Online Supplementary Materials

Title: contrast extravasation and outcome of endovascular therapy in acute ischemic stroke: a systematic review and meta-analysis

Tao Xu, You Wang, Jinxian Yuan, Yangmei Chen, Haiyan Luo*

Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

*Correspondence to: Haiyan Luo, e-mail: haiyanl@hospital.cqmu.edu.cn, Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400010, China. Tel: +8623 63693088. Fax: +8623 63693086.

Table S1. Search strategy in the Medline database.

Steps*	Queries	Number of
		studies
#1	Search: (((((((Thrombectomy) OR (Endovascular)) OR	368,970
	(reperfusion)) OR (Recanalization)) OR (Aspiration)) OR	
	(retriever)) OR (intra-arterial)) OR (revascularization)	
#2	Search: (((((Blood Brain Barrier[Title/Abstract]) OR	1,250,079
	(Contrast Staining[Title/Abstract])) OR	
	(Barrier[Title/Abstract])) OR (Contrast[Title/Abstract])) OR	
	(Hyperdensity[Title/Abstract])) OR	
	(high-density[Title/Abstract])	
#3	Search: (patients[Title/Abstract]) OR	6,646,483
	(patient[Title/Abstract])	
#4	Search: ((((((Occlusion) OR (Occlusions)) OR (Cerebral	1,007,464
	Infarction)) OR (Infarction)) OR (stroke)) OR (ischemic))	
	OR (ischaemia)	
#1 and #2 and #3	Search: ((((((((Occlusion) OR (Occlusions)) OR (Cerebral	5,098
and #4 and #5	Infarction)) OR (Infarction)) OR (stroke)) OR (ischemic))	
	OR (ischaemia)) AND ((patients[Title/Abstract]) OR	
	(patient[Title/Abstract]))) AND ((((((Blood Brain	
	Barrier[Title/Abstract]) OR (Contrast	
	Staining[Title/Abstract])) OR (Barrier[Title/Abstract])) OR	
	(Contrast[Title/Abstract])) OR	
	(Hyperdensity[Title/Abstract])) OR	
	(high-density[Title/Abstract]))) AND (((((((Thrombectomy)	
	OR (Endovascular)) OR (reperfusion)) OR (Recanalization))	
	OR (Aspiration)) OR (retriever)) OR (intra-arterial)) OR	
	(revascularization))	

*The search strategy for the Embase and the Cochrane Library database was similar to that used for the Medline database. We also examined the reference lists of the included articles to obtain additional relevant studies. There was no limitation on literature language or publication type or time. outcomes of EVT.

	CE		non-CE	
First Author, y of publication	case	non-case	case	non-case
90 day poor functional outcomes				
Chen 2020		Adjus	sted OR	
Sun 2019		Adjus	sted OR	
Chen 2019	27	15	12	28
An 2019	29	21	34	96
Renu 2015		Adj	justed	
Rouchaud 2014	11	14	24	14
Nikoubashman 2014	18	6	52	20
Desilles 2013		Adjus	sted OR	
Kim 2012	19	19	19	11
Yoon 2004	14	7	16	25
Discharge poor functional outcomes				
Chen 2020	45	6	84	31
Shi 2018		Adjus	sted OR	
Kim 2015	14	19	4	19
Nikoubashman 2014	23	4	67	16
90 day mortality				
Chen 2020	5	46	11	104
An 2019	17	33	32	98
Rouchaud 2014	5	20	13	25
Desilles 2013	Adjusted OR			
Kim 2012	3	35	1	29
Discharge mortality				
Chen 2020	5	46	6	109
Shi 2018	20	134	12	44

Table S2. The raw data to calculate ORs for the association between CE and the

Kim 2020	84	18	8	35		
Chen 2020	25	26	37	78		
Xu 2019	58	1	54	85		
Chen 2019	26	16	15	25		
An 2019	Adjusted OR					
Shi 2018	Adjusted OR					
Renu 2015		Adj	usted OR			
Kim 2015	21	12	8	15		
Rouchaud 2014	32	6	2	25		
Nikoubashman 2014	7	16	6	70		
Desilles 2013	Adjusted OR					
Jang 2006	18	13	15	48		
Yoon 2004	9	12	18	23		
sICH						
Kim 2020	23	79	1	42		
Chen 2020	5	46	8	107		
Chen 2019	2	40	0	40		
An 2019	9	41	10	120		
Kim 2015	13	20	1	22		
Nikoubashman 2014	2	25	1	85		
Desilles 2013	Adjusted OR					
Kim 2012	5	33	1	29		
Yoon 2004	7	14	6	35		

Abbreviations: CE = contrast extravasation; EVT = endovascular therapy; OR = odds ratio; ICH = intracranial hemorrhage; sICH = symptomatic intracranial hemorrhage.

Reference#	Is the exposed cohort representativ	Selection of the non-exposed cohort	Ascertainment of exposure	Demonstration that outcome of interest was not present at start of study	Comparability of important factors†	Assessment of outcome	Follow up period	Adequacy of follow up of cohorts	Total quality scores
Kim 2020 ¹	$\stackrel{\wedge}{\sim}$	${\sim}$	$\stackrel{\wedge}{\sim}$	$\overset{\sim}{\sim}$	\checkmark	\overrightarrow{x}	_	_	7
Chen 2020 ²	$\overset{\sim}{\sim}$	$\overset{\sim}{\sim}$	$\overset{\sim}{\sim}$	$\overset{\sim}{\sim}$	\overleftrightarrow	${\simeq}$	—	—	7
Xu 2019 ³	${\sim}$	\overleftrightarrow	${\leftrightarrow}$	$\overset{\sim}{\sim}$	${\sim}$	${\simeq}$	\Rightarrow	$\stackrel{\wedge}{\sim}$	8
Sun 2019 ⁴	$\stackrel{\sim}{\sim}$	${\sim}$	$\stackrel{\sim}{\sim}$	$\overset{\sim}{\sim}$	\checkmark	\overrightarrow{x}	_	—	7
Chen 2019 ⁵	${\sim}$	${\sim}$	$\stackrel{\sim}{\sim}$	${\sim}$	Δ	\overleftrightarrow	—	—	6
An 2019 ⁶	${\sim}$	\overleftrightarrow	${\leftrightarrow}$	$\overset{\sim}{\sim}$	_	${\simeq}$	\Rightarrow	$\stackrel{\wedge}{\sim}$	7
Shi 2018 ⁷	${\sim}$	\overleftrightarrow	${\leftrightarrow}$	$\overset{\sim}{\sim}$	${\sim}$	${\simeq}$	—	—	6
Renú 2015 ⁸	${\Delta}$	$\overset{\sim}{\sim}$	\overleftrightarrow	$\stackrel{\wedge}{\sim}$	$\diamond \diamond$	${\simeq}$	\Rightarrow	${\simeq}$	9
Kim 2015 ⁹	${\Delta}$	$\overset{\sim}{\sim}$	\overleftrightarrow	$\stackrel{\wedge}{\sim}$	${\simeq}$	${\simeq}$	_	—	6
Rouchaud 2014 ¹⁰	${\Delta}$	$\overset{\sim}{\sim}$	\overleftrightarrow	$\stackrel{\wedge}{\sim}$	${\simeq}$	${\simeq}$	_	—	6
Nikoubashman 2014 ¹¹	${\sim}$	\overleftrightarrow	${\leftrightarrow}$	$\overset{\sim}{\sim}$	${\sim}$	${\simeq}$	_	—	6
Desilles 2013 ¹²	${\Delta}$	${\simeq}$	\overleftrightarrow	$\stackrel{\wedge}{\sim}$	$\diamond \diamond$	${\simeq}$	\Rightarrow	${\simeq}$	9
Kim 2012 ¹³	$\stackrel{\sim}{\sim}$	${\sim}$	$\stackrel{\sim}{\sim}$	$\overset{\sim}{\sim}$	Δ	\overrightarrow{x}	_	—	6
Jang 2006 ¹⁴	${\sim}$	${\sim}$	${\sim}$	${\sim}$	Δ	Δ	_	—	6
Yoon 2004 ¹⁵	${\sim}$	${\sim}$	${\sim}$	Σ	${\sim}$	${\checkmark}$	—	—	6

Table S3. Quality assessment of the included studies*

*Newcastle-Ottawa Scale was used to assess the study quality in this meta-analysis.¹⁶ The full score was 9 stars, and the high-quality study was defined as a study with 8 awarded stars.

†A maximum of two stars could be awarded for this item. One star with adjustment for age, two stars if there were additional population demographics or comorbidities.

Studies 7 3	1.67	1.13-2.47	0.011		0.317
7 3	1.67	1.13-2.47	0.011		0.317
7 3	1.67	1.13-2.47	0.011		
3	2 77		0.011	69.0	
	2.77	1.76-4.35	< 0.001	82.6	
					0.262
6	2.88	1.48-5.60	0.002	65.9	
4	1.37	0.44-4.23	0.587	80.2	
					0.039
4	4.45	2.51-7.87	< 0.001	22.8	
6	1.31	0.67-2.57	0.429	67.2	
					0.510
8	1.94	1.02-3.69	0.044	70.6	
2	3.74	0.40-35.46	0.250	89.7	
					0.282
6	1.62	0.73-3.63	0.238	77.0	
4	3,43	1.27-9.25	0.015	72.7	
	 6 4 4 6 8 2 6 4 	3 2.77 6 2.88 4 1.37 4 4.45 6 1.31 8 1.94 2 3.74 6 1.62 4 3.43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2.77 $1.76-4.35$ < 0.001 6 2.88 $1.48-5.60$ 0.002 4 1.37 $0.44-4.23$ 0.587 4 4.45 $2.51-7.87$ < 0.001 6 1.31 $0.67-2.57$ 0.429 8 1.94 $1.02-3.69$ 0.044 2 3.74 $0.40-35.46$ 0.250 6 1.62 $0.73-3.63$ 0.238 4 $3,43$ $1.27-9.25$ 0.015	3 2.77 $1.76-4.35$ < 0.001 82.6 6 2.88 $1.48-5.60$ 0.002 65.9 4 1.37 $0.44-4.23$ 0.587 80.2 4 4.45 $2.51-7.87$ < 0.001 22.8 6 1.31 $0.67-2.57$ 0.429 67.2 8 1.94 $1.02-3.69$ 0.044 70.6 2 3.74 $0.40-35.46$ 0.250 89.7 6 1.62 $0.73-3.63$ 0.238 77.0 4 $3,43$ $1.27-9.25$ 0.015 72.7

Table S4. Sensitivity analyses for the pooled analysis of poor functional outcome at90 days restricted to predefined variables.

Abbreviations: CE = contrast extravasation; EVT = endovascular therapy; NECT = non-enhanced computed tomography; MRI = magnetic resonance imaging; OR = odds ratio.

Variable	No. of	OR	95% CI	p-values	I^2	PI
	Studies					
Study design						0.511
Retrospective	9	5.80	2.58-13.03	< 0.001	83.4	
Prospective	4	9.29	3.40-25.35	< 0.001	55.1	
Sample size						0.305
≥100	8	9.03	4.00-20.38	< 0.001	78.4	
<100	5	4.15	1.48-11.66	0.007	77.8	
Assessment strategy of						0.400
CE						
Dual-energy CT	3	3.24	1.50-6.99	0.003	33.6	
NECT and a follow-up	10	8.02	3.69-17.43	< 0.001	80.6	
NECT or MRI at 24						
hours after EVT						
Study quality						0.494
<8	10	5.90	2.78-12.51	< 0.001	81.4	
≥8	3	10.84	2.67-44.05	0.001	70.0	
Adjusted for confounders						0.641
No	9	6.01	2.63-13.73	< 0.001	81.8	
Yes	4	9.10	4.04-20.50	< 0.001	53.0	

Table S5. Sensitivity analyses for the pooled analysis of post-EVT ICH restricted to predefined variables.

Abbreviations: CE = contrast extravasation; NECT = non-enhanced computed tomography; MRI = magnetic resonance imaging; OR = odds ratio; PI, P interaction.

Table S6. Egger's tests for publication bias.

Variables	Egger's tests			
	p-values	95% CIs		
Association between CE and poor functional	0.68	-5.36-7.85		
outcome at 90 days				
Association between CE and mortality at 90 days	0.65	-6.37-4.65		
Association between CE and post-EVT ICH	0.10	-0.83-8.36		
Association between CE and post-EVT sICH	0.05	-0.04-2.96		

Abbreviations: CE = contrast extravasation; EVT = endovascular therapy; ICH =

intracranial hemorrhage; sICH = symptomatic intracranial hemorrhage; PI, P interaction.

Figure S1. Funnel plot for publication bias test for the associations between contrast extravasation and poor functional outcomes at 90 days.

Figure S2. Funnel plot for publication bias test for the associations between contrast extravasation and mortality at 90 days.

Figure S3. Funnel plot for publication bias test for the associations between contrast extravasation and intracranial haemorrhage.

Figure S4. Funnel plot for publication bias test for the associations between contrast extravasation and symptomatic intracranial haemorrhage.

References

- 1. Kim H, Lee SJ, Lee TK, et al. Subarachnoid Contrast Accumulation and Alberta Stroke Program Early Computed Tomography Score Applied to Contrast Accumulation After Thrombectomy as Predictors of Symptomatic Hemorrhage. *World Neurosurg* 2020.
- Chen Z, Zhang Y, Su Y, et al. Contrast Extravasation is Predictive of Poor Clinical Outcomes in Patients Undergoing Endovascular Therapy for Acute Ischemic Stroke in the Anterior Circulation. J Stroke Cerebrovasc Dis 2020;29:104494.
- Xu C, Zhou Y, Zhang R, et al. Metallic Hyperdensity Sign on Noncontrast CT Immediately after Mechanical Thrombectomy Predicts Parenchymal Hemorrhage in Patients with Acute Large-Artery Occlusion. AJNR Am J Neuroradiol 2019;40:661-67.
- 4. Sun Y, Su Y, Chen Z, et al. Contrast Extravasation After Endovascular Treatment in Posterior Circulation Stroke. *World Neurosurg* 2019;**130**:e583-e87.
- Chen WH, Yi TY, Wu YM, et al. Parenchymal hyperdensity on C-arm CT images after endovascular therapy for acute ischaemic stroke predicts a poor prognosis. *Clin Radiol* 2019;74:399-404.
- An H, Zhao W, Wang J, et al. Contrast Staining may be Associated with Intracerebral Hemorrhage but Not Functional Outcome in Acute Ischemic Stroke Patients Treated with Endovascular Thrombectomy. *Aging Dis* 2019;10:784-92.
- Shi ZS, Duckwiler GR, Jahan R, et al. Early Blood-Brain Barrier Disruption after Mechanical Thrombectomy in Acute Ischemic Stroke. J Neuroimaging 2018;28:283-88.
- Renú A, Amaro S, Laredo C, et al. Relevance of blood-brain barrier disruption after endovascular treatment of ischemic stroke: dual-energy computed tomographic study. *Stroke* 2015;46:673-9.
- 9. Kim JM, Park KY, Lee WJ, et al. The cortical contrast accumulation from brain computed tomography after endovascular treatment predicts symptomatic hemorrhage. *Eur J Neurol* 2015;**22**:1453-8.
- Rouchaud A, Pistocchi S, Blanc R, et al. Predictive value of flat-panel CT for haemorrhagic transformations in patients with acute stroke treated with thrombectomy. J Neurointerv Surg 2014;6:139-43.
- 11. Nikoubashman O, Reich A, Pjontek R, et al. Postinterventional subarachnoid haemorrhage after endovascular stroke treatment with stent retrievers. *Neuroradiology* 2014;**56**:1087-96.
- 12. Desilles JP, Rouchaud A, Labreuche J, et al. Blood-brain barrier disruption is associated with increased mortality after endovascular therapy. *Neurology* 2013;**80**:844-51.
- Kim JT, Heo SH, Cho BH, et al. Hyperdensity on non-contrast CT immediately after intra-arterial revascularization. J Neurol 2012;259:936-43.
- 14. Jang YM, Lee DH, Kim HS, et al. The fate of high-density lesions on the non-contrast CT obtained immediately after intra-arterial thrombolysis in ischemic stroke patients. *Korean J Radiol* 2006;7:221-8.
- 15. Yoon W, Seo JJ, Kim JK, et al. Contrast enhancement and contrast extravasation on computed tomography after intra-arterial thrombolysis in patients with acute ischemic stroke. *Stroke* 2004;**35**:876-81.
- 16. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol* 2010;**25**:603-5.