Skip to main content
Log in

Acute Physical Activity on Cognitive Function: A Heart Rate Variability Examination

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the relationship of physical activity and cognitive function (as determined by reaction time and the trail-making test) in active versus non-active participants. Participants were divided into one of four groups: active experimental, active control, non-active experimental and non-active control. All groups completed a complex cognitive task (the trail-making test) as well as a set of reaction time tasks both before and after the experimental session. The experimental groups completed a 30-min exercise session while the control groups monitored the physical activity of the experimental group. In addition to the measures of cognitive function, heart rate variability was recorded during the pre- and post-tests. There was significant cognitive performance improvement in tasks with a higher cognitive and perceptual component. Heart rate variability data indicated that a moderate level of arousal based on sympathetic nervous system activity post exercise was associated with an increase in cognitive performance. The findings are discussed in light of the inverted-U hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andreas, S., Bingeli, C., Mohaesi, P., Luscher, T. F., & Noll, G. (2003). Nasal oxygen and muscle sympathetic nerve activity in heart failure. Chest, 123, 366–371.

    Article  PubMed  Google Scholar 

  • Arcelin, R., Delignieres, D., & Brisswalter, J. (1998). Effects of physical exercise duration on decision-making performance. Journal of Human Movement Studies, 32, 123–140.

    Google Scholar 

  • Army Individual Test Battery. (1944). Manual of directions and scoring. Washington, DC: War Department, Adjutant General’s Office.

    Google Scholar 

  • Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. Sports Medicine, 33, 889–919.

    Article  PubMed  Google Scholar 

  • Backs, R. W. (1998). A comparison of factor analytical methods of obtaining cardiovascular autonomic components for the assessment of mental workload. Ergonomics, 41, 733–745.

    Article  PubMed  Google Scholar 

  • Bard, C., & Fleury, M. (1978). Influence of imposed metabolic fatigue on visual capacity components. Perceptual and Motor Skills, 47, 1283–1287.

    Google Scholar 

  • Baumgartner, T. A., Jackson, A. S., Mahar, M. T., & Rowe, D. A. (2003). Measurement for evaluation in physical education and exercise Science. New York: McGraw Hill.

    Google Scholar 

  • Berntson, G. O., Bigger, T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., et al. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648.

    Article  PubMed  Google Scholar 

  • Brisswalter, J., Arcelin, R., Audiffren, M., & Delignieres, D. (1997). Influence of physical exercise on simple reaction time: Effect of physical fitness. Perceptual and Motor Skills, 85, 1019–1027.

    Article  PubMed  Google Scholar 

  • Brisswalter, J. B., Collardeau, M., & Arcelin, R. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine, 32, 555–566.

    Google Scholar 

  • Brisswalter, J., Durand, M., Delignieres, D., & Legros, P. (1995). Optimal and non-optimal demand in a dual-task of pedaling and simple reaction time: Effects on energy expenditure and cognitive performance. Journal of Human Movement Studies, 29, 15–34.

    Google Scholar 

  • Chaytor, N. S., Schmitter-Edgecombe, M., & Burr, R. (2006). Improving the ecological validity of executive functioning tests: Environmental demands and compensatory strategies. Archives of Clinical Neuropsychology, 21, 217–227.

    Google Scholar 

  • Chmura, J., Krysztofiak, H., Ziemba, A. W., Nazare, K., & Kaciuba-Ucilko, H. (1998). Psychomotor performance during prolonged exercise above and below the blood lactate threshold. European Journal of Applied Physiology, 77, 77–80.

    Article  Google Scholar 

  • Colcombe, S. J., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14, 125–130.

    Article  PubMed  Google Scholar 

  • Cote, J., Salmela, J. H., & Papthanasopoloulu, K. P. (1992). Effects of progressive exercise on attentional focus. Perceptual and Motor Skills, 75, 351–354.

    PubMed  Google Scholar 

  • Davranche, K., & Audiffren, M. (2004). Facilitating effects of exercise on information processing. Journal of Sports Sciences, 22, 419–428.

    Article  PubMed  Google Scholar 

  • De Vito, G., Galloway, S. D. R., Nimmo, M. A., Maas, P., & McMurray, J. J. V. (2002). Effects of central sympathetic inhibition on heart rate variability during steady-state exercise in healthy humans. Clinical Physiology and Functional Imaging, 22, 32–38.

    Article  PubMed  Google Scholar 

  • Ergün, U., Demirci, M., Nurlu, G., & Komürcü, F. (2008). Power spectral analysis of heart rate variability: Normal values of subjects over 60 years old. International Journal of Neuroscience, 118(8), 1165–1173.

    Article  PubMed  Google Scholar 

  • Etnier, J. L., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A metaregression to examine the relationship between aerobic fitness and cognitive performance. Brain Research Reviews, 52, 119–130.

    Article  PubMed  Google Scholar 

  • Etnier, J. L., Salazar, W., Landers, D. M., Petruzzello, S. J., Han, M., & Nowell, P. (1997). The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. Journal of Sport and Exercise Psychology, 19, 249–277.

    Google Scholar 

  • Fery, Y. A., Ferry, A., Vom Hoffe, A., & Rieu, M. (1997). Effects of physical exhaustion on cognitive functioning. Perceptual Motor Skills, 84, 291–298.

    Article  Google Scholar 

  • Franzen, M. D., Paul, D., & Iverson, G. L. (1996). Reliability of alternate forms of the trail-making test. The Clinical Neuropsychologist, 10, 125–129.

    Article  Google Scholar 

  • Grego, F., Vallier, J., Collardeau, M., Bermon, S., Ferrari, P., Candito, M., et al. (2004). Effects of long duration exercise on cognitive function, blood glucose and counterregulatory hormones in male cyclists. Neuroscience Letters, 364, 76–80.

    Article  PubMed  Google Scholar 

  • Grego, F., Vallier, J. M., Collardeaul, M., Rousseu, C., Cremieux, J., & Brisswalter, J. (2005). Influence of exercise duration and hydration status on cognitive function during prolonged cycling exercise. International Journal of Sports Medicine, 26, 27–33.

    Article  PubMed  Google Scholar 

  • Hall, C. D., Smith, A. L., & Keele, S. W. (2001). The impact of aerobic activity on cognitive function in older adults: A new synthesis based on the concept of executive control. European Journal of Cognitive Psychology, 13, 279–300.

    Google Scholar 

  • Hancock, S., & McNaughton, L. (1986). Effects of fatigue on ability to process visual information by experienced orienteers. Perceptual and Motor Skills, 62, 491–498.

    Article  PubMed  Google Scholar 

  • Hillman, C. H., Snook, E. M., & Jerome, G. J. (2003). Acute cardiovascular exercise and executive control function: A P3 study. International Journal of Psychophysiology, 48, 307–314.

    Article  PubMed  Google Scholar 

  • Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiology signals. Medical & Biological Engineering & Computing, 42, 419–427.

    Article  Google Scholar 

  • Luft, C. B., Takase, E., & Darby, D. (2009). Heart rate variability and cognitive function: Effects of physical effort. Biological Psychology, 82, 187–191.

    Article  Google Scholar 

  • Magnie, M. N., Bermon, S., Martin, F., Madany-Lounis, F., Suisse, G., Muhammad, W., et al. (2000). P300, N400, aerobic fitness, and maximal aerobic exercise. Psychophysiology, 37, 369–377.

    Article  PubMed  Google Scholar 

  • Mahar, M., Dawson, N., & Estes, S. (2002). Lifetime physical activity and fitness laboratory manuel (4th ed.). Englewood, CO: Morton Publishing Company.

  • Malfatto, G., Facchini, M., Sala, L., Branzi, G., Bragato, R., & Leonetti, G. (1998). Effects of cardiac rehabilitation and -blocker therapy on heart rate variability after first acute myocardial infarction. The American Journal of Cardiology, 81, 834–840.

    Article  PubMed  Google Scholar 

  • Malliani, A. (2005). Heart rate variability: From bench to bedside. European Journal of Internal Medicine, 16, 12–20.

    Article  PubMed  Google Scholar 

  • Malliani, A., & Montano, N. (2002). Heart rate variability as a clinical tool. Italian Heart Journal, 3, 439–445.

    PubMed  Google Scholar 

  • Malliani, A., Pagani, M., Lombardi, F., & Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation, 84, 482–492.

    Article  PubMed  Google Scholar 

  • McMorris, T., & Graydon, J. (1997). The effect of exercise on cognitive performance in soccer-specific tests. Journal of Sports Sciences, 15, 459–468.

    Article  PubMed  Google Scholar 

  • Metelka, R., Weinbergova, O., Opavsky, J., Salinger, J., & Ostransky, J. (1999). Short-term heart rate variability changes after exercise training in subjects following myocardial infarction. Acta Universitatis Palackinanae Olomucensis Facultatis Medicae, 142, 79–82.

    Google Scholar 

  • Moll, J., de Oliveira-Souza, R., Moll, F. T., Bramati, I. E., & Andreiuolo, P. A. (2002). The cerebral correlates of set-shifting: An fMRI study of the trail making test. Arquivos de Neuro-Psiquiatria, 60, 900–905.

    Article  PubMed  Google Scholar 

  • Montano, N., Ruscone, T. G., Porta, A., Lombardi, F., Pagani, M., & Malliani, A. (1994). Power spectrum analysis of heart rate variability to assess the changes in sympatho-vagal balance during graded orthostatic tilt. Circulation, 90, 1826–1831.

    Article  PubMed  Google Scholar 

  • Mukherjee, S., Yadav, R., Yung, I., Zajdel, D., & Oken, B. S. (2011). Sensitivity to mental effort and test–retest reliability of heart rate variability measures in healthy seniors. Clinical Neurophysiology, 122, 2059–2066.

    PubMed  Google Scholar 

  • Nakamura, Y., Nishimoto, K., Akamatu, M., Takahashi, M., & Maruyama, A. (1999). The effect of jogging on P300 event related potentials. Electromyography and Clinical Neurophysiology, 39, 71–74.

    PubMed  Google Scholar 

  • Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., et al. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation Research, 59, 178–193.

    Article  PubMed  Google Scholar 

  • Russoniello, C. V., Mahar, M. T. Rowe, D. A., Pougtachev, V., & Zirnov, E. (2003). A comparison of electrocardiography and photoplethesmography in measuring heart rate variability. In Proceedings of the association for applied psychophysiology.

  • Stuss, D. T., Bisschop, S. M., Alexander, M. P., Levine, B., Katz, D., & Izukawa, D. (2001). The trail making test: A study in focal lesion patients. Psychological Assessment, 13, 230–239.

    Article  PubMed  Google Scholar 

  • Task Force of the European Society of Cardiology and The North American Society of Pacing and Electrophysiology: Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. (1996). European Heart Journal, 17, 354–381.

  • Thayer, J. F., Lane, R. D., & Bernard, C. (2009). The heart-brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33, 81–88.

    Google Scholar 

  • Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112, 297–324.

    Google Scholar 

  • Tomporowski, P. D., & Ellis, N. R. (1986). The effects of exercise on cognitive processes: A review. Psychological Bulletin, 99, 338–346.

    Article  Google Scholar 

  • Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit formation. Journal of Comparative Neurology and Psychology, 18, 459–482.

    Article  Google Scholar 

  • Zakzanis, K. K., Marz, R., & Graham, S. J. (2005). An fMRI study of the trail making test. Neuropsychologia, 43, 1878–1886.

    Article  PubMed  Google Scholar 

  • Zhong, X., Hilton, H. J., Gates, G. J., Jelic, S., Stern, Y., Bartels, M. N., et al. (2005). Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation. Journal of Applied Physiology, 98, 2024–2032.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas P. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, N.P., Russoniello, C. Acute Physical Activity on Cognitive Function: A Heart Rate Variability Examination. Appl Psychophysiol Biofeedback 37, 219–227 (2012). https://doi.org/10.1007/s10484-012-9196-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-012-9196-z

Keywords

Navigation