Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Solutions for a cultivated planet

Subjects

Abstract

Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world’s future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture’s environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing ‘yield gaps’ on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allocation of cropland area to different uses in 2000.
Figure 2: Meeting goals for food security and environmental sustainability by 2050.
Figure 3: Closing global yield gaps.
Figure 4: Closing the diet gap.

Similar content being viewed by others

References

  1. International Assessment of Agricultural Knowledge (IAASTD) . Agriculture at a Crossroads, Global Report Chs 1, 4 (Island Press, 2009); http://www.agassessment.org/reports/IAASTD/EN/AgricultureataCrossroads_GlobalReport(English).pdf.

    Google Scholar 

  2. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture 1–10, 47–50 (The Royal Society, 2009); http://royalsociety.org/Reapingthebenefits/.

  3. Pelletier, N. & Tyedmers, P. Forecasting potential global environmental costs of livestock production 2000–2050. Proc. Natl Acad. Sci. USA 107, 18371–18374 (2010)

    Article  ADS  CAS  Google Scholar 

  4. Food and Agriculture Organization of the United Nations (FAO) . The State of Food Insecurity in the World: Economic crises—Impacts and Lessons Learned 8–12 (FAO, 2009)

    Google Scholar 

  5. Thurow, R. & Kilman, S. Enough: Why the World’s Poorest Starve in an Age of Plenty Chs 2, 4, 12 (Perseus Books, 2009)

    Google Scholar 

  6. Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010)This article reviews a recent effort by the UK-based Foresight Project, which assessed global conditions and trends in agriculture and food security, and set the benchmark for the world’s discussions on this important topic.

    Article  ADS  CAS  Google Scholar 

  7. Naylor, R. Expanding the boundaries of agricultural development. Food Security 3, 233–251 (2011)

    Article  Google Scholar 

  8. Kearney, J. Food consumption trends and drivers. Phil. Trans. R. Soc. B 365, 2793–2807 (2010)

    Article  Google Scholar 

  9. Cirera, X. & Masset, E. Income distribution trends and future food demand. Phil. Trans. R. Soc. B 365, 2821–2834 (2010)

    Article  Google Scholar 

  10. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005)This paper reviews the global extent of land use practices, especially agriculture, and how it has become a transformative force in the global environment—through changes in climate, water resources, biogeochemical cycles and biodiversity.

    Article  ADS  CAS  Google Scholar 

  11. Millennium Ecosystem Assessment . Ecosystems and Human Well-Being Vol. 2 Scenarios: Findings of the Scenarios Working Group Ch. 9 (Island Press, 2005)

    Google Scholar 

  12. Power, A. G. Ecosystem services and agriculture: tradeoffs and synergies. Phil. Trans. R. Soc. B 365, 2959–2971 (2010)

    Article  Google Scholar 

  13. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009)This article presents a new way of thinking about the condition of the global environment and the idea of “planetary boundaries”—points where more environmental deterioriation may “tip” the global environment far out of the current condition.

    Article  ADS  Google Scholar 

  14. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008)

    Article  ADS  Google Scholar 

  15. Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008)

    Article  ADS  Google Scholar 

  16. Portmann, F. T., Siebert, S. & Döll, P. MIRCA 2000: global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011 (2010)

    Article  ADS  Google Scholar 

  17. Siebert, S. & Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010)This paper presents a state-of-the-art global assessment of how water resources (both ‘blue’ and ‘green’ water) are deployed in agriculture, primarily through irrigation, and how this is related to food production.

    Article  ADS  Google Scholar 

  18. Food and Agriculture Organization of the United Nations (FAOSTAT) . http://faostat.fao.org/site/567/default.aspx#ancor (accessed, March 2011)

  19. Ramankutty, N., Foley, J. A., Norman, J. & McSweeney, K. The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 11, 377–392 (2002)

    Article  Google Scholar 

  20. Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010)

    Google Scholar 

  21. West, P. C. et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010)This paper explores how future expansion of agriculture would lead to increasing greenhouse gas emissions (from deforestation) and increasing food production (by adding more farmland), and assesses the geographic patterns of the tradeoffs between the two.

    Article  ADS  CAS  Google Scholar 

  22. MacDonald, G. K., Bennett, E. M., Potter, P. A. & Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl Acad. Sci. USA 108, 3086–3091 (2011)

    Article  ADS  CAS  Google Scholar 

  23. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Steinfeld, H. et al. Livestock’s Long Shadow: Environmental Issues and Options 1–20 (FAO, 2006)

    Google Scholar 

  25. Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Gibbs, H. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010)

    Article  ADS  CAS  Google Scholar 

  27. Foley, J. A. et al. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32 (2007)

    Article  Google Scholar 

  28. Friedlingstein, P. et al. Update on CO2 emissions. Nature Geosci. 3, 811–812 (2010)

    Article  ADS  CAS  Google Scholar 

  29. DeFries, R. & Rosenzweig, C. Toward a whole-landscape approach for sustainable land use in the tropics. Proc. Natl Acad. Sci. USA 107, 19627–19632 (2010)

    Article  ADS  CAS  Google Scholar 

  30. Rosegrant, M. W., Cai, X. & Cline, S. A. World Water and Food to 2025: Dealing with Scarcity 1–32 (International Food Policy Research Institute, 2002)

    Google Scholar 

  31. Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003)

    Article  ADS  CAS  Google Scholar 

  32. Matson, P., Parton, W., Power, A. & Swift, M. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997)

    Article  CAS  Google Scholar 

  33. Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001)

    Article  ADS  CAS  Google Scholar 

  34. Vorosmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000)

    Article  ADS  CAS  Google Scholar 

  35. Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008)

    Article  ADS  CAS  Google Scholar 

  36. Gleick, P. H., Cooley, H. & Morikawa, M. The World's Water 2008–2009: The Biennial Report on Freshwater Resources (eds Gleick, P. H. et al.) 202–210 (Island Press, 2009)

    Google Scholar 

  37. Postel, S. L., Daily, G. C. & Ehrlich, P. R. Human appropriation of renewable fresh water. Science 271, 785–788 (1996)

    Article  ADS  CAS  Google Scholar 

  38. Gordon, L. J. et al. Human modification of global water vapor flows from the land surface. Proc. Natl Acad. Sci. USA 102, 7612–7617 (2005)

    Article  ADS  CAS  Google Scholar 

  39. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997)

    Article  CAS  Google Scholar 

  40. Smil, V. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Environ. 25, 53–88 (2000)

    Article  Google Scholar 

  41. Bennett, E. M., Carpenter, S. R. & Caraco, N. F. Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51, 227–234 (2001)

    Article  Google Scholar 

  42. Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of earth’s nitrogen cycle. Science 330, 192–196 (2010)

    Article  ADS  CAS  Google Scholar 

  43. Galford, G. L. et al. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon. Proc. Natl Acad. Sci. USA 107, 19649–19654 (2010)

    Article  ADS  CAS  Google Scholar 

  44. van der Werf, G. et al. CO2 emissions from forest loss. Nature Geosci. 2, 737–738 (2009)

    Article  ADS  CAS  Google Scholar 

  45. Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl Acad. Sci. USA 104, 18866–18870 (2007)

    Article  ADS  CAS  Google Scholar 

  46. Vergé, X., De Kimpe, C. & Desjardins, R. Agricultural production, greenhouse gas emissions and mitigation potential. Agric. For. Meteorol. 142, 255–269 (2007)

    Article  ADS  Google Scholar 

  47. DeFries, R. S., Foley, J. A. & Asner, G. P. Land-use choices: balancing human needs and ecosystem function. Front. Ecol. Environ. 2, 249–257 (2004)

    Article  Google Scholar 

  48. Intergovernmental Panel on Climate Change (IPCC) . Climate Change 2007: IPCC Fourth Assessment Report (AR4) (Cambridge University Press, 2007)

    Book  Google Scholar 

  49. Gibbs, H. K. et al. Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ. Res. Lett. 3, 034001 (2008)

    Article  ADS  Google Scholar 

  50. Fargione, J., Hill, J., Tilman, D., Polasky, S. & Hawthorne, P. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008)

    Article  ADS  CAS  Google Scholar 

  51. Mayaux, P. et al. Tropical forest cover change in the 1990s and options for future monitoring. Phil. Trans. R. Soc. B 360, 373–384 (2005)

    Article  Google Scholar 

  52. Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008)

    Article  ADS  CAS  Google Scholar 

  53. Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011)

    Article  ADS  CAS  Google Scholar 

  54. Rudel, T. K. et al. Agricultural intensification and changes in cultivated areas, 1970–2005. Proc. Natl Acad. Sci. USA 106, 20675–20680 (2009)

    Article  ADS  CAS  Google Scholar 

  55. DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nature Geosci. 3, 178–181 (2010)

    Article  ADS  CAS  Google Scholar 

  56. Kremen, C., Daily, G. C., Klein, A. & Scofield, D. Inadequate assessment of the ecosystem service rationale for conservation: reply to Ghazoul. Conserv. Biol. 22, 795–798 (2008)

    Article  Google Scholar 

  57. Licker, R. et al. Mind the gap: how do climate and agricultural management explain the ‘yield gap’ of croplands around? Global Ecol. Biogeogr. 19, 769–782 (2010)These authors present a new technique for estimating global patterns of yield and ‘yield gaps’, highlighting opportunities for improving food production around the world.

    Article  Google Scholar 

  58. Neumann, K., Verburg, P. H., Stehfest, E. & Müller, C. The yield gap of global grain production: a spatial analysis. Agric. Syst. 103, 316–326 (2010)

    Article  Google Scholar 

  59. Sánchez, P. A. Tripling crop yields in tropical Africa. Nature Geosci. 3, 299–300 (2010)

    Article  ADS  Google Scholar 

  60. Jaggard, K. W., Qi, A. & Ober, E. S. Possible changes to arable crop yields by 2050. Phil. Trans. R. Soc. B 365, 2835–2851 (2010)

    Article  Google Scholar 

  61. Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010)

    Article  ADS  CAS  Google Scholar 

  62. Cordell, D., Drangert, J. O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009)

    Article  Google Scholar 

  63. Cassman, K. G., Dobermann, A. & Walters, D. T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31, 132–140 (2002)

    Article  Google Scholar 

  64. Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact. 14, 1–22 (2010)

    Article  Google Scholar 

  65. Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl Acad. Sci. USA 107, 8035–8040 (2010)

    Article  ADS  CAS  Google Scholar 

  66. Vitousek, P. et al. Nutrient imbalances in agricultural development. Science 324, 1519–1520 (2009)

    Article  ADS  CAS  Google Scholar 

  67. Chen, X. P. et al. Integrated soil-crop system management for food security. Proc. Natl Acad. Sci. 108, 6,399–6 404 (2011)

    Article  ADS  CAS  Google Scholar 

  68. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste Section 3.2 (Study conducted for the International Congress “Save Food!” at Interpack2011, Düsseldorf, Germany) (FAO, Rural Infrastructure and Agro-Industries Division, 2011)

    Google Scholar 

  69. Lundqvist, J., De Fraiture, C. & Molden, D. Saving Water: from Field to Fork: Curbing Losses and Wastage in the Food Chain 20–23 (Stockholm International Water Institute, 2008)

    Google Scholar 

  70. Parfitt, J., Barthel, M. & Macnaughton, S. Food waste within food supply chains: quantification and potential for change to 2050. Phil. Trans. R. Soc. B 365, 3065–3081 (2010)

    Article  Google Scholar 

  71. Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009)

    Article  ADS  CAS  Google Scholar 

  72. Sachs, J. et al. Monitoring the world’s agriculture. Nature 466, 558–560 (2010)

    Article  ADS  CAS  Google Scholar 

  73. Zaks, D. P. M. & Kucharik, C. J. Data and monitoring needs for a more ecological agriculture. Environ. Res. Lett. 6, 014017 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support of NASA and the National Science Foundation. We also acknowledge the support of the Stockholm Resilience Centre, for convening a workshop on meeting global agricultural demands while staying within the ‘planetary limits’. We thank C. Godfray and C. Prentice for comments on the manuscript. We also thank M. Hoff and S. Karnas for help with the manuscript and figures.

Author information

Authors and Affiliations

Authors

Contributions

J.A.F., N.R., K.A.B., E.S.C., J.S.G., M.J., N.D.M., C.O’C., D.K.R. and P.C.W. conducted most of the data production, analysis and shared writing responsibilities. C.B., C.M., S.S. and D.T. contributed data and shared in the scoping and writing responsibilities. E.M.B., S.R.C., J.H., S.P., J.R., J.S. and D.P.M.Z. shared in the scoping and writing responsibilities.

Corresponding author

Correspondence to Jonathan A. Foley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-7 with legends, Supplementary Methods, Supplementary Table 1 and additional references. (PDF 7418 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foley, J., Ramankutty, N., Brauman, K. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011). https://doi.org/10.1038/nature10452

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10452

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing