Skip to main content

Advertisement

Log in

Surface quality of human corneal lenticules after femtosecond laser surgery for myopia comparing different laser parameters

  • Refractive Surgery
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To determine the surface characteristics of human corneal lenticules after femtosecond laser surgery for myopia.

Methods

The Carl Zeiss Meditec AG VisuMax® femtosecond laser system was used for refractive correction called Femtosecond Lenticule Extraction on 24 myopic eyes. The surface regularity on the refractive corneal lenticules recovered was evaluated by assessing scanning electron microscopy images using an established scoring system. Three different energy levels 150, 180, and 195 nJ were compared (n = 8 in each group).

Results

Surface irregularities were caused by tissue bridges, cavitation bubbles, or scratches. The surface regularity index (R2 = 0.74) decreased as pulse energy increased. The average surface regularity score obtained was 7.5 for 150 nJ, 7.25 for 180 nJ, and 6.25 for 195 nJ.

Conclusions

The human corneal lenticules created with the VisuMax® femtosecond laser system are of predictable, good-quality surface. This study shows the influence of pulse energy on surface regularity in human eyes. Further studies should focus on optimization of laser parameters as well as surgical technique to improve the regularity of the corneal stromal bed and so make the advantages of the femtosecond laser technology over conventional techniques clearer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Avg.:

Average

a.u.:

Arbitrary unit

DLK:

Diffuse lamellar keratitis

FLEx:

Femtosecond Lenticule Extraction

h:

Hour

kHz:

Kilohertz

LASIK:

Laser in situ keratomileusis

n:

Number of specimens

nJ:

Nanojoule

R2 :

Correlation coefficient

SD:

Standard deviation

SEM:

Scanning electron microscopy

TLSS:

Transient light sensitivity syndrome

μm:

Micrometer

References

  1. Sekundo W, Kunert KS, Russmann C, Gille A, Bissmann W, Strobrawa G, Sticker M, Bischoff M, Blum M (2008) First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia. J Cataract Refract Surg 34:1513–1520, Erratum in: J Cataract Refract Surg 34:1819

    Article  PubMed  Google Scholar 

  2. Blum M, Kunert K, Schroeder M, Sekundo W (2010) Femtosecond Lenticule Extraction (FLEx) for the correction of myopia: Preliminary 6 months results. Graefes Arch Clin Exp Ophthalmol. doi:10.1007/s00417-009-1293-1

    PubMed  Google Scholar 

  3. Shah R (2009) Changing paradigm in refractive surgery. Advanced FLEx results. Presented at the Annual Symposium of the ASCRS, San Francisco, 2nd of April

  4. Sarayba MA, Ignacio TS, Tran DB, Binder PS (2007) A 60 kHz IntraLase femtosecond laser creates a smoother LASIK stromal bed surface compared to a Zyoptix XP mechanical microkeratome in human donor eyes. J Refract Surg 23:331–337

    PubMed  Google Scholar 

  5. Kermani O, Oberheide U (2008) Comparative micromorphologic in vitro porcine study of IntaLase and Femto LDV femtosecond lasers. J Cataract Refract Surg 34:1393–1399

    Article  PubMed  Google Scholar 

  6. Wilhelm FW, Giessmann T, Hanschke R, Duncker GIW, Wilhelm LH (2000) Cut edges and surface characteristics produced by different microkeratomes. J Refract Surg 16:690–700

    PubMed  CAS  Google Scholar 

  7. Lubatschowski H (2008) Overview of commercially available femtosecond lasers in refractive surgery. J Refract Surg 24:102–107

    Google Scholar 

  8. Sarayba MA, Ignacio TS, Binder PS, Tran DB (2007) Comparative study of stromal bed quality by using mechanical, IntraLase femtosecond laser 15- and 30-kHz microkeratomes. Cornea 26:446–451

    Article  PubMed  Google Scholar 

  9. Winkler von Mohrenfels C, Khoramnia R, Maier MM, Pfäffl W, Hölzlwimmer G, Lohmann C (2009) Cut quality of a new femtosecond laser system. Klin Monatsbl Augenheilkd 226:470–474

    Article  PubMed  CAS  Google Scholar 

  10. Binder PS (2004) Flap dimensions created with the IntraLase FS laser. J Cataract Refract Surg 30:26–32

    Article  PubMed  Google Scholar 

  11. Holzer MP, Rabsilber TM, Auffarth GU (2006) Femtosecond laser-assisted corneal flap cuts: morphology, accuracy, and histopathology. Invest Ophthalmol Vis Sci 47:2828–2831

    Article  PubMed  Google Scholar 

  12. Heichel J, Hammer T, Sietmann R, Duncker GIW, Wilhelm F (2010) Rasterelektronenmikroskopischer Vergleich lamellärer Keratotomien nach Einsatz des Femtec Femtosekundenlasers und des Zyoptix XP Mikrokeratoms. Ophthalmologe 107:333–340

    Article  PubMed  CAS  Google Scholar 

  13. Lamparter J, Dick HB, Krummenauer F (2007) Komplikationen nach Laser-in-Situ-Keratomileusis (LASIK): Ergebnisse zu Inzidenzen und Folgekosten. Klin Monatsbl Augenheilkd 224:627–635

    Article  PubMed  CAS  Google Scholar 

  14. Kezirian GM, Stonecipher KG (2004) Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis. J Cataract Refract Surg 30:804–811

    Article  PubMed  Google Scholar 

  15. Durrie DS, Kezirian GM (2005) Femtosecond laser versus mechanical microkeratome flaps in wavefront-guided laser in situ keratomileusis: prospective contralateral eye study. J Cataract Refract Surg 31:120–126

    Article  PubMed  Google Scholar 

  16. Vinciguerra P, Azzolini M, Airaghi P, Radice P, De Molfetta V (1998) Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes. J Refract Surg 14(2 suppl):199–203

    Google Scholar 

  17. Vinciguerra P, Azzolini M, Radice P, Sborgia M, De Molfetta V (1998) A method for examining surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis: predictor of optical and functional outcomes. J Refract Surg 14(2 suppl):204–206

    Google Scholar 

  18. Krueger RR, Dupps WJ (2007) Biomechanical effects of femtosecond and microkeratome-based flap creation: prospective contralateral examination of two patients. J Refract Surg 23:800–807

    PubMed  Google Scholar 

  19. Tran DB, Sarayba MA, Bor Z, Garufis C, Duh YJ, Soltes CR, Juhasz T, Kurtz RM (2005) Randomized prospective clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes: potential impact on wavefront-guided laser in situ keratomileusis. J Cataract Refract Surg 31:97–105

    Article  PubMed  Google Scholar 

  20. Netto MV, Mohan RR, Medeiros FW, Dupps WJ Jr, Sinha S, Krueger RR, Stapleton WM, Rayborn M, Suto C, Wilson SE (2007) Femtosecond laser and microkeratome corneal flaps: comparison of stromal wound healing and inflammation. J Refract Surg 23:667–676

    PubMed  Google Scholar 

  21. de Medeiros FW, Kaur H, Agrawal V, Chaurasia SS, Hammel J, Dupps WJ Jr, Wilson SE (2009) Effect of femtosecond laser energy level on corneal stromal cell death and inflammation. J Refract Surg 25(10):869–874

    Article  PubMed  Google Scholar 

  22. Munoz G, Albarrán-Diego C, Sakla HF, Javaloy J, Alió JL (2006) Transient light-sensitivity syndrome after laser in situ keratomileusis with the femtosecond laser–incidence and prevention. J Cataract Refract Surg 32:2075–2079

    Article  PubMed  Google Scholar 

  23. Stonecipher KG, Dishler JG, Ignacio TS, Binder PS (2006) Transient light sensitivity syndrome after femtosecond laser flap creation: Clinical findings and management. J Cataract Refract Surg 32:91–94

    Article  PubMed  Google Scholar 

  24. Salomao MQ, Wilson SE (2009) Corneal molecular and cellular biology update for the refractive surgeon. J Refract Surg 25:459–466

    Article  PubMed  Google Scholar 

  25. Patel SV, Maguire LJ, McLaren JW, Hodge DO, Bourne (2007) Femtosecond laser versus mechanical microkeratome for LASIK: a randomized controlled study. Ophthalmology 114:1482–1490

    Article  PubMed  Google Scholar 

  26. Petroll MW, Bowman RW, Cavanagh HD, Verity SM, Mootha VV, McCulley JP (2008) Assessment of keratocyte activation following LASIK with flap creation using the IntraLase FS60 laser. J Refract Surg 24:847–849

    PubMed  Google Scholar 

  27. Hu MY, McCulley JP, Cavanagh HD, Bowman RW, Verity SM, Mootha VV, Petroll WM (2007) Comparison of the corneal response to laser in situ keratomileusis with flap creation using the FS15 and FS30 femtosecond lasers. J Cataract Refract Surg 33:673–681

    Article  PubMed  Google Scholar 

  28. McCulley JP, Petroll WM (2008) Quantitative assessment of corneal wound healing following IntraLASIK using in vivo confocal microscopy. Trans Am Ophthalmol Soc 106:84–92

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen S. Kunert.

Additional information

This project was funded by the Federal Ministry for Education and Research (Helios Klinikum Erfurt, 13 N8835A). The study was approved by the Ethics Committee of the Thuringian Regional Medical Council and informed consent was obtained from all subjects. None of the authors has any financial or proprietary interest in any material or method mentioned.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunert, K.S., Blum, M., Duncker, G.I.W. et al. Surface quality of human corneal lenticules after femtosecond laser surgery for myopia comparing different laser parameters. Graefes Arch Clin Exp Ophthalmol 249, 1417–1424 (2011). https://doi.org/10.1007/s00417-010-1578-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-010-1578-4

Keywords

Navigation