Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 144))

Abstract

Acrolein, an α,β-unsaturated aldehyde, is a highly reactive, irritating chemical derived from a variety of sources. It occurs as a product of organic pyrolysis, a metabolite of various compounds, a reaction intermediate, a contaminant in some foods and drinks, and a residue in water when used for the control of aquatic plants, algae, bacteria, and mollusks (Izard and Libermann 1978). Valued for its lacrimatory and vesicant properties, it was used by the French during World War I as the warfare agent “papite.” Highly flammable, and with a pungent, choking, disagreeable odor, acrolein is capable of spontaneous polymerization, and therefore it can be difficult to handle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JD Jr, Klaidman LK (1993) Acrolein-induced oxygen radical formation. Free Radical Biol Med 15 (2): 187–193.

    CAS  Google Scholar 

  • Alarcon RA (1970) Evidence for the formation of the cytotoxic aldehyde acrolein from enzymatically oxidized spermine or spermidine. Arch Biochem Biophys 137: 365–372.

    PubMed  CAS  Google Scholar 

  • Alarcon RA (1976) Formation of acrolein from various amino-acids and polyamines under degradation at 100 °C. Environ Res 12 (3): 317.

    PubMed  CAS  Google Scholar 

  • Altshuller AP, McPherson SP (1963) Spectrophotometric analysis of aldehydes in the Los Angeles atmosphere. J Air Pollut Control Assoc 13: 109–111.

    PubMed  CAS  Google Scholar 

  • American Conference of Governmental Industrial Hygienists (ACGIH) (1990) 1990–1991 Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. American Conference of Governmental Industrial Hygienists, Cincinnati, OH.

    Google Scholar 

  • American Industrial Hygiene Association (AIHA) (1963) Acrolein. Hygiene guide series. American Industrial Hygiene Association, Detroit, MI.

    Google Scholar 

  • Anderson KJ, Leighty EG (1972) Evaluation of herbicides for possible mutagenic properties. J Agric Food Chem 20: 649–656.

    PubMed  CAS  Google Scholar 

  • Anonymous (1982) Carbide restarting Taft plant following fire. Chem Eng News 60 (51): 8.

    Google Scholar 

  • Anonymous (1992) Carbide to expand acrolein production. Chem Eng News 70 (23): 16.

    Google Scholar 

  • Artho A, Koch R (1969) The concentration of acrolein and hydrogen cyanide in cigarette smoke. Mitt Geb Lebensmittelunters Hyg 60: 49–54.

    Google Scholar 

  • Ashton FM, Crafts AS (1981) Mode of Action of Herbicides, 2nd ed. Wiley, New York.

    Google Scholar 

  • Astry CL, Jakab GJ (1983) The effects of acrolein exposure on pulmonary antibacterial defenses. Toxicol Appl Pharmacol 67 (4): 49–54.

    PubMed  CAS  Google Scholar 

  • Atkinson R, Aschmann SM, Winer AM, Pitts JN (1981) Rate constants for the gas phase reactions of O3 with a series of carbonyls at 296 K. Int J Chem Kinet 13: 1133–1150.

    CAS  Google Scholar 

  • Atkinson R, Aschmann SM, Goodman MA (1987) Kinetics of the gas phase reactions of NO3 radicals with a series of alkynes, halcalkenes, and α,β-unsaturated aldehydes. Int J Chem Kinet 19: 299–307.

    CAS  Google Scholar 

  • Atzori L, Dore M, Congiu L (1989) Aspects of allyl alcohol toxicity. Drug Metab Drug Interact 7 (4): 295–319.

    CAS  Google Scholar 

  • Baker RR, Dymond HF, Shillabeer PK (1984) Determination of α,β-unsaturated compounds formed by a burning cigarette. Anal Proc 21: 135–137.

    CAS  Google Scholar 

  • Ballantyne B, Dodd DE, Pritts IM, Nachreiner DJ, Fowler EH (1989) Acute vapour inhalation toxicity of acrolein and its influence as a trace contaminant in 2methoxy-3,4-dihydro-2H-pyran. Hum Toxicol 8 (3): 229–235.

    PubMed  CAS  Google Scholar 

  • Barros AR, Sierra LM, Comendador MA (1994) Acrolein genotoxicity in Drosophila melanogaster. III. Effects of metabolism modification. Mutat Res 321 (3): 119–126.

    PubMed  CAS  Google Scholar 

  • Barrows ME, Petrocelli SR, Macek KJ, Carroll JJ (1980) Bioconcentration and elimination of selected water pollutants by bluegill sunfish (Lepomis macrochirus). In: Proceedings of 1978 Symposium on Dynamics, Exposure, and Hazard Assessment of Toxic Chemicals. Ann Arbor Science Publishers, Ann Arbor, MI, pp 379–392.

    Google Scholar 

  • Bartley TR, Gangstad EO (1974) Environmental aspects of aquatic plant control. J Irrig Drain Div 100: 231–244.

    Google Scholar 

  • Beauchamp RO Jr, Andjelkovich DA, Kligerman AD, Morgan KT, Heck HD (1985) A critical review of the literature on acrolein toxicity. Crit Rev Toxicol 14 (4): 309–380.

    PubMed  CAS  Google Scholar 

  • Beeley JM, Crow J, Jones JG, Minty B (1986) Mortality and lung histopathology after inhalation lung injury. The effect of corticosteroids. Am Rev Respir Dis 133: 191–196.

    PubMed  CAS  Google Scholar 

  • BenJebria A, Marthan R, Rossetti M, Savineau JP, Ultman JS (1993) Effect of in vitro exposure to acrolein on carbachol responses in rat trachealis muscle. Respir Phy siol 93 (1): 111–123.

    CAS  Google Scholar 

  • Biagini RE, Toraason MA, Lynch DW, Winston GW (1990) Inhibition of rat heart mitochondrial electron transport in vitro: implications for the cardiotoxic action of allylamine or its primary metabolite, acrolein. Toxicology 62 (1): 95–106.

    PubMed  CAS  Google Scholar 

  • Bignami M, Cardamone G, Comba VA (1977) Relationship between chemical structure and mutagenic activity in some pesticides. The use of Salmonella typhimurium and Aspergillus nidulans. Mutat Res 46: 243–244.

    Google Scholar 

  • Boor PJ, Hysmith RM, Sanduja R (1990) A role for a new vascular enzyme in the metabolism of xenobiotic amines. Circ Res 66 (1): 249–252.

    PubMed  CAS  Google Scholar 

  • Bouley G, Dubreuil A, Godin J, Boudene C (1975) Effects in the rat of a weak dose of acrolein inhaled continuously. Eur J Toxicol Environ Hyg 8 (5): 291–297 (in French).

    PubMed  CAS  Google Scholar 

  • Bouley G, Dubreuil A (1976) Phenomena of adaptation in rats continuously exposed to low concentrations of acrolein. Ann Occup Hyg 19: 27–32.

    PubMed  CAS  Google Scholar 

  • Bowmer KH, Lang ARG, Higgins ML, Pillay AR, Tchan YT (1974) Loss of acrolein from water by volatilization and degradation. Weed Res 14 (5): 325–328.

    CAS  Google Scholar 

  • Bowmer KH, Higgins ML (1976) Some aspects of the persistence and fate of acrolein herbicide in water. Arch Environ Contam Toxicol 5: 87–96.

    PubMed  CAS  Google Scholar 

  • Bowmer KH, Sainty GR (1977) Management of aquatic plants with acrolein. J Aquat Plant Manage 15: 40–46.

    CAS  Google Scholar 

  • Bowmer KH, Smith GH (1984) Herbicides for injection into flowering water: Acrolein and endothal-amine. Weed Res 24 (3): 201–211.

    CAS  Google Scholar 

  • Bridie AL, Wolff CJM, Winter M (1979a) The acute toxicity of some petrochemicals to goldfish. Water Res 13: 623–626.

    CAS  Google Scholar 

  • Bridie AL, Wolff CJM, Winter M (1979b) BOD and COD of some petrochemicals. Water Res 13: 627–630.

    CAS  Google Scholar 

  • Callahan MA (1980) Water–related environmental fate of 129 priority pollutants. EPA–440/4–79–029a,b. Office of Water Planning and Standards, Office of Water and Waste Management, U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Chhibber G, Gilani SH (1986) Acrolein and embryogenesis: An experimental study. Environ Res 39 (1): 44.

    PubMed  CAS  Google Scholar 

  • Chraiber LB, Sosnovsky SI, Tatarkin YN, Vinnikova LI (1964) Air pollution with acrolein vapors in expeller and forepress shops of butter and fat mills of Uzbekistan. Gig Tr Prof Zabol 1 (11): 49–50 (in Russian).

    Google Scholar 

  • Claussen U, Hellmann W (1980) The embryotoxicity of the cyclophosphamide metabolite acrolein in rabbits, tested in vivo by i.v. injection and by the yolk sac method. Arzneim-Forsch 30: 2080–2083.

    CAS  Google Scholar 

  • Cohen SM, Garland EM, St. John M, Okamura T, Smith RA (1992) Acrolein initiates rat urinary bladder carcinogenesis. Cancer Res 52(13): 3577–3581.

    Google Scholar 

  • Committee on Aldehydes (1981) Formaldehyde and other Aldehydes. Board on Toxicology and Environmental Health Hazards, Assembly of Life Sciences, National Research Council, National Academy Press, Washington, DC, pp 234–241.

    Google Scholar 

  • Committee on Indoor Pollutants (1981) Indoor Pollutants. Board on Toxicology and Environmental Health Hazards, Assembly of Life Sciences, National Research Council, National Academy Press, Washington, DC.

    Google Scholar 

  • Coomber JW, Pitts JN (1969) Molecular structure and photochemical reactivity. XII. The vapor phase photochemistry of acrolein at 3130 A. J Am Chem Soc 91: 547–550.

    CAS  Google Scholar 

  • Cooper KO, Witmer CM, Witz G (1987) Inhibition of microsomal cytochrome creductase activity by a series of α,β-unsaturated aldehydes. Biochem Pharmacol 36: 627–631.

    PubMed  CAS  Google Scholar 

  • Costa DL, Kutzman RS, Lehmann JR, Drew RT (1986) Altered lung function and structure in the rat after subchronic exposure to acrolein. Am Rev Respir Dis 133 (2): 286–291.

    PubMed  CAS  Google Scholar 

  • Crane CR (1986) Inhalation toxicology. VII. Times to incapacitation and death for rats exposed continuously to atmospheric acrolein vapor. DOT/FAA/AM-86/5. Office of Aviation Medicine, U.S. Federal Aviation Administration, Washington, DC.

    Google Scholar 

  • Crane CR, Sanders DC, Endecott BR (1989) Inhalation toxicology. X. Times to incapacitation for rats exposed continuously to carbon monoxide, acrolein, and to carbon monoxide-acrolein mixtures. DOT/FAA/AM-90/15. Office of Aviation Medicine, U.S. Federal Aviation Administration, Washington, DC.

    Google Scholar 

  • Curren RD, Yang LL, Conklin PM, Grafström RC, Harris CC (1988) Mutagenesis of xeroderma pigmentosum fibroblasts by acrolein. Mutat Res 209 (1–2): 17–22.

    PubMed  CAS  Google Scholar 

  • Darley EF, Middleton JT, Garber MJ (1960) Plant damage and eye irritation from ozone-hydrocarbon reactions. J Agric Food Chem 8 (6): 483–485.

    CAS  Google Scholar 

  • Dennis KJ, Shibamoto T (1990) Gas chromatographic analysis of reactive carbonyl compounds formed from lipids upon UV-irradiation. Lipids 25 (8): 460–464.

    PubMed  CAS  Google Scholar 

  • Dharurkar RD, Dnyansagar VR (1974) The effect of herbicides on root tip mitosis in water hyacinth. Hyacinth Control J 12: 26–29.

    CAS  Google Scholar 

  • Dost FN (1991) Acute toxicology of components of vegetation smoke. Rev Environ Contam Toxicol 119: 1–46.

    PubMed  CAS  Google Scholar 

  • Draminski W, Eder E (1983) A new pathway of acrolein metabolism in rats. Arch Toxicol 52: 243–247.

    PubMed  CAS  Google Scholar 

  • Dypbukt JM, Sundqvist K, Grafström RC (1986) Aldehyde-induced cytotoxicity in cultured human bronchial epithelial cells. In: Proceedings of Scandinavian Society for Cell Toxicology Congress on Toxicity Testing in Cellular Systems (Lysebu, Norway) 14 (3): 146–150.

    Google Scholar 

  • Dypbukt JM, Atzori L, Edman CC, Grafström RC (1993) Thiol status and cytopathological effects of acrolein in normal and xeroderma pigmentosum skin fibroblasts. Carcinogenesis 14 (5): 975–980.

    PubMed  CAS  Google Scholar 

  • Earl LK, Kesingland K, Davis KP, Brocklehurst SR, Jones HB (1992) Allylamine toxicity in embryonic myocardial myocyte reaggregate culturesl the role of extra-cellular metabolism by benzylamine oxidase. In Vitro Toxicol 6 (5): 405–416.

    CAS  Google Scholar 

  • Eder E, Hoffman C, Bastian H, Deininger C, Scheckenbach S (1990) Molecular mechanisms of DNA damage initiated by α,β-unsaturated carbonyl compounds as criteria for genotoxicity and mutagenicity. Environ Health Perspect 88: 99–106.

    PubMed  CAS  Google Scholar 

  • Edney EO, Mitchell S, Bufalini JJ (1982) Atmospheric chemistry of several toxic compounds. EPA–600/S3–82–092. Environmental Sciences Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC.

    Google Scholar 

  • Edney EO, Kleindienst TE, Corse EW (1986a) Room temperature rate constants for the reaction of OH with selected chlorinated and oxygenated compounds. Int J Chem Kinet 18: 1355–1371.

    CAS  Google Scholar 

  • Edney EO, Shepson PB, Kleindienst TE, Corse EW (1986b) The photooxidation of allyl chloride. Int J Chem Kinet 18: 597–608.

    CAS  Google Scholar 

  • Egle JL Jr, Hudgins PM (1972) Retention of inhaled formaldehyde, propionaldehyde, and acrolein in the dog. Arch Environ Health 25: 119–124.

    PubMed  CAS  Google Scholar 

  • Egle JL Jr, Hudgins PM (1973) Cardiovascular effects of intravenous acetaldehyde and propionaldehyde in the anesthesized rat. Toxicol Appl Pharmacol 24: 636–644.

    PubMed  CAS  Google Scholar 

  • Ericsson AC, Walum E (1987) Differential effects of allyl alcohol on hepatocytes and fibroblasts demonstrated in roller chamber co-cultures. In: Proceedings of Scandinavian Society for Cell Toxicology Congress on Toxicity Testing in Cellular Systems (Espoo, Finland) 15 (3): 208–212.

    Google Scholar 

  • Facchini MC, Chiavari G, Fuzzi S (1986) An improved method for carbonyl com- pound speciation in the atmospheric liquid phase. Chemosphere 15: 667–674.

    CAS  Google Scholar 

  • Facchini MC, Chiavari G, Fuzzi S (1987) Analysis of carbonyl compounds in the atmospheric liquid phase. In: Angeletti G, Restelli G (eds) Physico-chemical Behaviour of Atmospheric Pollutants: Proceedings of 4th European Symposium. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Fischer T, Weber A, Grandjean E (1978) Air pollution due to tobacco smoke in restaurants. Int Arch Occup Environ Health 41: 267–280 (in German).

    PubMed  CAS  Google Scholar 

  • Foiles PG, Akerkar SA, Chung FL (1989) Application of an immunoassay for cyclic acrolein deoxyguanosine adducts to assess their formation in DNA of Salmonella typhimurium under conditions of mutation induction by acrolein. Carcinogenesis 10 (1): 87–90.

    PubMed  CAS  Google Scholar 

  • Foiles PG, Akerkar SA, Miglietta LM, Chung FL (1990) Formation of cyclic deoxyguanosine adducts in Chinese hamster ovary cells by acrolein and crotonaldehyde. Carcinogenesis 11 (11): 2059–2061.

    PubMed  CAS  Google Scholar 

  • Folmar LC (1977) Acrolein, dalapon, dichlobenil, diquat, and endothal: bibliography of toxicity to aquatic organisms. Tech. Paper 88. U.S. Fish and Wildlife Service, Washington, DC.

    Google Scholar 

  • Fracchia MF, Schuette FJ, Mueller PK (1967) A method for sampling and determination of organic carbonyl compounds in automobile exhaust. Environ Sci Techno 11: 915–922.

    Google Scholar 

  • Fritz-Sheridan RP (1982) Impact of the herbicide Magnacide-H (2-propenal) on algae. Bull Environn Contam Toxico 128: 245–249.

    Google Scholar 

  • Fry JR, Fentem JH, Salim A, Tang SP, Garle MJ, Whiting DA (1993) Structural requirements for the direct and cytochrome P450-dependent reaction of cyclic α,β-unsaturated carbonyl compounds with glutathione: a study with coumarin and related compounds. J Pharm Pharmacol 45 (3): 166–170.

    PubMed  CAS  Google Scholar 

  • Goulding E, Kitchin K, Schmid BP, Sanyal MK (1981) Assessment of the teratogenic potential of acrolein and cyclophosphamide in a rat embryo culture system. Toxicology 22 (3): 235.

    PubMed  Google Scholar 

  • Graedel TE, Farrow LA, Weber TA (1976) Kinetic studies of the photochemistry of the urban troposphere. Atmos Environ 10: 1095–1116.

    CAS  Google Scholar 

  • Graedel TE (1978) Chemical Compounds in the Atmosphere. Academic Press, New York.

    Google Scholar 

  • Grosjean D, Wright B (1983) Carbonyls in urban fog, ice fog, cloudwater, and rainwater. Atmos Environ 17: 2093–2096.

    CAS  Google Scholar 

  • Grosjean D, Williams EL (1992) Environmental persistence of organic compounds estimated from structure-reactivity and linear free-energy relationships. Unsaturated aliphatics. Atmos Environ 26A (8): 1395–1405.

    Google Scholar 

  • Guicherit R, Schulting FL (1985) The occurrence of organic chemicals in the atmosphere of the Netherlands. Sci Total Environ 43: 193–219.

    PubMed  CAS  Google Scholar 

  • Gurka DF, Pyle SM, Titus R (1992) Environmental analysis by direct aqueous injection. Anal Chem 64 (17): 1749–1754.

    CAS  Google Scholar 

  • Haas BM, Minton TK, Felder P, Huber JR (1991) Photodissociation of acrolein and propynal at 193 nm in a molecular beam. Primary and secondary reactions. J Phys Chem 95 (13): 5149–5159.

    CAS  Google Scholar 

  • Hales BF (1982) Comparison of the mutagenicity and teratogenicity of cyclophosphamide and its active metabolites, 4-hydroxycyclophosphamide, phosphoramide mustard, and acrolein. Cancer Res 42: 3016–3021.

    PubMed  CAS  Google Scholar 

  • Hales BF (1989) Effects of phosphoramide mustard and acrolein, cytotoxic metabolites of cyclophosphamide, on mouse limb development in vitro. Teratology 40 (1): 11–20.

    PubMed  CAS  Google Scholar 

  • Hales CA, Barkin PW, Jung W, Trautman E, Lamborghini D, Herrig N, Burke J (1988) Synthetic smoke with acrolein but not HC1 produces pulmonary edema. J Appl Physiol 64 (3): 1121–1133.

    PubMed  CAS  Google Scholar 

  • Hales CA, Musto SW, Janssens S, Jung W, Quinn DA, Witten M (1992) Smoke aldehyde component influences pulmonary edema. J Appl Physiol 72 (2): 555–561.

    PubMed  CAS  Google Scholar 

  • Hallgren C, Levin JO, Andersson K, Nilsson CA (1981) Solid chemosorbent for sampling sub-ppm levels of acrolein and glutaraldehyde in air. Chemosphere 10 (3): 275.

    Google Scholar 

  • Heinonen T, Zitting A (1980) Decrease of reduced glutathione in isolated rat hepatocytes caused by acrolein, acrylonitrile, and the thermal degradation products of styrene copolymers. Toxicology 17 (3): 333.

    PubMed  Google Scholar 

  • Hirayama T, Miura S, Murai J, Watanabe T (1990) Determination of α,β-unsaturated aldehydes in oxidized lipid by a 2,4-diaminotoluene (DAT) fluorescence method as a new evaluation method for lipid oxidation. Shokuhin Eiseigaku Zasshi [J Food Hyg Soc Jpn] 31 (6): 508–512.

    CAS  Google Scholar 

  • Hoffmann D, Brunnemann KD, Gori GB, Wynder EL (1975) On the carcinogenicity of marijuana smoke. Recent Adv Phytochem 9: 63–81.

    CAS  Google Scholar 

  • Hoffmann D, Melikian AA, Brunnemann KD (1991) Studies in tobacco carcinogenesis. IARC Sci Publ 105: 482–484.

    PubMed  CAS  Google Scholar 

  • Horvath JJ, Witmer CM, Witz G (1992) Nephrotoxicity of the 1:1 acrolein-glutathione adduct in the rat. Toxicol Appl Pharmacol 117 (2): 200–207.

    PubMed  CAS  Google Scholar 

  • Howard PH (1989) Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Lewis Publishers, Chelsea, MI.

    Google Scholar 

  • Huber GL, First MW, Grubner O(1991) Marijuana and tobacco smoke gas-phase cytotoxins. Pharmacol Biochem Behav 40 (3): 629–636.

    PubMed  CAS  Google Scholar 

  • Hugod C, Hawkins LH, Astrup P (1978) Exposure of passive smokers to tobacco smoke constituents. Int Arch Occup Environ Health 42: 21–29.

    PubMed  CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC) (1985) Allyl compounds, aldehydes, epoxides, and peroxides. IARC Monogr Eval Carcinog Risk Chem Hum 36: 133–161.

    Google Scholar 

  • Ishino T, Yoneda H (1986) Comprehensive study on the environmental air pollution substances from all working processes of a foundry. Kinki Daigaku Kankyo Kagaku Kenkyusho Kenkyu Hokoku ( Research Report of the Environmental Science Research Institute, Kinki University ) 14: 53–60.

    Google Scholar 

  • Izard C, Libermann C (1978) Acrolein. Mutat Res 47: 115–138.

    PubMed  CAS  Google Scholar 

  • Jakab GJ (1993) The toxicologic interactions resulting from inhalation of carbon black and acrolein on pulmonary antibacterial and antiviral defenses. Toxicol Appl Pharmacol 121 (2): 167–175.

    PubMed  CAS  Google Scholar 

  • Jankovic J, Jones W, Burkhart J, Noonan G (1991) Environmental study of firefighters. Ann Occup Hyg 35 (6): 581–602.

    PubMed  CAS  Google Scholar 

  • Johnstone DE, Sodeau JR (1992) Photochemistry of the matrix-isolated α,β-unsaturated aldehydes acrolein, methacrolein, and crotonaldehyde at 4.2 K. J Chem Soc Faraday Trans 88 (3): 409–415.

    CAS  Google Scholar 

  • Jonsson A, Berg S (1983) Determination of low-molecular-weight oxygenated hydrocarbons in ambient air by cryogradient sampling and two-dimensional gas chromatography. J Chromatogr 279: 307–322.

    CAS  Google Scholar 

  • Kane LE, Alarie Y (1977) Sensory irritation to formaldehyde and acrolein during single and repeated exposures in mice. Am Ind Hyg Assoc J 38: 509–521.

    PubMed  CAS  Google Scholar 

  • Kankaanpaa J, Elovaara E, Hemminki K, Vainio H (1979) Embryotoxicity of acro-lein, acrylonitrile, and acrylamide in developing chick embryos. Toxicol Lett 4: 93–96.

    CAS  Google Scholar 

  • Kaye CM (1973) Biosynthesis of mercapturic acids from allyl alcohol, allyl esters, and acrolein. Biochem J 134: 1093–1101.

    PubMed  CAS  Google Scholar 

  • Kissel CL, Brady JL, Guerra AM, Pau JK, Rockie BA, Caserio FF Jr (1978) Analysis of acrolein in aged aqueous media. Comparison of various analytical methods with bioassays. J Agric Food Chem 26 (6): 1338–1343.

    PubMed  CAS  Google Scholar 

  • Koerker RL, Berlin A, Schneider FH (1976) The cytotoxicity of short-chain alcohols and aldehydes in cultured neuroblastoma cells. Toxicol Appl Pharmacol 37: 281–288.

    PubMed  CAS  Google Scholar 

  • Krill RM, Sonzogni WC (1986) Chemical monitoring of Wisconsin’s groundwater. J Am Water Works Assoc 78: 70–75.

    CAS  Google Scholar 

  • Kroschwitz JI (ed) (1991) Encylopedia of Chemical Technology, 4th ed. Wiley, New York.

    Google Scholar 

  • Kruysse A (1971) Acute inhalation toxicity of acrolein in hamsters. Rept R 3516. Central Institute for Nutrition and Food Research TNO, The Netherlands.

    Google Scholar 

  • Kruysse A, Feron VJ (1977) Effects of exposure to acrolein vapor in hamsters simultaneously treated with benzo[a]pyrene or diethylnitrosamine. J Toxicol Environ Health 3 (3): 379.

    PubMed  Google Scholar 

  • Kutzman RS, Popenoe EA, Schmaeler M, Drew RT (1985) Changes in rat lung structure and composition as a result of subchronic exposure to acrolein. Toxicology 34 (2): 139.

    PubMed  CAS  Google Scholar 

  • Kutzman RS, Wehner RW, Haber SB (1986) The impact of inhaled acrolein on hypertension-sensitive and resistant rats. J Environ Pathol Toxicol Oncol 6 (5–6): 97–108.

    PubMed  CAS  Google Scholar 

  • Kuwata K, Uebori M, Yamasaki H, Kuge Y, Kiso Y (1983) Determination of aliphatic aldehydes in air by liquid chromatography. Anal Chem 55: 2013–2016.

    CAS  Google Scholar 

  • Lagrue G, Branellec A, Lebargy F (1993) Toxicology of tobacco. Rev Prat 43 (10): 1203–1207.

    PubMed  CAS  Google Scholar 

  • Lane RH, Smathers JL (1991) Monitoring aldehyde production during frying by reversed-phase liquid chromatography. J Assoc Off Anal Chem 74 (6): 957–960.

    PubMed  CAS  Google Scholar 

  • Lash LH, Woods EB (1991) Cytotoxicity of alkylating agents in isolated rat kidney proximal tubular and distal tubular cells. Arch Biochem Biophys 286 (1): 46–56.

    PubMed  CAS  Google Scholar 

  • Lea RG, Daya S, Clark DA (1990) Identification of low molecular weight immunosuppressor molecules in human in vitro fertilization supernatants predictive of implantation as a polyamine—possibly spermine. Fertil Steril 53 (5): 875–881.

    PubMed  CAS  Google Scholar 

  • Leach PW, Leng LJ, Bellar TA, Sigsby JE, Altshuller AP (1964) Effects of HC/ NOx ratios on irradiated auto exhaust, part II. J Air Pollut Control Assoc 14: 176–183.

    CAS  Google Scholar 

  • Lederer WH (1985) Regulatory chemicals of health and environmental concern. Van Nostrand Reinhold, New York, pp 4–5.

    Google Scholar 

  • Lee BP, Morton RF, Lee LY (1992) Acute effects of acrolein on breathing: role of vagal bronchopulmonary afferents. J Appl Physiol 72 (3): 1050–1056.

    PubMed  CAS  Google Scholar 

  • Leffingwell CM, Low RB (1979) Cigarette smoke components and alveolar macrophage protein synthesis. Arch Environ Health 34 (2): 97.

    PubMed  CAS  Google Scholar 

  • Leikauf GD, Doupnik CA, Leming LM, Wey HE (1989a) Sulfidopeptide leukotrienes mediate acrolein-induced bronchial hyperresponsiveness. J Appl Physiol 66 (4): 1838–1845.

    PubMed  CAS  Google Scholar 

  • Leikauf GD, Leming LM, O’Donnell JR, Doupnik CA (1989b) Bronchial responsiveness and inflammation in guinea pigs exposed to acrolein. J Appl Physiol 66 (1): 171–178.

    PubMed  CAS  Google Scholar 

  • Le Lacheur RM, Sonnenberg LB, Singer PC, Christman RF, Charles MJ (1993) Identification of carbonyl compounds in environmental samples. Environ Sci Technol 27 (13): 2745–2753.

    Google Scholar 

  • Lessard PC, Rosenfeld RN (1992) Tunable diode laser measurements of CO energy distributions from acrolein photodissociation at 193 nm. J Phys Chem 96 (11): 4615–4620.

    CAS  Google Scholar 

  • Levaggi DA, Feldstein M (1970) The determination of formaldehyde, acrolein, and low molecular weight aldehydes in industrial emissions on a single collection sample. J Air Pollut Control Assoc 20: 312–313.

    PubMed  CAS  Google Scholar 

  • Lewis RJ (ed) (1993) Hawley’s Condensed Chemical Dictionary, 12th ed. Van Nostrand Reinhold, New York, p 18.

    Google Scholar 

  • Lipari F, Swarin SJ (1982) Determination of formaldehyde and other aldehydes in automobile exhaust with an improved 2,4-dinitrophenylhydrazine method. J Chromatogr 247: 297–306.

    CAS  Google Scholar 

  • Lipari F, Dasch JM, Scruggs WF (1984) Aldehyde emissions from wood-burning fireplaces. Environ Sci Technol 18: 326–330.

    CAS  Google Scholar 

  • Loefroth G, Burton RM, Forehand L, Hammond SK, Seila RL, Zweidinger RB, Lewtas J (1989) Characterization of environmental tobacco smoke. Environ Sci Technol 23 (5): 610–614.

    CAS  Google Scholar 

  • Lorz HW, Glenn SW, Williams RH, Kunkel CM, Norris LA, Loper BR (1979) Effects of selected herbicides on smolting of Coho salmon. EPA–600/3–79–071. Corvallis Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR.

    Google Scholar 

  • Lyman WJ, Reehl WF, Rosenblatt DH (1982) Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds. McGraw-Hill, New York.

    Google Scholar 

  • Mabey WR (1982) Aquatic fate process data for organic priority pollutants. EPA–440/4–81–014. Office of Water Regulations and Standards, U.S. Environmental Protection Agency, Washington, DC, pp 53 – 54.

    Google Scholar 

  • Maccubbin AE, Caballes L, Scappaticci F, Struck RF, Gurtoo HL (1990) 32P-postlabeling analysis of binding of the cyclophosphamide metabolite, acrolein, to DNA. Cancer Commun 2(6):207–211.

    Google Scholar 

  • Macek KJ (1976) Toxicity of four pesticides to water fleas and fathead minnows: acute and chronic toxicity of acrolein, heptachlor, endosulfan, and trifluralin to the water flea (Daphnia magna), and the fathead minnow (Pimephales promelas). EPA–600/3–76–099. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN.

    Google Scholar 

  • Maldotti A, Chiorboli C, Bignozzi CA, Bartocci C, Carassiti V (1980) Photooxidation of 1,3-butadiene-containing systems: rate constant determination for the reaction of acrolein with OH radicals. Int J Chem Kinet 12: 905–913.

    CAS  Google Scholar 

  • Marinello AJ, Bansal SK, Paul B, Koser PL, Love J, Struck RF, Gurtoo HL (1984) Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450. Cancer Res 44 (10): 4615–4621.

    PubMed  CAS  Google Scholar 

  • Masek V (1972) Aldehydes in the air at working places in coal and pitch coking plants. Staub Reinhalt Luft 32: 335–336 (in German).

    CAS  Google Scholar 

  • McNulty MJ, Heck Hd’A, Casanova-Schmitz M (1984) Depletion of glutathione in rat respiratory mucosa by inhaled acrolein. Fed Proc 43: 575.

    Google Scholar 

  • Miccadei S, Nakae D, Kyle ME, Gilfor D, Farber JL (1988) Oxidative cell injury in the killing of cultured hepatocytes by allyl alcohol. Arch Biochem Biophys 265 (2): 302–310.

    PubMed  CAS  Google Scholar 

  • Mitchell DY, Petersen DR (1989a) Metabolism of the glutathione-acrolein adduct, S-(2-aldehydo-ethyl)glutathione, by rat liver alcohol and aldehyde dehydrogenase. J Pharmacol Exp Ther 251 (1): 193–198.

    PubMed  CAS  Google Scholar 

  • Mitchell DY, Petersen DR (1989b) Oxidation of aldehydic products of lipid peroxidation by rat liver microsomal aldehyde dehydrogenase. Arch Biochem Biophys 269 (1): 11–17.

    PubMed  CAS  Google Scholar 

  • Morikawa T, Yanai E (1989) Toxic gases and smoke evolution from foam plastic building materials burning in fire environments. J Fire Sci 7 (2): 131–141.

    CAS  Google Scholar 

  • Morse L, Owen D, Becker C (1992) Firefighters’ health and safety. In: Rom WN (ed) Environmental and Occupational Medicine, 2nd ed. Little, Brown, Boston, pp 1197–1204.

    Google Scholar 

  • Munsch N, De Recondo AM, Frayssinet C (1973) Effects of acrolein on DNA synthesis in vitro. FEBS Lett 30: 286–289.

    PubMed  CAS  Google Scholar 

  • National Institute for Occupational Safety and Health (NIOSH) (1980) National Occupational Hazard Survey, conducted 1972–74, computerized data file. National Institute for Occupational Safety and Health, Center for Disease Control, Public Health Service, U.S. Department of Health, Education, and Welfare, Washington, DC.

    Google Scholar 

  • NIOSH (1990) NIOSH Pocket Guide to Chemical Hazards. National Institute for Occupational Safety and Health, U.S. Department of Health and Human Services, Washington, DC.

    Google Scholar 

  • National Oceanic and Atmospheric Administration/United States Environmental Protection Agency (1992) Computer-Aided Management of Emergency Operations (CAMEO), version 4.0, a chemical computer database. Developed by National Oceanic and Atmospheric Administration (NOAA) and U.S. Environmental Protection Agency (USEPA). Distributed by National Safety Council, Washington, DC.

    Google Scholar 

  • Neely WB (1982) Review: Organizing data for environmental studies. Environ Toxicol Chem 1: 259–266.

    CAS  Google Scholar 

  • Nieman GF, Clark WR Jr (1994) Effects of wood and cotton smoke on the surface properties of pulmonary surfactant. Respir Physiol 97 (1): 1–12.

    PubMed  CAS  Google Scholar 

  • Nishikawa H, Hayakawa T, Sakai T (1986) Determination of micro amounts of acrolein in air by gas chromatography. J Chromatogr 370: 327–332.

    PubMed  CAS  Google Scholar 

  • Nishikawa H, Hayakawa T, Sakai T (1987) Gas chromatographic determination of acrolein in rain water using bromination of O-methyloxime. Analyst 112: 45–48.

    PubMed  CAS  Google Scholar 

  • Niyati-Shirkhodaee F, Shibamoto T (1992a) Formation of toxic aldehydes in cod liver oil after ultraviolet irradiation. J Am Oil Chem Soc 69 (12): 1254–1256.

    CAS  Google Scholar 

  • Niyati-Shirkhodaee F, Shibamoto T (1992b) In vitro determination of toxic aldehydes formed from the skin lipid, triolein, upon ultraviolet irradiation: Formaldehyde and acrolein. J Toxicol Cutaneous Ocul Toxicol 11 (4): 285.

    CAS  Google Scholar 

  • Oberdorfer PE (1971) The determination of aldehydes in automobile exhaust gas. In: Vehicle emissions, Part III. Soc Auto Eng Prog Tech 14: 32–42.

    Google Scholar 

  • O’Connell RA, Clark JP (1992) A study of acrolein as an experimental ground squirrel burrow fumigant. Proc Vertebr Pest Conf 15: 326–329.

    Google Scholar 

  • O’Loughlin EM, Bowmer KH (1975) Dilution and decay of aquatic herbicides in flowing channels. J Hydrol (Amst) 26 (3–4): 217–235.

    Google Scholar 

  • Osborne AD, Pitts JN, Darley EF (1962) On the stability of acrolein towards photo-oxidation in the near ultraviolet. Int J Air Water Pollut 6: 1–3.

    PubMed  CAS  Google Scholar 

  • Osman YA, Ingram LO (1987) Zymomonas mobilis mutants with an increased rate of alcohol production. Appl Environ Microbiol 53(7):1425–1432.

    Google Scholar 

  • Parent RA, Caravello HE, Harbell JW (1991) Gene mutation assay of acrolein in the CHO/HGPRT test system. J Appl Toxicol 1l (2): 91–95.

    Google Scholar 

  • Parent RA, Caravello HE, Balmer MF, Shellenberger TE, Long JE (1992a) One-year toxicity of orally administered acrolein to the beagle dog. J Appl Toxicol 12 (5): 311–316.

    PubMed  CAS  Google Scholar 

  • Parent RA, Caravello HE, Hoberman AM (1992b) Reproductive study of acrolein on two generations of rats. Fundam Appl Toxicol 19 (2): 228–237.

    PubMed  CAS  Google Scholar 

  • Parent RA, Caravello HE, Long JE (1992c) Two-year toxicity and carcinogenicity study of acrolein in rats. J Appl Toxicol 12 (2): 131–139.

    PubMed  CAS  Google Scholar 

  • Parent RA, Caravello HE, Christian MS, Hoberman AM (1993) Developmental toxicity of acrolein in New Zealand white rabbits. Fundam Appl Toxicol 20 (2): 248–256.

    PubMed  CAS  Google Scholar 

  • Patel JM (1980) The biotransformation of allyl alcohol and acrolein in rat liver and lung preparations. Drug Metab Dispos 8: 305–308.

    PubMed  CAS  Google Scholar 

  • Patel JM (1990) Metabolism and pulmonary toxicity of cyclophosphamide. Pharmacol Ther 47 (1): 137–146.

    PubMed  CAS  Google Scholar 

  • Patel JM, Block ER (1993) Acrolein-induced injury to cultured pulmonary artery endothelial cells. Toxicol Appl Pharmacol 122 (1): 46–53.

    PubMed  CAS  Google Scholar 

  • Phillips GF, Waller RE (1991) Yields of tar and other smoke components from UK cigarettes. Food Chem Toxicol 29 (7): 469–474.

    PubMed  CAS  Google Scholar 

  • Plotnikova MM (1957) Data on hygienic evaluation of acrolein as a pollutant of the atmosphere. Gig Sanit 22 (6): 10–15 (in Russian).

    PubMed  CAS  Google Scholar 

  • Pompella A, Romani A, Benedetti A, Comporti M (1991) Loss of membrane protein thiols and lipid peroxidation in allyl alcohol hepatotoxicity. Biochem Pharmacol 41 (8): 1255–1259.

    PubMed  CAS  Google Scholar 

  • Potts WJ (1978) A study of the inhalation toxicity of smoke produced upon pyrolysis and combustion of polyethylene foams. I. Laboratory studies. J Combust Toxicol 5: 408–433.

    CAS  Google Scholar 

  • Ramos KS, Thurlow CH (1993) Comparative cytotoxic responses of cultured avian and rodent aortic smooth muscle cells to allylamine. J Toxicol Environ Health 40 (1): 61–76.

    PubMed  CAS  Google Scholar 

  • Rando RJ, Menon PK, Poovey HG, Lehrer SB (1992) Assessment of multiple markers of environmental tobacco smoke (ETS) in controlled, steady-state atmospheres in a dynamic test chamber. Am Ind Hyg Assoc J 53 (11): 699–704.

    PubMed  CAS  Google Scholar 

  • Rathkamp G, Tso TC, Hoffmann D (1973) Chemical studies on tobacco smoke: smoke analysis of cigarettes made from bright tobaccos differing in variety and stalk positions. Beitr Tabakforsch 7: 179–189.

    CAS  Google Scholar 

  • Redtenbacher J (1843) Ann Ann 47: 113.

    Google Scholar 

  • Renzetti NA, Bryan RJ (1961) Atmospheric sampling for aldehydes and eye irritation in Los Angeles smog. J Air Pollut Control Assoc 11: 421.

    PubMed  CAS  Google Scholar 

  • Rickert WS, Robinson JC, Young JC (1980) Estimating the hazards of ‘less hazardous’ cigarettes. I. Tar, nicotine, carbon monoxide, acrolein, hydrogen cyanide, and total aldehyde deliveries of Canadian cigarettes. J Toxicol Environ Health 6: 351.

    PubMed  CAS  Google Scholar 

  • Rikans LE (1987) The oxidation of acrolein by rat liver aldehyde dehydrogenases: relation to allyl alcohol hepatotoxicity. Drug Metab Dispos 15 (3): 356–363.

    PubMed  CAS  Google Scholar 

  • Roemer E, Anton HJ, Kindt R (1993) Cell proliferation in the respiratory tract of the rat after acute inhalation of formaldehyde or acrolein. J Appl Toxicol 13 (2): 103–107.

    PubMed  CAS  Google Scholar 

  • Sakai Y, Tani Y (1987) Production of acrolein, acetaldehyde, and propionaldehyde by cells of a methanol yeast, Candida boidinii S2. Agric Biol Cehm 51(9): 2617–2620.

    Google Scholar 

  • Salaman MH, Roe FJC (1956) Further test of tumor initiating activity: N,N-di-(2chloroethyl) p-aminophenylbutyric acid (CB 1348) as an initiator of skin tumor formation in the mouse. Br J Cancer 10: 363–378.

    PubMed  CAS  Google Scholar 

  • Salaun J, Marguerite J, Karkour B (1990) A new and convenient preparation of 1-aminocyclopropanecarboxylic acid from acrolein. J Org Chem 55(14): 4276–4281.

    CAS  Google Scholar 

  • Sanduja R, Ansari GA, Boor PJ (1989) 3-Hydroxypropylmercapturic acid: a biologic marker of exposure to allylic and related compounds. J Appl Toxicol 9(4): 235–238.

    Google Scholar 

  • Scott TR, Kirsch RE (1988) Inhibition of rat liver glutathione S-transferase isoenzymes by acrolein. Biochem Int 16 (3): 439–442.

    PubMed  CAS  Google Scholar 

  • Selley ML, Bartlett MR, McGuiness JA, Ardlie NG (1990) Effects of acrolein on human platelet aggregation. Chem Biol Interact 76 (1): 101–109.

    PubMed  CAS  Google Scholar 

  • Sherwood RL, Leach CL, Hatoum NS, Aranyi C (1986) Effects of acrolein on macrophage functions in rats. Toxicol Lett 32 (1–2): 41–49.

    PubMed  CAS  Google Scholar 

  • Sierra LM, Barros AR, Garcia M, Ferreiro JA, Comendador MA (1991) Acrolein genotoxicity in Drosophila melanogaster. I. Somatic and germinal mutagenesis under proficient repair conditions. Mutat Res 260 (3): 247–256.

    PubMed  CAS  Google Scholar 

  • Silva JM, O’Brien PJ (1989) Ally’ alcohol- and acrolein-induced toxicity in isolated rat hepatocytes. Arch Biochem Biophys 275 (2): 551–558.

    PubMed  CAS  Google Scholar 

  • Sinkuvene D (1970) Hygienic assessment of acrolein as an atmospheric pollutant. Gig Sanit 35 (3): 6–10 (in Russian).

    PubMed  CAS  Google Scholar 

  • Sittig M (ed) (1980) Pesticide Manufacturing and Toxic Materials Control Encyclopedia. Noyes Data Corporation, Park Ridge, NJ.

    Google Scholar 

  • Sklar JL, Anderson PG, Boor PJ (1991) Allylamine and acrolein toxicity in perfused rat hearts. Toxicol Appl Pharmacol 107 (3): 535–544.

    PubMed  CAS  Google Scholar 

  • Skog E (1950) A toxicological investigation of lower aliphatic aldehydes. Acta Pharmacol Toxicol 6: 299–318.

    CAS  Google Scholar 

  • Smith CW (ed) (1962) Acrolein. Shell Development Company. Wiley, New York. Smith RA, Cohen SM, Lawson TA (1990a) Acrolein mutagenicity in the V79 assay. Carcinogenesis 11 (3): 497–498.

    Google Scholar 

  • Smith RA, Williamson DS, Cerny RL, Cohen SM (1990b) Detection of 1,N6-propanodeoxyadenosine in acrolein-modified polydeoxyadenylic acid and DNA by 32P postlabeling. Cancer Res 50 (10): 3005–3012.

    PubMed  CAS  Google Scholar 

  • Spielmann H, Jacob-Mueller U (1981) Investigations on cyclophosphamide treatment during the preimplantation period. II. In vitro studies on the effects of cylcophosphamide and its metabolites 4-OH-cyclophosphamide, phosphoramide mustard, and acrolein on blastulation of four-cell and eight-cell mouse embryos and their subsequent development during implantation. Teratology 23: 7–13.

    PubMed  CAS  Google Scholar 

  • Srivastava SC, Upreti RK, Kidwai AM (1992) Action of acrolein on rat liver membrane proteins and enzymes. Bull Environ Contam Toxicol 49 (1): 98–104.

    PubMed  CAS  Google Scholar 

  • Stack VT (1957) Toxicity of α,β-unsaturated carbonyl compounds to microorganisms. Ind Eng Chem 49: 913–917.

    CAS  Google Scholar 

  • Stanford Research Institute (SRI) (1977) Profiles on occupational hazards for criteria document priorities. Stanford Research Institute, for National Institute for Occupational Safety and Health, U.S. Department of Health, Education, and Welfare, Arlington, VA, pp 5–15.

    Google Scholar 

  • Steiner PE, Steele R, Koch FC (1943) The possible carcinogenicity of overcooked meats, heated cholesterol, acrolein, and heated sesame oil. Cancer Res 33: 100–107.

    Google Scholar 

  • Stover EL, Kincannon DF (1983) Biological treatability of specific organic compounds found in chemical industry wastewaters. J Water Pollut Control Fed 55 (l): 97–109.

    CAS  Google Scholar 

  • Susten AS, Breitenstein MJ (1990) Failure of acrolein to produce sensitization in the guinea pig maximization test. Contact Dermatitis 22 (5): 299–300.

    PubMed  CAS  Google Scholar 

  • Tabak HH, Quave SA, Mashni CI, Barth EF (1981a) Biodegradability studies for predicting the environmental fate of organic priority pollutants. In: Test Protocols for Environmental Fate and Movement of Toxicants: Proceedings of a Symposium. Association of Official Analytical Chemists, Arlington, VA, pp 267–327.

    Google Scholar 

  • Tabak HH, Quave SA, Mashni CI, Barth EF (1981b) Biodegradability studies with organic priority pollutant compounds. J Water Pollut Control Fed 53: 1503–1518.

    CAS  Google Scholar 

  • Takizawa T, Saito T (1989) Freeze substitution fixation for enzyme histochemistry. Acta Histochem Cytochem 22 (1): 139–151.

    Google Scholar 

  • Tanimoto M, Uehara H (1975) Detection of acrolein in engine exhaust with microwave cavity spectrometer of Stark voltage sweep type. Environ Sci Technol 9 (2): 153.

    CAS  Google Scholar 

  • Timbrell JA (1991) Principles of Biochemical Toxicology, 2nd ed. Taylor and Francis, London.

    Google Scholar 

  • Toraason M, Luken ME, Breitenstein M, Krueger JA, Biagini RE (1989) Comparative toxicity of allylamine and acrolein in cultured myocytes and fibroblasts from neonatal rat heart. Toxicology 56 (1): 107–117.

    PubMed  CAS  Google Scholar 

  • Treitman RD, Burgess WA, Gold A (1980) Air contaminants encountered by firefighters. Am Ind Hyg Assoc J 41: 796–803.

    PubMed  CAS  Google Scholar 

  • Tuesday CS (ed) (1971) Chemical Reactions in Urban Atmospheres. American Elsevier, New York, pp 76–77, 80.

    Google Scholar 

  • Umano K, Shibamoto T (1987) Analysis of acrolein from heated cooking oils and beef fat. J Agric Food Chem 5 (6): 909–912.

    Google Scholar 

  • Umstead ME, Shortridge RG, Lin MC (1978) Energy partitioning in the photodissociation of C3H40 near 200 nm. J Phys Chem 82 (13): 1455–1460.

    CAS  Google Scholar 

  • U.S. Coast Guard (USCG) (1989) Chemical Hazards Response Information System (CHRIS) hazardous chemical data. U.S. Coast Guard, Washington, DC.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1974) Herbicide report. Hazardous Materials Advisory Committee, U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (1980) Ambient water quality criteria for acrolein. EPA 440/5–80–016. Office of Water Regulations and Standards, U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (1990) Chemical profiles —Chemical Emergency Preparedness Program. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Vogel EW, Nivard MJ (1993) Performance of 181 chemicals in a Drosophila assay predominantly monitoring interchromosomal mitotic recombination. Mutagenesis 8 (1): 57–81.

    PubMed  CAS  Google Scholar 

  • Voisin C, Aerts C, Fournier E, Guiselin M (1983) Alveolar macrophages versus toxic gases. A controlled in vitro approach. Curr Probl Clin Biochem 13: 212–222.

    PubMed  CAS  Google Scholar 

  • Weast RC (ed) (1985) CRC Handbook of Chemistry and Physics, 66th ed. CRC Press, Boca Raton, FL, p C80.

    Google Scholar 

  • Webber MM, Chaproniere-Rickenberg D (1980) Spermine oxidation products are selectively toxic to fibroblasts in cultures of normal human prostatic epithelium. Cell Biol Int Rep 4 (2): 185–193.

    PubMed  CAS  Google Scholar 

  • Weed Science Society of America (WSSA) (1983) Herbicide Handbook of the Weed Science Society of America, 5th ed. Weed Science Society of America, Champaign, IL.

    Google Scholar 

  • World Health Organization (WHO) (1991) Acrolein Health and Safety Guide. Health and Safety Guide 67. World Health Organization, Geneva.

    Google Scholar 

  • WHO (1992) Acrolein. Environmental Health Criteria 127. World Health Organization, Geneva.

    Google Scholar 

  • Yasuhara A, Dennis KJ, Shibamoto T (1989) Development and validation of new analytical method for acrolein in air. J Assoc Off Anal Chem 72 (5): 749–751.

    PubMed  CAS  Google Scholar 

  • Yasuhara A, Shibamoto T (1991) Determination of acrolein evolved from heated vegetable oil by N-methylhydrazine conversion. Agric Biol Chem 55 (10): 2639–2640.

    CAS  Google Scholar 

  • Zitting A, Savolainen H, Nickels J (1982) Biochemical and toxicological effects of single and repeated exposures to polyacetal thermodegradation products. Environ Res 29 (2): 287–296.

    PubMed  CAS  Google Scholar 

  • Zorin VM (1966) Acrolein-induced air pollution. Zdravookhr Beloruss 1966 (7): 43–44 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ghilarducci, D.P., Tjeerdema, R.S. (1995). Fate and Effects of Acrolein. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 144. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2550-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2550-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7576-3

  • Online ISBN: 978-1-4612-2550-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics