Skip to main content

Advertisement

Log in

An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases

Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

An automated procedure for the detection, quantification, localization and statistical mapping of white matter hyperintensities (WMH) on T2-weighted magnetic resonance (MR) images is presented and validated based on the results of a between-centre reproducibility study.

Methods

The first step is the identification of white matter (WM) tissue using a multispectral (T1, T2, PD) segmentation. In a second step, WMH are identified within the WM tissue by segmenting T2 images, isolating two different classes of WMH voxels – low- and high-contrast WMH voxels, respectively. The reliability of the whole procedure was assessed by applying it to the analysis of two large MR imaging databases (n = 650 and n= 710, respectively) of healthy elderly subjects matched for demographic characteristics.

Results

Average overall WMH load and spatial distribution were found to be similar in the two samples, (1.81 and 1.79% of the WM volume, respectively). White matter hyperintensity load was found to be significantly associated with both age and high blood pressure, with similar effects in both samples. With specific reference to the 650 subject cohort, we also found that WMH load provided by this automated procedure was significantly associated with visual grading of the severity of WMH, as assessed by a trained neurologist.

Conclusion

The results show that this method is sensitive, well correlated with semi-quantitative visual rating and highly reproducible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. van Gijn J (2000) White matters: small vessels and slow thinking in old age. Lancet 356:612–613

    Article  PubMed  Google Scholar 

  2. Rosenberg GA (1997) White matter disorders. In: Welch KMA, Caplan LR, Reis DJ, Siesjo BK, Weir B (eds) Primer on cerebrovascular diseases. Academic Press, New York, pp 371–375

  3. Salonen O, Autti T, Raininko R, Ylikoski A, Erkinjuntti T (1997) MRI of the brain in neurologically healthy middle-aged and elderly individuals. Neuroradiology 39:537–545

    Article  PubMed  CAS  Google Scholar 

  4. Briley DP, Haroon S, Sergent SM, Thomas S (2000) Does leukoaraiosis predict morbidity and mortality? Neurology 54:90–94

    PubMed  CAS  Google Scholar 

  5. de Groot JC, de Leeuw FE, Oudkerk M, Van GJ, Hofman A, Jolles J, Breteler MM (2000) Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol 47:145–151

    Article  PubMed  Google Scholar 

  6. Hickie I, Scott E, Wilhelm K, Brodaty H (1997) Subcortical hyperintensities on magnetic resonance imaging in patients with severe depression–a longitudinal evaluation. Biol Psychiatry 42:367–374

    Article  PubMed  CAS  Google Scholar 

  7. Longstreth WT Jr, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, Enright PL, O’Leary D, Fried L (1996) Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke 27:1274–1282

    PubMed  Google Scholar 

  8. Pantoni L, Leys D, Fazekas F, Longstreth WT Jr., Inzitari D, Wallin A, Filippi M, Scheltens P, Erkinjuntti T, Hachinski V (1999) Role of white matter lesions in cognitive impairment of vascular origin. Alzheimer Dis Assoc Disord 13[Suppl 3]:S49–S54

    Article  PubMed  Google Scholar 

  9. Baum KA, Schulte C, Girke W, Reischies FM, Felix R (1996) Incidental white-matter foci on MRI in “healthy” subjects: evidence of subtle cognitive dysfunction. Neuroradiology 38:755–760

    Article  PubMed  CAS  Google Scholar 

  10. Pantoni L, Garcia JH (1995) The significance of cerebral white matter abnormalities 100 years after Binswanger’s report. A review. Stroke 26:1293–1301

    PubMed  CAS  Google Scholar 

  11. Raz N, Rodrigue KM (2006) Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 30:730–748

    Article  PubMed  Google Scholar 

  12. Dufouil C, Kersaint-Gilly A, Besancon V, Levy C, Auffray E, Brunnereau L, Alperovitch A, Tzourio C (2001) Longitudinal study of blood pressure and white matter hyperintensities: the EVA MRI Cohort. Neurology 56:921–926

    PubMed  CAS  Google Scholar 

  13. Horikoshi T, Yagi S, Fukamachi A (1993) Incidental high-intensity foci in white matter on T2-weighted magnetic resonance imaging. Frequency and clinical significance in symptom-free adults. Neuroradiology 35:151–155

    Article  PubMed  CAS  Google Scholar 

  14. Nebes RD, Vora IJ, Meltzer CC, Fukui MB, Williams RL, Kamboh MI, Saxton J, Houck PR, DeKosky ST, Reynolds CF III (2001) Relationship of deep white matter hyperintensities and apolipoprotein E genotype to depressive symptoms in older adults without clinical depression. Am J Psychiatry 158:878–884

    PubMed  CAS  Google Scholar 

  15. Stenset V, Johnsen L, Kocot D, Negaard A, Skinningsrud A, Gulbrandsen P, Wallin A, Fladby T (2006) Associations between white matter lesions, cerebrovascular risk factors, and low CSF Abeta42. Neurology 67:830–833

    Article  PubMed  CAS  Google Scholar 

  16. de Leeuw FE, Richard F, de Groot JC, van Duijn CM, Hofman A, Van GJ, Breteler MM (2004) Interaction between hypertension, apoE and cerebral white matter lesions. Stroke 35:1057–1060

    Article  PubMed  CAS  Google Scholar 

  17. Liao D, Cooper L, Cai J, Toole JF, Bryan NR, Hutchinson RG, Tyroler HA (1996) Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control. The ARIC Study. Atherosclerosis risk in communities study. Stroke 27:2262–2270

    PubMed  CAS  Google Scholar 

  18. Bots ML, van Swieten JC, Breteler MM, de Jong PT, Van GJ, Hofman A, Grobbee DE (1993) Cerebral white matter lesions and atherosclerosis in the Rotterdam study. Lancet 341:1232–1237

    Article  PubMed  CAS  Google Scholar 

  19. Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA, Kuller LH, Manolio TA, Mittelmark MB, Newman A (1991) The cardiovascular health study: design and rationale. Ann Epidemiol 1:263–276

    Article  PubMed  CAS  Google Scholar 

  20. Mantyla R, Erkinjuntti T, Salonen O, Aronen HJ, Peltonen T, Pohjasvaara T, Standertskjold-Nordenstam CG (1997) Variable agreement between visual rating scales for white matter hyperintensities on MRI. Comparison of 13 rating scales in a poststroke cohort. Stroke 28:1614–1623

    PubMed  CAS  Google Scholar 

  21. van den Heuvel DM, ten Dam VH, de Craen AJ, Admiraal-Behloul F, van Es AC, Palm WM, Spilt A, Bollen EL, Blauw GJ, Launer L, Westendorp RG, van Buchem MA (2006) Measuring longitudinal white matter changes: comparison of a visual rating scale with a volumetric measurement. Am J Neuroradiol 27:875–878

    PubMed  Google Scholar 

  22. Jack CR Jr, O’Brien PC, Rettman DW, Shiung MM, Xu Y, Muthupillai R, Manduca A, Avula R, Erickson BJ (2001) FLAIR histogram segmentation for measurement of leukoaraiosis volume. J Magn Reson Imaging 14:668–676

    Article  PubMed  Google Scholar 

  23. Wen W, Sachdev P (2004) The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. Neuroimage 22:144–154

    Article  PubMed  Google Scholar 

  24. Admiraal-Behloul F, van den Heuvel DM, Olofsen H, van Osch MJ, van der GJ, van Buchem MA, Reiber JH (2005) Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. Neuroimage 28:607–617

    Article  PubMed  CAS  Google Scholar 

  25. Wu M, Rosano C, Lopez-Garcia P, Carter CS, Aizenstein HJ (2007) Optimum template selection for atlas-based segmentation. Neuroimage 34:1612–1618

    Article  PubMed  Google Scholar 

  26. Bakshi R, Caruthers SD, Janardhan V, Wasay M (2000) Intraventricular CSF pulsation artifact on fast fluid-attenuated inversion-recovery MR images: analysis of 100 consecutive normal studies. Am J Neuroradiol 21:503–508

    PubMed  CAS  Google Scholar 

  27. Bakshi R, Ariyaratana S, Benedict RH, Jacobs L (2001) Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. Arch Neurol 58:742–748

    Article  PubMed  CAS  Google Scholar 

  28. Tanaka N, Abe T, Kojima K, Nishimura H, Hayabuchi N (2000) Applicability and advantages of flow artifact-insensitive fluid-attenuated inversion-recovery MR sequences for imaging the posterior fossa. Am J Neuroradiol 21:1095–1098

    PubMed  CAS  Google Scholar 

  29. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W, Trojanowski JQ, Toga AW, Beckett L (2005) Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 1:55–66

    Article  PubMed  Google Scholar 

  30. Alperovitch A, Amouyel P, Dartigues JF, Ducimetiere P, Mazoyer B, Ritchie K, Tzourio C (2002) Epidemiological studies on aging in France: from the PAQUID study to the Three-City study. CR Biol 325:665–672

    Article  Google Scholar 

  31. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998) Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22:139–152

    Article  PubMed  CAS  Google Scholar 

  32. Pietrzyk U, Herholz K, Fink G, Jacobs A, Mielke R, Slansky I, Wurker M, Heiss WD (1994) An interactive technique for three-dimensional image registration: validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 35:2011–2018

    PubMed  CAS  Google Scholar 

  33. Verard L, Allain P, Travere JM, Baron JC, Bloyet D (1997) Fully automatic identification of AC and PC landmarks on brain MRI using scene analysis. IEEE Trans Med Imaging 16:610–616

    Article  PubMed  CAS  Google Scholar 

  34. Gicquel S (1998) Détection, quantification et localisation automatiques des hypersignaux de la substance blanche en Imagerie par Résonance Magnétique. PhD thesis, Université de Caen, Caen

  35. Zijdenbos AP, Dawant BM (1994) Brain segmentation and white matter lesion detection in MR images. Crit Rev Biomed Eng 22:401–465

    PubMed  CAS  Google Scholar 

  36. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36

    Article  PubMed  CAS  Google Scholar 

  37. Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: A general approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  38. Ashburner J, Friston KJ (2000) Voxel-based morphometry – the methods. Neuroimage 11:805–821

    Article  PubMed  CAS  Google Scholar 

  39. Lemaitre H, Crivello F, Grassiot B, Alperovitch A, Tzourio C, Mazoyer B (2005) Age- and sex-related effects on the neuroanatomy of healthy elderly. Neuroimage 26:900–911

    Article  PubMed  Google Scholar 

  40. Scheltens P, Barkhof F, Valk J, Algra PR, van der Hoop RG, Nauta J, Wolters EC (1992) White matter lesions on magnetic resonance imaging in clinically diagnosed Alzheimer’s disease. Evidence for heterogeneity. Brain 115:735–748

    Article  PubMed  Google Scholar 

  41. Johnston B (1994) Three-dimensional partial volume brain tissue segmentation of multispectral magnetic resonance images using stochastic relaxation. SPIE Non-Linear Image Processing VI 2180:268–279

    Google Scholar 

  42. Rajapakse JC, DeCarli C, McLaughlin A, Giedd JN, Krain AL, Hamburger SD, Rapoport JL (1996) Cerebral magnetic resonance image segmentation using data fusion. J Comput Assist Tomogr 20:206–218

    Article  PubMed  CAS  Google Scholar 

  43. Hebert TJ (1997) Fast iterative segmentation of high resolution medical images. IEEE Nucl Sci 44:1362–1367

    Article  Google Scholar 

  44. Sajja BR, Datta S, He R, Mehta M, Gupta RK, Wolinsky JS, Narayana PA (2006) Unified approach for multiple sclerosis lesion segmentation on brain MRI. Ann Biomed Eng 34:142–151

    Article  PubMed  Google Scholar 

  45. DeCarli C, Fletcher E, Ramey V, Harvey D, Jagust WJ (2005) Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke 36:50–55

    Article  PubMed  Google Scholar 

  46. Enzinger C, Smith S, Fazekas F, Drevin G, Ropele S, Nichols T, Behrens T, Schmidt R, Matthews PM (2006) Lesion probability maps of white matter hyperintensities in elderly individuals: results of the Austrian stroke prevention study. J Neurol 253:1064–1070

    Article  PubMed  Google Scholar 

  47. Yoshita M, Fletcher E, Harvey D, Ortega M, Martinez O, Mungas DM, Reed BR, DeCarli C (2006) Extent and distribution of white matter hyperintensities in normal aging, MCI,and AD. Neurology 67:2192–2198

    Article  PubMed  CAS  Google Scholar 

  48. Whitman GT, Tang Y, Lin A, Baloh RW (2001) A prospective study of cerebral white matter abnormalities in older people with gait dysfunction. Neurology 57:990–994

    PubMed  CAS  Google Scholar 

  49. Taylor WD, MacFall JR, Provenzale JM, Payne ME, McQuoid DR, Steffens DC, Krishnan KR (2003) Serial MR imaging of volumes of hyperintense white matter lesions in elderly patients: correlation with vascular risk factors. Am J Roentgenol 181:571–576

    Google Scholar 

  50. van den Heuvel DM, ten Dam VH, de Craen AJ, Admiraal-Behloul F, Olofsen H, Bollen EL, Jolles J, Murray HM, Blauw GJ, Westendorp RG, van Buchem MA (2006) Increase in periventricular white matter hyperintensities parallels decline in mental processing speed in a non-demented elderly population. J Neurol Neurosurg Psychiatry 77:149–153

    Article  PubMed  Google Scholar 

  51. van Dijk EJ, Breteler MM, Schmidt R, Berger K, Nilsson LG, Oudkerk M, Pajak A, Sans S, de RM, Dufouil C, Fuhrer R, Giampaoli S, Launer LJ, Hofman A (2004) The association between blood pressure, hypertension, and cerebral white matter lesions: cardiovascular determinants of dementia study. Hypertension 44:625–630

    Article  PubMed  CAS  Google Scholar 

  52. Dufouil C, Chalmers J, Coskun O, Besancon V, Bousser MG, Guillon P, MacMahon S, Mazoyer B, Neal B, Woodward M, Tzourio-Mazoyer N, Tzourio C (2005) Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic resonance imaging substudy. Circulation 112:1644–1650

    Article  PubMed  Google Scholar 

  53. Park MK, Jo I, Park MH, Kim TK, Jo SA, Shin C (2005) Cerebral white matter lesions and hypertension status in the elderly Korean: the Ansan Study. Arch Gerontol Geriatr 40:265–273

    Article  PubMed  Google Scholar 

  54. Launer LJ, Berger K, Breteler MM, Dufouil C, Fuhrer R, Giampaoli S, Nilsson LG, Pajak A, de RM, van Dijk EJ, Sans S, Schmidt R, Hofman A (2006) Regional variability in the prevalence of cerebral white matter lesions: an MRI study in 9 European countries (CASCADE). Neuroepidemiology 26:23–29

    Article  PubMed  CAS  Google Scholar 

  55. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, Hofman A, Jolles J, Van GJ, Breteler MM (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam scan study. J Neurol Neurosurg Psychiatry 70:9–14

    Article  PubMed  Google Scholar 

  56. van Straaten EC, Fazekas F, Rostrup E, Scheltens P, Schmidt R, Pantoni L, Inzitari D, Waldemar G, Erkinjuntti T, Mantyla R, Wahlund LO, Barkhof F (2006) Impact of white matter hyperintensities scoring method on correlations with clinical data: the LADIS study. Stroke 37:836–840

    Article  PubMed  Google Scholar 

  57. Bae SC, Lyoo IK, Sung YH, Yoo J, Chung A, Yoon SJ, Kim DJ, Hwang J, Kim SJ, Renshaw PF (2006) Increased white matter hyperintensities in male methamphetamine abusers. Drug Alcohol Depend 81:83–88

    Article  PubMed  CAS  Google Scholar 

  58. Leuchter AF, Dunkin JJ, Lufkin RB, Anzai Y, Cook IA, Newton TF (1994) Effect of white matter disease on functional connections in the aging brain. J Neurol Neurosurg Psychiatry 57:1347–1354

    Article  PubMed  CAS  Google Scholar 

  59. Soderlund H, Nilsson LG, Berger K, Breteler MM, Dufouil C, Fuhrer R, Giampaoli S, Hofman A, Pajak A, de RM, Sans S, Schmidt R, Launer LJ (2006) Cerebral changes on MRI and cognitive function: the CASCADE study. Neurobiol Aging 27:16–23

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

P. Maillard is supported by a grant from the Ministère de l’Enseignement Supérieur et de la Recherche. The authors are indebted to P. Karamian, P. Guillon, V. Besançon, O. Coskun and S. Bricogne for early contributions to this work. This study has been conducted within the framework of the ICBM project http://www.loni.ucla.edu/ICBM/). The Three-City Study is conducted under a partnership agreement between the Institut National de la Santé et de la Recherche Médicale (INSERM), the Victor Segalen-Bordeaux II University and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study is also supported by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, MGEN, Institut de la Longévité, Conseils Régionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research-INSERM Programme “Cohortes et collections de données biologiques”.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Mazoyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maillard, P., Delcroix, N., Crivello, F. et al. An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases. Neuroradiology 50, 31–42 (2008). https://doi.org/10.1007/s00234-007-0312-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-007-0312-3

Keywords

Navigation