1. PROTOCOL

1.1 Protocol Short Title/Acronym
STRIVE - A multicentre randomised controlled TRIal of IntraVErous immunoglobulin (IVIg) versus standard therapy for the treatment of transverse myelitis in adults and children

1.2 Trial Identifiers

<table>
<thead>
<tr>
<th>EudraCT Number:</th>
<th>2014-002335-34</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISRCTN Number:</td>
<td>ISRCTN12127581</td>
</tr>
<tr>
<td>REC Number:</td>
<td>14/SC/1329</td>
</tr>
</tbody>
</table>

1.3 Sponsor

<table>
<thead>
<tr>
<th>Name:</th>
<th>Guy's and St Thomas’ NHS foundation Trust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Person</td>
<td>Jackie Pullen</td>
</tr>
<tr>
<td>Address:</td>
<td>Guy’s & St Thomas’ NHS Foundation Trust</td>
</tr>
<tr>
<td></td>
<td>16th Floor, Guy’s Tower, Guy’s Hospital,</td>
</tr>
<tr>
<td></td>
<td>Great Maze Pond, London SE1 9RT</td>
</tr>
<tr>
<td>Telephone:</td>
<td>020 7188 5732</td>
</tr>
<tr>
<td>Fax:</td>
<td>020 7188 8330</td>
</tr>
<tr>
<td>Email:</td>
<td>Jackie.Pullen@kcl.ac.uk</td>
</tr>
</tbody>
</table>

1.4 Chief Investigator

<table>
<thead>
<tr>
<th>Name:</th>
<th>Dr Ming Lim (Consultant Paediatric Neurologist)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td>Children’s Neurosciences, 1st Floor, D Block</td>
</tr>
<tr>
<td></td>
<td>South Wing, St Thomas’ Hospital, SE1 7EH</td>
</tr>
<tr>
<td>Telephone:</td>
<td>020 7188 4002</td>
</tr>
<tr>
<td>Fax:</td>
<td>020 7188 4269</td>
</tr>
<tr>
<td>Email:</td>
<td>Ming.Lim@gstt.nhs.uk</td>
</tr>
</tbody>
</table>
1.5 Name and address of Co-Investigator(s), Statistician, Laboratories etc

<table>
<thead>
<tr>
<th>Name:</th>
<th>Dr Michael Absoud (Consultant and Research Fellow, Paediatric Neurodisability)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position/ Role:</td>
<td>Co-Investigator, project co-ordinator and manager (Paediatrics)</td>
</tr>
<tr>
<td>Address:</td>
<td>Children’s Neurosciences, 1st Floor, D Block South Wing, St Thomas’ Hospital, SE1 7EH</td>
</tr>
<tr>
<td>Telephone:</td>
<td>020 7188 3995</td>
</tr>
<tr>
<td>Fax:</td>
<td>020 7188 4665</td>
</tr>
<tr>
<td>Email:</td>
<td>michael.absoud@gstt.nhs.uk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Dr Anu Jacob (Consultant Neurologist)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position/ Role:</td>
<td>Co-investigator, project co-ordinator and manager (Adults)</td>
</tr>
<tr>
<td>Address:</td>
<td>The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, Liverpool, L9 7LJ</td>
</tr>
<tr>
<td>Telephone:</td>
<td>0151 529 5420</td>
</tr>
<tr>
<td>Fax:</td>
<td>0151 529 5513</td>
</tr>
<tr>
<td>Email:</td>
<td>anu.jacob@thewaltoncentre.nhs.uk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Prof Gavin Giovannoni (Professor of Neurology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position/ Role:</td>
<td>Co-investigator, methodological input and clinical trial expertise</td>
</tr>
<tr>
<td>Address:</td>
<td>Centre for Neurosciences, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT</td>
</tr>
<tr>
<td>Email:</td>
<td>g.giovannoni@qmul.ac.uk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Dr Jackie Palace (Consultant Neurologist)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position/ Role:</td>
<td>Co-investigator, methodological input and clinical trial expertise</td>
</tr>
<tr>
<td>Address:</td>
<td>Dept of Neurology, Neurosciences Offices, Level 3, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU</td>
</tr>
<tr>
<td>Email:</td>
<td>jacqueline.palace@ndcn.ox.ac.uk</td>
</tr>
<tr>
<td>Name:</td>
<td>Prof Neil Robertson (Prof of Neurology)</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Position/ Role:</td>
<td>Co-Investigator and Coordinator: Central Biobank</td>
</tr>
<tr>
<td>Address:</td>
<td>Institute of Psychological Medicine and Clinical Neurosciences, 2nd Floor, B-C Link Corridor, Cardiff University School of Medicine, UHW Main Building, Heath Park, Cardiff CF14 4XN</td>
</tr>
<tr>
<td>Telephone:</td>
<td>029 20 745 403, ext. 5403</td>
</tr>
<tr>
<td>Email:</td>
<td>RobertsonNP@cardiff.ac.uk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Dr Mike Pike (Consultant Paediatric Neurologist)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position/ Role:</td>
<td>Co-Investigator and methodological input</td>
</tr>
<tr>
<td>Address:</td>
<td>John Radcliffe Hospital, Oxford</td>
</tr>
<tr>
<td>Email:</td>
<td>Mike.Pike@ouh.nhs.uk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Prof Paul McCrone (Professor of Health Economics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position/ Role:</td>
<td>Co-Investigator, Health economic analysis</td>
</tr>
<tr>
<td>Address:</td>
<td>Centre for the Economics of Mental and Physical Health, P024 Institute of Psychiatry, King's College London, Denmark Hill, London, SE5 8AF</td>
</tr>
<tr>
<td>Email:</td>
<td>paul.mccrone@kcl.ac.uk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Dr Peter Brex (Consultant Neurologist)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position/ Role:</td>
<td>Co-Investigator, methodological input and clinical expertise</td>
</tr>
<tr>
<td>Address:</td>
<td>Department of Neurology, 9th floor, Ruskin Wing, Denmark Hill, King's College Hospital, London, SE5 9RS</td>
</tr>
<tr>
<td>Email:</td>
<td>p.brex@nhs.net</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Dr Olga Cirrarelli (Reader in Neurology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position/ Role:</td>
<td>Co-Investigator, methodological input and clinical expertise</td>
</tr>
<tr>
<td>Address:</td>
<td>UCL Institute of Neurology, Queen Square, London WC1N 3BG</td>
</tr>
<tr>
<td>Telephone:</td>
<td>020 3448 3419</td>
</tr>
<tr>
<td>Fax:</td>
<td>020 7813 6505</td>
</tr>
<tr>
<td>Email:</td>
<td>olga.cirrarelli@uclh.nhs.uk</td>
</tr>
<tr>
<td>Name</td>
<td>Position/ Role</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Prof Andrew Pickles (Prof of Biostatistics)</td>
<td>Statistician & methodological input</td>
</tr>
<tr>
<td>Dr Jennifer Hellier (Statistician)</td>
<td>Primary Statistician & methodological input</td>
</tr>
<tr>
<td>Ms Caroline Murphy</td>
<td>Co-Investigator/ Operational Director, KCTU</td>
</tr>
<tr>
<td>Ms Joanna Kelly</td>
<td>Co-investigator/ Data Management Strategic Lead</td>
</tr>
<tr>
<td>Mrs Rosemary Howe</td>
<td>Clinical Trial Manager</td>
</tr>
</tbody>
</table>
1.6 Committee Members

<table>
<thead>
<tr>
<th>Committee:</th>
<th>Trial Steering Committee (TSC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honorary Chair:</td>
<td>Prof Richard Hughes</td>
</tr>
<tr>
<td>Members:</td>
<td>Ming Lim (CI)</td>
</tr>
<tr>
<td></td>
<td>Anu Jacobs (PI)</td>
</tr>
<tr>
<td>Independent Members:</td>
<td>Claire Lundy (Paediatric Neurologist)</td>
</tr>
<tr>
<td></td>
<td>Barbara Babcock (TM Society)</td>
</tr>
<tr>
<td></td>
<td>Lew Gray (TM Society)</td>
</tr>
<tr>
<td></td>
<td>Martin Kappler (Statistician)</td>
</tr>
<tr>
<td></td>
<td>Mark Sanders (Clinician)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Committee:</th>
<th>Data Management and Ethics Committee (DMEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honorary Chair:</td>
<td>Prof John Zajicek</td>
</tr>
<tr>
<td>Members:</td>
<td>Sarah Cotterill (Statistician)</td>
</tr>
<tr>
<td></td>
<td>Alasdair Parker (Clinician)</td>
</tr>
</tbody>
</table>

1.7 Study Sites

<table>
<thead>
<tr>
<th>City</th>
<th>Site Number</th>
<th>Trusts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pediatric Adult</td>
</tr>
<tr>
<td>London - South</td>
<td>01</td>
<td>02 Guy’s & St Thomas’ NHS Foundation Trust</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>04 - Great Ormond Street Hospital NHS Foundation Trust</td>
</tr>
<tr>
<td></td>
<td>05</td>
<td>06 - Alder Hey Children’s NHS Foundation Trust</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>08 - Walton Centre NHS Foundation Trust</td>
</tr>
<tr>
<td>Oxford</td>
<td>07</td>
<td>08 Oxford University Hospitals NHS Trust</td>
</tr>
<tr>
<td>Birmingham</td>
<td>09</td>
<td>10 - Birmingham Children’s Hospital NHS Foundation Trust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- University Hospitals Birmingham NHS Trust</td>
</tr>
</tbody>
</table>
2. Study Synopsis

TITLE OF CLINICAL TRIAL: A multicentre randomised controlled trial of Intravenous immunoglobulin (IVIg) versus standard therapy for the treatment of transverse myelitis in adults and children

Protocol Short Title/ Acronym: STRIVE

Study Phase If Not Mentioned In Title: Phase 3

Sponsor Name: Guys and St Thomas’ NHS Foundation Trust

Chief Investigator: Dr Ming Lim

Medical Condition Or Disease Under Investigation: Transverse myelitis (TM) (acute, first onset cases), including first presentation of neuromyelitis optica (NMO)

Purpose Of Clinical Trial: To conduct a multi-centre, single blind, parallel group randomised-controlled trial to generate evidence to inform clinical and health economic decisions of IVIg use in adults and children with TM.

Primary Objective: To evaluate if additional and early treatment with intravenous immunoglobulin (IVIg) is of extra benefit in TM when compared to the current standard therapy of intravenous steroids.

Secondary Objective(s):

1. The clinical and para-clinical data collected from patients will provide a robust resource and platform for other clinical studies, including identification of early predictors of poor outcome.
2. Bio banked samples from patients recruited to the study will be collected and used for carefully designed biological studies by a consortium of established basic science researchers in the field.

Trial Design: A multicentre, single blind, parallel group randomised controlled trial (RCT)
Endpoints:

Primary endpoint: an improvement of 2 points or greater on the ASIA Impairment scale (classified A-E) at 6 months after randomisation, compared to baseline value measured just prior to randomisation

Secondary endpoints:
Secondary efficacy measures will be assessed at the follow up visit 6 months post randomisation, but are also assessed at 3 and 12 months post randomisation for validation purposes.

1. Change in ASIA motor scale (0-100) and ASIA sensory scale (0-112)
2. Change in Kurtzke’s expanded disability status scale (EDSS) measured with Neurostatus scoring
3. EQ-5D-Y for patients aged 8-12 years at presentation
4. EQ-5D-5L for patients aged ≥ 13 at presentation
5. Individuals ≥ 13 years: International SCI Quality of Life Basic Data Set
6. Client Service Receipt Inventory (CSRI)

Tertiary endpoints:
Tertiary efficacy measures will be assessed at the follow up 6 months post randomisation, but are also assessed at 12 months for validation purposes:

1. International SCI Bladder/Bowel Data Set for patients aged ≥13,
2. Paediatric Quality of Life Inventory™ (PedsQL Parent Report for Toddlers) for children 2-4 years at presentation
3. Paediatric Quality of Life Inventory™(PedsQL Parent Report for Young Children) for children aged 5-7 years at presentation
4. Individuals ≥ 13 years of age at presentation: International SCI Pain Basic Data Set

Sample Size:

| 170 |

Summary Of Eligibility Criteria:

Patients will be eligible for inclusion in the trial if on presentation they:

- Are aged 1 year or over
- Have been diagnosed with:
 - *EITHER* acute first onset transverse myelitis (The TM CONSORTIUM WORKING GROUP 2002 criteria for probable TM will be used. Hence, following clinical and radiological exclusion of a compressive myelopathy, patient will be diagnosed to have TM if they meet all the following criteria:
 - Sensory, motor, or autonomic dysfunction attributable to spinal cord disease
 - Bilateral signs and/or symptoms (not necessarily symmetric)
 - Sensory level (except in young children <5 years where this is difficult to evaluate)
 - Lack of MRI brain criteria consistent with MS (McDonald 2010 space criteria)
 - Progression to nadir between 4 h and 21 days)
- OR Have been diagnosed with first presentation of neuromyelitis optica.
 (Patients with definite modified NMO will meet the...
following criteria (Wingerchuck et al, 2006). Absolute criteria, both:
1. Optic neuritis
2. Acute myelitis

Plus two out of three supportive criteria:
 i. Brain MRI not meeting criteria for MS at disease onset
 ii. Spinal cord MRI with contiguous T2-weighted signal abnormality extending over three or more vertebral segments, indicating a relatively large lesion in the spinal cord
 iii. Aquaporin 4 seropositive status

- Have an ASIA Impairment score of A, B or C
- Have commenced steroid treatment but will be randomised no later than day 5 of steroids, and if definitely known, randomisation will not exceed 21 days from the onset of symptoms
- Give assent (<16 years)/consent to participate in the trial

Summary Of Exclusion Criteria:
Patients would be excluded if they show evidence of:
- Contraindication to IVIg as stated in the product SmPC, or receiving IVIg for other reasons
- Previously known systemic autoimmune disease (eg systemic lupus erythematosus) or any evidence of systemic inflammation during current presentation.
- Direct infectious aetiology (eg varicella zoster)
- Previous episode of CNS inflammatory demyelination
- Acute disseminated encephalomyelitis (ADEM)
- Other causes of myelopathy not thought to be due to myelitis (eg nutritional, ischaemic, tumour etc.)
- Other disease which would interfere with assessment of outcome measures
- Known pregnancy
- Circumstances which would prevent follow-up for 12 months

IMP, Dosage And Route Of Administration:
Patients randomised to the control arm of this study will be prescribed intravenous methylprednisolone as per standard medical care. Paediatric patients would receive 30 mg/kg or 500 mg/m² capped to a maximum dose of 1 g/day for 5 days. Adult patients will be given 1 gram/day for 5 days. Variations in practice will be recorded.

Patients in the intervention arm will receive the above standard therapy and in addition, IVIg: 2 g/kg will be administered in divided doses over 5 days (or given over 2 days in children ≤ 41.2kg).

Maximum Duration Of Treatment Of A Subject:
Interventional treatment (IVIg) 2-5 days, follow-up 12 months

Version And Date Of Final Protocol:
draft v2.3 09/01/2015

Version And Date Of Protocol Amendments:
V2.0 30/09/2014
V2.1 15/10/2014
3. Glossary of terms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADEM</td>
<td>Acute disseminated encephalomyelitis</td>
</tr>
<tr>
<td>AE</td>
<td>Adverse Event</td>
</tr>
<tr>
<td>AQP 4</td>
<td>Aquaporin 4</td>
</tr>
<tr>
<td>AR</td>
<td>Adverse Reaction</td>
</tr>
<tr>
<td>ASIA</td>
<td>American Spinal Injury Association</td>
</tr>
<tr>
<td>CI</td>
<td>Chief Investigator</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CRF</td>
<td>Case report form</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>CSRI</td>
<td>Client Services Receipt Inventory</td>
</tr>
<tr>
<td>CTU</td>
<td>Clinical Trials Unit</td>
</tr>
<tr>
<td>ED 5Q</td>
<td>Euro Quality of Life Health Questionnaire</td>
</tr>
<tr>
<td>EDSS</td>
<td>Expanded Disability Status Scale</td>
</tr>
<tr>
<td>EMEA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>ICC</td>
<td>Intra-cluster correlation coefficient</td>
</tr>
<tr>
<td>IME</td>
<td>Important Medical Event</td>
</tr>
<tr>
<td>IV Ig</td>
<td>Intravenous immunoglobulin</td>
</tr>
<tr>
<td>IV-MP</td>
<td>Intravenous methylprednisolone</td>
</tr>
<tr>
<td>LMM</td>
<td>Linear mixed modelling</td>
</tr>
<tr>
<td>MAR</td>
<td>Missing at randomisation</td>
</tr>
<tr>
<td>MHRA</td>
<td>Medicines and Healthcare Products Regulatory Agency</td>
</tr>
<tr>
<td>NMO</td>
<td>Neuromyelitis optica</td>
</tr>
<tr>
<td>PedsQL</td>
<td>Paediatric Quality of Life Questionnaire</td>
</tr>
<tr>
<td>PI</td>
<td>Primary Investigator</td>
</tr>
<tr>
<td>PIS</td>
<td>Patient Information Sheets</td>
</tr>
<tr>
<td>PLEX</td>
<td>Plasma exchange</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised controlled trial</td>
</tr>
<tr>
<td>SAE</td>
<td>Serious Adverse Event</td>
</tr>
<tr>
<td>SCI QoL</td>
<td>Spinal Cord Injury Quality of Life Questionnaire</td>
</tr>
<tr>
<td>SmPC</td>
<td>Summary of product characteristics</td>
</tr>
<tr>
<td>SUR</td>
<td>Serious Unexpected Reaction</td>
</tr>
<tr>
<td>SUSAR</td>
<td>Unexpected Serious Adverse Reaction</td>
</tr>
<tr>
<td>TM</td>
<td>Transverse myelitis</td>
</tr>
<tr>
<td>UAR</td>
<td>Unexpected Adverse Reaction</td>
</tr>
</tbody>
</table>
4. Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PROTOCOL</td>
<td>1</td>
</tr>
<tr>
<td>1.1 PROTOCOL SHORT TITLE/ACRONYM</td>
<td>1</td>
</tr>
<tr>
<td>1.2 TRIAL IDENTIFIERS</td>
<td>1</td>
</tr>
<tr>
<td>1.3 SPONSOR</td>
<td>1</td>
</tr>
<tr>
<td>1.4 CHIEF INVESTIGATOR</td>
<td>1</td>
</tr>
<tr>
<td>1.5 NAME AND ADDRESS OF CO-INVESTIGATOR(S), STATISTICIAN, LABORATORIES</td>
<td>2</td>
</tr>
<tr>
<td>1.6 COMMITTEE MEMBERS</td>
<td>5</td>
</tr>
<tr>
<td>1.7 STUDY SITES</td>
<td>5</td>
</tr>
<tr>
<td>2. STUDY SYNOPSIS</td>
<td>6</td>
</tr>
<tr>
<td>3. GLOSSARY OF TERMS</td>
<td>9</td>
</tr>
<tr>
<td>4. CONTENTS</td>
<td>10</td>
</tr>
<tr>
<td>5. BACKGROUND</td>
<td>12</td>
</tr>
<tr>
<td>5.1 BACKGROUND</td>
<td>12</td>
</tr>
<tr>
<td>5.2 RISKS AND BENEFITS</td>
<td>13</td>
</tr>
<tr>
<td>6. TRIAL OBJECTIVES AND DESIGN</td>
<td>14</td>
</tr>
<tr>
<td>6.1 TRIAL OBJECTIVES</td>
<td>14</td>
</tr>
<tr>
<td>6.2 PRIMARY ENDPOINT MEASURE</td>
<td>14</td>
</tr>
<tr>
<td>6.3 SECONDARY ENDPOINT MEASURES</td>
<td>14</td>
</tr>
<tr>
<td>6.4 TERTIARY ENDPOINT MEASURES</td>
<td>14</td>
</tr>
<tr>
<td>6.5 TRIAL DESIGN</td>
<td>14</td>
</tr>
<tr>
<td>6.6 PARTICIPANT FLOWCHART</td>
<td>16</td>
</tr>
<tr>
<td>6.7 DEFINITION OF END OF STUDY</td>
<td>17</td>
</tr>
<tr>
<td>7. TRIAL MEDICATION</td>
<td>17</td>
</tr>
<tr>
<td>7.1 INVESTIGATIONAL MEDICINAL PRODUCT</td>
<td>17</td>
</tr>
<tr>
<td>7.2 DOSING REGIMEN</td>
<td>17</td>
</tr>
<tr>
<td>7.3 IMP RISKS</td>
<td>18</td>
</tr>
<tr>
<td>7.4 DRUG ACCOUNTABILITY</td>
<td>18</td>
</tr>
<tr>
<td>7.5 SUBJECT COMPLIANCE</td>
<td>18</td>
</tr>
<tr>
<td>7.6 CONCOMITANT MEDICATION</td>
<td>18</td>
</tr>
<tr>
<td>8. SELECTION AND WITHDRAWAL OF SUBJECTS</td>
<td>19</td>
</tr>
<tr>
<td>8.1 INCLUSION CRITERIA</td>
<td>19</td>
</tr>
<tr>
<td>8.2 EXCLUSION CRITERIA</td>
<td>19</td>
</tr>
<tr>
<td>8.3 SELECTION OF PARTICIPANTS</td>
<td>20</td>
</tr>
<tr>
<td>8.4 PATIENT REGISTRATION</td>
<td>20</td>
</tr>
<tr>
<td>8.5 RANDOMISATION PROCEDURE</td>
<td>20</td>
</tr>
<tr>
<td>8.6 WITHDRAWAL OF SUBJECTS</td>
<td>21</td>
</tr>
<tr>
<td>8.7 EXPECTED DURATION OF TRIAL.</td>
<td>21</td>
</tr>
<tr>
<td>9. TRIAL PROCEDURES</td>
<td>22</td>
</tr>
<tr>
<td>9.1 STUDY FLOW CHART</td>
<td>22</td>
</tr>
<tr>
<td>9.2 BY VISIT</td>
<td>25</td>
</tr>
<tr>
<td>9.3 SCALES AND TRAINING</td>
<td>25</td>
</tr>
<tr>
<td>9.4 LABORATORY TESTS</td>
<td>26</td>
</tr>
<tr>
<td>9.5 MRI SEQUENCES</td>
<td>26</td>
</tr>
</tbody>
</table>
10. ASSESSMENT OF EFFICACY .. 26
 10.1 EFFICACY PARAMETERS ... 26
 10.2 PROCEDURES FOR ASSESSING EFFICACY PARAMETERS 27
11. ASSESSMENT OF SAFETY .. 27
 11.1 PROCEDURES FOR RECORDING AND REPORTING ADVERSE EVENTS 27
 11.2 ADVERSE EVENTS THAT DO NOT REQUIRE REPORTING 29
 11.3 TREATMENT STOPPING RULES ... 29
12. STATISTICAL CONSIDERATIONS .. 29
 12.1 SAMPLE SIZE CONSIDERATIONS AND CALCULATION 29
 12.2 RANDOMISATION ... 30
 12.3 STATISTICAL ANALYSIS ... 30
 12.4 FUTILITY ANALYSIS ... 31
13. TRIAL STEERING COMMITTEE .. 32
14. DATA MONITORING COMMITTEE .. 32
15. STUDY STEERING COMMITTEE .. 32
16. DIRECT ACCESS TO SOURCE DATA AND DOCUMENTS 32
17. ETHICS & REGULATORY APPROVALS .. 32
 17.1 DECLARATION OF HELSINKI ... 32
 17.2 ICH GUIDELINES FOR GOOD CLINICAL PRACTICE 33
 17.3 APPROVALS ... 33
 17.4 REPORTING .. 33
 17.5 PARTICIPANT CONFIDENTIALITY ... 33
18. QUALITY ASSURANCE ... 33
 18.1 GENERAL MONITORING ... 33
 18.2 AUDIT & INSPECTION ... 34
 18.3 SERIOUS BREACHES ... 34
19. DATA HANDLING .. 34
20. DATA MANAGEMENT .. 35
21. PUBLICATION POLICY .. 36
22. INSURANCE / INDEMNITY .. 37
23. FINANCIAL ASPECTS ... 37
24. SIGNATURES ... 37
25. REFERENCES .. 38
26. APPENDICES .. 40
 Appendix: 1 IVlg Dosing Table .. 40
 Appendix 2: Clinico-radiological Diagnostic Algorithm 42
 Appendix 3: Trial Procedures by Visit 43
 Appendix 4: Common Side Effects for Intratect™ 49
 APPENDIX 6: Professional Advert .. 53
5. Background

5.1 Background

Transverse myelitis (TM) is an immune-mediated disorder of the spinal cord affecting children and adults, characterised by a rapid onset of paraplegia or tetraplegia, loss of sensation and sphincter disturbance. Attacks usually develop over 24 hours, and in some cases can progress rapidly to a potentially devastating and sometimes life threatening condition. The severity of symptoms depends on the spinal cord level affected, where patients with high cervical lesions often require intensive care support to maintain respiratory function. Patients can recover fully from TM but a large number are left with significant disability. Recovery occurs within weeks of onset of symptoms and is most rapid during the first 3–6 months, although further improvement may be seen up to 2-4 years (reviewed in Borchers and Gershwin, 2012). Neuromyelitis-optica (NMO) is an uncommon relapsing condition where transverse myelitis can be the first presenting symptom. Neurodisability accrues with progressive relapses. NMO is the first inflammatory demyelinating condition to have a specific and sensitive biomarker (aquaporin-4 antibodies) measured in serum.

The precise numbers that make full recoveries from TM remains unclear. Studies prior to the TM Consortium Working Group criteria, may have included patients with a wider range of myelopathies such as spinal cord infarction (Altrocchi 1963), or may reflect the greater severity of cases seen at a tertiary referral centre such as the John’s Hopkins TM Centre (Kaplin et al, 2005), where up to 20% are reported to make a good recovery. Currently, the only report to reliably inform on the outcome of adult onset TM is a retrospective French multicentre study applying TM Consortium Working Group criteria, where 36% of patients with TM had a poor prognosis as defined by death or non-ambulating (de Seze et al, 2005). In children, approximately half make a good recovery (reviewed in Absoud et al, 2014). Hence, the majority of adults and children presenting with TM either have a fair outcome, (functional and ambulatory, but with varying degrees of spasticity, urgency and/or constipation, and some sensory signs) or worse (remaining completely or largely unable to walk, having at best partial sphincter control, and being left with severe sensory deficits [as reviewed in Borchers and Gershwin, 2012]). These results represent a huge burden on patients and, of course, their carers. With conservative estimates of incidence of TM in UK being 350/year (based on incidence of 3-7/million; Young et al, 2009 and Absoud et al, 2012), this clearly imposes a significant cumulative demand on the health resources in the UK. Moreover, many patients are affected at peak ages that reflect their prime working life, thus resulting in loss of productivity and imposing a further financial impact on the country.

Importantly, strategies to reduce the disability in patients are urgently required, yet there are no robust controlled trials, in children or adults, to inform on its optimal treatment. The current clinical consensus is derived from data that are mainly extrapolated from class IV evidence from case series or clinical trials for the treatment of exacerbations of adult multiple sclerosis (TM Consortium Working Group, 2002, Greenberg et al, 2007, Frohman and Wingerchuk, 2010, Scott et al, 2011). In adults, this suggests that treatment of relapses with intravenous methylprednisolone shortens relapse duration and speeds recovery. It is from this that the current standard therapy has been based whereby, in both children and adults, treatment with high
dose intravenous steroids is prescribed for 3-7 days to reduce inflammation, hasten recovery and restore neurological function.

Although IV steroids are now the most common treatment for TM, there are other available interventions which have proved effective in aiding recovery, but which are not routinely applied. In a retrospective analysis of 122 adults with TM, acute therapies given at one centre between 2001 and 2005 were evaluated, with the finding that some patients benefited from the addition of plasma exchange (PLEX) to intravenous methylprednisolone (Greenberg et al, 2007). The efficacy of PLEX was also demonstrated in a small randomised controlled trial in adults with acute central nervous system (CNS) demyelination (including 4 patients with TM) where steroids had failed to induce a remission of symptoms (Weinshenker et al, 1999). However, administering PLEX is technically difficult and costly, making it challenging to deliver within the NHS, resulting in it not being universally available.

Treatment with intravenous Immunoglobulin (IVIg) is also used increasingly in the management of a range of neurological conditions, and its efficacy has been established clearly in randomised controlled trials for a handful of these conditions (Hughes et al, 2009). In adults and children with CNS demyelination who do not respond to steroids, IVIg is often used, although supporting data is limited to small case series and single case reports (Banwell et al, 2007, Elsone et al, 2014). The most relevant actions of IVIg in the therapy of neurological diseases include: (a) inhibition of complement binding, (b) neutralization of pathogenic cytokines, (c) down-regulation of antibody production, and (d) modulation of Fc-receptor mediated phagocytosis. Additional actions include modulation of T-cell function and enhancement of remyelination (Dalakas 1988). The majority of these factors are common across inflammatory disorders of the CNS including transverse myelopathy (Awad and Stuve 2011), providing a strong rationale for its use in the management of TM. In addition, IVIg is cost effective when compared to PLEX and more readily accessible.

Here, we aim to conduct a multi-centre, single blind, parallel group randomised-controlled trial to generate evidence to inform clinical and health economic decisions of IVIg use in adults and children with TM.

5.2 Risks and Benefits

Risks: This study will include adults and children. As treatments in both arms of the trial are already used in current clinical practice, those participating will face almost no additional risk beyond what they would experience in treatment outside a trial.

Benefits: Interventions that can reduce the disability in patients are urgently required. The current management recommendation is largely based on expert opinion (Scott et al, 2011), as there remain no robust controlled trials for the treatment of TM, in children or adults, to inform on the optimal treatment of TM. This trial seeks to evaluate if IVIg would be beneficial in the management of TM.
6. Trial Objectives and Design

6.1 Trial Objectives
The primary objective of this single blind, parallel group randomised controlled trial is to evaluate if additional, and early, treatment with IVIg is of extra benefit in TM when compared to the current standard therapy of intravenous steroids.

In addition, our secondary objectives are to provide benefits whereby:

1. The clinical and para-clinical data collected from patients will provide a robust resource and platform for other clinical studies, including identification of early predictors of poor outcome.
2. Bio banked samples from patients recruited to the study will be collected and used for carefully designed biological studies by a consortium of established basic science researchers in the field.

6.2 Primary endpoint measure
An improvement of 2 points or greater on the ASIA Impairment scale (classified A-E) at 6 months after randomisation, compared to the value measured at baseline just prior to randomisation.

6.3 Secondary endpoint measures
1. Change in ASIA motor scale (0-100) and ASIA sensory scale (0-112) at 3, 6, and 12 months post randomisation
2. Change in Kurtzke expanded disability status scale (EDSS) measured by Neurostatus scoring at 3, 6, and 12 months
3. EQ-5D-Y for patients aged 8-12 years (at presentation) at 3, 6 and 12 months
4. EQ-5D-5L for patients aged ≥ 13 years (at presentation) at 3, 6 and 12 months
5. Individuals ≥ 13 years at presentation: International SCI Quality of Life Basic Data Set at 3, 6 and 12 months
6. Client Service Receipt Inventory (CSRI) at 3, 6 and 12 months

6.4 Tertiary endpoint measures
1. International SCI Bladder/Bowel Data Set for patients aged ≥13 at presentation to be completed at 6 and 12 months post randomisation
2. Children 2-4 years of age at presentation: Paediatric Quality of Life Inventory™ (PedsQL Parent Report for Toddlers) at 6 and 12 months
3. Children 5-7 years of age at presentation: Paediatric Quality of Life Inventory™ (PedsQL Parent Report for Young Children) at 6 and 12 months
4. Individuals ≥ 13 years of age at presentation: International SCI Pain Basic Data Set at 6 and 12 months

6.5 Trial Design
This is a UK multi-centre, single blind, parallel group randomised controlled trial.
Patients randomised to the control arm of this study will be prescribed intravenous methylprednisolone in line with local clinical practice (variations of practice will be recorded):

- Paediatric patients will receive 30 mg/kg or 500 mg/m² capped to a maximum dose of 1 g/day for 5 days.
- Adult patients will be given 1 gram/day for 5 days.

Patients in the intervention arm will receive the above standard therapy plus additional IVIg:

- In adults, 2 g/kg will be administered in divided doses over 5 days
- In children who are > 41.2kg, 2g/kg will be administered as above in adults; in children who are ≤ 41.2kg, 2g/kg will be administered in divided doses over 2 days

Patients may be recruited and randomised up to 5 days from the date of first commencing steroid therapy or up to 21 days from the onset of symptoms (if definitely known).

In patients who do not respond to standard IV MP treatment or adjunctive treatment with IVIg, rescue therapy, such as PLEX, will be instituted.

If PLEX is administered, such a therapy will attenuate treatment effect of IVIg, and may indeed have a treatment effect of its own, guidance parameters will be set out to define and standardise PLEX regime.

Briefly:

- Treatment failure should be considered if no improvement is seen or deterioration occurs, after 14 days from presentation or 5 days after completion of either treatment arm.
- A complete PLEX treatment should comprise of at least 5 cycles, of which in each cycle at least 75% of plasma volume is exchanged, with a 24-48 hour interval between each cycle.
- An extra course of intravenous methylprednisolone may be given by physicians, often during the lag phase, from decision to proceed with rescue therapy to its initiation (usually 5-7 days).
6.6 Participant Flowchart

Admission to tertiary centre via A&E/GP rapid referral/feeder hospital with suspected TM+/−NMO

Screening by clinical trial staff using diagnostic algorithm and investigation protocol - PIS given to eligible patients or carers

Eligible patients consented/assented

Baseline CRFs completed/neurological examination/ASIA score taken/ MRI cervical cord (TM) and AQP4 antibody testing (NMO)
Sample taken for biobanking

Randomisation to treatment arm 1:1

Control Arm
Patients receive treatment with IV-MP for a 5 day period neurological exam and ASIA score on discharge

If condition deteriorates rescue therapy initiated: (eg. 5 cycles of PLEX over 10 days)

Intervention Arm
Patients receive treatment with IV-MP plus IVIg for a 2 or 5 day period neurological exam and ASIA score on discharge

Patients who do not meet criteria/ receive different diagnosis will not be on trial and will be placed on appropriate treatment path

Follow Up 1 (3 months post randomisation)
Clinic visit with study physician/research nurse/physiotherapist – CRFs for 3 month follow up completed

Follow Up 2 (6 months post randomisation)
Clinic visit with study physician/research nurse/physiotherapist – CRFs for 6 month follow up completed
Sample taken for biobanking

Follow Up 3 (12 months post randomisation)
Clinic visit with study physician/research nurse/physiotherapist – CRFs for 12 month follow up completed
6.7 Definition of End of Study

The end of the study is defined as the last participant’s final assessment at T4, 12 months after randomisation.

7. Trial Medication

7.1 Investigational Medicinal Product

Investigational medicinal product will be provided as human normal immunoglobulin (Intratect®) 100g/l solution for infusion in single 5g (50ml) or 10g (100ml) glass vial. Biotest Pharma GmbH, marketing authorisation holder of Intratect®, will be providing the commercially available Intratect® for use in the trial.

Annex 13 clinical trial labelling exemption is in place and approved by the Medicines and Healthcare Products Regulatory Agency (MHRA). A standard pharmacy dispensing label will be applied to the IMP at the point of dispensing by pharmacy at each investigator site.

The site pharmacies are responsible for the safe and appropriate storage of IMP at the site in accordance with manufacturers’ instructions. IMP should be stored in a secured area with limited access. Storage conditions should be monitored on a regular basis according to local arrangements.

Intratect® should be stored in accordance to manufacturers’ instructions:

- Do not store above 25 °C.
- Do not freeze.
- Keep the vial in the outer carton, in order to protect from light.

Refer to the summary of product characteristics of Intratect® at https://www.medicines.org.uk for further information.

Participating sites will be sent initial stocks of Intratect® and all subsequent ordering will be manually requested via the trial manager. Pharmacists will be responsible for notifying the trial manager when IMP stock is getting low. Biotest will distribute the IMP directly to pharmacies at individual participating sites upon written request via a shipment request form from the trial coordinator. Participating site’ pharmacists will notify the trial manager of the receipt of the IMP in an email containing relevant data (IMP batch number, date of receipt, expiry date).

Please note that intravenous methylprednisolone (as sodium succinate) is classed as non-investigational medicinal product in this trial. The product should be dispensed by hospital pharmacies in accordance to standard clinical practice.

7.2 Dosing Regimen

Intravenous methylprednisolone (as sodium succinate) will be administered in accordance with local clinical guidelines. A single daily dose of 30mg/kg or 500mg/m² (maximum 1 g/day) for 5 days can be used in paediatric patients. Adult patients can receive 1g/day for 5 days. Variations of practice will be recorded.
Patients randomised to the control arm will receive no additional treatment. Patients randomised to the treatment arm will receive the above treatment with IV-MP plus IVIg 2g/kg in divided doses as listed in Appendix 1.

7.3 IMP Risks

IMP risks can be found in the Intratect® SmPC at https://www.medicines.org.uk (current data included in Appendix 4).

7.4 Drug Accountability

Responsible site personnel must maintain accurate accountability records of the IMP, including, but not limited to, the number of vials received, the number of vials dispensed to which subject, batch number, expiry date, and date of transaction.

As subject compliance can be fully established, all used IMP will be disposed of locally immediately following administration in accordance to local requirements. Disposal of unused IMP is only permitted with sponsor’s authorisation.

7.5 Subject Compliance

Treatment with the IMP will be administered under the supervision of the investigator and in a controlled clinical environment; therefore, full patient compliance with treatment is anticipated in this trial.

7.6 Concomitant Medication

Only relevant immuno-modulatory medications are to be recorded throughout the study, and these should be captured on the Concomitant Medications form.

In patients who do not respond to control treatment or adjunctive treatment with IVIg, rescue therapy with PLEX will be instituted, in accordance with local guidelines (please see section 6.5 above). This will also be recorded as a concomitant medication.

Noteworthy interactions with IVIg include:

1) Live attenuated virus vaccines: Immunoglobulin administration may impair the efficacy of live attenuated virus vaccines such as measles, rubella, mumps and varicella for a period of at least 6 weeks and up to 3 months. After administration of this product, an interval of 3 months should elapse before vaccination with live attenuated virus vaccines. In the case of measles, this impairment may persist for up to 1 year. Therefore, patients receiving measles vaccine should have their antibody status checked.

2) Interference with serological testing: After injection of immunoglobulin, the transitory rise of the various passively transferred antibodies in the patient’s blood may result in misleading positive results in serological testing. Passive transmission of antibodies to erythrocyte antigens, e.g. A, B D may interfere with some serological tests including the antiglobulin test (Coomb's test).
Details of all other agents that might interact with Intratect® are listed in the SmPC at https://www.medicines.org.uk.

8. Selection and Withdrawal of Subjects

8.1 Inclusion Criteria

Patients will be eligible for inclusion in the trial if on presentation they:

- Are aged 1 year or over
- Have been diagnosed with:

 EITHER acute first onset transverse myelitis

 (The TM CONSORTIUM WORKING GROUP 2002 criteria for probable TM will be used. Hence, following clinical and radiological exclusion of a compressive myelopathy, patient will be diagnosed to have TM if they meet all the following criteria:

- Sensory, motor, or autonomic dysfunction attributable to spinal cord disease
- Bilateral signs and/or symptoms (not necessarily symmetric)
- Sensory level (except in young children <5 years where this is difficult to evaluate)
- Lack of MRI brain criteria consistent with multiple sclerosis (McDonald 2010 space criteria)
- Progression to nadir between 4 h and 21 days

 OR Have been diagnosed with first presentation of neuromyelitis optica.

 (Patients with definite modified NMO will meet the following criteria (Wingerchuck et al, 2006).

 Absolute criteria, both:

 1. Optic neuritis
 2. Acute myelitis

 Plus two out of three supportive criteria:

 i. Brain MRI not meeting criteria for MS at disease onset
 ii. Spinal cord MRI with contiguous T2-weighted signal abnormality extending over three or more vertebral segments, indicating a relatively large lesion in the spinal cord
 iii. Aquaporin 4 seropositive status)

- Have an ASIA Impairment Score of A-C
- Have commenced steroid treatment but will be randomised no later than day 5 of steroids, and if definitely known, randomisation will not exceed 21 days from the onset of symptoms
- Give assent (<16 years)/consent to participate in the trial

8.2 Exclusion Criteria

Patients would be excluded if they show evidence of:
• Contraindication to IVIg as stated in the product SmPC, or receiving IVIg for other reasons
• Previously known systemic autoimmune disease (e.g., systemic lupus erythematosus) or any evidence of systemic inflammation during current presentation.
• Direct infectious aetiology (e.g., varicella zoster)
• Previous episode of CNS inflammatory demyelination
• Acute disseminated encephalomyelitis (ADEM)
• Other causes of myelopathy not thought to be due to myelitis (e.g., nutritional, ischaemic, tumour etc.)
• Other disease which would interfere with assessment of outcome measures
• Known pregnancy
• Circumstances which would prevent follow-up for 12 months

Spinal cord inflammation demonstrated by CSF pleocytosis or elevated IgG index or gadolinium-enhanced MRI is supportive of an inflammatory aetiology but will not be essential for inclusion/exclusion. Aquaporin-4 antibodies will be tested in all individuals with myelitis, as NMO can present as isolated transverse myelitis. In addition, patients will also have investigations that are clinically indicated to identify specific non-inflammatory aetiologies.

8.3 Selection of Participants
Participants will be individuals who meet the inclusion criteria/diagnostic algorithm (Appendix 2), presenting to the catchment area of participating tertiary neurology centres, though some neurologists may also recruit patients at district general hospitals or from rapid GP referrals. There are 12 tertiary paediatric neurology and 11 tertiary adult neurology services spanning 12 regions, chosen for geographic distribution, established research infrastructure and for having investigators with an active record of accomplishment in recruiting to network supported studies (section 1.7). These centres cover approximately half of the UK population. Hence if the UK incidence of TM patients is approximately 350 per year, a recruitment period of 2.5 years, with a recruitment rate of 35% of eligible patients is expected to achieve the required sample size of n=170.

8.4 Patient Registration
After consent has been signed, the patient will be registered on the MACRO system, which can be accessed online by a trained member of trial staff who has been allocated a username and password (via trial manager). The system is accessed at www.ctu.co.uk by clicking ‘MACRO EDC v4’ in the Useful Links box on the lower right hand side of the page. Following entry of registration details the system will generate a unique patient identification number (PIN) which will be used, with patient initials, for that patient throughout the study on all CRFs and eCRFs, and will be the only method of identification (for information on the MACRO system (see section 20). The PIN will be a five digit number, the initial two digits corresponding to the centre the patient was recruited from.

8.5 Randomisation Procedure
Patients will be randomised to treatment arms via an online system based at King’s Clinical Trials Unit (KCTU). The system can be accessed at www.ctu.co.uk by clicking ‘randomisation – advanced’. This system can only be accessed by trained trial staff that have previously been allocated a username and
Please make sure that baseline data has been collected for the patient just prior to randomisation (see section 9 for further details).

Also note that randomisation system is not linked to the MACRO (main study) database (see section 20).

Allocation to trial arms will be at the level of the individual patient, using stratified block randomisation. The block will randomly vary in length of 2 and 4, and patients will be stratified by service type (adult or child). The randomisation system will automatically generate emails at the point of randomisation which will be sent to appropriate members of the study team. The trial manager and those administering treatment are unblinded and will be informed of the allocated treatment arm. Those who will carry out follow up assessments will be blinded, therefore they will just receive notification of randomisation in order to start scheduling appointments. A study specific prescription will be completed and sent to pharmacy for dispensing. Any problems with the online randomisation system should be reported to the trial manager or to the King’s CTU at CTU@kcl.ac.uk / 0207 848 0532.

8.6 Withdrawal of Subjects

The patient, or their parent/guardian, has the right to withdraw from the study at any time for any reason. In the event that a participant withdraws from the study (ie. refuses further treatment/outcome data collection) a withdrawal form must be completed.

The investigator also has the right to withdraw patients from the study drug in the event of inter-current illness, AEs, SAEs, and SUSARs, subsequent evidence of a different aetiology, protocol violations, cure, administrative or other reasons. Participants who wish to/must discontinue study medication will be returned to standard care via their supervising physician, but will continue to provide study specific data at follow up visits at 3, 6 and 12 months.

It is understood that an excessive rate of withdrawals can jeopardise randomisation outcomes and render the study results uninterpretable; therefore, unnecessary withdrawal of patients will be avoided. Should a patient decide to withdraw from the study, all efforts will be made to report the reason for withdrawal as thoroughly as possible.

8.7 Expected Duration of Trial

It is anticipated that the project will take 3.5 years and will be managed through the King’s Clinical Trials Unit. Patient recruitment will take place over the first 30 months, and as each patient will be followed up for one year, collection of data will continue until 42 months following the start date. In the following 12 months (42-54 months from start date), the study team will develop health economic model structure, run model, sensitivity analysis, and complete write up of economic analysis. Importantly, timely trial analysis will be followed by results dissemination.
9. Trial Procedures

9.1 Study Flow Chart

Schedule of Procedures and Data Collection time points

Patients admitted to hospital with symptoms suggestive of TM should be screened for eligibility and inclusion in STRIVE study as soon as possible. A **screening log** should be kept at each study site with following data items:

- **Date of Admission**, **Patient ID (NHS or Hospital number)**, **Patient DOB**, **Suspect TM (yes/no)**, **Eligible for the study (yes/no)**, **Consented to take part (yes/no)**, **Reason for not being included in the study**, **Date randomised**, **Study ID**, **Date 3 months follow up**, **Date 6 months follow up**, **Date 12 months follow up**, **Any comments**. An excel spreadsheet template for a screening log will be sent to each trial centre by the Trial Manager.

If patients/ guardians consent to take part in the study please ensure that randomisation takes place as soon as possible but IVIg treatment has to be **immediately available** for patients randomised to treatment group.

Patients can be randomised in STRIVE study **no later** than Day 5 of the start of IV MP treatment. Treatment with IVIg (if patient randomised to treatment group) should start on the day of randomisation. With these constraints, we envisage that a proportion of patients will receive IVIg with IV MP on at least one day as shown in this table:

<table>
<thead>
<tr>
<th>TREATMENT PHASE</th>
<th>IV MP (Control arm)</th>
<th>IV MP (Intervention arm)</th>
<th>IVIg >41.2kg (Intervention arm)</th>
<th>IVIg ≤41.2kg (Intervention arm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVMP Treatment day (D)</td>
<td>D -1</td>
<td>D -2</td>
<td>D -3</td>
<td>D -4</td>
</tr>
<tr>
<td>IVIg Treatment day (TD)</td>
<td>←-----------------</td>
<td>X</td>
<td>←-----------------</td>
<td>X</td>
</tr>
<tr>
<td>Study time points (T)</td>
<td>←-----------------</td>
<td>X</td>
<td>←-----------------</td>
<td>X</td>
</tr>
</tbody>
</table>

(A total of 5 days treatment, which can commence on day of admission. Patients may be recruited up to 5 days from the date of commencing IV MP (D1)).

If patient’s symptoms worsen during treatment or there is no improvement at the end of treatment the patient will have prolonged hospitalisation and rescue therapy should be applied (as shown in table below):

<table>
<thead>
<tr>
<th>PHASE</th>
<th>IVIg >41.2kg (Intervention arm)</th>
<th>IVIg ≤41.2kg (Intervention arm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

(A total of 5 days treatment, which can commence on day of admission. Patients may be recruited up to 5 days from the date of commencing IV MP (D1))
<table>
<thead>
<tr>
<th>Days on Rescue Therapy (RT)</th>
<th>RT Day 1</th>
<th>RT Day 2</th>
<th>RT Day 3</th>
<th>RT Day 4</th>
<th>RT Day 5</th>
<th>RT Day 6</th>
<th>RT Day 7</th>
<th>RT Day 8</th>
<th>RT Day 9</th>
<th>RT Day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLEX</td>
<td></td>
</tr>
<tr>
<td>With IV-MP IF REQUIRED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-5 cycles as required and indicated by clinician</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-5 doses, in PLEX lag phases, if indicated by clinician</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative Rescue Therapies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In line with local practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rescue Therapy form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Concomitant Medications form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Please record details of the actual rescue therapy schedule used on the Rescue therapy form and ensure that the Concomitant Medication Form is also completed at the time of discharge.

For every time point in the study there are a number of questionnaires/ exam forms that need to be completed as shown in the Schedule Table below. Some of the questionnaires are intended for particular age groups and when referring to age always use age at presentation. Please refer also to Appendix 3 for additional details of study procedures.

ASIA IMPAIRMENT SCORE (AIS) is the main eligibility criterion as well as the primary outcome. It should be obtained immediately before randomisation as baseline measure, even if it was recorded during screening or any earlier time point prior to randomisation.

If the patient deteriorates and needs to have rescue therapy please evaluate ASIA motor, sensory and impairment scores before the rescue therapy is initiated.

Each assessor needs to have training and obtain certification for ASIA Sensory and Motor Scoring evaluation (see: http://lms3.learnshare.com/home.aspx). Please forward copies of the certificates to the STRIVE Trial Manager.

Neurostatus scoring (Kurtzke’s Functional Systems and Expanded Disability Status Scale) is one of the secondary endpoints in the study. The training manuals and CDs together with exam sheets will be made available to each study site ahead of time.
Schedule Table:

<table>
<thead>
<tr>
<th>Schedule (Treatment day (D))</th>
<th>Timepoint (T)</th>
<th>T0 (Screening, baseline and prediagnosis tests)</th>
<th>T1 (Treatment and discharge)</th>
<th>T2 3M</th>
<th>T3 6M</th>
<th>T4 12M</th>
<th>Withdrawal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening with diagnostic algorithm & core investigations including physical exam</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient information and informed consent</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration form</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-diagnosis Tests – eg. MRI & AQP4</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomisation</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biobank samples</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASIA Impairment Score (A-E)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>P</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>ASIA Motor and Sensory Score</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>S</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Neurostatus scoring (Kurtzke functional systems and EDSS)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>S</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-12 yrs EQ-5D-Y</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>S</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>≥13 yrs EQ-5D-5L</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>S</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>≥13 yrs SCI QoL Basic dataset</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>CSRI</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>≥13 yrs SCI Bladder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>x</td>
</tr>
<tr>
<td>≥13 yrs SCI Bowel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>x</td>
</tr>
<tr>
<td>5-7 yrs Peds QL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>x</td>
</tr>
<tr>
<td>2-4 yrs Peds QL</td>
<td>T</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment form</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concomitant medications</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge form</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Rescue therapy form (if needed)</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Relapse form (at any time point if needed)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse events</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Status Form</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Withdrawal form (at any time point)</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: P – primary measure, S – secondary measure, T – tertiary measure

‡ IVIg Treatment Day1 (TD1) = shown in this table separately but the first day of IVIg treatment should happen on the same day as day of randomisation

* Rescue therapy, relapse and withdrawal forms may only be necessary for a small subset of patients.

9.2 By Visit

Appendix 3 lists all examinations and forms needed at screening, consent, randomisation, treatment and follow-up visits.

Screening and baseline assessments will be made in the tertiary centres by a study physician/research nurse, and as treatment has not yet been allocated, blinding will not be of issue.

Post randomisation, all assessments and study data taken during the hospital stay, and all follow up assessments in clinic at the tertiary centre or appropriate neurology centre, will be carried out by a study physician/research nurse/physiotherapist who has been blinded to treatment. For consistency, wherever possible, the same blinded assessor should carry out the assessments at each time point.

9.3 Scales and Training
The standardized American Spinal Injury Association (ASIA) impairment scale, is the currently internationally accepted scale for the measurement of disability in TM (Maynard et al., 1997, Graves et al., 2006). The recently published common data elements recommendations for spinal cord injury recommend the ASIA scale as the primary outcome measure for disability (www.commondataelements.ninds.nih.gov/SCI.aspx). The grading (A-E) is based on determining: sensory levels; motor levels; neurological level of injury; and whether the injury is complete or incomplete. The motor and sensory scales (scored 0-100/0-112) rely on more detailed sensory and motor examinations. The ASIA website (www.asia-spinalinjury.org) provides learning tools as well as a module which must be completed by examiners involved in the trial (http://content.learnshare.com/courses/120/440012/story.html).

During the trial, the Kurtzke Neurological exam (Neurostatus score) and the SCI scales for Bladder, Bowel and Pain will also be used. Any members of study team who do not routinely use these exams/scales will also need to undergo training from the PI. All training must be recorded in the Staff Training Log in the site Master Files.

9.4 Laboratory Tests

All consenting patients will have samples taken for clinical investigations and samples for biobanking, at baseline and at the 6 month follow up. Samples for biobanking will consist of CSF via lumbar puncture, and blood taken by venepuncture for serum, plasma, DNA, Peripheral Blood Mononuclear cells (PBMC) and RNA (site dependent), and will be stored in one of the two biobanks (London or Cardiff). These samples will not form part of this trial, but are for further hypothesis driven biological research, directed by Neil Robertson and Gavin Giovannoni (adults) and Ming Lim (paediatrics). For the bio-banking procedures, a biobanking SOP will be provided to all investigators.

9.5 MRI Sequences

As part of the routine diagnostic process for TM/NMO, brain and spinal cord sequences should be acquired, the results of which will be used in the study’s diagnostic algorithm at screening and if the patient enters the trial, will be recorded as study data. Local protocols will be in place for the acquisition on MRI sequences, but wherever possible, gadolinium enhancement should be requested. Reports should include:

1. Location of the lesion (which spinal cord level)
2. Size of the lesion (in terms of how many vertebral segments)
3. Whether gadolinium injection was used and if so, was enhancement seen

10. Assessment of Efficacy

10.1 Efficacy Parameters

Primary, secondary and tertiary parameters will be assessed at appropriate time points as listed in Study synopsis and Trial Objectives (sections 2 and 6 respectively) of this protocol.
10.2 Procedures for Assessing Efficacy Parameters

All assessments will be carried out by a physician/research nurse/physiotherapist blinded to treatment and will be reported using the appropriate assessment tools and questionnaires.

11. Assessment of Safety

11.1 Procedures for Recording and Reporting Adverse Events

11.1.1 Definitions

The Medicines for Human Use (Clinical Trials) Regulations 2004 and Amended Regulations 2006 gives the following definitions:

Adverse Event (AE):

Any untoward medical occurrence in a subject to whom a medicinal product has been administered including occurrences which are not necessarily caused by or related to that product.

Adverse Reaction (AR):

Any untoward and unintended response in a subject to an investigational medicinal product which is related to any dose administered to that subject.

Unexpected Adverse Reaction (UAR):

An adverse reaction the nature and severity of which is not consistent with the information about the medicinal product in question set out in the summary of product characteristics (SmPC) for Intratect™ at www.medicines.org.uk.

Serious adverse Event (SAE), Serious Adverse Reaction (SAR) or Unexpected Serious Adverse Reaction (SUSAR):

- Any adverse event, adverse reaction or unexpected adverse reaction, respectively, that:
 - Results in death;
 - Is life-threatening;
 - Required hospitalisation or prolongation of existing hospitalisation;
 - Results in persistent or significant disability or incapacity;
 - Consists of a congenital anomaly or birth defect.

Hospitalisation as a result of the progression of TM and any proceeding medical condition are not considered to be SAEs and should be reported as an AE in the normal way (see below), on the Adverse Event form.

Important Medical Events (IME): Events that may not be immediately life-threatening or result in death or hospitalisation but may jeopardise the patient or may require intervention to prevent one of the other outcomes listed in the definition above should also be considered serious.
11.1.2 Reporting Responsibilities

Organisations have delegated the delivery of the Sponsor’s responsibility for Pharmacovigilance (as defined in Regulation 5 of the Medicines for Human Use (Clinical Trials) Regulations 2004 to the King’s Health Partners Clinical Trials Office (KHP-CTO).

SAEs, SARs and SUSARs

Reporting Responsibilities

Study staff must report all SAEs, SARs and SUSARs IMMEDIATELY, and certainly no later than 24hrs of the investigator learning of the event (excepting those specified in protocol as not requiring reporting) on the SAE form, then scan and email or fax them to the KHP-CTO at icto.pharmacovigilance@kcl.ac.uk or Fax 0207 188 8330.

An acknowledgment of receipt will be emailed/faxed back by the KHP-CTO.

The SAE form can be found on the KHP-CTO website www.khpcto.co.uk under the ‘SAE Reporting’ tab and by opening the pdf called ‘Serious Adverse Event Reporting Form’.

On-Reporting: The KHP-CTO will on-report all SAEs, SARs and SUSARs to the Chief Investigator by email, and the Chief Investigator will advise or sign off the event/reaction. The KHP-CTO will report all SUSARs to the MHRA.

Reporting timelines are as follows:

- **SUSARs** which are fatal or life-threatening must be reported not later than 7 days after the sponsor is first aware of the reaction. Any additional relevant information must be reported within a further 8 days.

- **SUSARs** that are not fatal or life-threatening must be reported within 15 days of the sponsor first becoming aware of the reaction.

- The CI will notify the chair of the DMEC of all SUSARs and any SAEs that he considers to be of significant safety concern and will report to the relevant ethics committee.

AEs, ARs and UARs

Study staff should record all AEs, ARs and UARs on the Adverse Event log, and via eCRF.

Staff should aim to upload AEs/ARs/UARs and SAEs/SARs/SUSARs (once reported to the KHP-CTO), to eCRFs on the CTU database within 7 days.

The period for reporting all AE and SAE etc. will be from the first administration of the IMP until the patient completes the trial at T3, 12 months after randomisation, or withdrawal of participation.

The Chief Investigator and KHP-CTO (on behalf of the sponsors), will submit a Development Safety Update Report (DSUR) relating to this trial IMP, to the MHRA and REC annually.
11.2 Adverse events that do not require reporting

As all medicines in this trial are licensed, most adverse drug reactions that occur, whether serious or not, will be expected treatment-related side effects. IVIg has a well-established side effect profile in the product SmPC at www.medicines.org.uk. A list of the most common side effects can be found in Appendix 4.

11.3 Treatment Stopping Rules

The trial may be prematurely discontinued by the Regulatory Authority based on new safety information or for other reasons given by the Data Monitoring & Ethics Committee / Trial Steering Committee regulatory authority or ethics committee concerned. The trial may also be prematurely discontinued due to lack of recruitment or upon advice from a Trial Steering Committee (if applicable), who will advise on whether to continue or discontinue the study and make a recommendation to the sponsor.

12. Statistical considerations

A comprehensive statistical analysis plan will be developed and agreed with the trial’s oversight committees. Descriptive analysis (e.g. summary statistics and plots) will be performed to investigate the distribution of the primary outcome, ASIA Impairment Scale score, across participants.

12.1 Sample size considerations and calculation

In recognition of TM as a rare condition, the power analysis has taken into account the inclusion of a futility analysis to be undertaken after recruitment of one third of the target sample. We have assumed that the proportion of participants showing a 2 point improvement (or greater) on the ASIA Impairment scale will be approximately 0.5 (50%) in the control arm and a minimum of 0.75 (75%) in the intervention arm. The sample size calculation is based on the conservative assumption of no correlation between repeated measures.

Randomised 1:1, the primary ITT analyses will compare 76 treatment and 76 control patients, on the ASIA classification scale at 6 months post randomisation. Based on comparing the difference in the number of successes among treatment and controls the SAS sample size – chi procedure examines all 77^2 possible trial outcomes under the null and alternative hypotheses. The possible outcomes are then arranged in descending order and cumulative probabilities for every possible value from 76 to -76 are computed. Using a critical value that maintains the tail probability at .02355 under the null the probability under the alternative is 0.9034. The study thus has 90% power for a two-tailed test with alpha=0.05.

The sample size will be inflated for attrition, based on our experience and the design in place to minimise any loss to follow up we estimate 10% attrition. This would require recruiting a sample size of $(n=152/0.90) = 170$ (85 participants per arm).
The ASIA total motor score (0-100) is a secondary outcome. There is little evidence in acute transverse myelitis to summarise this in terms of variance, mean and correlation. Stata _sampsi_ indicates that using ANCOVA, with a baseline to endpoint correlation of 0.6, there will be 87% power to detect a difference between the control and treatment arms of a medium to large effect size of 0.4. Such a difference will be of clinical significance.

12.2 Randomisation

Treatment allocation will be stratified at randomisation, by service type (adult or child) using stratified block randomisation; the block will randomly vary in size. Treatment allocation will be at a ratio of 1:1.

12.3 Statistical Analysis

12.3.1 Statistical analysis overview

All analyses will be pragmatic and follow the intention to treat (ITT) principle, that is, patients will be analysed in the groups to which they were randomised irrespective of treatment amount or treatment quality received, utilising all available follow-up data from all randomised patients. Sensitivity analyses will be used to assess the robustness of conclusions to missing outcome data and to departures from randomised treatment.

An interim futility analysis will be conducted after 52 patients have provided a response (26 on each treatment arm), the endpoint being a two point change in the ASIA scale 6 months after randomisation; the results will be assessed by the Data Monitoring Committee. A trial statistician who will be unblinded, will run the prepared syntax to generate the estimates at this interim stage for evaluation by the DMEC. The primary trial statistician will remain blinded and therefore will not take part in this analysis.

If the study continues to full recruitment, the final analyses of effectiveness will be conducted once the trial database has closed. The Data Monitoring Committee will collate effectiveness and safety data during the trial to inform their recommendations to the Trial Steering Committee. All analyses will be completed in Stata and SAS and utilise 2 sided 5% significance tests. Main effects will be summarised by intervention arm and assessment time point with associated 95% Confidence Intervals.

12.3.2 Primary and secondary analysis

The main objective of the statistical analyses is to assess the effect of IVIg on the primary outcome, a 2 point change from baseline on the ASIA classification (A-E) scale, at 6 months post randomisation. To this end mixed effects logistic regression will be employed. In such models, the binary outcome variable measured at the post treatment time points (3, 6 or 12 months) features as the dependent variable with outcome at baseline (if applicable), stratification factors (service level), treatment arm and a treatment x time interaction term included as covariates. To account for correlation between repeated measures on the same individual, a subject-varying random intercept will be included. Mixed effects logistic regression can be completed using the _xtmelogit_ command in Stata.
The secondary clinical assessments (EDSS, continuous ASIA motor and sensory scales, SCI, Paediatric quality of life, EQ5D and CSRI), with repeated measurements will also be analysed within a linear mixed model framework where generalisations of the linear mixed model will be utilised to allow for outcomes with non-normal data if necessary. Those measures with one follow up assessment will be evaluated with a general linear model. The statistical modelling will feature the outcome measure(s) as the dependent variable with corresponding baseline measure(s) (if applicable), stratification factors and treatment group featuring as covariates.

As descriptive analyses, recruitment rate, consent rate, loss to follow-up, departures from randomised treatment and the prevalence of serious adverse events (specifying deaths and ITU admissions), will be reported at 3, 6 and 12 months post-randomisation and summarized by treatment arm over the course of the study. All causes of withdrawal from randomised treatment will be reported. Chi-squared (Fisher’s exact test) will be used for categorical outcomes (e.g. serious adverse events and mortality).

All analysis will be repeated considering age status (adult or child) and putative biological markers as moderators by interaction with treatment group (control or intervention), allowing estimates of treatment effect in the sub populations to be summarized.

We will carry out further explanatory analyses to assess the efficacy of the treatment within NMO or idiopathic TM diagnosis by allowing for an interaction with treatment arm. We will explore the ICC of the sites by allowing for site as random effect in the statistical modelling.

There will be missing data in post treatment outcome variables as participants discontinue treatment or are lost to follow-up. The regression analyses are based on maximum likelihood and resulting inferences are valid provided the missing data generating mechanism is missing at random (MAR), that is missingness is predicted only by variables that are included in the model, including earlier values of the outcome variable. We will empirically assess whether any baseline variables predict missingness and should this be the case we would condition on such variables by including them in the statistical model. Sensitivity analyses will be used to assess the robustness of conclusions to missing outcome data and to departures from randomised treatment in the manner of White et al. (2011).

12.4 Futility analysis

An interim futility analysis will be conducted after 52 patients have provided a response, 26 on each treatment arm, the endpoint being a two point change in the ASIA scale at 6 months. The trial can then be terminated with the conclusion that the new treatment is no better than standard if, based on these 52 patients, the test statistic is less than zero. If sample sizes are equal, this occurs if the successes under new treatment are fewer than under standard. Otherwise, the trial proceeds to the full sample size of 170. The SAS program two stage - interim - chi evaluates the design deleting outcomes that would correspond to futility. The tail probabilities under the null and alternative were 0.0228 and 0.8946. The inclusion of the futility analysis therefore represents a very small loss of power.
The SAS program two stage - stage1 - chi evaluates the properties of the first stage of the design. It shows that the probability of abandoning the study at the interim analysis is 0.4449 under the null and 0.0201 under the alternative. Thus, there is a good chance of stopping for futility when the treatments are equivalent and a very small chance when the desired treatment effect is present (see Appendix 5 for Futility Analysis Plan).

13. Trial Steering Committee

The TSC's key purpose will be to ensure the overall integrity of the study by monitoring its progress; investigating any serious adverse events; and taking account of regular reports from the DMEC and communication from the TMG. Ultimate responsibility for any decision required on the trial's continuation will lie with the TSC. The Committee will include an Independent Chair, Prof Richard Hughes, and a complete list of members can be found in section 1.6. TSC meetings will take place at least annually and these will be arranged by the Chief Investigator and the Trial Manager in conjunction with the Chair. Increased frequency of meetings will be arranged depending on the requirements of the study DMEC and TSC recommendations.

14. Data Monitoring Committee

An independent DMEC responsible for monitoring the safety and efficacy of the study will advise the TSC of any follow up recommendations. The committee will have a DMEC chair and will consist of: one Professor of Statistics, who will be the Independent Chair and two independent Ophthalamic Surgeons. The DMEC meeting will aim to take place at least 3 weeks prior to the TSC meeting. Only the DMEC will have access to un-blinded study data, if deemed necessary. The trial statistician will provide the DMEC with an in depth report prior to each meeting and will be responsible for finalising the DMEC charter with DMEC members.

15. Study Steering Committee

The Study Steering Committee (SSC) will be responsible for monitoring the delivery of the trial on a day to day basis and will be supported and managed via the KCTU. The SSC membership will consist of: Chief Investigator, Co-Lead, Trial Manager, Data Manager, the Trial Statistician and Senior Members of KCTU. Other members of the wider research team may be invited on a meeting by meeting basis depending on the scope covered.

16. Direct Access to Source Data and Documents

The Investigators and Institutions will permit trial-related monitoring, audits, REC review, and regulatory inspections by providing direct access to source data and other documents (eg CRFs, blood test reports, MRI reports etc).

17. Ethics & Regulatory Approvals

17.1 Declaration of Helsinki
The Investigator will ensure that this study is conducted in accordance with the principles of the Declaration of Helsinki (1996).

17.2 ICH Guidelines for Good Clinical Practice

The Investigator will ensure that this study is conducted in full conformity with relevant regulations and with the ICH Guidelines for Good Clinical Practice (CPMP/ICH/135/95) July 1996), and in accordance with all applicable regulatory requirements including but not limited to the Research Governance Framework and the Medicines for Human Use (Clinical Trial) Regulations 2004, as amended in 2006 and any subsequent amendments.

17.3 Approvals

The protocol, participant information sheets, informed consent forms, and any proposed advertising material will be submitted to an appropriate Research Ethics Committee (REC), regulatory authorities (MHRA in the UK), and host institution(s) for written approval. The Investigator will submit and, where necessary, obtain approval from the above parties for all substantial amendments to the original approved documents.

17.4 Reporting

Pharmacovigilance reporting and progress reports will be provided by the Chief Investigator to the REC, MHRA and funders (NIHR). At the conclusion of the trial, the CI will submit a final report to the KHP-CTO (on behalf of the Sponsor), the REC and the MHRA and the funders (NIHR), within the timelines defined in the Regulations.

17.5 Participant Confidentiality

The study staff will ensure that the participants’ anonymity is maintained, identifying patients by their PIN numbers and initials only. The study will comply with the Data Protection Act, which requires data to be anonymised as soon as it is practical to do so.

18. Quality Assurance

18.1 General monitoring

Monitoring of this trial will ensure compliance with Good Clinical Practice. Scientific integrity will be managed and oversight retained, by the King’s Health Partners Clinical Trials Office Quality Team. The trial will be conducted in accordance with the current approved protocol, ICH GCP, relevant regulations and standard operating procedures. Regular monitoring will be performed according to ICH GCP. The investigator sites will provide direct access to all trial related source data/documents and reports for the purpose of monitoring and auditing by the sponsor and inspection by local and regulatory authorities. Data will be evaluated for compliance with the protocol and accuracy in relation to source documents. Following written standard
operating procedures, the monitors will verify that the clinical trial is conducted and data are generated, documented and reported in compliance with the protocol, GCP and the applicable regulatory requirements.

18.2 Audit & Inspection

The Quality Assurance manager will conduct internal audits to check that the trial is being conducted, data recorded, analysed and accurately reported according to the protocol and in compliance with ICH GCP, meeting the requirements of the MHRA. The audits will also include laboratory activities according to an agreed audit schedule taking into consideration the 2009 MHRA guidelines for GCP in the laboratory. The internal audits will supplement the external monitoring process and will review processes not covered by the external monitor.

18.3 Serious breaches

The Medicines for Human Use (Clinical Trials) Regulations contain a requirement for the notification of “serious breaches” to the MHRA within 7 days of the Sponsor becoming aware of the breach. A serious breach is defined as “A breach of GCP or the trial protocol which is likely to affect to a significant degree a) the safety or physical or mental integrity of the subjects of the trial; or (b) the scientific value of the trial”. In the event that a serious breach is suspected, the Sponsor must be contacted within 1 working day. In collaboration with the C.I., the serious breach will be reviewed by the Sponsor and, if appropriate, the Sponsor will report it to the REC committee, Regulatory authority and the NHS host organisation within seven calendar days.

19. Data Handling

The Chief Investigator will act as custodian for the trial data.

Data will be managed using the InferMed MACRO database system. An electronic Case Report Form (eCRF) will be created using the InferMed MACRO system. This system is regulatory compliant (GCP, 21CRF11, EC Clinical Trial Directive). The eCRF will be created in collaboration with the trial statisticians and the CI and maintained by the King’s Clinical Trials Unit. It will be hosted on a dedicated secure server within KCL.

Source data will be entered by authorised staff onto the eCRF with a full audit trail. Study sites will aim to enter eCRFs within 7 days of data collection.

Over the course of the trial, the Trial Manager will conduct on-site/central monitoring. The Data Manager/Statistician may identify data fields that should be checked against the source data during site monitoring visits, the specifics will be outlined in a Trial Monitoring Plan. Where there are data queries raised
20. Data Management

Database Website Address:
Go to www.ctu.co.uk and click the link to MACRO EDC V4 on the lower right hand side of the screen.

Database passwords:
Database access will be restricted to members of the research team that have been authorised and fully trained on the MACRO system, and that have been assigned personal usernames and passwords. The username and passwords will be requested by the Trial Manager from the KCTU. It is a legal requirement that passwords to the eCRF are not shared, and that only those authorised to access the system are allowed to do so. If new staff members join the study, training and passwords will be organised via the Trial Manager.

Data Handling & Confidentiality/Format of Records
Data will be handled, computerised and stored in accordance with the Data Protection Act, 1998.

Participants will be identified on the study database using a unique code and initials. The investigator will maintain accurate patient records/results detailing observations on each patient enrolled.

Identifiable Data
All participant contact information data will be stored on spreadsheets within the recruiting site, which will have restricted access from password protected computers. Accrual data uploaded to the UKCRN portfolio database will be anonymised and collated by the CI or delegate to the CLRN. No identifiable data will be entered on the eCRF or transferred to the KCTU.

Main Database:
SAE data will be collected on paper SAE report forms and faxed to the KHPCTO. Summary details of SAEs will be transcribed to the adverse event section of the eCRF.

For all other data collected, source data worksheets will be prepared for each patient and data will be entered onto the eCRF database via the web address above.

KCTU will provide 2 MACRO databases for the study:
Database 1 will be used to register patients and enter their study data from source worksheets (exam sheets/questionnaires). Researchers who need to be blind to treatment allocation will have access only to this database.

Database 2 will be used to collect data related to patient’s therapy (IVIg, IV MP, rescue therapy). Access to this database will be restricted to individuals in the study team who are not blinded to the outcomes of the randomisation.

Source data worksheets will be reconciled at the end of the trial with the patient’s medical notes in the recruiting centre. During the trial, critical clinical information will be written in the medical notes to ensure informed medical decisions can be made in the absence of the study team. Trial related clinical letters will be copied to the medical notes during the trial. The Principal Investigator will provide an electronic signature for each patient Case Record Form once all queries are resolved and immediately prior to database lock.

At the end of the study, essential documentation will be archived in accordance with sponsor and local requirements. The retention of study data will be the responsibility of the Chief Investigator.

Assessments/Data Collection:
Written informed consent must be obtained prior to screening and any other study specific procedures taking place.

Database lock:
The final checking of data and data cleaning will be undertaken by the trial manager, in collaboration with the investigators and trial statistician. After completion of all follow-ups and prompt entry of data, the Trial Manager will review the data and issue queries as necessary. The study site must then answer these queries before the participant’s data is locked within the database. After that time, changes will not be made to the database by the research site unless specifically requested by the coordinating site in response to statistician data checks.

At the end of the trial, the site PI will review all the data for each participant and provide electronic sign-off to verify that all the data are complete and correct. At this point, all data will be formally locked for analysis. At the end of the trial, each centre will be supplied with a CD-ROM containing the eCRF data for their centre. This will be filed locally for any future audit.

21. Publication Policy
The Chief Investigator will be responsible for preparing drafts of the manuscripts, abstracts, posters, press releases and any other scientific publications arising from the study. Authors will acknowledge that the study was funded by the National Institute for Health Research. Authorship will be determined in accordance with the ICMJE guidelines and other contributors will be acknowledged.
22. Insurance / Indemnity

In accordance with Statutory Instrument 1031 and amendments section 15 (5.i.i) and the EU Clinical Trials Directive 2000/20/EC Article 3(2f), provision is to be made for: the indemnity or compensation in the event of injury or death attributable to the clinical trial; insurance or indemnity to cover the liability of the Investigator or Sponsor.

Insurance for this trial is provided by Guy’s & St Thomas’ Hospital NHS Foundation Trust under the Clinical Negligence Scheme for Trusts (CNST).

23. Financial Aspects

This study is funded by the National Institute for Health Research (NIHR) Health Technology Appraisal Programme (ref 11/129/148). Biotest AG will provide the study drugs.

24. Signatures

____________________________________ ________________________
Chief Investigator Date

____________________________________ ________________________
Print name Print name

____________________________________ ________________________
Statistician (if applicable) Date
25. References

Appendix: 1 IVlg Dosing Table

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Day 1 (g)</th>
<th>Day 2 (g)</th>
<th>Day 3 (g)</th>
<th>Day 4 (g)</th>
<th>Day 5 (g)</th>
<th>Actual dose (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 - 6.2</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>6.3 - 8.7</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>8.8 - 11.2</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>11.3 - 13.7</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>13.8 - 16.2</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>16.3 - 18.7</td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>18.8 - 21.2</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>21.3 - 23.7</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>23.8 - 26.2</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>26.3 - 28.7</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>28.8 - 31.2</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>31.3 - 33.7</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>33.8 - 36.2</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>36.3 - 38.7</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>38.8 - 41.2</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>41.3 - 43.7</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>43.8 - 46.2</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>46.3 - 48.7</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>48.8 - 51.2</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>51.3 - 53.7</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>53.8 - 56.2</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>56.3 - 58.7</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>115</td>
</tr>
<tr>
<td>58.8 - 61.2</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>61.3 - 63.7</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>63.8 - 66.2</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>66.3 - 68.7</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>68.8 - 71.2</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>Day 1 (g)</td>
<td>Day 2 (g)</td>
<td>Day 3 (g)</td>
<td>Day 4 (g)</td>
<td>Day 5 (g)</td>
<td>Actual dose (g)</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>71.3 - 73.7</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>25</td>
<td>145</td>
</tr>
<tr>
<td>73.8 - 76.2</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>150</td>
</tr>
<tr>
<td>76.3 - 78.7</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>155</td>
</tr>
<tr>
<td>78.8 - 81.2</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>160</td>
</tr>
<tr>
<td>81.3 - 83.7</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>165</td>
</tr>
<tr>
<td>83.8 - 86.2</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>170</td>
</tr>
<tr>
<td>86.3 - 88.7</td>
<td>40</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>175</td>
</tr>
<tr>
<td>88.8 - 91.2</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>180</td>
</tr>
<tr>
<td>91.3 - 93.7</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>185</td>
</tr>
<tr>
<td>93.8 - 96.2</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>190</td>
</tr>
<tr>
<td>96.3 - 98.7</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>35</td>
<td>195</td>
</tr>
<tr>
<td>98.8 - 101.2</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>200</td>
</tr>
<tr>
<td>101.3 - 103.7</td>
<td>45</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>205</td>
</tr>
<tr>
<td>103.8 - 106.2</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>210</td>
</tr>
<tr>
<td>106.3 - 108.7</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>215</td>
</tr>
<tr>
<td>108.8 - 111.2</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>220</td>
</tr>
<tr>
<td>111.3 - 113.7</td>
<td>50</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>40</td>
<td>225</td>
</tr>
<tr>
<td>113.8 - 116.2</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>230</td>
</tr>
<tr>
<td>116.3 - 118.7</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>235</td>
</tr>
<tr>
<td>118.8 - 121.2</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>240</td>
</tr>
<tr>
<td>121.3 - 123.7</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>45</td>
<td>245</td>
</tr>
<tr>
<td>123.8 - 126.2</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>250</td>
</tr>
<tr>
<td>126.3 - 128.7</td>
<td>55</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>255</td>
</tr>
<tr>
<td>128.8 - 131.2</td>
<td>60</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>260</td>
</tr>
</tbody>
</table>
Appendix 2: Clinico-radiological Diagnostic Algorithm

Suspcion of 1st episode of myelopathy based on history and examination, including ASIA Impairment score of A-C?

Yes

Urgent MRI spine and brain (gadolinium contrast where possible)

Compressive myelopathy
(e.g. tumour, haematoma)
- urgent surgical review and consider IV-MP depending on aetiology

Non-compressive myelopathy

No

If ASIA score is D-E then monitor for 5 days, as a deterioration to C-A would enter pathway

MRI brain consistent with MS/ADoM
- alternative treatment path

Non-inflammatory myelopathy:
vascular, radiation,
neurodegenerative, metabolic,
nutritional
- alternative treatment path

Lumbar puncture for CSF pleocytosis OR raised IgG index
Does LP show CSF pleocytsis or raised IgG OR does MRI spine show enhancement?

Yes

Inflammatory myelopathy

1st episode of TM or NMO?
Sample taken for AQP4 antibodies

No

Suspicion of systemic inflammatory disorder or infectious aetiology?
- antibodies, ACE, viral and bacterial culture, complement
- alternative treatment path

Does the patient fit ALL the study inclusion criteria?
1. Age ≥ 1year
2. Clinical criteria for myelopathy
 EITHER Transverse myelitis – to include all of the following:
 - Sensory, motor, or autonomic dysfunction attributable to spinal cord disease
 - Bilateral signs and/or symptoms (not necessarily symmetric)
 - Sensory level (except in young children <5 years where this is difficult to evaluate)
 - Nadir between 4 hours and 21 days
 OR 1st episode Neuromyelitis optica. – to include all of the following:
 - Optic neuritis
 - Acute myelitis
 - PLUS two of the following: Brain MRI not consistent with MS; Spinal cord MRI with T2 signal abnormality over 3 vertebrae; AQP4 seropositive status
3. ASIA impairment score of A, B or C
4. Patients may be recruited up to 5 days from the date of first commencing steroid therapy and if definitively known, should not exceed 21 days from onset of symptoms
5. Gives consent/assent to take part in trial

Would the patient be excluded due to ANY of the exclusion criteria?
- Contraindication to IVIg as stated in the product SmPC or receiving IVIg for other reasons
- Previously known systemic autoimmune disease (eg systemic lupus erythematosus) or any evidence of systemic inflammation during current presentation (SLE, sarcoid, Behcet’s, SJogrens, MCTD).
- Direct infectious aetiology (eg mycoplasma, TB, HTLV-1, HIV, HSV, enterovirus, VZV, EBV, CMV, HHV)
- Previous episode of CNS inflammatory demyelination
- Acute disseminated encephalomyelitis (ADEM)
- Other causes of myelopathy not thought to be due to myelitis (eg nutritional, ischaemic, tumour etc)
- Other diseases which would interfere with assessment of outcome measures
- Pregnancy
- Circumstances which would prevent follow-up for 12 months

Age appropriate patient information leaflet given, and patient consent obtained?

Yes

ENTER TRIAL
Blood sample for biobanking
IMPORTANT: All staff conducting ASIA, SCI and Kurtzke’s functional and EDSS assessments MUST undergo training which has to be documented in the Site Training Log.

INITIAL CONTACT

Screening

A screening log will be kept at all sites (see section 9).

A trained member of the trial staff will screen the patient using the clinico-radiological diagnostic algorithm and suggested core study investigations, including:

- MRI of brain and spine (with gadolinium enhancement where possible)
- Lumbar puncture
- Samples for viral and bacterial culture
- ASIA Motor and Sensory (if patient ≥ 5 years of age) Scores including AIS (ASIA Impairment score of A, B or C is necessary for eligibility*)

- Sample sent to test for AQP4 antibodies

Results for AQP4 antibodies and viral and bacterial cultures will be pending at this stage and are not necessary for consent to take place.

- Check eligibility criteria for inclusion in STRIVE

* If the patient has an ASIA Impairment score of D or E, but may otherwise be suitable for the trial, continue to monitor – even if a patient has commenced IV-MP treatment, they can be recruited and randomised to the trial before the end of day 5 of steroid treatment – if the patient’s ASIA score deteriorates to C, B or A during these 5 days, this would qualify as an eligible score.

Consent

If the patient meets all of the eligibility criteria, the clinician will explain the trial to the patient/family and they will be given age appropriate patient information sheets (PIS) and time to make a considered decision. Staff must ensure that the patient/family can ask questions, understand they are taking part in research, what the alternatives treatments would be, the long-term commitment and that they can withdraw at any time. The clinician must be sure that all information has been understood and that consent is voluntary. Suitable patents agreeing to take part will be assented (if aged ≤ 16 years)/consented, and the process of consent also recorded in the hospital notes (to include which PIS was provided, the name of the clinician who explained the trial and took consent/assent and any relevant information). A copy of the consent/assent form should also go into the hospital notes, one copy given to the patient/family and the original kept in a separate
Consent file (not with study data), along with any other identifiable information, and this file is to be kept in a secure/locked filing cabinet.

- Equipment/Forms required:
 - Patient Information Sheets (PIS) - child/adolescent/adult/parent
 - Consent/Assent forms - child/adolescent/adult

After consent, study data can officially be collected:

- ASIA Sensory and Motor scores including AIS
- Results of pre-diagnosis tests form can be submitted as study data (including AQP4 and culture results when available).

Registration and Pre-Treatment (baseline) Assessment

As soon as consent has been obtained the patient should be registered on STRIVE trial database. The database is accessible at the following URL. Access will be granted to named individuals at each site who will be listed on site’s delegation log. Access (login and password details) can be obtained through the Trial Manager.

Once registration is completed the system will automatically generate a unique Patient Identification Number (PIN). This number should be noted on all patient CRF forms including site’s screening log. This number together with patient’s initials and DOB will be required by STRIVE Randomisation database (see below).

Blood and CSF samples should be taken if possible, alongside routine samples, for the Biobank. **Pre-treatment assessments** and baseline data must be collected just prior to randomisation and treatment allocation, at a time when IVIg is available. If the patient is admitted at the weekend, outside of pharmacy hours, then baseline measures and randomisation should take place on the Monday after, when the pharmacy can dispense IVIg.

Examinations include the Neurostatus Exam (Kurtzke’s functional systems and EDSS), the EQ5D 5L or EQ5D Y (dependent on age at admission). If there was a delay between screening and randomisation, the ASIA Motor, Sensory and Impairment scores should be repeated to obtain a true baseline for use in primary analysis.

Forms required:

- Eligibility form
- Registration and Consent form
- Concomitant Medications form
- Neurostatus exam (Kurtzke’s Functional Systems and EDSS form)
- ASIA Motor, Sensory and Impairment Score form
Randomisation = study time point T0

The patient will be randomised via the King’s CTU online randomisation service (URL which can only be accessed by authorised and trained trial staff). The system will generate an email to appropriate staff, allocating the patient to a treatment arm, either control or intervention, and the appropriate treatment can be initiated.

NOTE: If the patient is admitted over the weekend and cannot be randomised until Monday morning, screening consent, registration and pre-treatment assessments should go ahead as above, and treatment with IV-MP started as soon as possible. On Monday morning, the patient should be randomised; if they are allocated to the control arm, then no further treatment is added, if allocated to the intervention arm, IV-Ig should be added to the regime immediately.

IMPORTANT: In situations where steroid treatment has started prior to randomisation, due to late recruitment or to a delay in randomisation over a weekend, baseline ASIA impairment score must be repeated and the score just prior to randomisation has to be recorded in the database.

Forms required for randomisation:
- Randomisation form

Following randomisation, all examinations and assessments should be performed by staff blinded to treatment.

Treatment = T1

The total study treatment period will be 5 days (see Section 9.1 for summary table) but if there are delays between admission and randomisation it can be extended up to 9 days overall.

Throughout the whole treatment period, the patients will be monitored daily to ensure there are no contraindications to treatment.

Rescue Therapy

If deemed necessary by the clinician, and there is a lack of response or deterioration, the patient will be initiated on rescue therapy such as PLEX (with the possible addition of IV-MP if necessary in the lag phase).

Prior to rescue therapy commencing, ASIA Motor, Sensory and Impairment scores should be taken. During the admission, any further courses of IVIg, IV-MP, or other forms of rescue therapy, should be recorded on the Rescue Therapy form.

Forms required:
- ASIA Motor, Sensory and Impairment scoring forms
- Rescue Therapy form
Completion of Treatment/Discharge

At the completion of treatment the patient will ideally be discharged but hospitalisation may be prolonged if patient suffers a relapse or deteriorates.

Forms required at the end of study treatment:

- Treatment form
- Exams/ forms required on discharge:
- Discharge form
- Concomitant Medications form
- ASIA Motor, Sensory and Impairment scoring forms
- Neurostatus Examination (Kurtzke Neurological and EDSS) form
- Rescue Therapy form (if required)
- Relapse form (if required)
- Withdrawal form (if required)

FOLLOW UP VISITS

The first follow-up visit can be arranged with the patient/guardian at discharge from the hospital but a reminder letter should follow nearer the time.

It is recommended that patients are invited to attend their appointment at least 30 minutes ahead of time in order to complete the questionnaires in clinic.

At the start of each follow up visit, the patient should be asked if they consent to continue with the study.

First Follow Up Visit (T2, 3 months post randomisation)

The following assessments/forms will be required:

- ASIA Motor and Sensory scales (including AIS)
- Neurostatus scoring (Kurtzke’s functional systems and EDSS)
- EQ-5D-Y (for patients aged 7-12 at admission/registration) OR EQ-5D-5L (for patients ≥13 years of age at admission/registration)
- Client Services Receipt Inventory (3 months recall)
- Study Status form
• Relapse from (if required)

• Withdrawal form (if required)

NOTE: Please provide a Stamped Addressed Envelope to patients who cannot complete the questionnaires in clinic. The questionnaires should be then completed at home and posted back to the local research team within one week of the visit.

Second Follow Up Visit (T3, 6 months post randomisation)

This is the most important study time point so every effort should be made to ensure that the patients attend their appointments. If routine blood samples are being collected at this visit, please collect a sample for biobanking.

During this visit, the following assessments/forms will be required:

Primary endpoint:

ASIA Impairment scale component (separate form in the database)

Secondary endpoint:

ASIA Motor and Sensory scales components

Neurostatus exam (Kurtzke’s functional systems and EDSS)

EQ-5D-Y (for patients aged 7-12.99 at admission/registration) OR EQ-5D-5L (for patients ≥13 at admission/registration)

Individuals ≥ 13 years (at admission/registration): International SCI Quality of Life Basic Data Set

Client Services Receipt Inventory (3 months recall)

Tertiary endpoint:

International SCI Bladder and Bowel Data Sets for patients ≥13 years (at admission/registration)

Paediatric Quality of Life Inventory TM Parent report for Toddlers (ages 2-4 years at admission/registration) OR Paediatric Quality of Life Inventory TM Parent report for Young Children (ages 5-7 years at admission/registration)

International SCI Pain Basic Data Set for individuals ≥ 13 years of age (at admission/registration):

Additional forms to complete:

Study Status form

Concomitant medications form

Biobank Sample form

Relapse from (if required)

Withdrawal form (if required)

NOTE: Please provide a Stamped Addressed Envelope to patients/guardians who cannot complete the questionnaires in clinic. The questionnaires should be then completed at home and posted back to the local research team within one week of the visit.
Third Follow Up Visit (T4, 12 months post randomisation)

At the final visit, the following assessments will be carried out:

ASIA Motor and Sensory scales including ASIA Impairment scale (separate form in the database)

Neurostatus exam (Kurtzke’s functional systems and EDSS)

International SCI Bladder/Bowel Data Set for patients aged ≥13 years at admission/registration

International SCI Quality of Life Basic Data Set for patients aged ≥13 years at admission/registration

Paediatric Quality of Life Inventory TM Parent report for Toddlers (ages 2-4 years at admission/registration)

OR Paediatric Quality of Life Inventory TM Parent report for Young Children (ages 5-7 years at admission/registration)

EQ-5D-Y (for patients aged 7-12.99 at admission/registration) OR EQ-5D-5L (for patients ≥13 at admission/registration)

International SCI Pain Basic Data Set for individuals ≥ 13 years of age (at admission/registration) Client Services Receipt Inventory (6 months recall)

Concomitant medications form

Study Status form

Relapse from (if required)

Withdrawal form (if required)

NOTE: Please provide a Stamped Addressed Envelope for patients/guardians who cannot complete the questionnaires in clinic. Completed questionnaires should be posted back to the local research team within one week of the visit.
Appendix 4: Common Side Effects for Intratect™

Intratect® can cause adverse reactions such as chills, headache, fever, vomiting, allergic reactions, nausea, arthralgia, low blood pressure and mild back pain, which may occur occasionally.

Rarely human normal immunoglobulins may cause a sudden fall in blood pressure and, in isolated cases, anaphylactic shock, even when the patient has shown no hypersensitivity to previous administration.

Cases of reversible aseptic meningitis, isolated cases of reversible haemolytic anaemia/haemolysis and rare cases of transient cutaneous reactions, have been observed with human normal immunoglobulin.

Increase in serum creatinine level and/or acute renal failure have been observed.

Very rarely: Thromboembolic reactions such as myocardial infarction, stroke, pulmonary embolism, deep vein thrombosis.

Details of further spontaneously reported adverse reactions:

- Cardiac disorders: Angina pectoris (very rare)
- General disorders and administrations site conditions: Rigors (very rare)
- Immune system disorders: Anaphylactic shock (very rare), hypersensitivity (very rare)
- Investigations: Blood pressure decreased (very rare)
- Musculoskeletal and connective tissue disorders: Back pain (very rare)
- Respiratory, thoracic and mediastinal disorders: Dyspnoea NOS (very rare)
- Vascular disorders: Shock (very rare)

The adverse events reported above are expected, in the sense that they are possible known side effects of the study medication, but all reported instances of both serious and non-serious adverse events would be reported in this study. For a more detailed list of all reactions, refer to Intratect Summary of Product Characteristics (SmPC): http://www.medicines.org.uk/emc/medicine/23175/SPC/intratect/
PROTOCOL v3.0 15/01/2015
Appendix 5: Futility Analysis Plan
PROPOSAL FOR AN INTERIM FUTILITY ANALYSIS

1. Introduction

Patients suffering from transverse myelitis will be randomised equally between IV immunoglobulin (the experimental arm: E) and steroids (the control arm: C). The primary analysis will concern response to treatment, defined as an improvement by two points on a paralysis assessment scale over a six month period following treatment. It is anticipated that the success rate on C will be \(p_C = 0.5 \). The trial is to have 90\% power to achieve significance at the 0.05 level (two-sided) if the success rate on E is \(p_E = 0.75 \).

The final analysis of the study can be conducted in terms of the statistic \(\chi^2 = \Sigma(O - E)^2/E \) which can be shown to be equal to \(Z^2/V \) where

\[
Z = \frac{n_S E - n_E C}{n} = \frac{n_S E}{n} (\hat{p}_E - \hat{p}_C),
\]

\[
V = \frac{n_S E S F}{n^3} \approx \frac{n_C n_E \bar{p}(1-\bar{p})}{n},
\]

where \(n_C \) and \(n_E \) denote the numbers of patients and \(S_C \) and \(S_E \) the numbers of successes on C and E respectively, \(n = n_C + n_E, S = S_C + S_E, F = n - S \), \(\hat{p}_C = S_C/n_C \), \(\hat{p}_E = S_E/n_E \) and \(\bar{p} = \frac{1}{2} (p_C + p_E) \).

In fact, it will be concluded that E is significantly superior to C if \(\chi = Z/\sqrt{V} \) exceeds a suitable critical value \(k \).

For equal randomisation, we have \(n_C = n_E = 0.5n \) and

\[
Z = \frac{1}{2} (S_E - S_C) \quad \text{and} \quad V = \frac{SF}{4n}.
\]

2. Sample size calculation

The SAS program sample size - chi concerns a trial in which 152 patients are randomised, 76 to C and 76 to E. The probability that \(S_C = i \) and \(S_E = j \) is found for all \(i, j = 0, ..., 76 \). Thus the probability of all 77\(^2\) possible trial outcomes is found. The probability is found assuming that \(p_C = p_E = 0.5 \) and assuming that \(p_C = 0.5; p_E = 0.75 \). The possible outcomes are then arranged in descending order according to \(T \), and cumulative probabilities of \(T \) being \(\geq \) every possible value from 76 to –76 are computed. Reading the last row of the output for which \(\chi = 1.95441 \) shows that \(P(\chi \geq 1.95441) = 0.023555 \) when \(p_C = p_E = 0.5 \) and 0.90338 when \(p_C = 0.5; p_E = 0.75 \). Thus, the appropriate value for the critical value \(k \) is 1.95441. No suitable critical value can be found for \(n = 150 \), and so the sample size should be \(n = 152 \).

This exact sample size calculation depends on the control success rate being precisely 0.5, although the SAS program can be used to evaluate the decision rule – reject \(H_0 \) if \(\chi \geq 1.95441 \) – under any other pair of success rates. The sample size found is close to that obtained using STATA. Once the data are available, the analysis will be based on \(Z \), allowing for any departures from the intended sample sizes of 76 on each arm. Additional patients to allow for potential drop outs can be added later.

3. An interim futility analysis
Suppose that an interim futility analysis is conducted after 52 patients have provided a response, 26 on each treatment arm. The trial is then terminated with the conclusion that E is no better than C if, based on these 52 patients, \(\chi < 0 \). If sample sizes are equal, this occurs id \(S_1 < S_C \). Otherwise, the trial proceeds to the full sample size of 152, with 76 patients on each treatment, and the null hypothesis is rejected if \(\chi \geq 1.95441 \).

The SAS program two stage - chi concerns such a design. The probability that \(S_{C1} = i_1, S_{C2} = i_2, S_{E1} = j_1, \) and \(S_{E2} = j_2 \) is found for all \(i_1, j_1 = 0, ..., 26 \) and all \(i_2, j_2 = 0, ..., 50 \), where \(S_C \) and \(S_E \) are the success totals in the \(r \)th stage of the trial, \(r = 1, 2 \). Thus, the probability of every possible combination of outcomes in the two stages of the trial is found. These are ordered by the final value of \(\chi \), and results for which \(P(\chi \geq k) \leq 0.025 \) under the null hypothesis and \(\geq 0.90 \) under the alternative are printed out. This program takes a while to run, and produces a lot of output. Line 5031 of the output confirms that \(P(\chi \geq 1.95441) \) is equal to 0.023555 when \(p_C = p_E = 0.5 \) and 0.90338 when \(p_C = 0.5; p_C = 0.75 \). This program is just a check.

The SAS program two stage - interim - chi evaluates the design, but this time outcomes in which \(i_1 > j_1 \) are deleted. This corresponds to stopping corresponding trials for futility. In this case \(P(\chi \geq 1.95441) \) is equal to 0.022795 when \(p_C = p_E = 0.5 \) and 0.89462 when \(p_C = 0.5; p_C = 0.75 \). This represents a very small loss of power.

The SAS program two stage - stage1 - chi evaluates the properties of the first stage of the design. It shows that the probability of abandoning the study at the interim analysis is 0.44494 when \(p_C = p_E = 0.5 \) and 0.020060 when \(p_C = 0.5; p_C = 0.75 \). Thus, there is a good chance of stopping for futility when the treatments are equivalent and a very small chance when the desired treatment effect is present.

4. Discussion

The calculations described above indicate that a futility analysis conducted when about one third of the observations are available would be worthwhile, and would have minimal effect on the power. A final analysis conducted ignoring the interim analysis would be slightly conservative in the sense of underestimating the advantage of E over C and reporting a p-value that was bigger (and thus less significant) than any properly adjusted p-value. It would not appear to be worth making such an adjustment.

If 152 patients are recruited over two years, then 52 would be recruited after 8.2 months. The interim analysis would take place at 14.2 months, by which time a further 38 patients would have been recruited. If the analysis were instant, there would be the potential to reduce the sample size by 62 patients, although this saving would be reduced due to continued recruitment during the analysis period. If recruitment were to stretch beyond two years, the benefits of early stopping would increase.

The calculations performed in the report are qualitative, as the actual trial might depart from the model investigated here in various small ways. Here, we declare E superior to C if \(\chi \geq 1.960 \), although in practice the more conventional criterion of \(\chi \geq 1.960 \) would probably be used. The calculations made here are exact, but only for the null hypothesis \(p_C = p_E = 0.5 \), and not for the more general null hypothesis \(p_C = p_E \). Calculations could be rerun for the criterion \(\chi \geq 1.960 \), a slight increase in sample size might be needed to preserve power. In practice the sample sizes at the interim and final analyses might not be exactly 26 and 76 in each group, and they might not be equal to one another. The more general formula for \(\chi \) would then be used, and this is another reason for retaining the conventional cut-off value 1.960.

Variations to the procedure, with different sample sizes at the interim and the null can be evaluated, and properties under different pairs of values \(p_C \) and \(p_E \) can be found. It would also be simple to investigate a more stringent futility criterion, requiring \(\chi \) to exceed a value such as 0.5 or 1 in order to continue. This would make the loss of power more substantial, and open up the question of whether it should be compensated for by an increase in sample size.
Notice that no opportunity for stopping at the interim analysis due to strong evidence of efficacy is allowed. If that were allowed, then the properties of the method would need substantial re-evaluation and conventional analyses would no longer be conservative.
STAGE III CLINICAL TRIAL
in acute onset TRANSVERSE MYELITIS (TM) or first presentation NEUROMYELITIS OPTICA (NMO)

At present, we are recruiting both adult and paediatric patients, with acute onset TM or first presentation NMO to a stage III clinical trial called STRIVE, taking place in <name of Hospital>.

STRIVE is a multicentre randomised controlled TRIal of IntraVEnous immunoglobulin (IVIg) versus standard therapy for the treatment of transverse myelitis and neuromyelitis optica, with the aim to see if additional and early intervention with IVIg is beneficial.

Patients can be included if they:
- are aged 1 year or over
- have acute onset TM or NMO
- have and ASIA impairment score of A, B or C
- have been commenced on steroid therapy, but are randomised by day 5 of steroids
- consent to take part in the trial

They will not be suitable if they:
- show contraindication to IVIg or have used IVIg in the last 3 months
- have had a previous systemic autoimmune disease (eg systemic lupus erythematosus) or any evidence of systemic inflammation during current presentation.
- have direct infectious aetiology (eg varicella zoster)
- have previous episode of CNS inflammatory demyelination
- have acute disseminated encephalomyelitis (ADEM)
- have other causes of myelopathy not thought to be due to myelitis (eg nutritional, ischaemic, tumour etc.)
- have another disease which would interfere with assessment of outcome measures
- are pregnant
- have circumstances which would prevent follow-up over 12 months

What will be expected of the patient?

There will be two treatment arms:
- Control Arm – standard steroid treatment with intravenous methylprednisolone
- Intervention Arm - standard steroid treatment with intravenous methylprednisolone PLUS treatment with IVIg.

Patient’s recovery will be monitored at normal clinical follow up at 3, 6 and 12 months.

Patients can be recruited to the study up to 21 days from onset of symptoms if definitively known, and if the patient is already in a hospital setting, they may still be recruited up to days 5 of commencing steroid therapy.

If you come in contact with a suitable patient and you think they may be interested in taking part in this trial, please contact <name/number> to discuss a possible rapid referral.

Trial staff will be at hand to discuss the study, the treatment and the required follow up with the patients and their family, and will provide them with patient information sheets to help them make their decision.

Recruitment is running from November 2014 to May 2017