Skip to main content

Advertisement

Log in

Genetics of hereditary disorders of magnesium homeostasis

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Magnesium plays an essential role in many biochemical and physiological processes. Homeostasis of magnesium is tightly regulated and depends on the balance between intestinal absorption and renal excretion. During the last decades, various hereditary disorders of magnesium handling have been clinically characterized and genetic studies in affected individuals have led to the identification of some molecular components of cellular magnesium transport. In addition to these hereditary forms of magnesium deficiency, recent studies have revealed a high prevalence of latent hypomagnesemia in the general population. This finding is of special interest in view of the association between hypomagnesemia and common chronic diseases such as diabetes, coronary heart disease, hypertension, and asthma. However, valuable methods for the diagnosis of body and tissue magnesium deficiency are still lacking. This review focuses on clinical and genetic aspects of hereditary disorders of magnesium homeostasis. We will review primary defects of epithelial magnesium transport, disorders associated with defects in Ca2+/ Mg2+ sensing, as well as diseases characterized by renal salt wasting and hypokalemic alkalosis, with special emphasis on disturbed magnesium homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cole DE, Quamme GA (2000) Inherited disorders of renal magnesium handling. J Am Soc Nephrol 11:1937–1947

    CAS  PubMed  Google Scholar 

  2. Konrad M, Weber S (2003) Recent advances in molecular genetics of hereditary magnesium-losing disorders. J Am Soc Nephrol 14:249–260

    Google Scholar 

  3. Schimatschek HF, Rempis R (2001) Prevalence of hypomagnesemia in an unselected German population of 16,000 individuals. Magnes Res 14:283–290

    PubMed  Google Scholar 

  4. Sanders GT, Huijgen HJ, Sanders R (1999) Magnesium in disease: a review with special emphasis on the serum ionized magnesium. Clin Chem Lab Med 37:1011–1033

    CAS  PubMed  Google Scholar 

  5. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 294:1–26

    Article  PubMed  Google Scholar 

  6. Elin RJ (1994) Magnesium: the fifth but forgotten electrolyte. Am J Clin Pathol 102:616–622

    PubMed  Google Scholar 

  7. Avioli LV, Berman M (1966) Mg28 kinetics in man. J Appl Physiol 21:1688–1694

    Google Scholar 

  8. Seelig MS (1964) The requirement of magnesium by the normal adult. Summary and analysis of. J Am Coll Nutr 14:342–390

    Google Scholar 

  9. EU-SCOF (2001) Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Magnesium. European Commission Health and Consumer Protection Directorate-Generale, Brussels, pp 1–16

  10. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes FNB, Institute of Medicine (1999) Magnesium. In: National Academy of Sciences (ed) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies Press, Washington, D.C., pp 190–249

  11. Kerstan D, Quamme G (2002) Physiology and pathophysiology of intestinal absorption of magnesium. In: Massry SG, Morii H, Nishizawa Y (eds) Calcium in internal medicine. Springer-Verlag, London Berlin Heidelberg, pp 171–183

  12. Quamme GA, Rouffignac C de (2000) Epithelial magnesium transport and regulation by the kidney. Front Biosci 5:D694–D711

    PubMed  Google Scholar 

  13. Fine KD, Santa Ana CA, Porter JL, Fordtran JS (1991) Intestinal absorption of magnesium from food and supplements. J Clin Invest 88:396–402

    CAS  PubMed  Google Scholar 

  14. Rouffignac C de, Quamme G (1994) Renal magnesium handling and its hormonal control. Physiol Rev 74:305–322

    PubMed  Google Scholar 

  15. Lelievre-Pegorier M, Merlet-Benichou C, Roinel N, Rouffignac C de (1983) Developmental pattern of water and electrolyte transport in rat superficial nephrons. Am J Physiol 245:F15–F21

    CAS  PubMed  Google Scholar 

  16. Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA (2001) Magnesium transport in the renal distal convoluted tubule. Physiol Rev 81:51–84

    PubMed  Google Scholar 

  17. Quamme GA (1997) Renal magnesium handling: new insights in understanding old problems. Kidney Int 52:1180–1195

    CAS  PubMed  Google Scholar 

  18. Agus ZS (1999) Hypomagnesemia. J Am Soc Nephrol 10:1616–1622

    CAS  PubMed  Google Scholar 

  19. Tsuji H, Venditti FJ Jr, Evans JC, Larson MG, Levy D (1994) The associations of levels of serum potassium and magnesium with ventricular premature complexes (the Framingham Heart Study). Am J Cardiol 74:232–235

    PubMed  Google Scholar 

  20. Saha H, Harmoinen A, Karvonen AL, Mustonen J, Pasternack A (1998) Serum ionized versus total magnesium in patients with intestinal or liver disease. Clin Chem Lab Med 36:715–718

    PubMed  Google Scholar 

  21. Hebert P, Mehta N, Wang J, Hindmarsh T, Jones G, Cardinal P (1997) Functional magnesium deficiency in critically ill patients identified using a magnesium-loading test. Crit Care Med 25:749–755

    PubMed  Google Scholar 

  22. Hashimoto Y, Nishimura Y, Maeda H, Yokoyama M (2000) Assessment of magnesium status in patients with bronchial asthma. J Asthma 37:489–496

    PubMed  Google Scholar 

  23. Arnold A, Tovey J, Mangat P, Penny W, Jacobs S (1995) Magnesium deficiency in critically ill patients. Anaesthesia 50:203–205

    PubMed  Google Scholar 

  24. Sutton RA, Domrongkitchaiporn S (1993) Abnormal renal magnesium handling. Miner Electrolyte Metab 19:232–240

    CAS  PubMed  Google Scholar 

  25. Elisaf M, Panteli K, Theodorou J, Siamopoulos KC (1997) Fractional excretion of magnesium in normal subjects and in patients with hypomagnesemia. Magnes Res 10:315–320

    PubMed  Google Scholar 

  26. Tang NL, Cran YK, Hui E, Woo J (2000) Application of urine magnesium/creatinine ratio as an indicator for insufficient magnesium intake. Clin Biochem 33:675–678

    Article  PubMed  Google Scholar 

  27. Nicoll GW, Struthers AD, Fraser CG (1991) Biological variation of urinary magnesium. Clin Chem 37:1794–1795

    PubMed  Google Scholar 

  28. Djurhuus MS, Gram J, Petersen PH, Klitgaard NA, Bollerslev J, Beck-Nielsen H (1995) Biological variation of serum and urinary magnesium in apparently healthy males. Scand J Clin Lab Invest 55:549–558

    PubMed  Google Scholar 

  29. Ryzen E, Elbaum N, Singer FR, Rude RK (1985) Parenteral magnesium tolerance testing in the evaluation of magnesium deficiency. Magnesium 4:137–147

    CAS  PubMed  Google Scholar 

  30. Rob PM, Dick K, Bley N, Seyfert T, Brinckmann C, Hollriegel V, Friedrich HJ, Dibbelt L, Seelig MS (1999) Can one really measure magnesium deficiency using the short-term magnesium loading test? J Intern Med 246:373–378

    Google Scholar 

  31. Koo WWK, Tsang RC (1999) Calcium and magnesium homeostasis. In: Avery GB, Fletcher MA, MacDonald MG (eds) Neonatology—pathophysiology and management of the newborn, vol 1. Lippincott Williams and Wilkins, Philadelphia, p 730

  32. Cronan K, Norman ME (2000) Renal and electrolyte emergencies. In: Fleisher GR, Ludwig S (eds) Pediatric emergency medicine, vol 1. Lippincott Williams and Wilkins, Philadelphia, p 827

  33. Gal P, Reed MD (2000) Medications. In: Behrman RE, Kliegman R, Jenson HB (eds) Textbook of pediatrics. Saunders, Philadelphia, p 2270

  34. Ranade VV, Somberg JC (2001) Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to humans. Am J Ther 8:345–357

    PubMed  Google Scholar 

  35. Ryan MP (1986) Magnesium and potassium-sparing diuretics. Magnesium 5:282–292

    PubMed  Google Scholar 

  36. Netzer T, Knauf H, Mutschler E (1992) Modulation of electrolyte excretion by potassium retaining diuretics. Eur Heart J 13 [Suppl G]:22–27

  37. Colussi G, Rombola G, De Ferrari ME, Macaluso M, Minetti L (1994) Correction of hypokalemia with antialdosterone therapy in Gitelman’s syndrome. Am J Nephrol 14:127–135

    Google Scholar 

  38. Bundy JT, Connito D, Mahoney MD, Pontier PJ (1995) Treatment of idiopathic renal magnesium wasting with amiloride. Am J Nephrol 15:75–77

    Google Scholar 

  39. Geven WB, Monnens LA, Willems HL, Buijs WC, Haar BG ter (1987) Renal magnesium wasting in two families with autosomal dominant inheritance. Kidney Int 31:1140–1144

    PubMed  Google Scholar 

  40. Meij I, Illy KE, Monnens L (2000) Severe hypomagnesemia in a neonate with isolated renal magnesium loss. Nephron 84:198

    Article  PubMed  Google Scholar 

  41. Meij IC, Saar K, Heuvel LP van den, Nuernberg G, Vollmer M, Hildebrandt F, Reis A, Monnens LA, Knoers NV (1999) Hereditary isolated renal magnesium loss maps to chromosome 11q23. Am J Hum Genet 64:180–188

    Article  PubMed  Google Scholar 

  42. Meij IC, Koenderink JB, Bokhoven H van, Assink KF, Groenestege WT, Pont JJ de, Bindels RJ, Monnens LA, Heuvel LP van den, Knoers NV (2000) Dominant isolated renal magnesium loss is caused by misrouting of the Na(+),K(+)-ATPase gamma-subunit. Nat Genet 26:265–266

    CAS  PubMed  Google Scholar 

  43. Pu HX, Scanzano R, Blostein R (2002) Distinct regulatory effects of the Na,K-ATPase gamma subunit. J Biol Chem 277:20270–20276

    Article  PubMed  Google Scholar 

  44. Kantorovich V, Adams JS, Gaines JE, Guo X, Pandian MR, Cohn DH, Rude RK (2002) Genetic heterogeneity in familial renal magnesium wasting. J Clin Endocrinol Metab 87:612–617

    PubMed  Google Scholar 

  45. Geven WB, Monnens LA, Willems JL, Buijs W, Hamel CJ (1987) Isolated autosomal recessive renal magnesium loss in two sisters. Clin Genet 32:398–402

    PubMed  Google Scholar 

  46. Meij IC, Van Den Heuvel LP, Hemmes S, Van Der Vliet WA, Willems JL, Monnens LA, Knoers NV (2003) Exclusion of mutations in FXYD2, CLDN16 and SLC12A3 in two families with primary renal Mg(2+) loss. Nephrol Dial Transplant 18:512–516

    Article  PubMed  Google Scholar 

  47. Michelis MF, Drash AL, Linarelli LG, De Rubertis FR, Davis BB (1972) Decreased bicarbonate threshold and renal magnesium wasting in a sibship with distal renal tubular acidosis. (Evaluation of the pathophysiological role of parathyroid hormone.) Metabolism 21:905–920

  48. Manz F, Scharer K, Janka P, Lombeck J (1978) Renal magnesium wasting, incomplete tubular acidosis, hypercalciuria and nephrocalcinosis in siblings. Eur J Pediatr 128:67–79

    CAS  PubMed  Google Scholar 

  49. Rodriguez-Soriano J, Vallo A, Garcia-Fuentes M (1987) Hypomagnesaemia of hereditary renal origin. Pediatr Nephrol 1:465–472

    PubMed  Google Scholar 

  50. Nicholson JC, Jones CL, Powell HR, Walker RG, McCredie DA (1995) Familial hypomagnesaemia-hypercalciuria leading to end-stage renal failure. Pediatr Nephrol 9:74–76

    CAS  PubMed  Google Scholar 

  51. Praga M, Vara J, Gonzalez-Parra E, Andres A, Alamo C, Araque A, Ortiz A, Rodicio JL (1995) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int 47:1419–1425

    CAS  PubMed  Google Scholar 

  52. Benigno V, Canonica CS, Bettinelli A, Vigier RO von, Truttmann AC, Bianchetti MG (2000) Hypomagnesaemia-hypercalciuria-nephrocalcinosis: a report of nine cases and a review. Nephrol Dial Transplant 15:605–610

    CAS  PubMed  Google Scholar 

  53. Weber S, Schneider L, Peters M, Misselwitz J, Ronnefarth G, Boswald M, Bonzel KE, Seeman T, Sulakova T, Kuwertz-Broking E, Gregoric A, Palcoux JB, Tasic V, Manz F, Scharer K, Seyberth HW, Konrad M (2001) Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 12:1872–1881

    CAS  PubMed  Google Scholar 

  54. Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285:103–106

    CAS  PubMed  Google Scholar 

  55. Wong V, Goodenough DA (1999) Paracellular channels! Science 285:62

    Google Scholar 

  56. Meij IC, Heuvel LP van den, Knoers NV (2002) Genetic disorders of magnesium homeostasis. Biometals 15:297–307

    Article  PubMed  Google Scholar 

  57. Blanchard A, Jeunemaitre X, Coudol P, Dechaux M, Froissart M, May A, Demontis R, Fournier A, Paillard M, Houillier P (2001) Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int 59:2206–2215

    CAS  PubMed  Google Scholar 

  58. Müller D, Claverie-Martin F, Eggert P, Garcia-Nieto V (2002) Mutationen im PDZ-Motif von Paracellin-1 als Ursache der Hyperkalziurie im Kindesalter (abstract). Nieren Hochdruckkrankheiten 31:52

    Google Scholar 

  59. Paunier L, Radde IC, Kooh SW, Conen PE, Fraser D (1968) Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics 41:385–402

    PubMed  Google Scholar 

  60. Anast CS, Mohs JM, Kaplan SL, Burns TW (1972) Evidence for parathyroid failure in magnesium deficiency. Science 177:606–608

    PubMed  Google Scholar 

  61. Michelis MF, Bragdon RW, Fusco RD, Eichenholz A, Davis BB (1975) Parathyroid hormone responsiveness in hypoparathyroidism with hypomagnesemia. Am J Med Sci 270:412–418

    PubMed  Google Scholar 

  62. Rude RK, Oldham SB, Singer FR (1976) Functional hypoparathyroidism and parathyroid hormone end-organ resistance in human magnesium deficiency. Clin Endocrinol (Oxf) 5:209–224

    Google Scholar 

  63. Freitag JJ, Martin KJ, Conrades MB, Bellorin-Font E, Teitelbaum S, Klahr S, Slatopolsky E (1979) Evidence for skeletal resistance to parathyroid hormone in magnesium deficiency. Studies in isolated perfused bone. J Clin Invest 64:1238–1244

    PubMed  Google Scholar 

  64. Cole DE, Kooh SW, Vieth R (2000) Primary infantile hypomagnesaemia: outcome after 21 years and treatment with continuous nocturnal nasogastric magnesium infusion. Eur J Pediatr 159:38–43

    Article  PubMed  Google Scholar 

  65. Shalev H, Phillip M, Galil A, Carmi R, Landau D (1998) Clinical presentation and outcome in primary familial hypomagnesaemia. Arch Dis Child 78:127–130

    CAS  PubMed  Google Scholar 

  66. Aries PM, Schubert M, Muller-Wieland D, Krone W (2000) Subcutaneous magnesium pump in a patient with combined magnesium transport defect. Dtsch Med Wochenschr 125:970–972

    Article  PubMed  Google Scholar 

  67. Milla PJ, Aggett PJ, Wolff OH, Harries JT (1979) Studies in primary hypomagnesaemia: evidence for defective carrier-mediated small intestinal transport of magnesium. Gut 20:1028–1033

    PubMed  Google Scholar 

  68. Matzkin H, Lotan D, Boichis H (1989) Primary hypomagnesemia with a probable double magnesium transport defect. Nephron 52:83–86

    PubMed  Google Scholar 

  69. Walder RY, Shalev H, Brennan TM, Carmi R, Elbedour K, Scott DA, Hanauer A, Mark AL, Patil S, Stone EM, Sheffield VC (1997) Familial hypomagnesemia maps to chromosome 9q, not to the X chromosome: genetic linkage mapping and analysis of a balanced translocation breakpoint. Hum Mol Genet 6:1491–1497

    Article  PubMed  Google Scholar 

  70. Walder RY, Borochowitz Z, Shalev H, Carmi R, Elbedour K, Scott DA, Stone EM, Sheffield VC (1999) Hypomagnesemia with secondary hypocalcemia (HSH): narrowing the disease region on chromosome 9 (abstract). Am J Hum Genet 65:A451

    Google Scholar 

  71. Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170

    Article  CAS  PubMed  Google Scholar 

  72. Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174

    Article  CAS  PubMed  Google Scholar 

  73. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a Mg-ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    Article  PubMed  Google Scholar 

  74. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580

    CAS  PubMed  Google Scholar 

  75. Bapty BW, Dai LJ, Ritchie G, Canaff L, Hendy GN, Quamme GA (1998) Activation of Mg2+/Ca2+ sensing inhibits hormone-stimulated Mg2+ uptake in mouse distal convoluted tubule cells. Am J Physiol 275:F353–F360

    PubMed  Google Scholar 

  76. Hebert SC (1996) Extracellular calcium-sensing receptor: implications for calcium and magnesium handling in the kidney. Kidney Int 50:2129–2139

    CAS  PubMed  Google Scholar 

  77. Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297

    CAS  PubMed  Google Scholar 

  78. Wang W, Lu M, Balazy M, Hebert SC (1997) Phospholipase A2 is involved in mediating the effect of extracellular Ca2+ on apical K+ channels in rat TAL. Am J Physiol 273:F421–F429

    CAS  PubMed  Google Scholar 

  79. Pollak MR, Brown EM, Chou YH, Hebert SC, Marx SJ, Steinmann B, Levi T, Seidman CE, Seidman JG (1993) Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75:1297–1303

    CAS  PubMed  Google Scholar 

  80. Pollak MR, Chou YH, Marx SJ, Steinmann B, Cole DE, Brandi ML, Papapoulos SE, Menko FH, Hendy GN, Brown EM, Seidman CE, Seidman JG (1994) Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Effects of mutant gene dosage on phenotype. J Clin Invest 93:1108–1112

    CAS  PubMed  Google Scholar 

  81. Marx SJ, Attie MF, Levine MA, Spiegel AM, Downs RW Jr, Lasker RD (1981) The hypocalciuric or benign variant of familial hypercalcemia: clinical and biochemical features in fifteen kindreds. Medicine (Baltimore) 60:397–412

    Google Scholar 

  82. Cole DE, Janicic N, Salisbury SR, Hendy GN (1997) Neonatal severe hyperparathyroidism, secondary hyperparathyroidism, and familial hypocalciuric hypercalcemia: multiple different phenotypes associated with an inactivating Alu insertion mutation of the calcium-sensing receptor gene. Am J Med Genet 71:202–210

    Article  PubMed  Google Scholar 

  83. Pollak MR, Brown EM, Estep HL, McLaine PN, Kifor O, Park J, Hebert SC, Seidman CE, Seidman JG (1994) Autosomal dominant hypocalcaemia caused by a Ca2+-sensing receptor gene mutation. Nat Genet 8:303–307

    CAS  PubMed  Google Scholar 

  84. Pearce SH, Williamson C, Kifor O, Bai M, Coulthard MG, Davies M, Lewis-Barned N, McCredie D, Powell H, Kendall-Taylor P, Brown EM, Thakker RV (1996) A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med 335:1115–1122

    CAS  PubMed  Google Scholar 

  85. Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, Chikatsu N, Fujita T (2002) Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 360:692–694

    Article  PubMed  Google Scholar 

  86. Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunemaitre X, Paillard M, Planelles G, Dechaux M, Miller RT, Antignac C (2002) Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol 13:2259–2266

    Google Scholar 

  87. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP (1996) Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 13:183–188

    CAS  PubMed  Google Scholar 

  88. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP (1996) Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 14:152–156

    CAS  PubMed  Google Scholar 

  89. International Collaborative Study Group for Bartter-like Syndromes (1997) Mutations in the gene encoding the inwardly-rectifying renal potassium channel, ROMK, cause the antenatal variant of Bartter syndrome: evidence for genetic heterogeneity. International Collaborative Study Group for Bartter-like Syndromes. Hum Mol Genet 6:17–26

    Article  PubMed  Google Scholar 

  90. Greger R (1985) Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron. Physiol Rev 65:760–797

    CAS  PubMed  Google Scholar 

  91. Seyberth H, Soergel M, Koeckerling A (1998) Hypokalaemic tubular disorders: the hyperprostaglandin E syndrome and Gitelman-Bartter syndrome. In: Davison A, Cameron J, Grünfeld J, Kerr D, Ritz E, Winearls C (eds) Oxford textbook of clinical nephrology. Oxford University Press, Oxford, pp 1085–1093

  92. Dai LJ, Bapty B, Ritchie G, Quamme GA (1998) PGE2 stimulates Mg2+ uptake in mouse distal convoluted tubule cells. Am J Physiol 275:F833–F839

    PubMed  Google Scholar 

  93. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP (1997) Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 17:171–178

    CAS  PubMed  Google Scholar 

  94. Konrad M, Vollmer M, Lemmink HH, Van Den Heuvel LP, Jeck N, Vargas-Poussou R, Lakings A, Ruf R, Deschenes G, Antignac C, Guay-Woodford L, Knoers NV, Seyberth HW, Feldmann D, Hildebrandt F (2000) Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 11:1449–1459

    Google Scholar 

  95. Jeck N, Konrad M, Peters M, Weber S, Bonzel KE, Seyberth HW (2000) Mutations in the chloride channel gene, CLCNKB, leading to a mixed Bartter-Gitelman phenotype. Pediatr Res 48:754–758

    CAS  PubMed  Google Scholar 

  96. Peters M, Jeck N, Reinalter S, Leonhardt A, Tönshoff B, Klaus GG, Konrad M, Seyberth HW (2002) Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies. Am J Med 112:183–190

    Article  PubMed  Google Scholar 

  97. Zelikovic I, Szargel R, Hawash A, Labay V, Hatib I, Cohen N, Nakhoul F (2003) A novel mutation in the chloride channel gene, CLCNKB, as a cause of Gitelman and Bartter syndromes. Kidney Int 63:24–32

    Article  PubMed  Google Scholar 

  98. Bartter F, Pronove P, Gill J Jr, MacCardle R (1962) Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med 33:811–828

    CAS  Google Scholar 

  99. Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314

    Article  PubMed  Google Scholar 

  100. Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature 414:558–561

    Article  CAS  PubMed  Google Scholar 

  101. Waldegger S, Jeck N, Barth P, Peters M, Vitzthum H, Wolf K, Kurtz A, Konrad M, Seyberth HW (2002) Barttin increases surface expression and changes current properties of ClC-K channels. Pflugers Arch 444:411–418

    Article  CAS  PubMed  Google Scholar 

  102. Landau D, Shalev H, Ohaly M, Carmi R (1995) Infantile variant of Bartter syndrome and sensorineural deafness: a new autosomal recessive disorder. Am J Med Genet 59:454–459

    PubMed  Google Scholar 

  103. Jeck N, Reinalter SC, Henne T, Marg W, Mallmann R, Pasel K, Vollmer M, Klaus G, Leonhardt A, Seyberth HW, Konrad M (2001) Hypokalemic salt-losing tubulopathy with chronic renal failure and sensorineural deafness. Pediatrics 108:E5

    CAS  PubMed  Google Scholar 

  104. Gitelman HJ, Graham JB, Welt LG (1966) A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 79:221–235

    CAS  PubMed  Google Scholar 

  105. Bettinelli A, Bianchetti MG, Girardin E, Caringella A, Cecconi M, Appiani AC, Pavanello L, Gastaldi R, Isimbaldi C, Lama G, et al (1992) Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: Bartter and Gitelman syndromes. J Pediatr 120:38–43

    CAS  PubMed  Google Scholar 

  106. Cruz DN, Shaer AJ, Bia MJ, Lifton RP, Simon DB (2001) Gitelman’s syndrome revisited: an evaluation of symptoms and health-related quality of life. Kidney Int 59:710–717

    CAS  PubMed  Google Scholar 

  107. Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, Cushner HM, Koolen M, Gainza FJ, Gitelman HJ, Lifton RP (1996) Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 12:24–30

    CAS  PubMed  Google Scholar 

  108. Yang T, Huang YG, Singh I, Schnermann J, Briggs JP (1996) Localization of bumetanide- and thiazide-sensitive Na-K-Cl cotransporters along the rat nephron. Am J Physiol 271:F931–F939

    CAS  PubMed  Google Scholar 

  109. Reilly RF, Ellison DH (2000) Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80:277–313

    CAS  PubMed  Google Scholar 

  110. Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886

    Google Scholar 

  111. Loffing J, Loffing-Cueni D, Hegyi I, Kaplan MR, Hebert SC, Le Hir M, Kaissling B (1996) Thiazide treatment of rats provokes apoptosis in distal tubule cells. Kidney Int 50:1180–1190

    CAS  PubMed  Google Scholar 

  112. Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM, Flagella M, Duffy JJ, Doetschman T, Miller ML, Shull GE (1998) Phenotype resembling Gitelman’s syndrome in mice lacking the apical Na+-Cl- cotransporter of the distal convoluted tubule. J Biol Chem 273:29150–29155

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannsjörg W. Seyberth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlingmann, K.P., Konrad, M. & Seyberth, H.W. Genetics of hereditary disorders of magnesium homeostasis. Pediatr Nephrol 19, 13–25 (2004). https://doi.org/10.1007/s00467-003-1293-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-003-1293-z

Keywords

Navigation