Skip to main content
Log in

Escitalopram, an antidepressant with an allosteric effect at the serotonin transporter—a review of current understanding of its mechanism of action

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Escitalopram is a widely used antidepressant for the treatment of patients with major depression. It is the pure S-enantiomer of racemic citalopram. Several clinical trials and meta-analyses indicate that escitalopram is quantitatively more efficacious than many other antidepressants with a faster onset of action.

Objective

This paper reviews current knowledge about the mechanism of action of escitalopram.

Results

The primary target for escitalopram is the serotonin transporter (SERT), which is responsible for serotonin (or 5-hydroxytryptamine [5-HT]) reuptake at the terminals and cell bodies of serotonergic neurons. Escitalopram and selective serotonin reuptake inhibitors bind with high affinity to the 5-HT binding site (orthosteric site) on the transporter. This leads to antidepressant effects by increasing extracellular 5-HT levels which enhance 5-HT neurotransmission. SERT also has one or more allosteric sites, binding to which modulates activity at the orthosteric binding site but does not directly affect 5-HT reuptake by the transporter. In vitro studies have shown that through allosteric binding, escitalopram decreases its own dissociation rate from the orthosteric site on the SERT. R-citalopram, the nontherapeutic enantiomer in citalopram, is also an allosteric modulator of SERT but can inhibit the actions of escitalopram by interfering negatively with its binding. Both nonclinical studies and some clinical investigations have demonstrated the cellular, neurochemical, neuroadaptive, and neuroplastic changes induced by escitalopram with acute and chronic administration.

Conclusions

The findings from binding, neurochemical, and neurophysiological studies may provide a mechanistic rationale for the clinical difference observed with escitalopram compared to other antidepressant therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alboni S, Benatti C, Capone G, Corsini D, Caggia F, Tascedda F, Mendlewicz J, Brunello N (2010) Time-dependent effects of escitalopram on brain derived neurotrophic factor (BDNF) and neuroplasticity related targets in the central nervous system of rats. Eur J Pharmacol 643:180–187

    Article  PubMed  CAS  Google Scholar 

  • Ali MK, Lam RW (2011) Comparative efficacy of escitalopram in the treatment of major depressive disorder. Neuropsychiatr Dis Treat 7:39–49

    PubMed  CAS  Google Scholar 

  • Andersen J, Taboureau O, Hansen KB, Olsen L, Egebjerg J, Stromgaard K, Kristensen AS (2009) Location of the antidepressant binding site in the serotonin transporter: importance of Ser-438 in recognition of citalopram and tricyclic antidepressants. J Biol Chem 284:10276–10284

    Article  PubMed  CAS  Google Scholar 

  • Aydemir C, Yalcin ES, Aksaray S, Kisa C, Yildirim SG, Uzbay T, Goka E (2006) Brain-derived neurotrophic factor (BDNF) changes in the serum of depressed women. Prog Neuropsychopharmacol Biol Psychiatry 30:1256–1260

    Article  PubMed  CAS  Google Scholar 

  • Balu DT, Hoshaw BA, Malberg JE, Rosenzweig-Lipson S, Schechter LE, Lucki I (2008) Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments. Brain Res 1211:37–43

    Article  PubMed  CAS  Google Scholar 

  • Banasr M, Duman RS (2007) Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol Disord Drug Targets 6:311–320

    Article  PubMed  CAS  Google Scholar 

  • Barbiero VS, Giambelli R, Musazzi L, Tiraboschi E, Tardito D, Perez J, Drago F, Racagni G, Popoli M (2007) Chronic antidepressants induce redistribution and differential activation of alphaCaM kinase II between presynaptic compartments. Neuropsychopharmacology 32:2511–2519

    Article  PubMed  CAS  Google Scholar 

  • Bech P, Tanghoj P, Cialdella P, Andersen HF, Pedersen AG (2004) Escitalopram dose–response revisited: an alternative psychometric approach to evaluate clinical effects of escitalopram compared to citalopram and placebo in patients with major depression. Int J Neuropsychopharmacol 7:283–290

    Article  PubMed  CAS  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  PubMed  CAS  Google Scholar 

  • Bhagya V, Srikumar BN, Raju TR, Shankaranarayana Rao BS (2011) Chronic escitalopram treatment restores spatial learning, monoamine levels, and hippocampal long-term potentiation in an animal model of depression. Psychopharmacology (Berl) 214:477–494

    Article  CAS  Google Scholar 

  • Blakely RD, De Felice LJ, Hartzell HC (1994) Molecular physiology of norepinephrine and serotonin transporters. J Exp Biol 196:263–281

    PubMed  CAS  Google Scholar 

  • Blakely RD, Ramamoorthy S, Schroeter S, Qian Y, Apparsundaram S, Galli A, DeFelice LJ (1998) Regulated phosphorylation and trafficking of antidepressant-sensitive serotonin transporter proteins. Biol Psychiatry 44:169–178

    Article  PubMed  CAS  Google Scholar 

  • Blier P, de Montigny C (1999) Serotonin and drug-induced therapeutic responses in major depression, obsessive-compulsive and panic disorders. Neuropsychopharmacology 21:91S–98S

    PubMed  CAS  Google Scholar 

  • Boos TL, Greiner E, Calhoun WJ, Prisinzano TE, Nightingale B, Dersch CM, Rothman RB, Jacobson AE, Rice KC (2006) Structure–activity relationships of substituted N-benzyl piperidines in the GBR series: synthesis of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl)piperidine, an allosteric modulator of the serotonin transporter. Bioorg Med Chem 14:3967–3973

    Article  PubMed  CAS  Google Scholar 

  • Celik L, Sinning S, Severinsen K, Hansen CG, Moller MS, Bols M, Wiborg O, Schiott B (2008) Binding of serotonin to the human serotonin transporter. Molecular modeling and experimental validation. J Am Chem Soc 130:3853–3865

    Article  PubMed  CAS  Google Scholar 

  • Chanrion B, la Mannoury CC, Bertaso F, Lerner-Natoli M, Freissmuth M, Millan MJ, Bockaert J, Marin P (2007) Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity. Proc Natl Acad Sci U S A 104:8119–8124

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Larsen MB, Neubauer HA, Sanchez C, Plenge P, Wiborg O (2005a) Characterization of an allosteric citalopram-binding site at the serotonin transporter. J Neurochem 92:21–28

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Larsen MB, Sanchez C, Wiborg O (2005b) The S-enantiomer of R, S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism. Comparison with other serotonin transporter inhibitors. Eur Neuropsychopharmacol 15:193–198

    Article  PubMed  CAS  Google Scholar 

  • Cipriani A, Santilli C, Furukawa TA, Signoretti A, Nakagawa A, McGuire H, Churchill R, Barbui C (2009) Escitalopram versus other antidepressive agents for depression. Cochrane Database Syst Rev 2:CD006532

    PubMed  Google Scholar 

  • Di Mascio M, Di Giovanni G, Di Matteo V, Prisco S, Esposito E (1998) Selective serotonin reuptake inhibitors reduce the spontaneous activity of dopaminergic neurons in the ventral tegmental area. Brain Res Bull 46:547–554

    Article  PubMed  CAS  Google Scholar 

  • Donati RJ, Dwivedi Y, Roberts RC, Conley RR, Pandey GN, Rasenick MM (2008) Postmortem brain tissue of depressed suicides reveals increased Gs alpha localization in lipid raft domains where it is less likely to activate adenylyl cyclase. J Neurosci 28:3042–3050

    Article  PubMed  CAS  Google Scholar 

  • Dremencov E, El Mansari M, Blier P (2009) Effects of sustained serotonin reuptake inhibition on the firing of dopamine neurons in the rat ventral tegmental area. J Psychiatry Neurosci 34:223–229

    PubMed  Google Scholar 

  • Drevets WC, Thase ME, Moses-Kolko EL, Price J, Frank E, Kupfer DJ, Mathis C (2007) Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl Med Biol 34:865–877

    Article  PubMed  CAS  Google Scholar 

  • El Mansari M, Sanchez C, Chouvet G, Renaud B, Haddjeri N (2005) Effects of acute and long-term administration of escitalopram and citalopram on serotonin neurotransmission: an in vivo electrophysiological study in rat brain. Neuropsychopharmacology 30:1269–1277

    PubMed  CAS  Google Scholar 

  • El Mansari M, Wiborg O, Mnie-Filali O, Benturquia N, Sanchez C, Haddjeri N (2007) Allosteric modulation of the effect of escitalopram, paroxetine and fluoxetine: in-vitro and in-vivo studies. Int J Neuropsychopharmacol 10:31–40

    Article  CAS  Google Scholar 

  • Glatt CE, DeYoung JA, Delgado S, Service SK, Giacomini KM, Edwards RH, Risch N, Freimer NB (2001) Screening a large reference sample to identify very low frequency sequence variants: comparisons between two genes. Nat Genet 27:435–438

    Article  PubMed  CAS  Google Scholar 

  • Hahn A, Lanzenberger R, Wadsak W, Spindelegger C, Moser U, Mien LK, Mitterhauser M, Kasper S (2010) Escitalopram enhances the association of serotonin-1A autoreceptors to heteroreceptors in anxiety disorders. J Neurosci 30:14482–14489

    Article  PubMed  CAS  Google Scholar 

  • Henry LK, Field JR, Adkins EM, Parnas ML, Vaughan RA, Zou MF, Newman AH, Blakely RD (2006) Tyr-95 and Ile-172 in transmembrane segments 1 and 3 of human serotonin transporters interact to establish high affinity recognition of antidepressants. J Biol Chem 281:2012–2023

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen JP, Mork A (2004) The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Res 1024:183–192

    Article  PubMed  CAS  Google Scholar 

  • Jayatissa MN, Bisgaard C, Tingstrom A, Papp M, Wiborg O (2006) Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology 31:2395–2404

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen AM, Topiol S (2008) Driving forces for ligand migration in the leucine transporter. Chem Biol Drug Des 72:265–272

    Article  PubMed  CAS  Google Scholar 

  • Kasper S, Spadone C, Verpillat P, Angst J (2006) Onset of action of escitalopram compared with other antidepressants: results of a pooled analysis. Int Clin Psychopharmacol 21:105–110

    Article  PubMed  Google Scholar 

  • Kasper S, Baldwin DS, Larsson LS, Boulenger JP (2009a) Superiority of escitalopram to paroxetine in the treatment of depression. Eur Neuropsychopharmacol 19:229–237

    Article  PubMed  CAS  Google Scholar 

  • Kasper S, Sacher J, Klein N, Mossaheb N, Attarbaschi-Steiner T, Lanzenberger R, Spindelegger C, Asenbaum S, Holik A, Dudczak R (2009b) Differences in the dynamics of serotonin reuptake transporter occupancy may explain superior clinical efficacy of escitalopram versus citalopram. Int Clin Psychopharmacol 24:119–125

    Article  PubMed  Google Scholar 

  • Kennedy SH, Andersen HF, Thase ME (2009) Escitalopram in the treatment of major depressive disorder: a meta-analysis. Curr Med Res Opin 25:161–175

    Article  PubMed  CAS  Google Scholar 

  • Kilic F, Murphy DL, Rudnick G (2003) A human serotonin transporter mutation causes constitutive activation of transport activity. Mol Pharmacol 64:440–446

    Article  PubMed  CAS  Google Scholar 

  • Koldso H, Severinsen K, Tran TT, Celik L, Jensen HH, Wiborg O, Schiott B, Sinning S (2010) The two enantiomers of citalopram bind to the human serotonin transporter in reversed orientations. J Am Chem Soc 132:1311–1322

    Article  PubMed  CAS  Google Scholar 

  • Kornstein SG, Li D, Mao Y, Larsson S, Andersen HF, Papakostas GI (2009) Escitalopram versus SNRI antidepressants in the acute treatment of major depressive disorder: integrative analysis of four double-blind, randomized clinical trials. CNS Spectr 14:326–333

    PubMed  Google Scholar 

  • Kreilgaard M, Smith DG, Brennum LT, Sanchez C (2008) Prediction of clinical response based on pharmacokinetic/pharmacodynamic models of 5-hydroxytryptamine reuptake inhibitors in mice. Br J Pharmacol 155:276–284

    Article  PubMed  CAS  Google Scholar 

  • Lam RW, Lonn SL, Despiegel N (2010) Escitalopram versus serotonin noradrenaline reuptake inhibitors as second step treatment for patients with major depressive disorder: a pooled analysis. Int Clin Psychopharmacol 25:199–203

    Article  PubMed  Google Scholar 

  • Leonard B, Taylor D (2010) Escitalopram—translating molecular properties into clinical benefit: reviewing the evidence in major depression. J Psychopharmacol 24:1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Lepola U, Wade A, Andersen HF (2004) Do equivalent doses of escitalopram and citalopram have similar efficacy? A pooled analysis of two positive placebo-controlled studies in major depressive disorder. Int Clin Psychopharmacol 19:149–155

    Article  PubMed  Google Scholar 

  • Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Leuchter AF, Cook IA, Gilmer WS, Marangell LB, Burgoyne KS, Howland RH, Trivedi MH, Zisook S, Jain R, Fava M, Iosifescu D, Greenwald S (2009a) Effectiveness of a quantitative electroencephalographic biomarker for predicting differential response or remission with escitalopram and bupropion in major depressive disorder. Psychiatry Res 169:132–138

    Article  PubMed  CAS  Google Scholar 

  • Leuchter AF, Cook IA, Marangell LB, Gilmer WS, Burgoyne KS, Howland RH, Trivedi MH, Zisook S, Jain R, McCracken JT, Fava M, Iosifescu D, Greenwald S (2009b) Comparative effectiveness of biomarkers and clinical indicators for predicting outcomes of SSRI treatment in major depressive disorder: results of the BRITE-MD study. Psychiatry Res 169:124–131

    Article  PubMed  CAS  Google Scholar 

  • Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  PubMed  CAS  Google Scholar 

  • Loland CJ, Plenge P, Shi L, Zhang P, Javitch JA, Newman AH, Weinstein H, Gether U (2010) Mapping of the allosteric binding site in the serotonin transporter. Basic Clin Pharmacol Toxicol 107:116–117

    Google Scholar 

  • Lotrich FE, Pollock BG (2004) Meta-analysis of serotonin transporter polymorphisms and affective disorders. Psychiatr Genet 14:121–129

    Article  PubMed  Google Scholar 

  • Lucassen PJ, Meerlo P, Naylor AS, van Dam AM, Dayer AG, Fuchs E, Oomen CA, Czeh B (2010) Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol 20:1–17

    Article  PubMed  CAS  Google Scholar 

  • McHugh RK, Hofmann SG, Asnaani A, Sawyer AT, Otto MW (2010) The serotonin transporter gene and risk for alcohol dependence: a meta-analytic review. Drug Alcohol Depend 108:1–6

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ (2006) Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 110:135–370

    Article  PubMed  CAS  Google Scholar 

  • Mnie-Filali O, Faure C, El Mansari M, Lambas-Senas L, Berod A, Zimmer L, Sanchez C, Haddjeri N (2007) R-citalopram prevents the neuronal adaptive changes induced by escitalopram. Neuroreport 18:1553–1556

    Article  PubMed  CAS  Google Scholar 

  • Mnie-Filali O, El Mansari M, Sanchez C, Haddjeri N (2009) R-citalopram prevents the neuronal adaptive changes induced by escitalopram. Curr Sign Trans Ther 4:82–87

    Article  CAS  Google Scholar 

  • Montgomery SA, Moller HJ (2009) Is the significant superiority of escitalopram compared with other antidepressants clinically relevant? Int Clin Psychopharmacol 24:111–118

    Article  PubMed  Google Scholar 

  • Montgomery SA, Baldwin DS, Blier P, Fineberg NA, Kasper S, Lader M, Lam RW, Lepine JP, Moller HJ, Nutt DJ, Rouillon F, Schatzberg AF, Thase ME (2007) Which antidepressants have demonstrated superior efficacy? A review of the evidence. Int Clin Psychopharmacol 22:323–329

    Article  PubMed  Google Scholar 

  • Montgomery S, Hansen T, Kasper S (2011) Efficacy of escitalopram compared to citalopram: a meta-analysis. Int J Neuropsychopharmacol 14:261–268

    Article  PubMed  CAS  Google Scholar 

  • Mork A, Kreilgaard M, Sanchez C (2003) The R-enantiomer of citalopram counteracts escitalopram-induced increase in extracellular 5-HT in the frontal cortex of freely moving rats. Neuropharmacology 45:167–173

    Article  PubMed  CAS  Google Scholar 

  • Morphy R, Rankovic Z (2009) Designing multiple ligands—medicinal chemistry strategies and challenges. Curr Pharm Des 15:587–600

    Article  PubMed  CAS  Google Scholar 

  • Muhonen LH, Lahti J, Alho H, Lonnqvist J, Haukka J, Saarikoski ST (2011) Serotonin transporter polymorphism as a predictor for escitalopram treatment of major depressive disorder comorbid with alcohol dependence. Psychiatry Res 186(1):53–57

    Article  PubMed  CAS  Google Scholar 

  • Musazzi L, Mallei A, Tardito D, Gruber SH, El KA, Racagni G, Mathe AA, Popoli M (2010) Early-life stress and antidepressant treatment involve synaptic signaling and Erk kinases in a gene-environment model of depression. J Psychiatr Res 44:511–520

    Article  PubMed  Google Scholar 

  • Nandi A, Dersch CM, Kulshrestha M, Ananthan S, Rothman RB (2004) Identification and characterization of a novel allosteric modulator (SoRI-6238) of the serotonin transporter. Synapse 53:176–183

    Article  PubMed  CAS  Google Scholar 

  • Nellissery M, Feinn RS, Covault J, Gelernter J, Anton RF, Pettinati H, Moak D, Mueller T, Kranzler HR (2003) Alleles of a functional serotonin transporter promoter polymorphism are associated with major depression in alcoholics. Alcohol Clin Exp Res 27:1402–1408

    Article  PubMed  CAS  Google Scholar 

  • Neubauer HA, Hansen CG, Wiborg O (2006) Dissection of an allosteric mechanism on the serotonin transporter: a cross-species study. Mol Pharmacol 69:1242–1250

    Article  PubMed  CAS  Google Scholar 

  • Nightingale B, Dersch CM, Boos TL, Greiner E, Calhoun WJ, Jacobson AE, Rice KC, Rothman RB (2005) Studies of the biogenic amine transporters. XI. Identification of a 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (GBR12909) analog that allosterically modulates the serotonin transporter. J Pharmacol Exp Ther 314:906–915

    Article  PubMed  CAS  Google Scholar 

  • Nikisch G, Mathe AA, Czernik A, Eap CB, Jimenez-Vasquez P, Brawand-Amey M, Baumann P (2004) Stereoselective metabolism of citalopram in plasma and cerebrospinal fluid of depressive patients: relationship with 5-HIAA in CSF and clinical response. J Clin Psychopharmacol 24:283–290

    Article  PubMed  CAS  Google Scholar 

  • Nutt DJ, Feetam CL (2010) What one hand giveth the other taketh away: some unpredicted effects of enantiomers in psychopharmacology. J Psychopharmacol 24:1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Owens MJ (2007) C.20.01 new pharmacological tools in evaluation of antidepressant molecules. Eur Neuropsychopharmacol 17:S610

    Article  Google Scholar 

  • Owens MJ, Nemeroff CB (1994) Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 40:288–295

    PubMed  CAS  Google Scholar 

  • Ozaki N, Goldman D, Kaye WH, Plotnicov K, Greenberg BD, Lappalainen J, Rudnick G, Murphy DL (2003) Serotonin transporter missense mutation associated with a complex neuropsychiatric phenotype. Mol Psychiatry 8:933–936

    Article  PubMed  CAS  Google Scholar 

  • Peng Q, Masuda N, Jiang M, Li Q, Zhao M, Ross CA, Duan W (2008) The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington’s disease mouse model. Exp Neurol 210:154–163

    Article  PubMed  CAS  Google Scholar 

  • Plenge P, Mellerup ET (1997) An affinity-modulating site on neuronal monoamine transport proteins. Pharmacol Toxicol 80:197–201

    Article  PubMed  CAS  Google Scholar 

  • Plenge P, Wiborg O (2005) High- and low-affinity binding of S-citalopram to the human serotonin transporter mutated at 20 putatively important amino acid positions. Neurosci Lett 383:203–208

    Article  PubMed  CAS  Google Scholar 

  • Plenge P, Gether U, Rasmussen SG (2007) Allosteric effects of R- and S-citalopram on the human 5-HT transporter: evidence for distinct high- and low-affinity binding sites. Eur J Pharmacol 567:1–9

    Article  PubMed  CAS  Google Scholar 

  • Prasad HC, Zhu CB, McCauley JL, Samuvel DJ, Ramamoorthy S, Shelton RC, Hewlett WA, Sutcliffe JS, Blakely RD (2005) Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc Natl Acad Sci U S A 102:11545–11550

    Article  PubMed  CAS  Google Scholar 

  • Prisco S, Esposito E (1995) Differential effects of acute and chronic fluoxetine administration on the spontaneous activity of dopaminergic neurones in the ventral tegmental area. Br J Pharmacol 116:1923–1931

    PubMed  CAS  Google Scholar 

  • Racagni G, Popoli M (2008) Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin Neurosci 10:385–400

    PubMed  Google Scholar 

  • Rao N (2007) The clinical pharmacokinetics of escitalopram. Clin Pharmacokinet 46:281–290

    Article  PubMed  CAS  Google Scholar 

  • Rochat B, Kosel M, Boss G, Testa B, Gillet M, Baumann P (1998) Stereoselective biotransformation of the selective serotonin reuptake inhibitor citalopram and its demethylated metabolites by monoamine oxidases in human liver. Biochem Pharmacol 56:15–23

    Article  PubMed  CAS  Google Scholar 

  • Ryan B, Musazzi L, Mallei A, Tardito D, Gruber SH, El KA, Anwyl R, Racagni G, Mathe AA, Rowan MJ, Popoli M (2009) Remodelling by early-life stress of NMDA receptor-dependent synaptic plasticity in a gene-environment rat model of depression. Int J Neuropsychopharmacol 12:553–559

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C (2006) The pharmacology of citalopram enantiomers: the antagonism by R-citalopram on the effect of S-citalopram. Basic Clin Pharmacol Toxicol 99:91–95

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C, Kreilgaard M (2004) R-citalopram inhibits functional and 5-HTP-evoked behavioural responses to the SSRI, escitalopram. Pharmacol Biochem Behav 77:391–398

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C, Bergqvist PB, Brennum LT, Gupta S, Hogg S, Larsen A, Wiborg O (2003) Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology (Berl) 167:353–362

    CAS  Google Scholar 

  • Sanchez C, Bogeso KP, Ebert B, Reines EH, Braestrup C (2004) Escitalopram versus citalopram: the surprising role of the R-enantiomer. Psychopharmacology (Berl) 174:163–176

    Article  CAS  Google Scholar 

  • Schilstrom B, Konradsson-Geuken A, Ivanov V, Gertow J, Feltmann K, Marcus MM, Jardemark K, Svensson TH (2011) Effects of S-citalopram, citalopram, and R-citalopram on the firing patterns of dopamine neurons in the ventral tegmental area, N-methyl-D-aspartate receptor-mediated transmission in the medial prefrontal cortex and cognitive function in the rat. Synapse 65:357–367

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Herbruggen O, Fuchs E, Abumaria N, Ziegler A, Danker-Hopfe H, Hiemke C, Hellweg R (2009) Effects of escitalopram on the regulation of brain-derived neurotrophic factor and nerve growth factor protein levels in a rat model of chronic stress. J Neurosci Res 87:2551–2560

    Article  PubMed  CAS  Google Scholar 

  • Serra-Millas M, Lopez-Vilchez I, Navarro V, Galan AM, Escolar G, Penades R, Catalan R, Fananas L, Arias B, Gasto C (2011) Changes in plasma and platelet BDNF levels induced by S-citalopram in major depression. Psychopharmacology (Berl) 216(1):1–8

    Article  CAS  Google Scholar 

  • Sidhu J, Priskorn M, Poulsen M, Segonzac A, Grollier G, Larsen F (1997) Steady-state pharmacokinetics of the enantiomers of citalopram and its metabolites in humans. Chirality 9:686–692

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Yamashita A, Gouaux E (2007) Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 448:952–956

    Article  PubMed  CAS  Google Scholar 

  • Skolnick P, Popik P, Trullas R (2009) Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 30:563–569

    Article  PubMed  CAS  Google Scholar 

  • Steiner JA, Carneiro AM, Blakely RD (2008) Going with the flow: trafficking-dependent and -independent regulation of serotonin transport. Traffic 9:1393–1402

    Article  PubMed  CAS  Google Scholar 

  • Storustovu S, Sanchez C, Porzgen P, Brennum LT, Larsen AK, Pulis M, Ebert B (2004) R-citalopram functionally antagonises escitalopram in vivo and in vitro: evidence for kinetic interaction at the serotonin transporter. Br J Pharmacol 142:172–180

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe JS, Delahanty RJ, Prasad HC, McCauley JL, Han Q, Jiang L, Li C, Folstein SE, Blakely RD (2005) Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am J Hum Genet 77:265–279

    Article  PubMed  CAS  Google Scholar 

  • Tanum L, Strand LP, Refsum H (2010) Serum concentrations of citalopram—dose-dependent variation in R- and S-enantiomer ratios. Pharmacopsychiatry 43:190–193

    Article  PubMed  CAS  Google Scholar 

  • Thompson BJ, Jessen T, Henry LK, Field JR, Gamble KL, Gresch PJ, Carneiro AM, Horton RE, Chisnell PJ, Belova Y, McMahon DG, Daws LC, Blakely RD (2011) Transgenic elimination of high-affinity antidepressant and cocaine sensitivity in the presynaptic serotonin transporter. Proc Natl Acad Sci U S A 108:3785–3790

    Article  PubMed  CAS  Google Scholar 

  • Wade A, Friis AH (2006) The onset of effect for escitalopram and its relevance for the clinical management of depression. Curr Med Res Opin 22:2101–2110

    Article  PubMed  CAS  Google Scholar 

  • Wade A, Gembert K, Florea I (2007) A comparative study of the efficacy of acute and continuation treatment with escitalopram versus duloxetine in patients with major depressive disorder. Curr Med Res Opin 23:1605–1614

    Article  PubMed  CAS  Google Scholar 

  • Wade AG, Fernandez JL, Francois C, Hansen K, Danchenko N, Despiegel N (2008) Escitalopram and duloxetine in major depressive disorder: a pharmacoeconomic comparison using UK cost data. PharmacoEconomics 26:969–981

    Article  PubMed  CAS  Google Scholar 

  • Wellsow J, Kovar KA, Machulla HJ (2002) Molecular modeling of potential new and selective PET radiotracers for the serotonin transporter. Positron emission tomography. J Pharm Pharm Sci 5:245–257

    PubMed  CAS  Google Scholar 

  • Wennogle LP, Meyerson LR (1982) Serotonin modulates the dissociation of [3H]imipramine from human platelet recognition sites. Eur J Pharmacol 86:303–307

    Article  PubMed  CAS  Google Scholar 

  • Willers ED, Newman JH, Loyd JE, Robbins IM, Wheeler LA, Prince MA, Stanton KC, Cogan JA, Runo JR, Byrne D, Humbert M, Simonneau G, Sztrymf B, Morse JA, Knowles JA, Roberts KE, McElroy JJ, Barst RJ, Phillips JA III (2006) Serotonin transporter polymorphisms in familial and idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 173:798–802

    Article  PubMed  CAS  Google Scholar 

  • Wong EH, Nikam SS, Shahid M (2008) Multi- and single-target agents for major psychiatric diseases: therapeutic opportunities and challenges. Curr Opin Investig Drugs 9:28–36

    PubMed  CAS  Google Scholar 

  • Zahniser NR, Doolen S (2001) Chronic and acute regulation of Na+/Cl−-dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 92:21–55

    Article  PubMed  CAS  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Rasenick MM (2010) Chronic treatment with escitalopram but not R-citalopram translocates Galpha(s) from lipid raft domains and potentiates adenylyl cyclase: a 5-hydroxytryptamine transporter-independent action of this antidepressant compound. J Pharmacol Exp Ther 332:977–984

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Gu F, Chen J, Dong W (2010) Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat. Brain Res 1366:141–148

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Hansen KB, Boyle NJ, Han K, Muske G, Huang X, Egebjerg J, Sanchez C (2009) An allosteric binding site at the human serotonin transporter mediates the inhibition of escitalopram by R-citalopram: kinetic binding studies with the ALI/VFL-SI/TT mutant. Neurosci Lett 462:207–212

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Zhu DY (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20:223–230

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Zhen J, Karpowich NK, Goetz RM, Law CJ, Reith ME, Wang DN (2007) LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science 317:1390–1393

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Zhen J, Karpowich NK, Law CJ, Reith ME, Wang DN (2009) Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nat Struct Mol Biol 16:652–657

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. David Simpson, Anna-Greta Nylander, and Simon Graham for helpful insights and comments.

Financial interests/disclosure

The work by HZ was performed during previous employment and as current consultancy with Lundbeck; NH is a full-time employee of INSERM (Institut National de la Santé Et de la Recherche Médicale) and has provided consultancy to Lundbeck and Solvay companies; CS is a full-time employee of Lundbeck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huailing Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, H., Haddjeri, N. & Sánchez, C. Escitalopram, an antidepressant with an allosteric effect at the serotonin transporter—a review of current understanding of its mechanism of action. Psychopharmacology 219, 1–13 (2012). https://doi.org/10.1007/s00213-011-2463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2463-5

Keywords

Navigation