Skip to main content

Advertisement

Log in

The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Micronuclei (MN) are small, extranuclear bodies that arise in dividing cells from acentric chromosome/chromatid fragments or whole chromosomes/chromatids lagging behind in anaphase and are not included in the daughter nuclei at telophase. The mechanisms of MN formation are well understood; their possible postmitotic fate is less evident. The MN assay allows detection of both aneugens and clastogens, shows simplicity of scoring, is widely applicable in different cell types, is internationally validated, has potential for automation and is predictive for cancer. The cytokinesis-block micronucleus assay (CBMN) allows assessment of nucleoplasmic bridges, nuclear buds, cell division inhibition, necrosis and apoptosis and in combination with FISH using centromeric probes, the mechanistic origin of the MN. Therefore, the CBMN test can be considered as a “cytome” assay covering chromosome instability, mitotic dysfunction, cell proliferation and cell death. The toxicological relevance of the MN test is strong: it covers several endpoints, its sensitivity is high, its predictivity for in vivo genotoxicity requires adequate selection of cell lines, its statistical power is increased by the recently available high throughput methodologies, it might become a possible candidate for replacing in vivo testing, it allows good extrapolation for potential limits of exposure or thresholds and it is traceable in experimental in vitro and in vivo systems. Implementation of in vitro MN assays in the test battery for hazard and risk assessment of potential mutagens/carcinogens is therefore fully justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, Natarajan AT, Norppa H, Shuker DE, Tice R, Waters MD, Aitio A (2000) IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans, International Programme on Chemical Safety. Mutat Res 463:111–172

    Article  PubMed  CAS  Google Scholar 

  • Au WW, Ruchirawat M (2009) Biomarkers in population studies: environmental mutagenesis and risk for cancer. Rev Environ Health 24:117–127

    Article  PubMed  Google Scholar 

  • Avlasevich SL, Bryce SM, Cairns SE, Dertinger SD (2006) In vitro micronucleus scoring by flow cytometry: differential staining of micronuclei versus apoptotic and necrotic chromatin enhances assay reliability. Environ Mol Mutagen 47:56–66

    Article  PubMed  CAS  Google Scholar 

  • Avlasevich S, Bryce S, De Boeck M, Elhajouji A, Van Goethem F, Lynch A, Nicolette J, Shi J, Dertinger S (2011) Flow cytometric analysis of micronuclei in mammalian cell cultures: past, present and future. Mutagenesis 26:147–152

    Article  PubMed  CAS  Google Scholar 

  • Baeyens A, Thierens H, Claes K, Poppe B, Messiaen L, De Ridder L, Vral A (2002) Chromosomal radiosensitivity in breast cancer patients with a known or putative genetic predisposition. Br J Cancer 87:1379–1385

    Article  PubMed  CAS  Google Scholar 

  • Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, Lukas J (2006) Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173:195–206

    Article  PubMed  CAS  Google Scholar 

  • Bolt HM, Foth H, Hengstler JG, Degen GH (2004) Carcinogenicity categorization of chemicals-new aspects to be considered in a European perspective. Toxicol Lett 151:29–41

    Article  PubMed  CAS  Google Scholar 

  • Bonassi S, Fenech M, Lando C, Lin YP, Ceppi M, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Ban S, Barale R, Bigatti MP, Bolognesi C, Jia C, Di Giorgio M, Ferguson LR, Fucic A, Lima OG, Hrelia P, Krishnaja AP, Lee TK, Migliore L, Mikhalevich L, Mirkova E, Mosesso P, Müller WU, Odagiri Y, Scarffi, Szabova E, Vorobtsova I et al (2001) Human MicroNucleus Project: international database comparison for results with the cytokinesis-block micronucleus assay in human lymphocytes: I. Effect of laboratory protocol, scoring criteria, and host factors on the frequency of micronuclei. Environ Mol Mutagen 37:31–45

    Article  PubMed  CAS  Google Scholar 

  • Bonassi S, Neri M, Lando C, Ceppi M, Lin YP, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Fenech M (2003) HUMN collaborative group. Effect of smoking habit on the frequency of micronuclei in human lymphocytes: results from the Human MicroNucleus project. Mutat Res 543:155–166

    Article  PubMed  CAS  Google Scholar 

  • Bonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Ban S, Barale R, Bigatti MP, Bolognesi C, Cebulska-Wasilewska A, Fabianova E, Fucic A, Hagmar L, Joksic G, Martelli A, Migliore L, Mirkova E, Scarfi MR, Zijno A, Norppa H, Fenech M (2007) An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 28:625–631

    Article  PubMed  CAS  Google Scholar 

  • Bonassi S, Biasotti B, Kirsch-Volders M et al (2009) State of the art survey of the buccal micronucleus assay—a first stage in the HUMN(XL) project initiative. Mutagenesis 224:295–302

    Article  CAS  Google Scholar 

  • Bryce SM, Bemis JC, Avlasevich SL, Dertinger SD (2007) In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity. Mutat Res 630:78–91

    PubMed  CAS  Google Scholar 

  • Bryce SM, Shi J, Phonethepswath S, Avlasevich SL, Raja S, Bemis J, Dertinger SD (2008a) Miniaturization and further automation of the in vitro micronucleus assay. Environ Mol Mutagen 49:567 (abstract)

    Google Scholar 

  • Bryce SM, Avlasevich SL, Bemis JC, Lukamowicz M, Elhajouji A, Van Goethem F, De Boeck M, Beerens D, Aerts H, Van Gompel J, Collins JE, Ellis PC, White AT, Lynch AM, Dertinger SD (2008b) Interlaboratory evaluation of a flow cytometric, high content in vitro micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen 650:181–195

    Article  CAS  Google Scholar 

  • Bryce SM, Avlasevich SL, Bemis JC, Phonethepswath S, Dertinger SD (2010) Miniaturized flow cytometric in vitro micronucleus assay represents an efficient tool for comprehensively characterizing genotoxicity dose-response relationships. Mutat Res 703:191–199

    PubMed  CAS  Google Scholar 

  • Cammerer Z, Schumacher MM, Kirsch-Volders M, Suter W, Elhajouji A (2010) Flow cytometry peripheral blood micronucleus test in vivo: determination of potential thresholds for aneuploidy induced by spindle poisons. Environ Mol Mutagen 51:278–284

    PubMed  CAS  Google Scholar 

  • Chang P, Li Y, Li D (2010) Micronuclei levels in peripheral blood lymphocytes as a potential biomarker for pancreatic cancer risk. Carcinogenesis. doi:10.1093/carcin/bgq247

    Google Scholar 

  • Cimini D, Degrassi F (2005) Aneuploidy: a matter of bad connections. Trends Cell Biol 15:442–451

    Article  PubMed  CAS  Google Scholar 

  • Cloos J, Leemans CR, van der Sterre ML, Kuik DJ, Snow GB, Braakhuis BJ (2001) Mutagen sensitivity as a biomarker for second primary tumors after head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 9:713–717

    Google Scholar 

  • Corvi R, Albertini S, Hartung T, Hoffmann S, Maurici D, Pfuhler S, van Benthem J, Vanparys P (2008) ECVAM retrospective validation of the in vitro micronucleus test (MNT). Mutagenesis 23:271–283

    Article  PubMed  CAS  Google Scholar 

  • Decordier I, Dillen L, Cundari E, Kirsch-Volders M (2002) Elimination of micronucleated cells by apoptosis after treatment with inhibitors of microtubules. Mutagenesis 17:337–344

    Article  PubMed  CAS  Google Scholar 

  • Decordier I, Cundari E, Kirsch-Volders M (2005) Influence of caspase activity on micronuclei detection: a possible role for caspase-3 in micronucleation. Mutagenesis 20:173–179

    Article  PubMed  CAS  Google Scholar 

  • Decordier I, Cundari E, Kirsch-Volders M (2008) Survival of aneuploid, micronucleated and/or polyploid cells: crosstalk between ploidy control and apoptosis. Mutat Res 651:30–39

    PubMed  CAS  Google Scholar 

  • Decordier I, Papine A, Plas G, Roesems S, Vande Loock K, Moreno-Palomo J, Cemeli E, Anderson D, Fucic A, Marcos R, Soussaline F, Kirsch-Volders M (2009) Automated image analysis of cytokinesis-blocked micronuclei: an adapted protocol and a validated scoring procedure for biomonitoring. Mutagenesis 24:85–93

    Article  PubMed  CAS  Google Scholar 

  • Decordier I, Vande Loock KV, Kirsch-Volders M (2010) Phenotyping for DNA repair capacity. Mutat Res 705:107–129

    Article  PubMed  CAS  Google Scholar 

  • Decordier I, Papine A, Vande Loock K, Plas G, Soussaline F, Kirsch-Volders M (2011) Automated image analysis of MN by IMSTAR for biomonitoring. Mutagenesis 26:163–168

    Article  PubMed  CAS  Google Scholar 

  • Dhillon VS, Thomas P, Iarmarcovai G, Kirsch-Volders M, Bonassi S, Fenech M (2011) Genetic polymorphisms of genes involved in DNA repair and metabolism influence micronucleus frequencies in human peripheral blood lymphocytes. Mutagenesis 26:33–42

    Article  PubMed  CAS  Google Scholar 

  • Doak SH, Jenkins GJS, Johnson GE, Quick E, Parry EM, Parry JM (2007) Mechanistic influences for mutation induction curves after exposure to DNA-reactive carcinogens. Cancer Res 67:3904–3911

    Article  PubMed  CAS  Google Scholar 

  • Doak SH, Griffiths SM, Manshian B, Singh N, Williams PM, Brown AP, Jenkins GJ (2009) Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24:285–293

    Article  PubMed  CAS  Google Scholar 

  • Eichenlaub-Ritter U, Shen Y, Tinneberg H-R (2002) Manipulation of the oocyte: possible damage to the spindle apparatus. Reprod Biomed Online 5:124–177

    Article  Google Scholar 

  • Elhajouji A, Santos AP, Van Hummelen P, Kirsch-Volders M (1994) Metabolic differences between whole blood and isolated lymphocyte cultures for micronucleus (MN) induction by cyclophosphamide and benzo[a]pyrene. Mutagenesis 9:307–313

    Article  PubMed  CAS  Google Scholar 

  • Elhajouji A, Van Hummelen P, Kirsch-Volders M (1995) Indications for a threshold of chemically-induced aneuploidy in vitro in human lymphocytes. Environ Mol Mutagen 26:292–304

    Article  PubMed  CAS  Google Scholar 

  • Elhajouji A, Tibaldi F, Kirsch-Volders M (1997) Indication for thresholds of chromosome non-disjunction versus chromosome lagging induced by spindle inhibitors in vitro in human lymphocytes. Mutagenesis 12:133–140

    Article  PubMed  CAS  Google Scholar 

  • Elhajouji A, Cunha M, Kirsch-Volders M (1998) Spindle poisons can induce polyploidy by mitotic slippage and micronucleate mononucleates in the cytokinesis-block assay. Mutagenesis 13:193–198

    Article  PubMed  CAS  Google Scholar 

  • Elhajouji A, Lukamowicz M, Cammer Z, Kirsch-Volders M (2011) Potential threshold for genotoxic effects by muicronucleus scoring. Mutagenesis 26:199–204

    Article  PubMed  CAS  Google Scholar 

  • El-Zein RA, Schabath MB, Etzel CJ, Lopez MS, Franklin JD, Spitz MR (2006) Cytokinesis-blocked micronucleus assay as a novel biomarker for lung cancer risk. Cancer Res 66:6449–6464

    Article  PubMed  CAS  Google Scholar 

  • El-Zein RA, Fenech M, Lopez MS, Spitz MR, Etzel CJ (2008) Cytokinesis-blocked micronucleus cytome assay biomarkers identify lung cancer cases amongst smokers. Cancer Epidemiol Biomarkers Prev 17:111–119

    Article  Google Scholar 

  • Fenech M (1998a) Important variables that influence base-line micronucleus frequency in cytokinesis-blocked lymphocytes—a biomarker for DNA damage in human populations. Mutat Res 404(1–2):155–165

    Google Scholar 

  • Fenech M (1998b) Chromosomal damage rate, aging, and diet. Ann NY Acad Sci 854:23–36

    Article  PubMed  CAS  Google Scholar 

  • Fenech M (2005) The genome health clinic and genome health nutrigenomics concepts: diagnosis and nutritional treatment of genome and epigenome damage on an individual basis. Mutagenesis 20:255–269

    Article  PubMed  CAS  Google Scholar 

  • Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104

    Article  PubMed  CAS  Google Scholar 

  • Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147:29–36

    PubMed  CAS  Google Scholar 

  • Fenech M, Rinaldi J (1995) A comparison of lymphocyte micronuclei and plasma micronutrients in vegetarians and non-vegetarians. Carcinogenesis 16:223–230

    Article  PubMed  CAS  Google Scholar 

  • Fenech M, Neville S, Rinaldi J (1994) Sex is an important variable affecting spontaneous micronucleus frequency in cytokinesis-blocked lymphocytes. Mutat Res 313:203–207

    PubMed  CAS  Google Scholar 

  • Fenech M, Baghurst P, Luderer W, Turner J, Record S, Ceppi M, Bonassi S (1995) Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, beta-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability—results from a dietary intake and micronucleus index survey in South Australia. Carcinogenesis 26:991–999

    Article  CAS  Google Scholar 

  • Fenech M, Dreosti IE, Rinaldi JR (1997) Folate, vitamin B12, homocysteine status and chromosome damage rate in lymphocytes of older men. Carcinogenesis 18:1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Fenech M, Aitken C, Rinaldi J (1998) Folate, vitamin B12, homocysteine status and DNA damage in young Australian adults. Carcinogenesis 19:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Fenech M, Holland N, Chang WP, Zeiger E, Bonassi S (1999) The Human MicroNucleus project—an international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutat Res 428:271–283

    Article  PubMed  CAS  Google Scholar 

  • Fenech M, Bonassi S, Turner J, Lando C, Ceppi M, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Bigatti MP, Bolognesi C, Cao J, De Luca G, Di Giorgio M, Ferguson LR, Fucic A, Lima OG, Hadjidekova VV, Hrelia P, Jaworska A, Joksic G, Krishnaja AP, Lee TK, Martelli A, McKay MJ, Migliore L, Mirkova E, Müller WU, Odagiri Y, Orsiere T, Scarfì MR, Silva MJ, Sofuni T, Surralles J, Trenta G, Vorobtsova I, Vral A, Zijno A (2003a) Human MicroNucleus project. Intra- and inter-laboratory variation in the scoring of micronuclei and nucleoplasmic bridges in binucleated human lymphocytes. Results of an international slide-scoring exercise by the HUMN project. Mutat Res 534:45–64

    PubMed  CAS  Google Scholar 

  • Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003b) Human MicronNucleus project. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75

    PubMed  CAS  Google Scholar 

  • Fenech M, Baghurst P, Luderer W, Turner J, Record S, Ceppi M, Bonassi S (2005) Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, beta-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability—results from a dietary intake and micronucleus index survey in South Australia. Carcinogenesis 26:991–999

    Article  PubMed  CAS  Google Scholar 

  • Fenech M, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmuller S, Holland N (2007) Harmonisation of the micronucleus assay in human buccal cells—a Human Micronucleus (HUMN) project initiative (www.humn.org) commencing in 2007. Mutagenesis 22:3–4

    Article  PubMed  CAS  Google Scholar 

  • Fenech M, Kirsch-Volders M, Natarajan AT, Surrales J, Croft J, Parry J, Norppa H (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in human cells. Mutagenesis 26:125–132

    Article  PubMed  CAS  Google Scholar 

  • Geraud G, Laquerriere F, Masson C, Arnoult J, Labidi B, Hernandez-Verdun D (1989) Three-dimensional organization of micronuclei induced by colchicine in PtK1 cells. Exp Cell Res 181:27–39

    Article  PubMed  CAS  Google Scholar 

  • Gocke E, Müller L (2009) In vivo studies in the mouse to define a threshold for the genotoxicity of EMS and ENU. Mutat Res 678:101–107

    PubMed  CAS  Google Scholar 

  • Gonzalez L, Lison D, Kirsch-Volders M (2008) Genotoxicity of nanomaterials: a critical review. Nanotoxicology 2:252–273

    Article  Google Scholar 

  • Gonzalez L, Sanderson BJS, Kirsch-Volders M (2010) Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials? Mutagenesis 26:185–193

    Article  CAS  Google Scholar 

  • Greim H, Norppa H (2010) Genotoxicity testing of nanomaterials—conclusions. Nanotoxicology 4:421–424

    Article  PubMed  Google Scholar 

  • Hoffelder DR, Luo L, Burke NA, Watkins SC, Gollin SM, Saunders WS (2004) Resolution of anaphase bridges in cancer cells. Chromosoma 112:389–397

    Article  PubMed  Google Scholar 

  • Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S, Fenech M (2008) The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: the HUMN project perspective on current status and knowledge gaps. Mutat Res 659:93–108

    Article  PubMed  CAS  Google Scholar 

  • Hovhannisyan GG (2010) Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology. Mol Cytogenet 3:1–11

    Article  CAS  Google Scholar 

  • Howe OL, Daly PA, Seymour C, Ormiston W, Nolan C, Mothersill C (2005) Elevated G2 chromosomal radiosensitivity in Irish breast cancer patients: a comparison with other studies. Int J Radiat Biol 81:373–378

    Article  PubMed  CAS  Google Scholar 

  • Iarmarcovai G, Ceppi M, Botta A, Orsière T, Bonassi S (2008) Micronuclei frequency in peripheral blood lymphocytes of cancer patients: a meta-analysis. Mutat Res 659:274–283

    Article  PubMed  CAS  Google Scholar 

  • Jantunen K, Mäki-Paakkanen J, Norppa H (1986) Induction of chromosome aberrations by styrene and vinylacetate in cultured human lymphocytes: dependence on erythrocytes. Mutat Res 159:109–116

    Article  PubMed  CAS  Google Scholar 

  • Jenkins GJ, Doak SH, Johnson GE, Quick E, Waters EM, Parry JM (2000) Do dose response thresholds exist for genotoxic alkylating agents? Mutagenesis 20:389–398

    Article  CAS  Google Scholar 

  • Kimura M, Umegaki K, Higuchi M, Thomas P, Fenech M (2004) Methylenetetrahydrofolate reductase C677T polymorphism, folic acid and riboflavin are important determinants of genome stability in cultured human lymphocytes. J Nutr 134:48–56

    PubMed  CAS  Google Scholar 

  • King RW (2008) When 2 + 2 = 5: the origins and fates of aneuploid and tetraploid cells. Biochim Biophys Acta 1786:4–14

    PubMed  CAS  Google Scholar 

  • Kirkland D (2010) Evaluation of different cytotoxic and cytostatic measures for the in vitro micronucleus test (MNVit): introduction to the collaborative trial. Mutat Res 702:139–147

    PubMed  CAS  Google Scholar 

  • Kirkland D, Aardema M, Henderson L, Müller L (2005) Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat Res 584:1–256

    PubMed  CAS  Google Scholar 

  • Kirkland D, Aardema M, Müller L, Makoto H (2006) Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens II. Further analysis of mammalian cell results, relative predictivity and tumour profiles. Mutat Res 608:29–42

    PubMed  CAS  Google Scholar 

  • Kirkland D, Aardema M, Banduhn N, Carmichael P, Fautz R, Meunie JR, Pfuhler S (2007) In vitro approaches to develop weight of evidence (WoE) and mode of action (MoA) discussions with positive in vitro genotoxicity results. Mutagenesis 22:161–175

    Article  PubMed  CAS  Google Scholar 

  • Kirsch-Volders M, Fenech M (2001) Inclusion of micronuclei in non-divided mononuclear lymphocytes and necrosis/apoptosis may provide a more comprehensive cytokinesis block micronucleus assay for biomonitoring purposes. Mutagenesis 16:51–58

    Article  PubMed  CAS  Google Scholar 

  • Kirsch-Volders M, Elhajouji A, Cundari E, Van Hummelen P (1997) The in vitro micronucleus test: a multi-endpoint assay to detect simultaneously mitotic delay, apoptosis, chromosome breakage, chromosome loss and non-disjunction. Mutat Res 392:19–30

    PubMed  CAS  Google Scholar 

  • Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate M Jr, Lorge E, Norppa H, Surralles J, von der Hude W, Wakata A (2000) Report from the in vitro micronucleus assay working group. Environ Mol Mutagen 35:167–172

    Article  PubMed  CAS  Google Scholar 

  • Kirsch-Volders M, Vanhauwaert A, De Boeck M, Decordier I (2002) Importance of detecting numerical versus structural chromosome aberrations. Mutat Res 504:137–148

    Article  PubMed  CAS  Google Scholar 

  • Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate M Jr, Kirchner S, Lorge E, Morita T, Norppa H, Surralles J, Vanhauwaert A, Wakata A (2003a) Report from the in vitro micronucleus assay working group. Mutat Res 540:153–163

    PubMed  CAS  Google Scholar 

  • Kirsch-Volders M, Vanhauwaert A, Eichenlaub-Ritter U, Decordier I (2003b) Indirect mechanisms of genotoxicity. Toxicol Lett 140–141:63–74

    Article  PubMed  CAS  Google Scholar 

  • Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate M Jr, Lorge E, Norppa H, Surralles J, von der Hude W, Wakata A (2004) Corrigendum to “Report from the in vitro micronucleus assay working group” [Mutat Res 2003; 540: 153–163]. Mutat Res 564:97–100

    CAS  Google Scholar 

  • Kirsch-Volders M, Bonassi S, Herceg Z, Hirvonen A, Möller L, Phillips DH (2010) Gender-related differences in response to mutagens and carcinogens. Mutagenesis 25:213–321

    Article  PubMed  CAS  Google Scholar 

  • Kirsch-Volders M, Decordier I, Elhajouji A, Plas G, Aardema MJ, Fenech M (2011) In vitro genotoxicity testing using the micronucleus assay in cell lines, human lymphocytes and 3D skin models. Mutagenesis 26:177–184

    Article  PubMed  CAS  Google Scholar 

  • Kotsopoulos J, Chen Z, Vallis KA, Poll A, Ainsworth P, Narod SA (2007) DNA repair capacity as a possible biomarker of breast cancer risk in female BRCA1 mutation carriers. Br J Cancer 96:118–125

    Article  PubMed  CAS  Google Scholar 

  • Labidi B, Gregoire M, Frackowiak S, Hernandez-Verdun D, Bouteille M (1987) RNA polymerase activity in PtK1 micronuclei containing individual chromosomes: an in vitro and in situ study. Exp Cell Res 169:233–244

    Article  PubMed  CAS  Google Scholar 

  • Leach NT, Jackson-Cook C (2004) Micronuclei with multiple copies of the X chromosome: do chromosomes replicate in micronuclei? Mutat Res 554:89–94

    Article  PubMed  CAS  Google Scholar 

  • Lindberg HK, Falck GC, Järventaus H, Norppa H (2008) Characterization of chromosomes and chromosomal fragments in human lymphocyte micronuclei by telomeric and centromeric FISH. Mutagenesis 23:371–376

    Article  PubMed  CAS  Google Scholar 

  • Lorge E, Thybaud V, Aardema MJ, Oliver J, Wakata A, Lorenzon G, Marzin D (2006) SFTG international collaborative study on in vitro micronucleus test I. General conditions and overall conclusions of the study. Mutat Res 607:13–36

    PubMed  CAS  Google Scholar 

  • Lukamowicz M, Woodward K, Kirsch-Volders M, Suter W, Elhajouji A (2010) A flow cytometry based in vitro micronucleus assay in TK6 cells-Validation using early stage pharmaceutical development compounds. Environ Mol Mutagen (in press)

  • Lynch A, Harvey J, Aylott M, Nicholas E, Burman M, Siddiqui A, Walker S, Rees R (2003) Investigations into the concept of a threshold for topoisomerase inhibitor-induced clastogenicity. Mutagenesis 18:345–353

    Article  PubMed  CAS  Google Scholar 

  • MacPhail SH, Olive PL (2001) RPA foci are associated with cell death after irradiation. Radiat Res 155:672–679

    Article  PubMed  CAS  Google Scholar 

  • Mateuca R, Lombaert N, Aka PV, Decordier I, Kirsch-Volders M (2006) Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie 88:1515–1531

    Article  PubMed  CAS  Google Scholar 

  • McClain M, Wolz E, Davidovich A, Bausch J (2006) Genetic toxicity studies with genistein. Food Chem Toxicol 44:42–55

    Article  CAS  Google Scholar 

  • Medvedeva NG, Panyutin IV, Panyutin IG, Neumann RD (2007) Phosphorylation of histone H2AX in radiation-induced micronuclei. Radiat Res 168:493–498

    Article  PubMed  CAS  Google Scholar 

  • Miller BM, Nüsse M (1993) Analysis of micronuclei induced by 2-chlorobenzylidene malonitrile (CS) using fluorescence in situ hybridization with telomeric and centromeric DNA probes, and flow cytometry. Mutagenesis 8(3):5–41

    Google Scholar 

  • Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan E (1980) Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci USA 77:1627–1631

    Article  PubMed  CAS  Google Scholar 

  • Murgia E, Ballardin M, Bonassi S, Rossi AM, Barale R (2008) Validation of micronuclei frequency in peripheral blood lymphocytes as early cancer risk biomarker in a nested case-control study. Mutat Res 39:27–34

    Google Scholar 

  • Neri M, Ceppi M, Knudsen LE, Merlo DF, Barale R, Puntoni R, Bonassi S (2005) Baseline micronuclei frequency in children: estimates from meta- and pooled analyses. Environ Health Perspect 113:1226–1229

    Article  PubMed  Google Scholar 

  • Norppa H, Falck GC (2003) What do human micronuclei contain? Mutagenesis 18:221–233

    Article  PubMed  CAS  Google Scholar 

  • Nüsse M, Kramer J (1984) Flow cytometric analysis of micronuclei found in cells after irradiation. Cytometry 5:20–25

    Article  PubMed  Google Scholar 

  • Nüsse M, Marx K (1997) Flow cytometric analysis of micronuclei in cell cultures and human lymphocytes: advantages and disadvantages. Mutat Res Genet Toxicol Environ Mutagen 392:109–115

    Article  Google Scholar 

  • Odagiri Y, Uchida H (1998) Influence of serum micronutrients on the incidence of kinetochore-positive or-negative micronuclei in human peripheral blood lymphocytes. Mutat Res 415:35–45

    PubMed  CAS  Google Scholar 

  • OECD (draft) In vitro Mammalian Cell Micronucleus Test (MNvit). OECD Guideline for Testing of Chemicals No. 487. OECD, Paris. Available at: http://www.oecd.org/env/testguidelines

  • Phillips SG, Phillips DM (1969) Sites of nucleolus production in cultured chinese hamster cells. J Cell Biol 40:248–268

    Article  PubMed  CAS  Google Scholar 

  • Pottenger LH, Schisler MR, Zhang F, Bartels MJ, Fontaine DD, McFadden LG, Bhaskar Gollapudi B (2009) Dose-response and operational thresholds/NOAELs for in vitro mutagenic effects from DNA-reactive mutagens, MMS and MNU. Mutat Res 678:138–147

    PubMed  CAS  Google Scholar 

  • Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B, Lengauer C (2004) Inactivation of hCDC4 can cause chromosomal instability. Nature 428:77–81

    Article  PubMed  CAS  Google Scholar 

  • Record IR, Jannes M, Dreosti IE, King RA (1995) Induction of micronucleus formation in mouse splenocytes by the soy isoflavone genistein in vitro but not in vivo. Food Chem Toxicol 33:919–922

    Article  PubMed  CAS  Google Scholar 

  • Roman D, Locher F, Suter W, Cordier A, Bobadilla M (1998) Evaluation of a new procedure for the flow cytometric analysis of in vitro, chemically induced micronuclei in V79 cells. Environ Mol Mutagen 32:387–396

    Article  PubMed  CAS  Google Scholar 

  • Schreiber GA, Beisker W, Bauchinger M, Nusse M (1992a) Multiparametric flow cytometric analysis of radiation-induced micronuclei in mammalian-cell cultures. Cytometry 13:90–102

    Article  PubMed  CAS  Google Scholar 

  • Schreiber GA, Beisker W, Braselmann H, Bauchinger M, Bögl KW, Nüsse M (1992b) An automated flow cytometric micronucleus assay for human lymphocytes. Int J Radiat Biol 62:695–709

    Article  PubMed  CAS  Google Scholar 

  • Schuncka C, Johannesa T, Vargab D, Lörcha T, Plescha A (2004) New developments in automated cytogenetic imaging: unattended scoring of dicentric chromosomes, micronuclei, single cell gel electrophoresis, and fluorescence signals. Cytogenet Genome Res 104:383–389

    Article  Google Scholar 

  • Seiler JP (1976) The mutagenicity of benzimidazole and benzimidazole derivatives. VI. Cytogenetic effects of benzimidazole derivatives in the bone marrow of the mouse and the Chinese hamster. Mutat Res 40:339–347

    Article  PubMed  CAS  Google Scholar 

  • Shimizu N, Shimura T, Tanaka T (2000) Selective elimination of acentric double minutes from cancer cells through the extrusion of micronuclei. Mutat Res 448:81–90

    Article  PubMed  CAS  Google Scholar 

  • Shimizu N, Misaka N, Utani K (2007) Nonselective DNA damage induced by a replication inhibitor results in the selective elimination of extrachromosomal double minutes from human cancer cells. Genes Chromosom Cancer 46:865–874

    Article  PubMed  CAS  Google Scholar 

  • Slavotinek A, Sauer-Nehls S, Braselmann H, Taylor GM, Nüsse M (1996) Chromosome painting of radiation-induced micronuclei. Int J Radiat Biol 70:393–401

    Article  PubMed  CAS  Google Scholar 

  • Smart V, Curwen GB, Whitehouse CA, Edwards A, Tawn EJ (2003) Chromosomal radiosensitivity: a study of the chromosomal G(2) assay in human blood lymphocytes indicating significant inter-individual variability. Mutat Res 528:105–110

    Article  PubMed  CAS  Google Scholar 

  • Surralles J, Jeppesen P, Morrison H, Natarajan AT (1996) Analysis of loss of inactive X chromosomes in interphase cells. Am J Hum Genet 59:1091–1096

    PubMed  CAS  Google Scholar 

  • Surralles J, Hande MP, Marcos R, Lansdorp PM (1999) Accelerated telomere shortening in the human inactive X chromosome. Am J Hum Genet 65:1617–1622

    Article  PubMed  CAS  Google Scholar 

  • Tedeschi B, Cicchetti R, Argentin G, Caporossi D, Pittaluga M, Parisi P, Vernole P (2004) Aphidicolin and bleomycin induced chromosome damage as biomarker of mutagen sensitivity: a twin study. Mutat Res 546:55–64

    Article  PubMed  CAS  Google Scholar 

  • Terradas M, Martín M, Tusell L, Genescà A (2009) DNA lesions sequestered in micronuclei induce a local defective-damage response. DNA Repair 8:1225–1234

    Article  PubMed  CAS  Google Scholar 

  • Terradas M, Martín M, Tusell L, Genescà A (2010) Genetic activities in micronuclei: is the DNA entrapped in micronuclei lost for the cell? Mutat Res 705:60–67

    Article  PubMed  CAS  Google Scholar 

  • Tinwell H, Ashby J (1999) Micronucleus morphology as a means to distinguish aneugens and clastogens in the mouse bone marrow micronucleus assay. Mutagenesis 6:193–198

    Article  Google Scholar 

  • Titenko-Holland N, Jacob RA, Shang N, Balaraman A, Smith MT (1998) Micronuclei in lymphocytes and exfoliated buccal cells of postmenopausal women with dietary changes in folate. Mutat Res 417:101–114

    PubMed  CAS  Google Scholar 

  • Utani K, Kawamoto JK, Shimizu N (2007) Micronuclei bearing acentric extrachromosomal chromatin are transcriptionally competent and may perturb the cancer cell phenotype. Mol Cancer Res 5:695–704

    Article  PubMed  CAS  Google Scholar 

  • Utani K, Kohno Y, Okamoto A, Shimizu N (2010) Emergence of micronuclei and their effects on the fate of cells under replication stress. PLoS One 5:e10089

    Article  PubMed  CAS  Google Scholar 

  • Van Hummelen P, Kirsch-Volders M (1990) An improved method for the ‘in vitro’ micronucleus test using human lymphocytes. Mutagenesis 5:203–204

    Article  PubMed  Google Scholar 

  • Van Hummelen P, Elhajouji A, Kirsch-Volders M (1995) Clastogenic and aneugenic effects of three benzimidazole derivates in the in vitro micronucleus test on human lymphocytes determined with FISH using a centromeric probe. Mutagenesis 10:23–29

    Article  PubMed  Google Scholar 

  • Varga D, Johannes T, Jainta S, Schuster S, Schwarz-Boeger U, Kiechle M, Patino Garcia B, Vogel W (2004) An automated scoring procedure for the micronucleus test by image analysis. Mutagenesis 19:391–397

    Article  PubMed  CAS  Google Scholar 

  • Varga D, Hoegel J, Maier C, Jainta S, Hoehne M, Patino-Garcia B, Michel I, Schwarz-Boeger U, Kiechle M, Kreienberg R, Vogel W (2006) On the difference of micronucleus frequencies in peripheral blood lymphocytes between breast cancer patients and controls. Mutagenesis 21:313–320

    Article  PubMed  CAS  Google Scholar 

  • Viaggi S, Braselmann H, Nusse M (1995) Flow cytometric analysis of micronuclei in the cd2± subpopulation of human-lymphocytes enriched by magnetic separation. Int J Radiat Biol 67:193–202

    Article  PubMed  CAS  Google Scholar 

  • Vral A, Thierens H, Baeyens A, De Ridder L (2004) Chromosomal aberrations and in vitro radiosensitivity: intra-individual versus inter-individual variability. Toxicol Lett 149:345–352

    Article  PubMed  CAS  Google Scholar 

  • Wessels JM, Nusse M (1995) Flow cytometric detection of micronuclei by combined staining of DNA and membranes. Cytometry 19:201–208

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Spitz MR, Amos CI, Lin J, Shao L, Gu J, de Andrade M, Benowitz NL, Shields PG, Swan GE (2006) Mutagen sensitivity has high heritability: evidence from a twin study. Cancer Res 66:5993–5996

    Article  PubMed  CAS  Google Scholar 

  • Yang AH, Kaushal D, Rehen SK, Kriedt K, Kingsbury MA, McConnell MJ, Chun J (2003) Chromosome segregation defects contribute to aneuploidy in normal neural progenitor cells. J Neurosci 23:10454–10562

    PubMed  CAS  Google Scholar 

  • Yasui M, Koyama N, Koizumi T, Senda-Murata K, Takashima Y, Hayashi M, Sugimoto K, Honma M (2010) Live cell imaging of micronucleus formation and development. Mutat Res 692:12–18

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa T, Kashino G, Ono K, Watanabe M (2009) Phosphorylated H2AX foci in tumor cells have no correlation with their radiation sensitivities. J Radiat Res (Tokyo) 50:151–160

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU research programmes “The Detection and Hazard Evaluation of Aneugenic Chemicals” (ENV4-CT97-0471), “Protection of the European Population from Aneugenic Chemicals (PEPFAC)” (QLK4-CT-2000-00058), ECNIS (Environmental Cancer Risk, Nutrition and Individual Susceptibility), a network of excellence operating within the European Union 6th Framework Program, Priority 5: “Food Quality and Safety” (Contract no. 513943) and by the EU Integrated Project NewGeneris (“Newborns and Genotoxic exposure risk”)’, 6th Framework Programme, Priority 5: Food Quality and Safety (Contract no. FOOD-CT-2005-016320). NewGeneris is the acronym of the project, the Belgian Science Policy [contractnumber SD/HE/02B]; OZR-VUB and the European Union small ormedium-scale focused research project ENPRA (Risk Assessment of Engineered Nanoparticles) (Contract no. NMP-2008-1.3-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilse Decordier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsch-Volders, M., Plas, G., Elhajouji, A. et al. The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Arch Toxicol 85, 873–899 (2011). https://doi.org/10.1007/s00204-011-0691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0691-4

Keywords

Navigation