Skip to main content
Log in

Changes in Parameters of Bone Metabolism in Postmenopausal Women Following a 12-Month Intervention Period Using Dairy Products Enriched with Calcium, Vitamin D, and Phylloquinone (Vitamin K1) or Menaquinone-7 (Vitamin K2): The Postmenopausal Health Study II

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The objective of the present study was to examine the effect of dairy products enriched with calcium, vitamin D3, and phylloquinone (vitamin K1) or menaquinone-7 (vitamin K2) on parameters of bone metabolism in postmenopausal women following a 12-month intervention. Postmenopausal women were divided into three intervention groups and a control group (CG). All three intervention groups attended biweekly sessions and received fortified dairy products providing daily 800 mg of calcium and 10 μg of vitamin D3 (CaD). Furthermore, in two of the three intervention groups the dairy products were also enriched with vitamin K, providing daily 100 μg of either phylloquinone (CaDK1) or menaquinone-7 (CaDK2). The increase observed for serum 25(OH)D levels in all intervention groups and the increase observed for serum IGF-I levels in the CaDK2 group differed significantly compared to the changes observed in CG (P = 0.010 and P = 0.028, respectively). Furthermore, both the CaDK1 and CaDK2 groups had a significantly lower mean serum undercarboxylated osteocalcin to osteocalcin ratio and urine deoxypyridinoline levels at follow-up compared to the CaD and CG groups (P = 0.001 and P = 0.047, respectively). Significant increases in total-body BMD were observed in all intervention groups compared to CG (P < 0.05), while significant increases in lumbar spine BMD were observed only for CaDK1 and CaDK2 compared to CG (P < 0.05) after controlling for changes in serum 25(OH)D levels and dietary calcium intake. In conclusion, the present study revealed more favorable changes in bone metabolism and bone mass indices for the two vitamin K-supplemented groups, mainly reflected in the suppression of serum levels of bone remodeling indices and in the more positive changes in lumbar spine BMD for these two study groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Heaney RP, McCarron DA, Dawson-Hughes B, Oparil S, Berga SL, Stern JS, Barr SI, Rosen CJ (1999) Dietary changes favorably affect bone remodeling in older adults. J Am Diet Assoc 99:1228–1233

    Article  PubMed  CAS  Google Scholar 

  2. Bonde M, Qvist P, Fledelius C, Riis BJ, Christiansen C (1994) Immunoassay for quantifying type I collagen degradation products in urine evaluated. Clin Chem 40:2022–2025

    PubMed  CAS  Google Scholar 

  3. Jensen C, Holloway L, Block G, Spiller G, Gildengorin G, Gunderson E, Butterfield G, Marcus R (2002) Long-term effects of nutrient intervention on markers of bone remodeling and calciotropic hormones in late-postmenopausal women. Am J Clin Nutr 75:1114–1120

    PubMed  CAS  Google Scholar 

  4. Wittrant Y, Theoleyre S, Chipoy C, Padrines M, Blanchard F, Heymann D, Redini F (2004) RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim Biophys Acta 1704:49–57

    PubMed  CAS  Google Scholar 

  5. Martin RB (2002) Is all cortical bone remodeling initiated by microdamage? Bone 30:8–13

    Article  PubMed  CAS  Google Scholar 

  6. Nieves JW (2005) Osteoporosis: the role of micronutrients. Am J Clin Nutr 81:1232S–1239S

    PubMed  CAS  Google Scholar 

  7. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334

    Article  PubMed  Google Scholar 

  8. Zaidi M, Turner CH, Canalis E, Pacifici R, Sun L, Iqbal J, Guo XE, Silverman S, Epstein S, Rosen CJ (2009) Bone loss or lost bone: rationale and recommendations for the diagnosis and treatment of early postmenopausal bone loss. Curr Osteoporos Rep 7:118–126

    Article  PubMed  Google Scholar 

  9. Iwamoto J, Takeda T, Ichimura S (2001) Effect of menatetrenone on bone mineral density and incidence of vertebral fractures in postmenopausal women with osteoporosis: a comparison with the effect of etidronate. J Orthop Sci 6:487–492

    Article  PubMed  CAS  Google Scholar 

  10. Cheung AM, Tile L, Lee Y, Tomlinson G, Hawker G, Scher J, Hu H, Vieth R, Thompson L, Jamal S, Josse R (2008) Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial. PLoS Med 5:e196

    Article  PubMed  Google Scholar 

  11. Shiraki M, Shiraki Y, Aoki C, Miura M (2000) Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res 15:515–521

    Article  PubMed  CAS  Google Scholar 

  12. Ishida Y, Kawai S (2004) Comparative efficacy of hormone replacement therapy, etidronate, calcitonin, alfacalcidol, and vitamin K in postmenopausal women with osteoporosis: the Yamaguchi Osteoporosis Prevention Study. Am J Med 117:549–555

    Article  PubMed  CAS  Google Scholar 

  13. Manios Y, Moschonis G, Trovas G, Lyritis GP (2007) Changes in biochemical indexes of bone metabolism and bone mineral density after a 12-mo dietary intervention program: the Postmenopausal Health Study. Am J Clin Nutr 86:781–789

    PubMed  CAS  Google Scholar 

  14. Chee WS, Suriah AR, Chan SP, Zaitun Y, Chan YM (2003) The effect of milk supplementation on bone mineral density in postmenopausal Chinese women in Malaysia. Osteoporos Int 14:828–834

    Article  PubMed  CAS  Google Scholar 

  15. McKenna MJ, Freaney R, Byrne P, McBrinn Y, Murray B, Kelly M, Donne B, O’Brien M (1995) Safety and efficacy of increasing wintertime vitamin D and calcium intake by milk fortification. QJM 88:895–898

    PubMed  CAS  Google Scholar 

  16. Prince R, Devine A, Dick I, Criddle A, Kerr D, Kent N, Price R, Randell A (1995) The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res 10:1068–1075

    Article  PubMed  CAS  Google Scholar 

  17. Storm D, Eslin R, Porter ES, Musgrave K, Vereault D, Patton C, Kessenich C, Mohan S, Chen T, Holick MF, Rosen CJ (1998) Calcium supplementation prevents seasonal bone loss and changes in biochemical markers of bone turnover in elderly New England women: a randomized placebo-controlled trial. J Clin Endocrinol Metab 83:3817–3825

    Article  PubMed  CAS  Google Scholar 

  18. Magkos F, Manios Y, Babaroutsi E, Sidossis LS (2006) Development and validation of a food frequency questionnaire for assessing dietary calcium intake in the general population. Osteoporos Int 17:304–312

    Article  PubMed  Google Scholar 

  19. Janz NK, Becker MH (1984) The health belief model: a decade later. Health Educ Q 11:1–47

    Article  PubMed  CAS  Google Scholar 

  20. Bandura A, Adams NE, Beyer J (1977) Cognitive processes mediating behavioral change. J Pers Soc Psychol 35:125–139

    Article  PubMed  CAS  Google Scholar 

  21. Trichopoulou A (2004) Composition tables of foods and Greek dishes. Department of Epidimiology, School of Medicine, University of Athens, Athens

    Google Scholar 

  22. University of Crete (1991) Food composition tables (website in Greek). http://nutrition.med.uoc.gr/GreekTables

  23. Moschonis G, Kanellakis S, Papaioannou N, Schaafsma A, Manios Y (2011) Possible site-specific effect of an intervention combining nutrition and lifestyle counselling with consumption of fortified dairy products on bone mass: the Postmenopausal Health Study II. J Bone Miner Metab 29:501–506

    Article  PubMed  CAS  Google Scholar 

  24. Institute of Medicine Food and Nutrition Board (2001) Dietary reference intakes: applications in dietary assessment. National Academy Press, Washington, DC

    Google Scholar 

  25. Kitchin B, Morgan SL (2007) Not just calcium and vitamin D: other nutritional considerations in osteoporosis. Curr Rheumatol Rep 9:85–92

    Article  PubMed  CAS  Google Scholar 

  26. Bugel S (2008) Vitamin K and bone health in adult humans. Vitam Horm 78:393–416

    Article  PubMed  CAS  Google Scholar 

  27. Wolff I, van Croonenborg JJ, Kemper HC, Kostense PJ, Twisk JW (1999) The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int 9:1–12

    Article  PubMed  CAS  Google Scholar 

  28. Ghiron LJ, Thompson JL, Holloway L, Hintz RL, Butterfield GE, Hoffman AR, Marcus R (1995) Effects of recombinant insulin-like growth factor-I and growth hormone on bone turnover in elderly women. J Bone Miner Res 10:1844–1852

    Article  PubMed  CAS  Google Scholar 

  29. Hamdy NA (2007) Targeting the RANK/RANKL/OPG signaling pathway: a novel approach in the management of osteoporosis. Curr Opin Investig Drugs 8:299–303

    PubMed  CAS  Google Scholar 

  30. Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. Jama 292:490–495

    Article  PubMed  CAS  Google Scholar 

  31. Marini H, Minutoli L, Polito F, Bitto A, Altavilla D, Atteritano M, Gaudio A, Mazzaferro S, Frisina A, Frisina N, Lubrano C, Bonaiuto M, D’Anna R, Cannata ML, Corrado F, Cancellieri F, Faraci M, Marini R, Adamo EB, Wilson S, Squadrito F (2008) OPG and sRANKL serum concentrations in osteopenic, postmenopausal women after 2-year genistein administration. J Bone Miner Res 23:715–720

    Article  PubMed  CAS  Google Scholar 

  32. Hauschka PV, Lian JB, Cole DE, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K–dependent proteins in bone. Physiol Rev 69:990–1047

    PubMed  CAS  Google Scholar 

  33. Iwamoto J, Sato Y, Takeda T, Matsumoto H (2009) High-dose vitamin K supplementation reduces fracture incidence in postmenopausal women: a review of the literature. Nutr Res 29:221–228

    Article  PubMed  CAS  Google Scholar 

  34. Ozuru R, Sugimoto T, Yamaguchi T, Chihara K (2002) Time-dependent effects of vitamin K2 (menatetrenone) on bone metabolism in postmenopausal women. Endocr J 49:363–370

    Article  PubMed  CAS  Google Scholar 

  35. Shiraki M, Itabashi A (2009) Short-term menatetrenone therapy increases gamma-carboxylation of osteocalcin with a moderate increase of bone turnover in postmenopausal osteoporosis: a randomized prospective study. J Bone Miner Metab 27:333–340

    Article  PubMed  CAS  Google Scholar 

  36. Yamauchi M, Yamaguchi T, Nawata K, Takaoka S, Sugimoto T (2010) Relationships between undercarboxylated osteocalcin and vitamin K intakes, bone turnover, and bone mineral density in healthy women. Clin Nutr 29:761–765

    Article  PubMed  CAS  Google Scholar 

  37. Hara K, Akiyama Y, Tajima T, Shiraki M (1993) Menatetrenone inhibits bone resorption partly through inhibition of PGE2 synthesis in vitro. J Bone Miner Res 8:535–542

    Article  PubMed  CAS  Google Scholar 

  38. Kameda T, Miyazawa K, Mori Y, Yuasa T, Shiokawa M, Nakamaru Y, Mano H, Hakeda Y, Kameda A, Kumegawa M (1996) Vitamin K2 inhibits osteoclastic bone resorption by inducing osteoclast apoptosis. Biochem Biophys Res Commun 220:515–519

    Article  PubMed  CAS  Google Scholar 

  39. Weisman SM, Matkovic V (2005) Potential use of biochemical markers of bone turnover for assessing the effect of calcium supplementation and predicting fracture risk. Clin Ther 27:299–308

    Article  PubMed  CAS  Google Scholar 

  40. Stepan JJ (2000) Prediction of bone loss in postmenopausal women. Osteoporos Int 11(suppl 6):S45–S54

    Article  PubMed  Google Scholar 

  41. Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J (2000) The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int 11(suppl 6):S2–S17

    Article  PubMed  Google Scholar 

  42. Riggs BL, O’Fallon WM, Muhs J, O’Connor MK, Kumar R, Melton LJ 3rd (1998) Long-term effects of calcium supplementation on serum parathyroid hormone level, bone turnover, and bone loss in elderly women. J Bone Miner Res 13:168–174

    Article  PubMed  CAS  Google Scholar 

  43. Moschonis G, Katsaroli I, Lyritis GP, Manios Y (2010) The effects of a 30-month dietary intervention on bone mineral density: the Postmenopausal Health Study. Br J Nutr 104:100–107

    Article  PubMed  CAS  Google Scholar 

  44. Bolton-Smith C, McMurdo ME, Paterson CR, Mole PA, Harvey JM, Fenton ST, Prynne CJ, Mishra GD, Shearer MJ (2007) Two-year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women. J Bone Miner Res 22:509–519

    Article  PubMed  CAS  Google Scholar 

  45. Cockayne S, Adamson J, Lanham-New S, Shearer MJ, Gilbody S, Torgerson DJ (2006) Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 166:1256–1261

    Article  PubMed  CAS  Google Scholar 

  46. Schaafsma A, Muskiet FA, Storm H, Hofstede GJ, Pakan I, Van der Veer E (2000) Vitamin D3 and vitamin K1 supplementation of Dutch postmenopausal women with normal and low bone mineral densities: effects on serum 25-hydroxyvitamin D and carboxylated osteocalcin. Eur J Clin Nutr 54:626–631

    Article  PubMed  CAS  Google Scholar 

  47. Vermeer C, Shearer MJ, Zittermann A, Bolton-Smith C, Szulc P, Hodges S, Walter P, Rambeck W, Stocklin E, Weber P (2004) Beyond deficiency: potential benefits of increased intakes of vitamin K for bone and vascular health. Eur J Nutr 43:325–335

    Article  PubMed  CAS  Google Scholar 

  48. Eisai (2005) Eisai announces the intermediate analysis of anti-osteoporosis treatment post-marketing research to investigate the benefits of menatetrenone as part of the Ministry of Health, Labour and Welfare’s. Pharmacoepidemiological Drug Review Program

  49. Schurgers LJ, Teunissen KJ, Hamulyak K, Knapen MH, Vik H, Vermeer C (2007) Vitamin K–containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood 109:3279–3283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a research grant from FrieslandCampina. The study sponsor had no role in the collection and analysis of the data, or the submission of the report. The authors thank Anastasia Vandorou, Katerina Kyriakou, Vasiliki Dede, Odysseas Androutsos, Konstantina Maragkopoulou, Efstathoula Argyri, Angeliki Giannopoulou, Vassiliki Iatridi, Christina Maurogianni, Sotiria Pitsikou, Sofia Chondrou, George Saltaouras, and Dimitra Meladaki (dietitians) for their valuable contribution in data collection and processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Manios.

Additional information

A. Schaafsma and E. G. H. M. van den Heuvel have consultant/advisory role to FrieslandCampina BV. Y. Manios has consultant/advisory role to FrieslandCampina Hellas. All other authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanellakis, S., Moschonis, G., Tenta, R. et al. Changes in Parameters of Bone Metabolism in Postmenopausal Women Following a 12-Month Intervention Period Using Dairy Products Enriched with Calcium, Vitamin D, and Phylloquinone (Vitamin K1) or Menaquinone-7 (Vitamin K2): The Postmenopausal Health Study II. Calcif Tissue Int 90, 251–262 (2012). https://doi.org/10.1007/s00223-012-9571-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9571-z

Keywords

Navigation