Skip to main content
Log in

An examination of procedures for determining the number of clusters in a data set

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A Monte Carlo evaluation of 30 procedures for determining the number of clusters was conducted on artificial data sets which contained either 2, 3, 4, or 5 distinct nonoverlapping clusters. To provide a variety of clustering solutions, the data sets were analyzed by four hierarchical clustering methods. External criterion measures indicated excellent recovery of the true cluster structure by the methods at the correct hierarchy level. Thus, the clustering present in the data was quite strong. The simulation results for the stopping rules revealed a wide range in their ability to determine the correct number of clusters in the data. Several procedures worked fairly well, whereas others performed rather poorly. Thus, the latter group of rules would appear to have little validity, particularly for data sets containing distinct clusters. Applied researchers are urged to select one or more of the better criteria. However, users are cautioned that the performance of some of the criteria may be data dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrews, D. F. (1972). Plots of high-dimensional data.Biometrics, 28, 125–136.

    Google Scholar 

  • Arnold, S. J. (1979). A test for clusters.Journal of Marketing Research, 19, 545–551.

    Google Scholar 

  • Baker, F. B., & Hubert, L. J. (1975). Measuring the power of hierarchical cluster analysis.Journal of the American Statistical Association, 70, 31–38.

    Google Scholar 

  • Ball, G. H., & Hall, D. J. (1965).ISODATA, A novel method of data analysis and pattern classification. Menlo Park: Stanford Research Institute. (NTIS No. AD 699616).

    Google Scholar 

  • Beale, E. M. L. (1969).Cluster analysis. London: Scientific Control Systems.

    Google Scholar 

  • Binder, D. A. (1978). Bayesian cluster analysis.Biometrika, 65, 31–38.

    Google Scholar 

  • Blashfield, R. K., & Morey, L. C. (1980). A comparison of four clustering methods using MMPI Monte Carlo data.Applied Psychological Measurement, 4, 57–64.

    Google Scholar 

  • Bock, H. H. (1977). On tests concerning the existence of a classification. InFirst international symposium on data analysis and informatics (Vol. 2, pp. 449–464). Rocquencourt, France: IRIA.

    Google Scholar 

  • Calinski, R. B., & Harabasz, J. (1974). A dendrite method for cluster analysis.Communications in Statistics, 3, 1–27.

    Google Scholar 

  • Cohen, A. C. (1967). Estimation in mixtures of two normal distributions.Technometrics, 9, 15–28.

    Google Scholar 

  • Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 224–227.

    Google Scholar 

  • Day, N. E. (1969). Estimating the components of a mixture of normal distributions.Biometrika, 56, 463–474.

    Google Scholar 

  • Dubes, R., & Jain, A. K. (1979). Validity studies in clustering methodologies.Pattern Recognition, 11, 235–254.

    Google Scholar 

  • Duda, R. O., & Hart, P. E. (1973).Pattern classification and scene analysis. New York: Wiley.

    Google Scholar 

  • Edwards, A. W. F., & Cavalli-Sforza, L. (1965). A method for cluster analysis.Biometrics, 21, 362–375.

    Google Scholar 

  • Englemann, L., & Hartigan, J. A. (1969). Percentage points of a test for clusters.Journal of the American Statistical Association, 64, 1647–1648.

    Google Scholar 

  • Everitt, B. S. (1979). Unresolved problems in cluster analysis.Biometrics, 35, 169–181.

    Google Scholar 

  • Everitt, B. S. (1981). A Monte Carlo investigation in the likelihood ratio test for the number of components in a mixture of normal distributions.Multivariate Behavioral Research, 16, 171–180.

    Google Scholar 

  • Fleiss, J. L., Lawlor, W., Platman, S. R., & Fieve, R. R. (1971). On the use of inverted factor analysis for generating typologies.Journal of Abnormal Psychology, 77, 127–132.

    Google Scholar 

  • Fleiss, J. L., & Zubin, J. (1969). On the methods and theory of clustering.Multivariate Behavioral Research, 4, 235–250.

    Google Scholar 

  • Friedman, H. P., & Rubin, J. (1967). On some invariant criteria for grouping data.Journal of the American Statistical Association, 62, 1159–1178.

    Google Scholar 

  • Frey, T., & Van Groenewoud, H. (1972). A cluster analysis of the D-squared matrix of white spruce stands in Saskatchewan based on the maximum-minimum principle.Journal of Ecology, 60, 873–886.

    Google Scholar 

  • Fukunaga, K., & Koontz, W. L. G. (1970). A criterion and an algorithm for grouping data.IEEE Transactions on Computers, C-19, 917–923.

    Google Scholar 

  • Gengerelli, J. A. (1963). A method for detecting subgroups in a population and specifying their membership list.Journal of Psychology, 5, 457–468.

    Google Scholar 

  • Gnanadesikan, R., Kettenring, J. R., & Landwehr, J. M. (1977). Interpreting and assessing the results of cluster analyses.Bulletin of the International Statistical Institute, 47, 451–463.

    Google Scholar 

  • Good, I. J. (1982). An index of separateness of clusters and a permutation test for its statistical significance.Journal of Statistical Computing and Simulation, 15, 81–84.

    Google Scholar 

  • Goodall, D. W. (1966). Hypothesis testing in classification.Nature, 221, 329–330.

    Google Scholar 

  • Gower, J. C. (1975). Goodness-of-fit criteria for classification and other patterned structures. In G. Estabrook, (Ed.),Proceedings of the 8th international conference on numerical taxonomy. San Francisco: Freeman.

    Google Scholar 

  • Gower, J. C. (1981, June).Is classification statistical? Paper presented at the meeting of the Classification Society, Toronto.

  • Hall, D. J., Duda, R. O., Huffman, D. A., & Wolf, E. E. (1973).Development of new pattern recognition methods. Los Angeles: Aerospace Research Laboratories. (NTIS No. AD 7726141).

    Google Scholar 

  • Hansen, R. A., & Milligan, G. W. (1981). Objective assessment of cluster analysis output: Theoretical considerations and empirical findings.Proceedings of the American Institute for Decision Sciences, 314–316.

  • Hartigan, J. A. (1975).Clustering algorithms. New York: Wiley.

    Google Scholar 

  • Hartigan, J. A. (1977). Distribution problems in clustering. In J. Van Ryzin (Ed.),Classification and clustering. New York: Academic Press.

    Google Scholar 

  • Hartigan, J. A. (1978). Asymptotic distributions for clustering criteria.Annals of Statistics, 6, 117–131.

    Google Scholar 

  • Hill, R. S. (1980). A stopping rule for partitioning dendrograms.Botanical Gazette, 141, 321–324.

    Google Scholar 

  • Hubert, L. J., & Baker, F. B. (1977). The comparison and fitting of given classification schemes.Journal of Mathematical Psychology, 16, 233–253.

    Google Scholar 

  • Hubert, L. J., & Levin, J. R. (1976). A general statistical framework for assessing categorical clustering in free recall.Psychological Bulletin, 83, 1072–1080.

    Google Scholar 

  • Jain, A. K., & Waller, W. G. (1978). On the number of features in the classification of multivariate gaussian data.Pattern Recognition, 10, 365–374.

    Google Scholar 

  • Jancey, R. C. (1966). Multidimensional group analysis.Australian Journal of Botany, 14, 127–130.

    Google Scholar 

  • Johnson, S. C. (1967). Hierarchical clustering schemes.Psychometrika, 32, 241–254.

    Google Scholar 

  • Lee, K. L. (1979). Multivariate tests for clusters.Journal of the American Statistical Association, 74, 708–714.

    Google Scholar 

  • Lingoes, J. C., & Cooper, T. (1971). PEP-I: A FORTRAN IV (G) program for Guttman-Lingoes nonmetric probability clustering.Behaviorial Science, 16, 259–261.

    Google Scholar 

  • Marriot, F. H. C. (1971). Practical problems in a method of cluster analysis.Biometrics, 27, 501–514.

    Google Scholar 

  • McClain, J. O., & Rao, V. R. (1975), CLUSTISZ: A program to test for the quality of clustering of a set of objects.Journal of Marketing Research, 12, 456–460.

    Google Scholar 

  • Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms.Psychometrika, 45, 325–342.

    Google Scholar 

  • Milligan, G. W. (1981a). A Monte Carlo study of thirty internal criterion measures for cluster analysis.Psychometrika, 46, 187–199.

    Google Scholar 

  • Milligan, G. W. (1981b). A review of Monte Carlo tests of cluster analysis.Multivariate Behavioral Research, 16, 379–407.

    Google Scholar 

  • Milligan, G. W. (1981c, June).A discussion of procedures for determining the number of clusters in a data set. Paper presented at the meeting of the Classification Society, Toronto.

  • Milligan, G. W. (1983). Characteristics of four external criterion measures. In J. Felsenstein, (Ed.),Proceedings of the 1982 NATO Advanced Studies Institute on Numerical Taxonomy (pp. 167–173). New York: Springer-Verlag.

    Google Scholar 

  • Milligan, G. W., & Sokol, L. M. (1980). A two-stage clustering algorithm with robust recovery characteristics.Educational and Psychological Measurement, 40, 755–759.

    Google Scholar 

  • Milligan, G. W., Soon, S. C., & Sokol, L. M. (1983). The effect of cluster size, dimensionality, and the number of clusters on recovery of true cluster structure.IEEE Transactions on Pattern Analysis and Machine Intelligence, 5, 40–47.

    Google Scholar 

  • Mojena, R. (1977). Hierarchical grouping methods and stopping rules: An evaluation.The Computer Journal, 20, 359–363.

    Google Scholar 

  • Morey, L., & Agresti, A. (1984). The measurement of classification agreement: An adjustment to the Rand statistic for chance agreement.Educational and Psychological Measurement, 44, 33–37.

    Google Scholar 

  • Mountford, M. D. (1970). A test for the difference between clusters. In G. P. Patil, E. C. Pielou, & W. E. Waters (Eds.),Statistical Ecology (Vol. 3, pp. 237–257). University Park, Pa.: Pennsylvania State University Press.

    Google Scholar 

  • Naus, J. I. (1966), A power comparison of two tests of non-random clustering.Technometrics, 8, 493–517.

    Google Scholar 

  • Orloci, L. (1967). An agglomerative method for classification of plant communities.Journal of Ecology, 55, 193–206.

    Google Scholar 

  • Perruchet, C. (1983).Les épreuves de classifiabilité en analyses des données [Statistical tests of classificability] (Tech. Rep. NT/PAA/ATR/MTI/810). Issy-Les-Moulineaux, France: C.N.E.T.

    Google Scholar 

  • Ray, A. A. (Ed.). (1982).SAS user's guide: Statistics. Cary, North Carolina: SAS Institute.

    Google Scholar 

  • Ratkowsky, D. A., & Lance, G. N. (1978). A criterion for determining the number of groups in a classification.Australian Computer Journal, 10, 115–117.

    Google Scholar 

  • Rohlf, F. J. (1974). Methods of comparing classifications.Annual Review of Ecology and Systematics, 5, 101–113.

    Google Scholar 

  • Rubin, J. (1967). Optimal classification into groups: An approach for solving the taxonomy problem.Journal of Theoretical Biology, 15, 103–144.

    Google Scholar 

  • Sarle, W. S. (1983).Cubic clustering criterion (Tech. Rep. A-108). Cary, N.C.: SAS Institute.

    Google Scholar 

  • Scott, A. J., & Symons, M. J. (1971). Clustering methods based on likelihood ratio criteria.Biometrics, 27, 387–397.

    Google Scholar 

  • Sneath, P. H. A. (1977). A method for testing the distinctness of clusters: A test of the disjunction of two clusters in Euclidean space as measured by their overlap.Mathematical Geology, 9, 123–143.

    Google Scholar 

  • Sneath, P. H. A., & Sokal, R. R. (1973).Numerical taxonomy. San Francisco: Freeman.

    Google Scholar 

  • Sokal, R. R., & Sneath, P. H. A. (1963).Principles of numerical taxonomy. San Francisco: Freeman.

    Google Scholar 

  • Thorndike, R. L. (1953). Who belongs in a family?Psychometrika, 18, 267–276.

    Google Scholar 

  • Wolfe, J. H. (1970). Pattern clustering by multivariate mixture analysis.Multivariate Behavioral Research, 5, 329–350.

    Google Scholar 

  • Wong, M. A. (1982). A hybrid clustering method for identifying high-density clusters.Journal of the American Statistical Association, 77, 841–847.

    Google Scholar 

  • Wong, M. A., & Schaak, C. (1982). Using the Kth nearest neighbor clustering procedure to determine the number of subpopulations.Proceedings of the Statistical Computing Section, American Statistical Association, 40–48.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors would like to express their appreciation to a number of individuals who provided assistance during the conduct of this research. Those who deserve recognition include Roger Blashfield, John Crawford, John Gower, James Lingoes, Wansoo Rhee, F. James Rohlf, Warren Sarle, and Tom Soon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milligan, G.W., Cooper, M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159–179 (1985). https://doi.org/10.1007/BF02294245

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294245

Key words

Navigation