisms in cadmium-induced carcinogenicity: recent insights. Biometals. doi:10.1007/s10534-010-9330-4

  • He L, Wang B, Hay EB, Nebert DW (2009) Discovery of ZIP transporters that participate in cadmium damage to testis and kidney. Toxicol Appl Pharmacol 238:250–257

    PubMed  Google Scholar 

  • Heilig EA, Thompson KJ, Molina RM, Ivanov AR, Brain JD, Wessling-Resnick M (2006) Manganese and iron transport across pulmonary epithelium. Am J Physiol Lung Cell Mol Physiol 290:L1247–L1259

    PubMed  Google Scholar 

  • Himeno S, Yanagiya T, Enomoto S, Kondo Y, Imura N (2002) Cellular cadmium uptake mediated by the transport system for manganese. Tohoku J Exp Med 196:43–50

    PubMed  Google Scholar 

  • Himeno S, Yanagiya T, Fujishiro H (2009) The role of zinc transporters in cadmium and manganese transport in mammalian cells. Biochimie 91:1218–1222

    PubMed  Google Scholar 

  • Höfer N, Diel P, Wittsiepe J, Wilhelm M, Degen GH (2009) Dose- and route-dependent hormonal activity of the metalloestrogen cadmium in the rat uterus. Toxicol Lett 191:123–131

    PubMed  Google Scholar 

  • Horiguchi H, Kayama F, Oguma E, Willmore WG, Hradecky P, Bunn HF (2000) Cadmium and platinum suppression of erythropoietin production in cell culture: clinical implications. Blood 96:3743–3747

    PubMed  Google Scholar 

  • Hsiao CJ, Stapleton SR (2009) Early sensing and gene expression profiling under a low dose of cadmium exposure. Biochimie 91:329–343

    PubMed  Google Scholar 

  • Hubert N, Hentze MW (2002) Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci USA 99:12345–12350

    PubMed  Google Scholar 

  • Huebers HA, Huebers E, Csiba E, Rummel W, Finch CA (1987) The cadmium effect on iron absorption. Am J Clin Nutr 45:1007–1012

    PubMed  Google Scholar 

  • Iavicoli I, Fontana L, Bergamaschi A (2009) The effects of metals as endocrine disruptors. J Toxicol Environ Health B Crit Rev 12:206–223

    PubMed  Google Scholar 

  • Jacquillet G, Barbier O, Cougnon M, Tauc M, Namorado MC, Martin D, Reyes JL, Poujeol P (2006) Zinc protects renal function during cadmium intoxication in the rat. Am J Physiol Renal Physiol 290:F127–F137

    PubMed  Google Scholar 

  • Jansen J, Karges W, Rink L (2009) Zinc and diabetes—clinical links and molecular mechanisms. J Nutr Biochem 20:399–417

    PubMed  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    PubMed  Google Scholar 

  • Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    PubMed  Google Scholar 

  • Jeon HK, Jin HS, Lee DH, Choi WS, Moon CK, Oh YJ, Lee TH (2004) Proteome analysis associated with cadmium adaptation in U937 cells: identification of calbindin-D28k as a secondary cadmium-responsive protein that confers resistance to cadmium-induced apoptosis. J Biol Chem 279:31575–31583

    PubMed  Google Scholar 

  • Johri N, Jacquillet G, Unwin R (2010) Heavy metal poisoning: the effects of cadmium on the kidney. BioMetals. doi:10.1007/s10534-010-9328-y

  • Jordan JB, Poppe L, Haniu M, Arvedson T, Syed R, Li V, Kohno H, Kim H, Schnier PD, Harvey TS, Miranda LP, Cheetham J, Sasu BJ (2009) Hepcidin revisited, disulfide connectivity, dynamics, and structure. J Biol Chem 284:24155–24167

    PubMed  Google Scholar 

  • Jursa T, Smith DR (2009) Ceruloplasmin alters the tissue disposition and neurotoxicity of manganese, but not its loading onto transferrin. Toxicol Sci 107:182–193

    PubMed  Google Scholar 

  • Kägi JH, Schäffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515

    PubMed  Google Scholar 

  • Kim DW, Kim KY, Choi BS, Youn P, Ryu DY, Klaassen CD, Park JD (2007) Regulation of metal transporters by dietary iron, and the relationship between body iron levels and cadmium uptake. Arch Toxicol 81:327–334

    PubMed  Google Scholar 

  • Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4:176–185

    PubMed  Google Scholar 

  • Kippler M, Goessler W, Nermell B, Ekström EC, Lönnerdal B, El Arifeen S, Vahter M (2009) Factors influencing intestinal cadmium uptake in pregnant Bangladeshi women—a prospective cohort study. Environ Res 109:914–921

    PubMed  Google Scholar 

  • Kitamura M, Hiramatsu N (2010) The oxidative stress—endoplasmic reticulum stress axis in cadmium toxicity. Biometals. doi:10.1007/s10534-010-9296-2

  • Knutson MD (2009) Into the matrix: regulation of the iron regulatory hormone hepcidin by matriptase-2. Nutr Rev 67:284–288

    PubMed  Google Scholar 

  • Koizumi S, Gong P, Suzuki K, Murata M (2007) Cadmium-responsive element of the human heme oxygenase-1 gene mediates heat shock factor 1-dependent transcriptional activation. J Biol Chem 282:8715–8723

    PubMed  Google Scholar 

  • Kozyraki R, Fyfe J, Verroust PJ, Jacobsen C, Dautry-Varsat A, Gburek J, Willnow TE, Christensen EI, Moestrup SK (2001) Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia. Proc Natl Acad Sci USA 98:12491–12496

    PubMed  Google Scholar 

  • Labbé RF, Vreman HJ, Stevenson DK (1999) Zinc protoporphyrin: a metabolite with a mission. Clin Chem 45:2060–2072

    PubMed  Google Scholar 

  • Laity JH, Andrews GK (2007) Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch Biochem Biophys 463:201–210

    PubMed  Google Scholar 

  • Lane TW, Morel FM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci USA 97:4627–4631

    PubMed  Google Scholar 

  • Lau AT, Zhang J, Chiu JF (2006) Acquired tolerance in cadmium-adapted lung epithelial cells: roles of the c-Jun N-terminal kinase signaling pathway and basal level of metallothionein. Toxicol Appl Pharmacol 215:1–8

    PubMed  Google Scholar 

  • Lee PL, Beutler E (2009) Regulation of hepcidin and iron-overload disease. Annu Rev Pathol 4:489–515

    PubMed  Google Scholar 

  • Lee WK, Thévenod F (2008) Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies. Biochem Pharmacol 76:1323–1332

    PubMed  Google Scholar 

  • Leslie EM, Liu J, Klaassen CD, Waalkes MP (2006) Acquired cadmium resistance in metallothionein-I/II(−/−) knockout cells: role of the T-type calcium channel Cacnalpha1G in cadmium uptake. Mol Pharmacol 69:629–639

    PubMed  Google Scholar 

  • Lewinson O, Lee AT, Rees DC (2009) A P-type ATPase importer that discriminates between essential and toxic transition metals. Proc Natl Acad Sci USA 106:4677–4682

    PubMed  Google Scholar 

  • Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176

    PubMed  Google Scholar 

  • Lichtlen P, Wang Y, Belser T, Georgiev O, Certa U, Sack R, Schaffner W (2001) Target gene search for the metal-responsive transcription factor MTF-1. Nucleic Acids Res 29:1514–1523

    PubMed  Google Scholar 

  • Lill R (2009) Function and biogenesis of iron–sulphur proteins. Nature 460:831–838

    PubMed  Google Scholar 

  • Lindert U, Cramer M, Meuli M, Georgiev O, Schaffner W (2009) Metal-responsive transcription factor 1 (MTF-1) activity is regulated by a nonconventional nuclear localization signal and a metal-responsive transactivation domain. Mol Cell Biol 29:6283–6293

    PubMed  Google Scholar 

  • Liu Z, Li H, Soleimani M, Girijashanker K, Reed JM, He L, Dalton TP, Nebert DW (2008) Cd2+ versus Zn2+ uptake by the ZIP8 HCO3-dependent symporter: kinetics, electrogenicity and trafficking. Biochem Biophys Res Commun 365:814–820

    PubMed  Google Scholar 

  • Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214

    PubMed  Google Scholar 

  • Mackenzie B, Takanaga H, Hubert N, Rolfs A, Hediger MA (2007) Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1). Biochem J 403:59–69

    PubMed  Google Scholar 

  • Maine GN, Burstein E (2007) COMMD proteins: COMMing to the scene. Cell Mol Life Sci 64:1997–2005

    PubMed  Google Scholar 

  • Maret W (2008) Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp Gerontol 43:363–369

    PubMed  Google Scholar 

  • Maret W (2009) Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals 22:149–157

    PubMed  Google Scholar 

  • Maret W, Krężel A (2007) Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. Mol Med 13:371–375

    PubMed  Google Scholar 

  • Maret W, Li Y (2009) Coordination dynamics of zinc in proteins. Chem Rev 109:4682–4707

    PubMed  Google Scholar 

  • Margoshes M, Vallee BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79:4813–4814

    Google Scholar 

  • Martelli A, Moulis J-M (2004) Zinc and cadmium specifically interfere with RNA-binding activity of human iron regulatory protein 1. J Inorg Biochem 98:1413–1420

    PubMed  Google Scholar 

  • Martelli A, Rousselet E, Dycke C, Bouron A, Moulis J-M (2006) Cadmium toxicity in animal cells by interference with essential metals. Biochimie 88:1807–1814

    PubMed  Google Scholar 

  • Martin P, Pognonec P (2010) ERK and cell death: cadmium toxicity, sustained ERK activation and cell death. FEBS J 277:39–46

    PubMed  Google Scholar 

  • Matsuoka M, Igisu H (2001) Cadmium induces phosphorylation of p53 at serine 15 in MCF-7 cells. Biochem Biophys Res Commun 282:1120–1125

    PubMed  Google Scholar 

  • Méplan C, Mann K, Hainaut P (1999) Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. J Biol Chem 274:31663–31670

    PubMed  Google Scholar 

  • Méplan C, Richard MJ, Hainaut P (2000) Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene 19:5227–5236

    PubMed  Google Scholar 

  • Min KS, Ueda H, Kihara T, Tanaka K (2008) Increased hepatic accumulation of ingested Cd is associated with upregulation of several intestinal transporters in mice fed diets deficient in essential metals. Toxicol Sci 106:284–289

    PubMed  Google Scholar 

  • Morel FM (2008) The co-evolution of phytoplankton and trace element cycles in the oceans. Geobiology 6:318–324

    PubMed  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    PubMed  Google Scholar 

  • Muckenthaler MU, Galy B, Hentze MW (2008) Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 28:197–213

    PubMed  Google Scholar 

  • Mufti AR, Burstein E, Duckett CS (2007) XIAP: cell death regulation meets copper homeostasis. Arch Biochem Biophys 463:168–174

    PubMed  Google Scholar 

  • Murata M, Gong P, Suzuki K, Koizumi S (1999) Differential metal response and regulation of human heavy metal-inducible genes. J Cell Physiol 180:105–113

    PubMed  Google Scholar 

  • Nakazato K, Nagamine T, Suzuki K, Kusakabe T, Moon HD, Oikawa M, Sakai T, Arakawa K (2008) Subcellular changes of essential metal shown by in-air micro-PIXE in oral cadmium-exposed mice. Biometals 21:83–91

    PubMed  Google Scholar 

  • Nawrot TS, Staessen JA, Roels HA, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters H, Vangronsveld J (2010) Cadmium exposure in the population: from health risks to strategies of prevention. BioMetals. doi:10.1007/s10534-010-9343-z

  • Neumann M, Leimkühler S (2008) Heavy metal ions inhibit molybdoenzyme activity by binding to the dithiolene moiety of molybdopterin in Escherichia coli. FEBS J 275:5678–5689

    PubMed  Google Scholar 

  • Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192–200

    PubMed  Google Scholar 

  • Nordberg GF, Jin T, Wu X, Lu J, Chen L, Lei L, Hong F, Nordberg M (2009) Prevalence of kidney dysfunction in humans—relationship to cadmium dose, metallothionein, immunological and metabolic factors. Biochimie 91:1282–1285

    PubMed  Google Scholar 

  • Oh SH, Lee SY, Choi CH, Lee SH, Lim SC (2009) Cadmium adaptation is regulated by multidrug resistance-associated protein-mediated Akt pathway and metallothionein induction. Arch Pharm Res 32:883–891

    PubMed  Google Scholar 

  • Ohana E, Hoch E, Keasar C, Kambe T, Yifrach O, Hershfinkel M, Sekler I (2009) Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J Biol Chem 284:17677–17686

    PubMed  Google Scholar 

  • Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, Fleming MD (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37:1264–1269

    PubMed  Google Scholar 

  • Palmiter RD, Findley SD (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14:639–649

    PubMed  Google Scholar 

  • Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C (2010) Cadmium levels in Europe: implications for human health. Environ Geochem Health 32:1–12

    PubMed  Google Scholar 

  • Papp-Wallace KM, Maguire ME (2006) Manganese transport and the role of manganese in virulence. Annu Rev Microbiol 60:187–209

    PubMed  Google Scholar 

  • Petris MJ (2004) The SLC31 (Ctr) copper transporter family. Pflugers Arch 447:752–755

    PubMed  Google Scholar 

  • Prozialeck WC, Edwards JR (2007) Cell adhesion molecules in chemically-induced renal injury. Pharmacol Ther 114:74–93

    PubMed  Google Scholar 

  • Rice AE, Mendez MJ, Hokanson CA, Rees DC, Bjorkman PJ (2009) Investigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter. J Mol Biol 386:717–732

    PubMed  Google Scholar 

  • Rogalska J, Brzóska MM, Roszczenko A, Moniuszko-Jakoniuk J (2009) Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact 177:142–152

    PubMed  Google Scholar 

  • Roth JA (2006) Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biol Res 39:45–57

    PubMed  Google Scholar 

  • Rouault TA, Tong WH (2008) Iron-sulfur cluster biogenesis and human disease. Trends Genet 24:398–407

    PubMed  Google Scholar 

  • Rousselet E, Moulis J-M (2008) Iron regulatory protein 1 is not an early target of cadmium toxicity in mice, but it is sensitive to cadmium stress in a human epithelial cell line. Biochem Cell Biol 86:416–424

    PubMed  Google Scholar 

  • Rousselet E, Martelli A, Chevallet M, Diemer H, Van Dorsselaer A, Rabilloud T, Moulis J-M (2008a) Zinc adaptation and resistance to cadmium toxicity in mammalian cells: molecular insight by proteomic analysis. Proteomics 8:2244–2255

    PubMed  Google Scholar 

  • Rousselet E, Richaud P, Douki T, Garcia Chantegrel J, Favier A, Bouron A, Moulis J-M (2008b) A zinc-resistant human epithelial cell line is impaired in cadmium and manganese import. Toxicol Appl Pharmacol 230:312–319

    PubMed  Google Scholar 

  • Ryu DY, Lee SJ, Park DW, Choi BS, Klaassen CD, Park JD (2004) Dietary iron regulates intestinal cadmium absorption through iron transporters in rats. Toxicol Lett 152:19–25

    PubMed  Google Scholar 

  • Sabolić I, Breljak D, Škarica M, Herak-Kramberger CM (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals. doi:10.1007/s10534-010-9351-z

  • Satarug S, Kikuchi M, Wisedpanichkij R, Li B, Takeda K, Na-Bangchang K, Moore MR, Hirayama K, Shibahara S (2008) Prevention of cadmium accumulation in retinal pigment epithelium with manganese and zinc. Exp Eye Res 87:587–593

    PubMed  Google Scholar 

  • Satarug S, Garrett SH, Sens MA, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118:182–190

    PubMed  Google Scholar 

  • Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH (2002) Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem 277:20438–20445

    PubMed  Google Scholar 

  • Scheiber B, Goldenberg H (1993) NAD(P)H:ferric iron reductase in endosomal membranes from rat liver. Arch Biochem Biophys 305:225–230

    PubMed  Google Scholar 

  • Scott BJ, Bradwell AR (1983) Identification of the serum binding proteins for iron, zinc, cadmium, nickel, and calcium. Clin Chem 29:629–633

    PubMed  Google Scholar 

  • Sekler I, Sensi SL, Hershfinkel M, Silverman WF (2007) Mechanism and regulation of cellular zinc transport. Mol Med 13:337–343

    PubMed  Google Scholar 

  • Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10:780–791

    PubMed  Google Scholar 

  • Shoolingin-Jordan PM, Spencer P, Sarwar M, Erskine PE, Cheung KM, Cooper JB, Norton EB (2002) 5-Aminolaevulinic acid dehydratase: metals, mutants and mechanism. Biochem Soc Trans 30:584–590

    PubMed  Google Scholar 

  • Sikorski EM, Uo T, Morrison RS, Agarwal A (2006) Pescadillo interacts with the cadmium response element of the human heme oxygenase-1 promoter in renal epithelial cells. J Biol Chem 281:24423–24430

    PubMed  Google Scholar 

  • Singh KP, Kumari R, Pevey C, Jackson D, DuMond JW (2009) Long duration exposure to cadmium leads to increased cell survival, decreased DNA repair capacity, and genomic instability in mouse testicular Leydig cells. Cancer Lett 279:84–92

    PubMed  Google Scholar 

  • Smedman M, Potempska A, Rubenstein R, Ju W, Ramakrishna N, Denman RB (1997) Effects of cadmium, copper, and zinc and beta APP processing and turnover in COS-7 and PC12 cells. Relationship to Alzheimer disease pathology. Mol Chem Neuropathol 31:13–28

    PubMed  Google Scholar 

  • Sommer R, Beyersmann D (1984) Zinc and cadmium in 5-aminolevulinic acid dehydratase. Equilibrium, kinetic, and 113Cd-nmr-studies. J Inorg Biochem 20:131–145

    PubMed  Google Scholar 

  • Sopjani M, Foller M, Dreischer P, Lang F (2008) Stimulation of eryptosis by cadmium ions. Cell Physiol Biochem 22:245–252

    PubMed  Google Scholar 

  • Staessen JA, Buchet JP, Ginucchio G, Lauwerys RR, Lijnen P, Roels H, Fagard R (1996) Public health implications of environmental exposure to cadmium and lead: an overview of epidemiological studies in Belgium. J Cardiovasc Risk 3:26–41

    PubMed  Google Scholar 

  • Syapin PJ (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 155:623–640

    PubMed  Google Scholar 

  • Takeda K, Ishizawa S, Sato M, Yoshida T, Shibahara S (1994) Identification of a cis-acting element that is responsible for cadmium-mediated induction of the human heme oxygenase gene. J Biol Chem 269:22858–22867

    PubMed  Google Scholar 

  • Takenouchi T, Fujimoto M, Shimamoto A, Munekata E (1999) Isolation and characterization of Cox17p from porcine heart by determining its survival-promoting activity in NIH3T3 cells. Biochim Biophys Acta 1472:498–508

    PubMed  Google Scholar 

  • Thévenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238:221–239

    PubMed  Google Scholar 

  • Thomas LD, Hodgson S, Nieuwenhuijsen M, Järup L (2009) Early kidney damage in a population exposed to cadmium and other heavy metals. Environ Health Perspect 117:181–184

    PubMed  Google Scholar 

  • Tselepis C, Ford SJ, McKie AT, Vogel W, Zoller H, Simpson RJ, Diaz-Castro J, Iqbal TH, Ward DG (2010) Characterisation of the transition metal binding properties of hepcidin. Biochem J 427:289–296

    PubMed  Google Scholar 

  • Tsiftsoglou AS, Vizirianakis IS, Strouboulis J (2009) Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 61:800–830

    PubMed  Google Scholar 

  • Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    PubMed  Google Scholar 

  • van den Berghe PV, Klomp LW (2010) Posttranslational regulation of copper transporters. J Biol Inorg Chem 15:37–46

    PubMed  Google Scholar 

  • Van Kerkhove E, Swennen Q (2010) Cadmium and transport of ions and substances across cell membranes and epithelia. Biometals (this issue)

  • Vangheluwe P, Sepulveda MR, Missiaen L, Raeymaekers L, Wuytack F, Vanoevelen J (2009) Intracellular Ca2+- and Mn2+-transport ATPases. Chem Rev 109:4733–4759

    PubMed  Google Scholar 

  • Varela-Nallar L, Toledo EM, Larrondo LF, Cabral AL, Martins VR, Inestrosa NC (2006) Induction of cellular prion protein gene expression by copper in neurons. Am J Physiol Cell Physiol 290:C271–C281

    PubMed  Google Scholar 

  • Wallander ML, Leibold EA, Eisenstein RS (2006) Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim Biophys Acta 1763:668–689

    PubMed  Google Scholar 

  • Weiss JH, Sensi SL (2000) Ca2+-Zn2+ permeable AMPA or kainate receptors: possible key factors in selective neurodegeneration. Trends Neurosci 23:365–371

    PubMed  Google Scholar 

  • Wernimont AK, Huffman DL, Lamb AL, O’Halloran TV, Rosenzweig AC (2000) Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Biol 7:766–771

    PubMed  Google Scholar 

  • Wijesekara N, Chimienti F, Wheeler MB (2009) Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metab 11 Suppl 4: 202-14

    Google Scholar 

  • Wills NK, Ramanujam VM, Kalariya N, Lewis JR, van Kuijk FJ (2008) Copper and zinc distribution in the human retina: relationship to cadmium accumulation, age, and gender. Exp Eye Res 87:80–88

    PubMed  Google Scholar 

  • Zhang B, Georgiev O, Hagmann M, Gunes C, Cramer M, Faller P, Vašák M, Schaffner W (2003) Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Mol Cell Biol 23:8471–8485

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Moulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moulis, JM. Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals 23, 877–896 (2010). https://doi.org/10.1007/s10534-010-9336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9336-y

Keywords

Navigation