Search Terms Used (1) **target population** using terms such as "Children" "youth" or "kids" or "primary school aged children", (2) **exposures of social neighbourhood** "Perceived safety from crime", "Social neighbourhood", "Neighbourhood safety", "Measured crime", "Fear of crime", or "Perception of crime", "road safety", "traffic safety". (3) **moderators and mediators** of "Parents' perception of safety from crime" "parents' and children's perception of safety from crime" or "children perception" "age 5-11" "gender", "ethnicity". (4) The **spatiotemporal** aspects: "spatiotemporal measures, Geographic Information Systems GIS, time geography", "space and time geography" "Objective measures" or "GPS". (5) the **outcome** such as "Active Mobility", "Free play", Medium to Vigorous Physical Activity". "Outside school hours". A combination of at least three keywords was alternated to find the possible variety of papers related that could be scanned and retrieved. ## Search strategy in Scopus Search by document type (ALL), Search in (Article title, Abstract, Keywords), Access Type (ALL), Limit is (Published all years). The source type is articles. Language is in English. Keywords (e.g., "Children" OR "primary school aged children" OR "youth", OR "Active mobility" OR "Active behaviour" OR "Physical activity" OR "Active play" OR "active travel") AND ("Neighbourhood") AND ("Safety" OR "Parents Perceived Safety" OR "Children Perceived Safety" OR "Road safety" OR "Crime") AND ("Outside school hours)" AND ("Spatial data" OR "GIS" Or "GPS" OR "Spatiotemporal"). #### Search strategy in Google scholar Search by document type (Article), Search alternate keywords (e.g., "Children" OR "primary school aged children" OR "youth", OR "Active mobility" OR "Active behaviour" OR "Physical activity" OR "Active play" OR "active travel") AND ("Neighbourhood") AND ("Safety" OR "Parents Perceived Safety" OR "Children Perceived Safety" OR "Road safety" OR "Crime") AND ("Outside school hours)" AND ("Spatial data" OR "GIS" Or "GPS" OR "Spatiotemporal"). #### Search strategy in PubMed Search Terms: Include related keywords terms of (e.g., "Children" OR "primary school aged children" OR "youth", OR "Active mobility" OR "Active behaviour" OR "Physical activity" OR "Active play" OR "active travel") AND ("Neighbourhood") AND ("Safety" OR "Parents Perceived Safety" OR "Children Perceived Safety" OR "Road safety" OR "Crime") AND ("Outside school hours)" AND ("Spatial data" OR "GIS" Or "GPS" OR "Spatiotemporal"). Select English language, Publication Year No limit #### Search strategy in Science Direct Search for peer-reviewed journal articles (including open access content) Find articles with these keywords' terms of (e.g., "Children" OR "primary school aged children" OR "youth", OR "Active mobility" OR "Active behaviour" OR "Physical activity" OR "Active play" OR "active travel") AND ("Neighbourhood") AND ("Safety" OR "Parents Perceived Safety" OR "Children Perceived Safety" OR "Road safety" OR "Crime") AND ("Outside school hours)" AND ("Spatial data" OR "GIS" Or "GPS" OR "Spatiotemporal"). No limit for Publication Autor(s) or Year(s) #### Search strategy in ProQuest Use command line to use search terms keywords such as (e.g., "Children" OR "primary school aged children" OR "youth") AND ("Active mobility" Or "Active behaviour" OR "Physical activity" OR "active play" OR "active travel") in Anywhere AND ("Neighbourhood Safety" OR "Parents Perceived Safety" OR "Children Perceived Safety" OR "Road safety" OR "Crime") in Anywhere. Add a row of AND ("Outside School Hours") in Anywhere. Add a row of AND ("Spatial Data" OR "GIS" Or "GPS" Or "Spatiotemporal"). Limited to (Peer reviewed), Publication date (All dates), Language (English). ### Search strategy in Web of Science Basic Search: Alternate search terms keywords such as (e.g., "Children" OR "primary school aged children" OR "youth", OR "Active mobility" OR "Active behaviour" OR "Physical activity" OR "Active play" OR "active travel") AND ("Neighbourhood") AND ("Safety" OR "Parents Perceived Safety" OR "Children Perceived Safety" OR "Road safety" OR "Crime") AND ("Outside school hours)" AND ("Spatial data" OR "GIS" Or "GPS" OR "Spatiotemporal"). Search in Topic. Timespan (all Years). Default Number of Search Fields to Display | Tab | le 1. Characteristics of included st | tudies and findi | ngs of evidence of influences | on children outdoo | or active mobility | y behaviour | | |-----|---|--|--|---|---|---|---| | # | Study's author(s)/year of data | Country/ | Measures | | | | Findings of Associations | | | collection n = Participants number/ (sex/gender: number/% of M/F)/ Age (or mean age)/Grade | Study Design/
[Project] | Safety (Perceived by)/
Measured/
Level of study | Active Behaviour
Outcome /
Measures | Definition of neighbourhood | Study accounted cofounders and other examined variables | | | 1 | Alton, Adab, Roberts, and Barrett
(2007)/-/
n= 473 (250 M and 60 F)/
9-11 years old/ | United
Kingdom
Cross-section | Children/questionnaire on
the perception of local
environment + preferred travel
method/ In Six primary schools
in a range of socio-economic
classification | Level of walking
(high walkers, low
walkers)/
Self-report
Past 7-days | Local area | Sex/gender, race/ethnicity (Asian,
black, Chinese, mix, others, white),
family characteristics (cars
ownership and number of rooms in
primary residence) as a proxy for
SES) | Child from ethnic minority walks significantly less. Perception of high parental concerns over road safety and heavy traffic associated with a higher walking level. The authors explained this unexpected correlate as children who are high walker may be often warned by their parents about road danger, and therefore children perceive roads as dangerous. Child perception of lack of suitable leisure space in the neighbourhood and worry about a stranger is associated with less walking levels. Child perceptions of the local environment correlate with walking level. | | 2 | (Carver, Timperio, & Crawford,
2008)/between July and December
2004/
n = 188 (44% boys)
8-9 years old | Australia
Cross-section
from [CLAN]
longitudinal
study | Parents survey for personal
characteristics +frequency of
children walking and cycling to
15 destinations +
Measured road safety¹/
From 19 state primary schools
of varying socio-economic
states across Melbourne. | *MVPA
Outside school hours
Accelerometer
for 8-days | 800 m around
participant
home | Sex/gender, age + Active transport +MVPA + measured road environment | No association between children likelihood of making at least seven walking/cycling trips per week to neighbourhood destination and roads environment | | 3 | Carver, Timperio, Hesketh, and
Crawford (2010)/2001
n = 170 (51% M)/
10-11 years old
15-17 years old (excluded)
2001-2005 longitudinal study | Australia
Cross-section
from [CLAN]
longitudinal
study | Parents questionnaire
Indices for (avoidance and
defensive behaviour, and
perceived risk) + active
transportation to 15
destination/ In 10 high and ten
low socio-economic areas
across Melboume | *Active
transport/MVPA
outside school hours/
Accelerometer | Local area | Sex/gender + Parents (avoidance, defensive and perceived risk) | The lower level of active transport and lower level of MVPA in a neighbourhood outside school hours associated with constrained behaviour exhibited by parents on both boys and girls. Reduced MVPA associated with constrained behaviour on weekends for boys. Higher constrained behaviour associated with higher MVPA for girls (limitation of study) | | 4 | (Carver, Panter, Jones, & van Sluijs,
2014)/T1 (April-July 2007) n= 1121
(9-10) years old (43%M)
T2 (April-July 2008) n= 491 (39%M) | United
Kingdom
Longitudinal
from
[SPEEDY]
study | Parents perception questionnaire (social/physical environment + rules regarding their children physical activity + perception of traffic safety concerns)/At 1600m of their school in urban/rural areas | Independent
mobility to school/
from children
questionnaire | Within 800 m
pedestrian
network buffer
around the
home (10 min
walk) | Sex/gender, sociodemographic
(siblings, cars ownership, parents'
education) +
environmental characteristics around
the home and (within 100 m buffer
of the shortest route to school | Car access is associated longitudinally with boys decreased odd of
walking/cycling independently to school. The proportion of main roads in the neighbourhood and parental encouragements of walking/cycling associated longitudinally with girls walking/cycling to independently to school. Land use mix is associated positively with girls walking cycling independently to school. Boys that are allowed by their parents to play outside have higher odd to walk/cycle independently to school. | | 5 | (Davis & Jones, 1996)/-/
n = 492 of children (not reported
gender)/
9-11-years-old
13-14 years old (excluded) | United
Kingdom
Cross-section | Children (focussed group
discussion)./ From four schools
in broadly working-class areas. | Independent
mobility/
discussion | Local
destination | Sex/gender, age + stranger danger
and traffic danger | In children's view, traffic and stranger danger, social and cultural factors create barriers on children being active for both genders, especially for girls. Car escort journey developing unhealthy habits of sedentary living with its associated risks of increased cardiovascular illness. | | 6 | (Fagerholm & Broberg, 2011)/
SepOct. 2009
n = 35 children (18M/17F)/
10-11 years old | Finland
Cross-section | Parents questionnaire (children
and parent) mobility patterns +
mobility licences, perceived
safety /From two residential
areas | *Active route (home
to destinations)/
GPS + Travel diary
for 7-days | Buffer 500-m
from home | Sex/gender +
Land use types | Gender difference shows in the distance and speed children travel actively to the boys' advantages. Land-use type associated with different mobility patterns (increase in urban areas). A high perception of safety from parents in residential areas resulted in a high level of independent mobility. | | | | | | | | | Weekdays and weekends have different mobility patterns in term of proximity (near the home on weekdays) with more time out on weekends. | |----|--|--|--|--|--|--|---| | 7 | Faulkner, Mitra, Buliung, Fusco, and
Stone (2015)/ April2010 – May2011
n = 736 (47% M and 52%F) included
in the analysis/
(10-12 years old), grade 5-6 | Canada
Cross-section
from [BEAT]
project | Parents questionnaire (child
outdoor active play + parents'
perception of personal and
road the neighbourhood
safety)/ From 16 elementary
primary/intermediate schools
in the city of Toronto | *Outdoor playing
time
MVPA/
GPS +
Accelerometer
for 7-days | Neighbourhood | Sex/gender, age,
SES of the neighbourhood
(neighbourhood income) +
neighbourhood perception (roads,
personal safety, accessibility of
facility) | Time spent outdoor was significantly associated with (MVPA) and with sex/gender, but age didn't play a role in this relation. Parental safety perception plays an inverse relation with the duration of outdoor play on weekdays. Parental concerns play a barrier role for children outdoor play. Association of outdoor play duration with the perception of safety (stranger danger and traffic safety), differ between weekdays and weekends. | | 8 | (Janet E. Loebach & Jason A. Gilliland, 2016)/ During April and May of 2010 and 2011. n = 143 (49M/94F) two groups of 9-11 and 12-13 years-old)/grade 5 - 8 | Canada
Cross-section
from [STEAM]
project | Parents & Children
Questionnaires/ From seven
schools in London | Neighbourhood
Activity Space
(NAS)/
GPS for 7-days | NAS found
within 400, 800
m of home, the
second set those
found within
1,600 m. | Sex/gender, age, car availability +
parents and children environmental
perception + neighbourhood types +
parental IM licenses to children | IM awarded to a child is associated with parents' perception of neighbourhood safety and a strong predictor for distance travelled. Distance to school predicts active travel. Gender or age was not associated with NAS size. No association between parents' perception of neighbourhood and child spend their time closer to home. Children perception correlate with time spend closer to home but were not as strongly predictive as parental mobility restriction. Neighbourhood types (Residential) was a predictor of time spend out and (commercial) to distance travelled (over 800 m). Smaller home to school distance facilitate active travel and more frequent and distant neighbourhood travel | | 9 | (Helbich et al., 2016)/between
December 2008 – April 2009/
n = 97 (60%F) /Aged 6 – 11 years | The
Netherlands,
Part of
[SPACE]
project | Road traffic Safety exposures
within 100 m buffer width
around using GIS/ From six
elementary schools located in
five neighbourhood | Active trips
to school and
transport mode of
choice
GPS for 8-days | Home to school
trip | Sex/gender, age + active trips to school + built environmental variables (land use mix, density, closeness and in between indices) + traffic safety control variables (major roads availability, distance, the proportion of cycling path and road accidents) +street density) weather | Gender is significantly associated with AST. Age is significantly associated with AST. Negative association with the distance. Negative weak association of AST with major road. Traffic safety (exposure to major roads/highways) is negatively correlated with AST. Cycling path availability positively corollate with AST. | | 10 | Lin et al. (2017)/between 2011 and 2012 n = 254 (100M, 133F) and 239 parents/ 8–13 years (mean age of 10.5) | New Zealand
from [KITC] | CATI-Parents Survey (perception of neighbourhood cohesion using social cohesion scale, + neighbourhood social connection using intergenerational closure scale and parents' concerns of places that will not let their children go alone)/ From nine schools across Auckland | *Independent
mobility
/Travel diary
for 7-days | Neighbourhood | Sex/gender, age, race/ethnicity,
household profile +
built environment (street
connectivity, destination
accessibility) | Shorter distance to school accounted for the effect of neighbourhood cohesion and connection associated with higher children independent mobility (IM). IM associated with having an older sibling and limited access to cars. Parent's perception is not associated with children independent mobility though concerns of safety which differed by ethnicity (pacific/Asian). | | 11 | Mehdizadeh, Mamdoohi, and
Nordfjaern (2017)/-/
735 parents of (364M, 371F)/7-9-
year-old in 9 schools of 735 | Iran
Cross-section | Parents questionnaire via their
children/from nine schools | Perceived Walking
Time to school
(PWTS)/
questionnaires | Environment
around school | Sex/gender, demographics,
household characteristics
(father/mother driving licence, car
owner)
SES | Perceived walking time to school (10 min) is the maximum threshold where the proportion of active mode started to decrease. Certain demographics: parental age, household income, accessibility to public transport, type of school (public or private), school service status and psychological factors (parents attitude towards walking in dirty, vandalised and unsafe streets), SES of children and household variables were significant predictors of a PWST to eligible school. Sex didn't have a consistent and definite role in active travel. | | 12 | (Nguyen, Borghese, & Janssen, 2018)/
Jan. 2015 and Dec. 2016/
n= 458 (230M/228F)/
aged 10-12 | Canada
Cross Section | Parent's questionnaire
(perceived pedestrian safety) +
Objective measures of
Pedestrian safety/ Recruited
through social media and study
flyer. | Average of minutes
per day of active
outdoor play/
Accelerometer +
GPS in a smartwatch
for 7-days | 1 km buffer
zone around
participants
home | Sex/gender Race (white, non-white) Family characteristics (single or dual parents' household, number of siblings, household income, parental education, parents' value of outdoor | No association between pedestrian safety measures and outdoor active play. No association between objective and perceived pedestrian measures. Perceived measures of traffic volume, traffic calming and pedestrian infrastructure were not associated with outdoor active play. | Supplemental material | | | | | | | and income) +
Pedestrian safety
(traffic volume, traffic speed, traffic
calming and pedestrian
infrastructure + season | Parents perceived moderate to high traffic speeds had higher outdoor active play value than children whose parents perceived low traffic speed. Objective measure of traffic volume, traffic calming and pedestrian infrastructure but not traffic speed was associated with outdoor active play. | |----|---|--|---|--|--|---|---| | 13 | Noonan, Boddy, Knowles, and
Fairclough (2016),
n = 194 children/
9-10 years old
Gender not reported | United
Kingdom
Cross-section | Parents questionnaire on
environment perception using
NEWS_Y +
Children self-reported PA using
PAQ-C. From 10 primary
schools in Liverpool | IM/
Self-Reported PA | High and low
deprived areas | Home environment, Area deprivation, parent's perception walkability Index | Home environment for HD provides more opportunities for sedentary behaviour and less opportunity for PA, less access to bedroom media equipment, and greater independent mobility were <i>strongly associated</i> with higher PA in HD and MD children, respectively. | | 14 | Oliver et al. (2015)/ Between 2011 and 2012/ n = 236 (104 M/132) for weekday analyses, n = 210 (91M/119F) children for weekend days analyses. /age 9-13 Age mean 9.8 from 9 schools/grade 5-8 | New Zealand
Cross-section
from [KITC]
project | CATI-Parents questionnaire
(Perceived parents safety) +
measured roads connectivity/
From nine schools in Auckland | *% MVPA/
accelerometer + GPS
for 7-days | Buffer of 800-
1000 m around
school | Sex/gender, age, race/ethnicity (New Zealand European, Maori, Pacific Island, Indian/Asian/Other Ethnicity), SES+ Neighbourhood street connectivity, street space, destination accessibility+ distance to schools + ratio of high-speed roads around schools + street connectivity. | On weekdays: Females & access to car accumulated less %MVPA than males. On weekends: Female and ethnicity (Indian, Asian or "other" ethnic group) made less %MVPA. Street connectivity and distance to school were related to the proportion of active trips on both weekends and weekdays. The ratio of high-speed roads associated with %MVPA (weekdays after school). Improved streetscape for active travel was related to %MVP on weekdays. Ethnicity and %MVPA differ by day type. Age, access to cars was negatively associated with %MVPA. Inconclusive evidence of socioeconomic association. Parent's perceptions of neighbourhood safety is positively associated with the proportion of active trips on weekdays. | | 15 | (Oluyomi et al., 2014)/-/
n= 830 and their parents of 4 th grade
(412M/418F) | United States
Cross-section
from
[T-COPPE]
longitudinal
project | Parents' questionnaire adapted from several surveys including the National Centre for Safe Routes to School Parents Survey, SPAN, (UH-PEAK), NEWS, and EnVivo) Personal safety + Traffic Safety/ From 81 elementary school across Texas | Walking to school
(WTS) /parents'
questionnaire of
National Safe Route
to School. Captured
safety of en-route to
school, home
neighbourhood, and
school environment) | Within walking
distance of 3.2
km to school
from the
residential
address of
students | Race/ethnicity (the majority were Hispanic) car ownership, public assistance) Examined two environments (home neighbourhood and en-route environment to school) | Parents Perception of road safety (higher sidewalk availability, well-maintained sidewalks and safe road crossing) is associated with students more likely to walk to school. On route to school: parents' perception of sidewalk, Speed and amount of traffic and intersection along school route, also associated with WTS Parents reported safe walking to a school associated with reported higher children WTS. On Personal safety, parents concern about general neighbourhoods' safety, stray or dangerous animals and the availability of adults with whom child can walk associated with lower en-route to school. | | 16 | (Page, Cooper, Griew, & Jago, 2010)/
between 2006 and 2008
n = 1307 (639 M, 661 F)/
10-11 years old from 23 schools | United
Kingdom
Cross-section
from [PEACH]
longitudinal
study | (computerised) children questionnaire perception of the environment (Aesthetics, Safety, Social Norms, Nuisance, constraints, accessibility, minutes of daylight from 3 pm till sunset)/ From 23 schools. | Frequency of
participation in
outdoor play,
exercise and active
travel home to
school/ questionnaire | School-home | Age, sex/gender, race/ethnicity
(white, non-white, but not accounted
in analysis), + perception of the
environment + the level of
deprivation (using Index of Multiple
Deprivation (IMD) and derived from
seven categories of deprivation +
daylight + pubertal status | Boys had a more positive perception of the environment than girls (personal safety and traffic safety) for Local-IM and Area-IM. No gender differences in school travel Boys scores significantly lower in the Constrained scale than girls Physical activity, structured sport and active travel to school weakly significantly correlate to each other. Boys who have greater independent mobility scores had more time of playing out than boys who played less. Girls with a higher positive perception of neighbourhood correlate with playing outdoor often. For boys and girls, and increased likelihood of walking or cycling to school was associated with higher levels of local-IM. Distance from home to school is a predictor for both boys and girls. | | 17 | Roberts, Knight, Ray, and Saelens (2016)/SepDec.2014/
n = 144(72M,72F)/7-12 years old (mean age of 9.7 children)/ | United States
Cross-section | Parents' questionnaire
(perception of the
environment)/ From nine
counties and cities. | Active children (met
the 60 min daily
PA)/ | Metropolitan
area | Sex, demographics
race/ethnicity (Hispanic/Latino,
African American, American,
Indian/Alaska Native, Asian
American, White, Other) +
perceived parents' safety | Parents' better perception of neighbourhood associated with active kids yet reported a high crime rate and being a victim of a crime of their neighbourhood. Parental perception of street barriers associates with children physical activity. Closer proximity to play areas was significantly associated with greater odd of children meeting the 60 min/day play. Gender (male more active) and race disparities associated with active behaviour. | | 18 | (Santos, Pizarro, Mota, & Marques,
2013)/2010/2011
n= 354 (156M) of grade 6th (mean age
11.63) and their parents | Portugal
Cross-section
from [SALTA]
longitudinal
study | Parents questionnaire (parental physical activity, and perception (adapted from NEWS and previous studies) + Children questionnaire to derive mobility style/ From nine middle schools | IM/
questionnaire of
previous week
physical activity
based on IPAQ | Local
destinations | Age, sex/gender, family demography (parents age, education, parental PA, parents' perception of neighbourhood safety (sidewalk, street safety, fear from strangers, crime and traffic safety). | Parental perception of sidewalks and street safety is associated with IM Parents physical activity was significantly associated with more active children. Perception of fear from a stranger, crime and traffic safety was not significantly associated with child IM. | |----|--|--|--|--|--
--|---| | 19 | (Shokoohi, Hanif, & Dali, 2012)/
JanFeb. 2009
/-/ Grades 3- 5 (48.8%M,51%F) | Iran
Cross-section | Parents + children
questionnaire on the perception
of environmental factors that
prevent children from walking
to school/From 18 school sites | Walking to school
from parent's survey.
Differed the trips
from home to school
and from school to
home. | Home-school | Socio-economic status (three income groups of parents) | Parents and children with a negative perception of neighbourhood safety tended to use motor vehicles or to escort their children while walking to and from school. | | 20 | Stark, Frühwirth, and Aschauer (2018)/-/ n = 190 (49%F) from two public schools/ 6-9(10) years old | Austria
Cross-section | Parents questionnaire. From
two schools of different
location in the outskirt of the
city of Vienna | AIM/
One weekday and
one weekend
Travel Diary using
(KONTIV-format) | School active
travel | Parental attitude,
Parents and household
characteristics | The most influential variables on IM are: Shorter trip distance to school, higher age and parents perceived social safety and traffics. Working status of parents. The type of school (all-day/half-day primary school) is relevant. Parental attitude (Promoters, Pragmatists and Protectors) strongly influence the degree of AIM. | | 21 | Stephanie H. Kneeshaw-Price et al. (2015)/between Sep. 2007 and Jan 2009 n = 145 (71M, 74F) / 6–11-years-old | United States
Cohort study
[NIK] | Police report crime + parents'
prior crime victimisation
survey + parents' perception
(stranger danger, general
crime, and disorder) | MVPA/
accelerometer
for 7-days | Census block | Age, race/ethnicity (non-Hispanic
white, Hispanic, and non-Hispanic
non-white), Household income +
NEWS + collective efficacy | Lower children's physical activity was associated with more neighbourhood crime but not with parents' perception of stranger danger, disorder and neighbourhood safety. Lower MVPA didn't account for race/ethnicity as the majority was non-Hispanic (white). | | 22 | Suminski, Robson, May, Blair, and
Orsega-Smith (2018)/
T1 n = 2108/50.5%F/
5-11 years-old | United States
longitudinal
study | Measured crime using CRI
Index (a higher number than
100 indicate a greater chance
of crime) for each zip code in
an urban neighbourhood | Body Mass
Index/(BMI) score/
measured at baseline
and three years later | Zipcode | (BMIz scores, Sex/gender, family
characteristics (income, education
Race/Ethnicity White, African
American, Hispanic, Asian) | Actual, neighbourhood-level crime predicts changes in BMIz scores in white children This relationship varies as a function of race/ethnicity (i.e. in White children but not African American, Hispanic or Asian American) | | 23 | Timperio, Crawford, Telford, and
Salmon (2004)/
n = 291 (150M/141F)/ Aged 5–6 years
n = 919 (424M/495F)/ aged 10–12
years from 19 primary schools | Australia
Cross-section | Parents & Children Survey Compared parents to own children (aged 10-12) view | Frequency of
walking and cycling/
parents survey | Local
destinations | Sex, Family background: the first
language spoken, marital status,
parents' education (SES), cars'
ownerships, siblings | Parents' perception of the neighbourhood is associated with a lower likelihood of walking or cycling (girls in particular). Children perceive parents' perception of their local neighbourhood safety more negative than their own. Children are reporting less concern about heavy traffic, stranger dangers and road safety and lack of parks or sports ground than parents. Age & SES is associated positively with the frequency of trips made to destinations. Sex is not associated with the frequency of active trips for the young group, but Boys are more still active than girls in the $10-12$ years old. | | 24 | (Tung, Ng, Chin, & Mohd Taib, 2016)
n = 256 (42%M/58%F and their
parents
aged 9-12 years | Malaysia
Cross-section | Parents perception using NEWS Constrained behaviour of parents | Children PA level
7-days questionnaire | - | Sociodemographic (age, parents' gender and ethnicity (Malay, Chinese, and were Indian), highest education level, parent's occupation and monthly income) + parents' perception+ children PA | Sex/gender associated with the level of PA (boys accumulate more than girls). Correlates found between parental perception of neighbourhood safety and constrained behaviour of children active play. Land use mix (access) was correlated positively with higher PA level | | 25 | (van den Berg, Waygood, van de
Craats, & Kemperman, 2020)/ Fall of
2018/(315M/341F)/
n=660 children and parents/
aged 7 – 12/ grade 5-8 (mean age 9.5) | The Netherland
Cross-section | Parents survey for perceived
pedestrian safety
Objective measures of
Pedestrian safety/
From 14 primary school in the
Netherland | Travel mode to
school/
children survey (at
school) | Participants
were of Home-
school Within 1 km
distance | Age, Sex/gender
Household (income, car ownership),
weather, street connectivity | Parental perceptions are related to the child's age, income, perception of neighbourhood infrastructure, travel distance and social cohesion. Parents that are less concerned let their children travel actively | | 26 | Vonderwalde, Cox, Williams,
Borghese, and Ian Janssena (2019)/
between Jan. 2015 and Dec.2016/ | Canada | Measured crime (person,
Property) 24 months before
measures of active behaviour | Active
transportation/ GIS
loggers | Crime in 1 km
distance to | Sex/gender, age, race (85% white) | Children living in neighbourhoods in the highest neighbourhood crime rate quartile engaged in significantly more active transportation than children living in neighbourhoods in the lowest neighbourhood crime | | | n = 387(185M, 182F)/
10–13 years old (mean age 11.5) | Longitudinal
from [Active
Play Study] | | | participants
home | family profile (single or dual-parent,
parent income education),
walkability index+
Season change | rate quartile and persisted after adjustment for several individual, family, and environmental covariates. Association of AS and crime against a person but not against a property. | |----|--|---|---|---|---|---|---| | 27 | Villanueva et al. (2012)/
July – December 2007/
n = 926 (463M,463F)/
10-12 years old included in the
analysis. | Australia
Cross-section
from [TREK] | Parent and Child
Questionnaires/
Schools in neighbourhood
within three socio-economic
state (low, medium, high) | Activity Space/
steps count
Pedometer +
mapping activity for
7-days | within 800 and
1600 meter of
child's home
high and low
walkable areas | Age, sex/gender, maternal education + School-specific walkability level | Children in high walkable neighbourhood's schools had larger AS. Girls had smaller AS for if parents perceived living on a busy road. Utilitarian destinations were associated with a smaller AS. Sex is associated with AS areas and daily pedometer. Boys' and girls' own confidence in travelling independently was positively associated with covering larger AS areas. Despite some environmental barriers, individual and social-cultural factors likely to encourage children to roam in their local environments. | | 28 | (Waygood & Susilo, 2015)/ 2006
survey/
n = Roughly 31,000 households'
participants (52% boys)
aged 10-11 years | Scotland
Cross-section | Parents survey/ from 2006
Household Survey | Walking to school | Home to school | Sex/gender,
Family background +built
environment, deprivation index | Car's availability is negatively associate with walking to school Distance to school was strong determinate for children walking to school. Parental perception Good local shops are positively associated with children active travel to school and slow traffic or safe was negatively associated variable, | | 29 |
Zhu and Lee (2008)/-/
Children from 73 elementary schools/-/ | United States
Cross-section | Measured Crime Geocoded 8
major crimes rate/ From 73
public elementary schools | Potential walkers/
neighbourhood-level
walkability index | School
attendance
areas | Race/Ethnicity (Hispanic, non-
Hispanic, and White), Poverty +
Neighbourhood-level walkability +
Neighbourhood-level safety
SWI | Poverty associated with negative conditions and low perceived safety. Ethnicity associated with increased crime, traffic danger and poor safety. Unsafe neighbourhoods and poor street conditions may influence not only children's school travels but also their play activities and the overall physical activities of all residents. | Notes: /-/ = data was not reported, M = males, F = Female, BMI = Body Mass Index, IM = independent mobility, AST = active school transport, PA = physical activity, AS = activity space, SES = socioeconomic status, HD = high deprivation, MD = medium deprivation, WTS = walking to school, NAS = Neighbourhood Activity Space, CLAN = Children Living in Active Neighbourhoods, SES = Socioeconomic status, MVPA = Medium-to vigorous Physical Activity, SPEEDY = Sport, Physical activity and Easting Behaviour Environmental Determinants in Young People, BEAT = Built Environment and Active Transport, GPS = Global Positioning System, STEAM = Spatio-Temporal Exposure and Activity Monitoring, KITC = kids in the City, PAQ-C = Physical Activity Questionnaire for Older Children, NIK = Neighbourhood Impact on Kids, CRI = Crime Risk Index (measured crime using actual crime statistics) TREK = Travel Environment and Kids Project, CATI = Computer-aided Telephone Interview, KIC = Kinds in the City, T-COPPE survey = Texas Childhood Obesity Prevention Policy Education project, IMD = Index of Multiple Deprivation is a composite score based on seven categories of deprivation (income, employment, health and disability, education skills and training, housing and geographical access to service), PEACH = Personal and Environmental Association With Child's Health, SPAN = School Physical Activity and Nutrition, UH-PEAK = Urban Hispanic Perceptions of Environment and Activity Among Kids, En Vivo = TV reduction intervention study, NEWS = Neighbourhood Environment Walkability Scale, NEWS-Y = Neighbourhood Environment Walkability Scale for Youth used to assess parental perceptions of neighbourhood design, SALTA = Environmental Support for Leisure and Active Transport, KONTIV = format of travel diary survey for non-home activity patterns, GIS = geographic information systems, IPAQ questionnaire = International Physical Activity Questionnaire, Local-IM = destinations of best friend's house, school, local shops and park or playground, Area-IM = destination Studies denoted with * = Study measures and analysis accounted for temporal changes (weekend/weekdays or outside school, i.e., before and after school hours). ^{1 =} Objective road measures using GIS were: street network total length, local road index. No of intersections, the total length of walking track, no of speed humps, no of traffic /pedestrian lights, no of barriers Table 2. Methodological measure quality assessments and output per study. | Study citation | Study Objective s, design, target populatio n, random sampling (0.25 each) | study participants, inclusion/exclu sion, study population, participants recruitments (0.25 each, total 1) | Response rate,
data collection,
data sources,
missing data.
(0.25 each, total
1) | Did the active
behaviour data
collection was
objectively
measured?
(0.25 for each
method, total 1
point,) | Did the measure of active behaviour account for temporal characteristics? (0.5 point) | Has the perceived safety measured the temporal characteristics? Or has measured safety used geocoded data in actual crime for personal safety or in road safety? (0.5 point) | Did the study
delineate the
exposure area
"neighbourhoo
d" objectively
(0.5 point) | Did the study
evidence
Accounted
For
spatiotempor
al behaviour
in output (1
point) | Was it clearly described the statistical method and to assess significance association, or did the study describe the method of spatial analysis? (0.5) | Did the study
account for the four
cofounders (age,
sex, ethnicity and
family
(0.25 each, total 1
point) | Quality
score total | % | overall rating of evidence Quality | |--|--|--|---|--|---|--|---|---|---|--|------------------------|-------|------------------------------------| | (Alton et al., 2007) | 1 | 0.75 | 0.5 | 0.25 | 0 | 0 | 0 | 0 | 0.5 | 1 | 4 | 50.0 | Moderate | | (Carver et al., 2010) | 1 | 1 | 0.75 | 0.5 | 0.5 | 0.5 | 0 | 1 | 0.5 | 0.5 | 6.25 | 78.1 | Robust | | (Carver et al., 2014) | 1 | 1 | 0.75 | 0.25 | 0 | 0 | 0.5 | 0 | 0.5 | 0.75 | 4.75 | 59.4 | Moderate | | (Carver et al., 2008) | 1 | 1 | 0.75 | 0.25 | 0 | 0 | 0.5 | 0 | 0.5 | 0.75 | 4.75 | 59.4 | Moderate | | (Davis & Jones, 1996) | 1 | 0.5 | 0.25 | 0.25 | 0 | 0 | 0 | 0 | N/A | 0.5 | 2.5 | 35.7 | Poor | | (Fagerholm & Broberg,
2011) | 1 | 0.75 | 1 | 1 | 0.5 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 6.25 | 78.1 | Robust | | (Faulkner et al., 2015) | 1 | 1 | 1 | 0.5 | 0.5 | 0 | 0 | 0.5 | 0.5 | 0.75 | 5.75 | 71.9 | Robust | | (Lin et al., 2017) | 1 | 0.5 | 0.75 | 0.25 | 0 | 0 | 0 | 0 | 0.5 | 1 | 4 | 50.0 | Moderate | | (Janet E Loebach & Jason
A Gilliland, 2016) | 1 | 1 | 1 | 0.5 | 0.5 | 0 | 0.5 | 0 | 0.5 | 0.75 | 5.75 | 71.9 | Robust | | (Helbich et al., 2016) | 1 | 0.75 | 0.5 | 0.25 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 5 | 62.5 | Moderate | | (Mehdizadeh et al., 2017) | 1 | 1 | 1 | 0.25 | 0 | 0 | 0 | 0 | 0.5 | 0.75 | 4.5 | 56.3 | Moderate | | (Noonan et al., 2016) | 1 | 1 | 0.75 | 0.25 | 0 | 0 | 0 | 0 | 0.5 | 0.25 | 3.75 | 46.9 | Poor | | (Nguyen et al., 2018) | 1 | 1 | 0.75 | 1 | 0 | 0.5 | 0.5 | 0 | 0.5 | 1 | 6.25 | 78.1 | Robust | | (Oliver et al., 2015) | 1 | 1 | 1 | 1 | 0.5 | 0.5 | 0.5 | 1 | 0.5 | 1 | 8 | 100.0 | Robust | | (Oluyomi et al., 2014) | 1 | 1 | 1 | 0.25 | 0 | 0 | 0.25 | 0 | 0.5 | 0.5 | 4.5 | 56.3 | Moderate | | (Page et al., 2010) | 1 | 1 | 0.75 | 0.25 | 0 | 0 | 0 | 0 | 0.5 | 0.75 | 4.25 | 53.1 | Moderate | | (Roberts et al., 2016) | 1 | 1 | 0.75 | 0.25 | 0 | 0 | 0.25 | 0 | 0.5 | 0.75 | 4.5 | 56.3 | Moderate | | (Stephanie H. Kneeshaw-
Price et al., 2015) | 1 | 1 | 0.5 | 0.5 | 0 | 0.5 | 0 | 0 | 0.5 | 0.25 | 4.25 | 53.1 | Moderate | | (Santos et al., 2013) | 1 | 1 | 0.75 | 0.25 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 4 | 50.0 | Moderate | | (Shokoohi et al., 2012) | 1 | 0.5 | 0.5 | 0.25 | 0 | 0 | 0.25 | 0 | 0.25 | 0 | 2.75 | 34.4 | Poor | | (Stark et al., 2018) | 1 | 1 | 0.75 | 0.25 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 4 | 50.0 | Moderate | | (Stephanie H. Kneeshaw-
Price et al., 2015) | 1 | 1 | 0.5 | 0.5 | 0 | 0.5 | 0 | 0 | 0.5 | 0.25 | 4.25 | 53.1 | Moderate | | (Suminski et al., 2018) | 1 | 1 | 1 | N/A | N/A | 0.5 | 0.5 | 1 | 0.5 | 1 | 6.5 | 108.3 | Robust | |--|---|------|------|------|-----|-----|------|-----|-----|------|------|-------|----------| | (Timperio et al., 2004) | 1 | 1 | 0.75 | 0.25 | 0 | 0 | 0 | 0 | 0.5 | 0.75 | 4.25 | 53.1 | Moderate | | (Tung et al., 2016) | 1 | 1 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0.5 | 1 | 4 | 50.0 | Moderate | | (van den Berg et al., 2020) | 1 | 0.75 | 1 | 0.25 | 0 | 0 | 0.25 | 0 | 0.5 | 0.5 | 4.25 | 53.1 | Moderate | | (Villanueva et al., 2012) | 1 | 1 | 0.75 | 1 | 0 | 0 | 0.5 | 0 | 0.5 | 0.75 | 5.5 | 68.8 | Moderate | | (Vonderwalde, Cox,
Williams, Borghese, & Ian
Janssena, 2019) | 1 | 1 | 1 | 1 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 7 | 87.5 | Robust | | (Waygood & Susilo, 2015) | 1 | 0.75 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 3.25 | 40.6 | Poor | | (Zhu & Lee, 2008) | 1 | N/A | N/A | 0 | 0 | 0.5 | 0.5 | 0 | 0.5 | 0.5 | 3 | 50.0 | Moderate | Diagram 1. Country of origin of the studies included in this review including examined neighbourhood safety types. Diagram 2. Variances in measurement methods of children active mobility behaviour and the outcome of measures in 29 studies. Abbreviations: PA = physical activity, AIM = active independent mobility, BMI = body mass index, FWAC = frequent walking and cycling, MVPA = moderate-to-vigorous physical activity, NAS = neighbourhood activity space, PWTS = perceived walking to school, GPS = global positioning system, GIS = geographic information system # Diagram 3, 4 and 5 illustrated evidence of modified child active behaviour synthesised by individual and family, and neighbourhood safety. Diagram 3. Findings of Individual and family layers of association to children various type of active behaviour in studies examined neighbourhood safety. Studies were re-grouped each by the examined active behaviour
into four categories of (Active travel, active play, school travel and active play, travel, and exercise) and as appraised by the methodological quality assessment. x-Axis depicted variable addressed at the individual and family level and the examined type of child active behaviour. y-Axis represents the number of studies accumulated. Diagram 4. Findings of parents perceived safety layers of association to children various type of active behaviour. Studies were re-grouped by active behaviour into four categories of (Active travel, active play, school travel and active play, travel, and exercise) and as appraised by the methodological quality assessment. x-Axis depicted variable addressed at the neighbourhood perceived level and the examined type of child active behaviour. y-Axis represents the number of studies. Table 3. Studies re-grouped output measure of active behaviour to enable synthesis of evidence. | # | citation | Neighbourhood Safety | Active Type | Re-Grouped Active Mobility
Behaviour | | |----|---|----------------------|--|---|--| | 1 | (Alton et al., 2007) | Perceived | Level of Walking | Active travel | | | 2 | (Carver et al., 2010) | Perceived | MVPA | Active play, travel & exercise | | | 3 | (Carver et al., 2014) | Perceived | AIM | School travel | | | 4 | (Carver et al., 2008) | Perceived & measured | MVPA | Active play, travel & exercise | | | 5 | (Davis & Jones, 1996) | Perceived | AIM | Active travel | | | 6 | (Fagerholm & Broberg, 2011) | Perceived | Proximity | Active travel | | | 7 | (Faulkner et al., 2015) | Perceived | MVPA | Active play, travel & exercise | | | 8 | (Helbich et al., 2016; Oliver et al., 2015) | Perceived | MVPA | Active play, travel & exercise | | | 9 | (Janet E Loebach & Jason A
Gilliland, 2016) | Perceived | NAS | Active travel | | | 10 | (Lin et al., 2017) | Perceived | AIM | Active travel | | | 11 | (Mehdizadeh et al., 2017) | Perceived | PWTS | School travel | | | 12 | (Noonan et al., 2016) | Perceived | BMI | вмі | | | 13 | (Nguyen et al., 2018) | Perceived & measured | Average minutes of active outdoor play | Active play | | | 14 | (Oliver et al., 2015) | Perceived & measured | MVPA | Active play, travel & exercise | | | 15 | (Oluyomi et al., 2014) | Perceived | Walking to School | School travel | | | 16 | (Page, Cooper, Griew, Davis, & Hillsdon, 2009) | Perceived | Frequency of outdoor play, Exercise and sport and Active commuting | Active play, travel & exercise | | | 17 | (Stephanie H. Kneeshaw-Price et al., 2015) | Perceived & measured | MVPA | Active play, travel & exercise | | | 18 | (Roberts et al., 2016) | Perceived | Active Play | Active play | | | 19 | (Stark et al., 2018) | Perceived | AIM | Active travel | | | 20 | (Suminski et al., 2018) | Measured | BMI | вмі | | | 21 | (Shokoohi et al., 2012) | Perceived | Walking to school | School travel | | | 22 | (Santos et al., 2013) | Perceived | AIM | Active travel | | | 23 | (Timperio et al., 2004) | Perceived | FWAC | Active travel | | | 24 | (Tung et al., 2016) | Perceived | MVPA | Active play, travel & exercise | | | 25 | (van den Berg et al., 2020) | Perceived | Walking to School | School travel | | | 26 | (Villanueva et al., 2012) | Perceived | Activity Space | Active play, travel & exercise | | | 27 | (Vonderwalde, Cox, Williams,
Borghese, & Ian Janssena, 2019) | Measured | Average minutes per day of active transportation | Active travel | | | 28 | (Waygood & Susilo, 2015) | Perceived | Walking to school | School travel | | | 29 | (Zhu & Lee, 2008) | Measured | Walkability Index | Active travel | | Notes: we categorised each study as per the active behaviour examined in each study: If a study addressed total MVPA it is grouped under "Active travel, play and exercise". If walking to school, the study grouped under "Active school travel". If the addressed active behaviour is the frequency of walking or cycling or independent mobility travel (IM), the study categorised it as "active travel", and when addressed active playing behaviour, it is "active play". Assessed impact on BMI was left as "BMI". Then we grouped studies to synthesise evidence of influences on modifying types of COAMB. Table 4. Findings of correlates across the socio-ecological levels and modified child types of outdoor active mobility behaviour. | Effective domains | | + | Correlation with children active mobility | |--|--|-----|---| | | | 0 | | | Individual (child) | | | | | P_Survey | Carver et al. (2010) | + | avoidance behaviour ¹ | | Sex: | (Oliver et al., 2015) | _ | %MVPA (F) weekdays | | Female | (Timperio et al., 2004) | _ | walking/cycling, after dark (F) of (10-12 YOLD) | | | | 0 | 5- 6-year-old age group | | | (Faulkner et al., 2015) | _ | time outdoor (weekends and weekdays) | | | (Villanueva et al., 2012) | _ | activity Space (F) | | | (Carver et al., 2014) greater land use mix (residence/retail | + | walking and cycling to school (F) | | | outlets, sports facility) at T2 | | | | Sex: Male | Carver et al. (2010)
(Roberts et al., 2016) | + | made more active trips (M) active behaviour | | | (Fagerholm & Broberg, 2011) | + | Distance travelled, and speed children travel | | | (Villanueva et al., 2012) | Ė | walking/cycling, after dark (M) of (10-12 YOLD) | | | (, , , , , , , , , , , , , , , , , , , | + | Steps count | | | (Mehdizadeh et al., 2017) | 0 | Perceived walking to school | | | (Helbich et al., 2016) | 0 | Active school travel | | | (Carver et al., 2014) being allowed by parents to play | + | odd of walking/cycling independently to school | | | outside (Tung et al., 2016) | ١. | PA (reported) | | C_Survey | (Alton et al., 2007) | 0 | walking trips | | Gender | (Page et al., 2010) playing and taking part in structured | + | local-IM: (M) more than F | | | sport | | Total IIII (II) more than I | | | (Page et al., 2010) | 0 | Active commuting to school | | Age Adult Survey | (J. Loebach & J. Gilliland, 2016) | + | time spend outdoor, distance & IM (older). | | | (Stark et al., 2018) | + | IM with older children | | | (Timperio et al., 2004) of age 5-6 compared to 10-12 | + | walking or cycling with age in particular for (M). | | | (Oliver et al., 2016) | + | %MVPA weekdays | | | (Faulkner et al., 2015)
(Helbich et al., 2016) | 0 + | MVPA
ATS | | | | + | active school travel | | Danouts/Eamily has | (van den Berg et al., 2020) kground characteristics | + | active school travel | | 1 arems/1 amily buc | kground characteristas | | | | SES | (Timperio et al., 2004) (boys) 10 -12 | + | Frequency of walking or cycling to public transport (active trips) in high SES more than in medium SES. | | | (Timperio et al., 2004) 10- 12 F | + | walked and cycled more to school in high SES. | | | (Timperio et al., 2004) age 5-6 years old) M | + | in high SES | | | (Timperio et al., 2004) age 5-6 years old) F | 0 | association to SES | | | (Tung et al., 2016) high SES | + | PA | | | (Timperio et al., 2004) | 0 | concerns of stranger danger (F) | | | | U | | | | (Mehdizadeh et al., 2017) mothers with driving licence (Oliver et al., 2016) | | Reduced active travel to school (Inconclusive) | | | | + | BMI level | | | (Noonan et al., 2016) in high deprivation | + | self-reported PA | | C_Survey | (Timperio et al., 2004) concerns of traffic in (M) | X | found in children in low SES more than children in | | And SES | (Timperio et al., 2004) concerns of traine in (W) | Λ. | high SES | | Poverty | (Zhu & Lee, 2008) | _ | safety & walking | | Household income | Mehdizadeh et al., 2017 | + | perceived walking to school | | P_survey | (van den Berg et al., 2020) | х | increased income & increased perception of safety | | Mother driving licence | Mehdizadeh, Mamdoohi, & Nordfjaern, 2017) | - | active travel | | Parental age | Mehdizadeh, Mamdoohi, & Nordfjaern, 2017) | + | perceived walking to school | | Employments
Status (mother) | (Stark et al., 2018) | + | IM licence | | Home
environment
(access to Media) | (Noonan et al., 2016) | х | in High Deprivation | | Having older | (Lin et al., 2017) | + | IM | | siblings | (Carver et al., 2014) | + | IM | | P_Survey | (Alton et al., 2007) | _ | level of walking | | | | | 2 | | Cars | (Davis & Jones, 1996) | _ | IM | |--------------------------------------|---|---|---| | ownership/ | (Lin et al., 2017) | | IM | | access | (Mehdizadeh et al., 2017) | = | active travel | | 400000 | , , , | | | | | (Oliver et al., 2015) (Timperio et al., 2004) Parent of 5-6 years old (F) who | _ | # of active trips (weekdays) less likely of walking or cycling to destinations | | | | _ | less likely of walking of cycling to destinations | | | owned more than one car associated with | | W/ II | | | (Waygood & Susilo, 2015) | _ | Walking to school | | | (Carver et al., 2014) | _ | odd of boys walking and cycling to school at T2 | | C_Survey rooms in the house | (Alton et al., 2007) | - | (significant only for 2.1%) | | Parental attitude
towards walking | Mehdizadeh, Mamdoohi, & Nordfjaern, 2017) | + | short perceived walking time to school | | Parental Physical
Activity | (Santos et al., 2013) Parental physical activity | + | independent mobility | | Ethnicity | (Alton et al., 2007) | _ | level of walking in minority | | | *(Oliver et al., 2016) | + | %MVA Pacific, European and Maori accumulates (weekdays only). %MVA Indian/Asian/others (weekend days) than | | | | | their counterparts/Pacific on weekdays | | | (Suminski et al., 2018)
crime risk index | | BMI (white children) | | | | _ | | | | (Roberts et al., 2016) | + | in minority | | | (Zhu & Lee, 2008) (Hispanic) | + | in crime & traffics | | Access to public transport | Mehdizadeh, Mamdoohi, & Nordfjaern, 2017) | 1 | active travel | | Attending
Public School | (Mehdizadeh, Mamdoohi, & Nordfjaern, 2017) | - | perceived walking to school | | | rceived (Personal and Road Safety) | | | | P_Survey | (Fagerholm & Broberg, 2011) | _ | Independent mobility after dark and by distance | | low personal
safety | | | (only F) | | perception | (Stark et al., 2018) | _ | IM | | perception | (Timperio et al., 2004) | _ | frequency of walking | | | (Mehdizadeh et al., 2017) | | activity space after 10 min walking | | | | | • • | | | (J. Loebach & J. Gilliland, 2016) | _ | time outdoor and travelled distance | | | (Faulkner et al., 2015) | _ | outdoor playtime (outdoor plat and MVPA) | | | (Roberts et al., 2016) | + | active children | | | (Villanueva et al., 2012) | | Activity space F | | | * | _ | | | | (Oliver et al., 2016) | _ | active trips (weekdays) | | | (Noonan et al., 2016) | _ | outdoor play in MD | | | (Carver et al., 2010) | _ | active transport (M/F) in 10 -11 years old | | | Constrained behaviour (avoidance and Defensive behaviours) | _ | MVPA (M) weekends | | | (Lin et al., 2017) | 0 | IM (though parents had concern of safety) | | | (Oluyomi et al., 2014) | - | walking to school general neighbourhoods' safety,
stray or dangerous animals and availability of adults | | | (Carver et al., 2014) | - | walking and cycling to school at T1 | | | (Shokoohi et al., 2012) | - | walking to school | | | (van den Berg et al., 2020) | | children travel actively | | | (Waygood & Susilo, 2015) | | School active travel | | | (Waygood & Susho, 2013) (Tung et al., 2016) | | PA PA | | C Survey | (Villanueva et al., 2012) | - | activity space | | Low perceived | (Janet E. Loebach & Jason A. Gilliland, 2016) | - | time spend close to home | | safety | (Shokoohi et al., 2012) | | walking to school | | | (Page et al., 2010) positive perception | | playing out for girls | | | | - | | | | (Page et al., 2010) positive perception of the environment | - | greater IM | | | (Page et al., 2010) exercising or doing sport every day associated | - | local-IM (boys) | | P_Survey | (Faulkner et al., 2015) | + | on weekdays | | Perceived | (Lin et al., 2017) | 0 | though parents have safety concerns | | Stranger danger | (Stephanie H. Kneeshaw-Price et al., 2015) | - | MVPA | | | (Santos et al., 2013) | 0 | IM | | C-Survey | (Alton et al., 2007) | - | less walking | | Perceived
Stranger danger | (Davis & Jones, 1996) | | in particular (F) | | - Junger dunger | (24.10 & 30100, 1770) | | paracular (1) | | | (Timperio et al., 2004) | _ | low SES (F) than high SES | |--|---|-------|--| | P_Survey
Increased social | (Lin et al., 2017) | + | IM | | Cohesion/Social
Norms | (van den Berg et al., 2020) increase perception of social cohesion | + | parents perceived safety | | C-Survey | (Noonan et al., 2016) Neighbourhood aesthetics | 0 | self-reported PA | | Neighbourhood | (Noonan et al., 2016) Neighbourhood aesthetics | _ | BMI | | high
aesthetics /
Nuisance
Social Norms | (Page et al., 2010) higher score of social norms | + | frequency of outdoor play | | P_Survey | (Noonan et al., 2016) | _ | independent mobility | | Perception of | (Stark et al., 2018) | _ | independent mobility (general traffic safety) | | Road Safety
Low perceived
road safety | (Timperio et al., 2004) Parents believe of (heavy traffic) in (5-6 years old) boys | + | Frequency of walking (sidewalks or bike lanes, safe crossing | | | (Timperio et al., 2004) Parents believe (for M) of $10-12$ years old of no lights or crossing. | _ | walking and cycling | | | (Timperio et al., 2004) The parental belief of F needs to cross many roads to reach play area 10 - 12 | - | likelihood of walking or cycling | | | (Villanueva et al., 2012) safe neighbourhood crossing | _ | activity space in particular girls, | | | (Faulkner et al., 2015) Fast drivers (weekdays), | _ | MVPA (active play) | | | (Roberts et al., 2016) if parents perceived a lack of sidewalk and signals on a busy street. | 1 | active children | | | (Santos et al., 2013) perceived sidewalk and street safety | _ | independent mobility | | | (Oluyomi et al., 2014) road safety in the home environment
of higher sidewalk availability, Speed, amount of traffic,
intersection safety, road crossing problem and availability
of crossing guard. | 1 | Likelihood of walking to school | | | (Carver et al., 2014) concern about traffic. | - | likely for boys and girls to cycle independently | | | (Tung et al., 2016) traffic hazards (perceived_) | 1 | PA | | | (Waygood & Susilo, 2015) slow or safe traffic | + | Walking to school | | | (Davis & Jones, 1996) traffic | _ | Independent mobility | | | (Nguyen et al., 2018) parents' perception of high or moderate traffic speed higher | + | outdoor active play | | Perceived
increased
street connectivity | (van den Berg et al., 2020) increased connectivity | + | parental perception of safety | | Destination accessibility | (Oliver et al., 2016) | + | the proportion of trips in active mode (weekdays) %MVPA (weekend) | | Improved
streetscape
(measured) | (Villanueva et al., 2012) | + | Activity space | | C_Survey | (Alton et al., 2007) | - | road safety and heavy traffic and level of walking | | Road safety | (Villanueva et al., 2012) | - | activity space | | | (Davis & Jones, 1996) | _ | IM in particular F (traffic danger) | | | (Timperio et al., 2004) | _ | low SES (M) than in high SES | | | (Page et al., 2010) | + | local and Area-IM with traffic safety (for girls)
positive perception of road safety (+ IM) for girls | | | afety –Perception of other elements related to safety in the Pr | nysic | | | P_Survey Perceived lack of | (Timperio et al., 2004) | - | likely to walking &cycling three times a week (10-12) F | | leisure facility, | (Alton et al., 2007) | - | with a crossing of no light or crossings | | Parks and sport ground | (Faulkner et al., 2015) | 0 | duration of playout | | Land use diversity: | (Fagerholm & Broberg, 2011) | + | mobility mainly in urban structure (residential, commercial and traffic areas) | | Residential/ | (Villanueva et al., 2012) | - | AS in utilitarian destination (within 800 m) | | Commercial/
Industrial/ | (Janet E. Loebach & Jason A. Gilliland, 2016) | + | Time spend close to home (residential) and (+) distance travelled and time spends in commercial (beyond 800m). | | | | - | mobility in agricultural and industrial (on 400-800m buffer) | | | (Faulkner et al., 2015) | + | time playing outside (Residential &Commercial) | | | | | | | Land use mix | *(Oliver et al., 2016) (Helbich et al., 2016) urban environment and well- connected street and lights | 0 + | %MVPA Active school travel | |---|---|-------------|---| | Land use mix | connected street and lights | + | Active school travel | | Land use mix | | | Active school travel | | Land use mix | (Carver et al., 2014) (land use mix of residential, retail shops, sports centre) | + | walking/cycling independently to school (F) | | (access) | (Tung et al., 2016) | + | PA | | P_Survey | (Stark et al., 2018) | - | AIM | | proximity
to destinations | *(Fagerholm & Broberg, 2011) | - | trajectory (with increased distance), | | | *(Oliver et al., 2016) distance to school | - | the proportion of trips made in active mode, + distance to school | | | (Lin et al., 2017) | - | AIM | | | (Mehdizadeh et al., 2017) perception of more than 10 min walking | - | perceived walking to school distance and active travel | | | (Roberts et al., 2016) | + | to play area, active behaviour | | | (Janet E. Loebach & Jason A. Gilliland, 2016) | - | majority of time spent closer to home (400 m buffer | | | | _ | around the home) school travel and neighbourhood travel | | | (Helbich et al., 2016) | _ | AST | | | (Waygood & Susilo, 2015) | - | Walking to school | | | (van den Berg et al., 2020) | _ | school active travel | | C_Survey | (Janet E. Loebach & Jason A. Gilliland, 2016) | + | distance travelled and activity space near home | | proximity | (Page et al., 2010) | - | longer route and active commuting to school (for both boys and girls Active commuting | | P_Survey | (Timperio et al., 2004) | - | likely of walking or cycling F of 5-6-year-old. | | perception of limited access to public transportation | | _ | likely of walking or cycling F of 10-12-year-old. | | transportation P_Survey | (J. Loebach & J. Gilliland, 2016) | + | neighbourhood activity space | | Availability of
Neighbourhood
Amenities | | | | | P_Survey
High walkable
neighbourhood | (Villanueva et al., 2012) | + | activity space | | P_Survey | (Roberts et al., 2016) | + | active children | | High
Naighboumhaad | (Noonan et al., 2016) | _ | BMI z-score and waist circumference | | Neighbourhood
aesthetics | Mehdizadeh et al., 2017 | + | Perceived walking to school | | P_Survey
Owning a dog | (Timperio et al., 2004) | + | frequency of walking | | C-Survey
Accessibility to | (Timperio et al., 2004) child believe of no parks access to parks (F/M) | _ | walking and cycling in 10-12 years old (M) | | destination | (Page et al., 2010) easy access to range pf
destination (Page et al., 2010) greater perceived accessibility | ++ | taking part in structured exercise/sport every day
Active commuting to school | | Neighbourhood- Me | | |) din | | Measured safety
from crime | (Stephanie H. Kneeshaw-Price et al., 2015)
(Vonderwalde, Cox, Williams, Borghese, & Janssen, 2019) | - | MVPA | | (high level of | | + | active transportation in High crime areas | | actual crime) | (Zhu & Lee, 2008) | - | walkability | | Road safety | (Suminski et al., 2018) (Nguyen et al., 2018) children from the highest traffic | + | BMI z-score
outdoor active play | | | volume | | | | | (Carver et al., 2014) the proportion of main roads | _ | odd of walking and cycling (F) walking and cycling to school independently | | | *(Oliver et al., 2015) ratio of high-speed roads around schools (weekdays) | 1 | %MVPA | | | street connectivity | + | the proportion of trips made in active mode (on weekend and weekdays) | | | succi connectivity | L l | weekend and weekdays) | | | (Helbich et al., 2016) exposures to major roads/highway | - | AST | | | | -
+
0 | - | | Perceived and | (Nguyen et al., 2018) perceived road safety | Х | measured road safety | |---------------------|---|---|---| | measured road | | | | | safety | | | | | Perceived and | (Stephanie H. Kneeshaw-Price et al., 2015) Measured | 0 | with parents' perception | | measured personal | crime | | | | safety | | | | | Parents to children | (Timperio et al., 2004) | | parent of 10 – 12 perception was more negative than | | perceived safety | | | their own children | Note: Association identified between safety and active mobility behaviour: (+) positive association, (-) negative association, (0) Non-Associated/Not Significant difference, x = association not to active behaviour. Abbreviation: P_Survey = studies examined the perception of safety among parents; C_Survey = studies examined the perception of safety among children. M = male (boys), F = female (girls), IM = independent mobility, MBI - body mass index, SES = socioeconomic status, HD = high depreciation, MD = Medium Deprived, CRI = Crime Risk Index, BMI Body Mass Index, SES = Socioeconomic level, * = behaviour show significant correlate on Weekdays, ** = Behaviour show on weekend, MVPA = Moderate to vigorous physical activity. \(^1\) Avoidance behaviour is where no further engagement in habits and activities due to perceived risk, e.g. parents driving children to school instead of walking or cycling. \(^2\) Defensive behaviour is where habits are altered in an attempt to reduce perceived risk, e.g. parental accompaniment to children while walking to school", Ferraro, 1995.