Serious gaming during multidisciplinary rehabilitation for patients with complex chronic pain and fatigue complaints: study protocol for a controlled trial and process evaluation

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>bmjopen-2017-016394</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Protocol</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>13-Feb-2017</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Vugts, Miel; Tilburg University, Tranzo</td>
</tr>
<tr>
<td></td>
<td>Joosen, Margot; Tilburg University, Tilburg School of Social and Behavioral Sciences, Tranzo Scientific Center for Care and Welfare</td>
</tr>
<tr>
<td></td>
<td>Mert, Agali; Centra voor Integrale Revalidatie en Arbeidsactivering Nederland,</td>
</tr>
<tr>
<td></td>
<td>Zedlitz, Aglaia; Universiteit Leiden, Healt, medical and neuropsychology</td>
</tr>
<tr>
<td></td>
<td>Vrijhoef, Hubertus; Tilburg University, Tranzo</td>
</tr>
<tr>
<td>Primary Subject Heading:</td>
<td>Rehabilitation medicine</td>
</tr>
<tr>
<td>Secondary Subject Heading:</td>
<td>Rheumatology, Research methods, Mental health</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Rehabilitation medicine < INTERNAL MEDICINE, MENTAL HEALTH, PAIN MANAGEMENT, QUALITATIVE RESEARCH, Information technology < BIOTECHNOLOGY & BIOINFORMATICS</td>
</tr>
</tbody>
</table>
Study Protocol

Serious gaming during multidisciplinary rehabilitation for patients with complex chronic pain and fatigue complaints: study protocol for a controlled trial and process evaluation

Miel A P Vugts MSc*
Tilburg University, Tilburg School of Social and Behavioural Sciences, Tranzo Scientific Centre for Care and Welfare;
Cirán Rehabilitation Centres, Venlo, the Netherlands

Margot C W Joosen PhD
Tilburg University, Tilburg School of Social and Behavioural Sciences, Tranzo Scientific Centre for Care and Welfare

Agali Mert PhD
Cirán Rehabilitation Centres, Venlo, the Netherlands

Aglia M E Zedlitz PhD
Leiden University, Department of Health Medical and Neuropsychology, Leiden Institute for Brain and Cognition

Hubertus J M Vrijhoef PhD
Tilburg University, Tilburg School of Social and Behavioural Sciences, Tranzo Scientific Center for Care and Welfare, the Netherlands;
Maastricht University Medical Center, Department of Patient & Care, the Netherlands;
Vrije Universiteit Brussels, Department of Family Medicine, Belgium

*Corresponding author: Miel A P Vugts MSc. PhD Candidate, Tilburg University, Tilburg School of Behavioural Sciences, Tranzo, P.O. Box 90153, Tilburg 5000 LE, The Netherlands. Tel: +31 13 466 8271; e-mail: m.a.p.vugts@tilburguniversity.edu

KEYWORDS: Chronic pain, functional somatic syndrome, serious gaming, multidisciplinary rehabilitation

Version 1.0 (10/02/2017)
Number of words: 3986
ABSTRACT

Introduction:
Many individuals suffer from chronic pain or functional somatic syndromes and face boundaries for diminishing functional limitations by means of bio-psychosocial interventions. Serious gaming could complement current interventions through enjoyment and independent accessibility. A study protocol is presented for studying whether, how, for which patients, and under what circumstances serious gaming improves patient health outcomes during regular multidisciplinary rehabilitation.

Methods and analysis:
A mixed-methods design is described that prioritizes a 2-armed naturalistic quasi-experiment. An experimental group is composed of patients who follow serious gaming during an outpatient multidisciplinary programme at two sites of a Dutch rehabilitation centre. Control group patients follow the same programme without serious gaming in two similar sites. Multivariate mixed modelling analysis is planned for assessing how much variance in 220 complete records of routinely monitored pain intensity, pain coping and cognition, fatigue, and psychopathology outcomes is attributable to serious gaming. Embedded qualitative methods include unobtrusive collection and analyses of stakeholder focus group interviews, participant feedback, and semi-structured patient interviews. Process analyses are carried out by a systematic approach of mixing qualitative and quantitative methods at various stages of the research.

Discussion:
Study validity might be limited by a lack of randomized participant sampling and treatment allocation. However, realist evaluation principles and mixed-methods used may enhance future assessment of serious gaming effects across patients and health care settings.

Ethics and dissemination:
The Ethics Committee of the Tilburg School of Social and Behavioural Sciences approved the research after reviewing the protocol for the protection of patients’ interests in conformity to the letter and rationale of the applicable laws and research practice (EC 2016.25t).

Trial registration:
A protocol for the naturalistic quasi-experimental outcome evaluation was entered in the Dutch trial register (NTR6020).

ARTICLE SUMMARY

Article focus
- Describe a protocol for a naturalistic quasi-experiment with embedded mixed-methods for evaluating if, when, and how serious gaming improves health outcomes during multidisciplinary rehabilitation in a regular health care setting.
- Pain intensity, pain coping and cognition, fatigue, and psychopathology are primary patient outcomes.

Key messages
- Serious gaming may be complementary in enhancing the accessibility and/or effectiveness of biopsychosocial interventions.
- Health outcomes of a serious game intended for behavioural change (LAKA) are evaluated for the first time in patients with chronic pain or functional somatic syndromes.
- Complication of intervention effects can be addressed by means of realist evaluation principles and mixed-methods.

Strengths and limitations of this study

- The novelty of the intervention and study methods is a strength.
- Using a pragmatic approach to study serious gaming when deployed in a regular health care setting enables to understand under what conditions serious gaming will (not) work.
- Study limitations come with the naturalistic design, due to pragmatic reasons, that prevents random treatment assignment and stringent diagnostic methods.
INTRODUCTION
Background and rationale

Video games are vividly debated to their behavioural and clinical outcomes, which may be negative or positive depending on game content and player attributes. Serious (health) games primarily target promotion of health benefits. A new serious game, called LAKA, aims to facilitate patient learning about living with complex chronic somatic complaints. Based on the results of a feasibility study, LAKA is deployed in a regular health care setting, as an additional component of outpatient multidisciplinary rehabilitation. The current protocol presents an innovative mixed-methods study for gaining insight into the effectiveness of serious gaming as a complementary modality during regular multidisciplinary rehabilitation.

Using a variety of definitions and measures of pain and disability, the worldwide prevalence estimates for chronic pain range between 7% and 64%. Individuals are in chronic pain (CP) when complaints persist beyond the usual 3 to 6 months of organic recovery. Functional somatic syndromes (FSS) are diagnosed in individuals that seek medical help for functional disturbance and chronic somatic symptoms without a satisfactory explanation by organ pathology or disease. CP and FSS may have a biological explanation in central nervous system sensitization. Predisposition to these disorders is probably determined by a combination of genetic factors and personality characteristics. Symptom patterns are often precipitated by trauma or social factors. Maladaptive thoughts, feelings, and behaviour are assumed to maintain the symptoms. Regarding treatment, support has been found for a stepped care approach with active bio-psychosocial treatment when unimodal treatments are insufficient. Unfortunately, only small long-term improvements have been found in low back pain patients with severe and long-lasting pain and disability. Recent research addresses ‘matching’ and ‘blending’ therapeutic strategies and delivery modes. As such treatment access, reach, adherence and effectiveness could be enhanced.

Serious gaming could be of aid here. Previously investigated strategies are exergaming to improve motivation for physical activity, ‘brain training games’ against dullness in the remediation of cognitive functions, ‘virtual reality’ for safety in graded activity or exposure, and ‘health behaviour gaming’ for fun while addressing behavioural antecedents. In the fields of rehabilitation and pain management, virtual environments have shown promise in reducing acute pain by distraction, or in activity management to restore physical functioning. Outcome improvement after computer-based treatment in CP or FSS patients may be mediated by changes in beliefs (about illness, control, fear avoidance), coping (catastrophizing, psychological inflexibility), or mood. It is plausible that features of a health behaviour game such as interactivity, storytelling, simulation, sound effects and visuals can be leveraged for behavioural change. If game tasks correspond with an intended piece of knowledge and/or skill, learning may benefit from immersion, and intrinsic motivation. Studying how such gaming mechanisms affect treatment may help to understand variation in outcomes and aid in design improvement.

However, within the outcome evaluation of multidisciplinary interventions several complicating factors arise. These consist of the multidimensionality and dependency on implementation in actual health care settings. In other words, characteristics at the levels of organization, care providers, patients and interventions all affect outcome levels. Therefore, ideally, multiple sources of information are used to evaluate to what extent, for whom, when and under what circumstances an
innovation of multidisciplinary treatment improves outcomes in patients with CP or FSS.39 40 For example, some intervention studies show different outcomes of a computer delivered therapy when applied in different countries.41 Likewise, serious gaming outcomes may vary according to whether, when, and how ‘debriefing’ is delivered to exploit game-play experiences for learning outcomes.42 Debriefing can be offered via software or professional support via chat, e-mail, or face-to-face in groups or individually. Indeed, more adequately powered clinical trials are needed.2 3 43 Moreover, pragmatic trials and realist evaluation principles are needed to determine how serious gaming relates to patient outcomes depending on how it is deployed in actual health care settings.

Study aims

Here we describe the protocol for outcome and process evaluations of complementary serious gaming during regular multidisciplinary rehabilitation for patients with CP or FSS, which holds three study aims.

The first aim is to investigate the effectiveness of serious gaming as a treatment complement. We question to what extent multidisciplinary rehabilitation with an additional serious gaming component is more effective than multidisciplinary rehabilitation without serious gaming for symptom reduction and clinically relevant improvement. Primary outcomes are pain intensity, pain coping and cognition, fatigue complaints, anxiety and depression. Secondary outcomes are patients’ impression of overall improvement, general subjective health, and satisfaction with functioning and treatment.

Secondly, we aim to understand which organization, provider, patient, and/or innovation level factors influence the outcomes of serious gaming for patients. Innovation level factors concern serious gaming features. Patient level facilitators or barriers could be demographic, health status and (co-)intervention history factors. Serious gaming outcomes could also depend on complex provider behaviour by attitude, skill, and/or time constraints. Finally, outcomes of serious gaming could be influenced by its organization in a clinical setting. Therefore, we pose the question: what are the barriers and facilitators of outcome improvement through serious gaming according to patients, providers, and other stakeholders? Furthermore, we question how variation in serious gaming outcomes can be decomposed with plausible patient level differences and/or delivery conditions within the treatment setting (i.e. size of a debriefing group).

The third aim concerns how serious gaming contributes to patient outcomes. For this, we explore various serious gaming mechanisms, being the subjective experiences and objective performances in context that may affect health outcomes. In addition, plausible linear effects between mechanisms and patient outcome variables are investigated. Achievement of all three research aims will inform the further development of a valid and practical programme theory of serious gaming outcomes in regular health care for patients with CP or FSS.

METHODS AND ANALYSIS

Study design and procedure

An embedded experimental mixed-methods design is created by an integrated multidisciplinary research team (MV, HV, MJ, AZ, AM) to address all three research aims in a single study (see figure 1). For studying the first research aim, which is to estimate patient level outcome improvement due to serious gaming during regular outpatient rehabilitation, a two-armed naturalistic quasi-experiment is prioritized (displayed at the centre of figure 1). A serious gaming intervention is deployed, for usage by
all patients, at two sites of a Dutch outpatient rehabilitation clinic. Therefore, an intervention group is constituted of patients who receive the multidisciplinary rehabilitation programme with an additional serious gaming intervention. The control group consists of patients who simultaneously follow the same programme in two similar sites of the same clinic without serious gaming. Codified quantitative data from patient records will be retrieved and analysed to examine between group outcome differences. The protocol for the naturalistic quasi-experiment was entered in the Dutch trial register (NTR6020).

Figure 1: Overview of the Mixed-Methods design

Quantitative and qualitative data collection

Organizational level: qualitative (n=1)

Provider level: Qualitative (n=4)

- Before experiment: Focus groups

Patient level: Quantitative and qualitative (n=220 full cases)

- Patient feedback forms: Open and closed survey questions
- Provider feedback forms: Open survey questions (during experiment)
- After experiment: Focus groups

Naturalistic quasi-experiment

- Quantitative before measures
- Serious Gaming (innovation level)
- Quantitative after measures
- Semi-structured interviews

Proces analysis step 1: Coding qualitative data & counting themes

Hypothesis Formulation

Quantitative analysis (IBM SPSS 22):
- Descriptive statistics (process analysis step 3)
- Outcome assessment: Multivariate mixed-modeling
 - Process analysis step 4: Associations, mediator and/or moderator analyses

Mixing: Process analysis step 6; final interpretation and formulation of a program theory

Proces analysis step 5: Feed back results to stakeholders
Embedding qualitative methods before, concurrently to, and after the quasi-experiment suits our second and third study aims. This mixed-method design is ideal for examining intervention processes, understanding mechanisms related to variables, and supporting programme theory development. Herein, no intermediate qualitative results are communicated with providers and implementers during the experiment. Data collection started in April 2016 and is planned to end in March 2017, quantitative outcome data will be retrieved when concurrently collected qualitative data are analysed (February 2017).

Recruitment
Sites and professionals
Two intervention sites where serious gaming is deployed participate in the study. For the recruitment of control subjects, two other sites (out of 18 sites as part of the same treatment centre) are selected based on similarity with regard to patient characteristics, facilities, protocols, history, personnel, location in or near a city in the southern Netherlands, and the absence of disruptive events planned during the intervention period. The treatment centre provides rehabilitation care covered by health insurance in association with a university medical centre. Professional study participants are local stakeholders of serious gaming, including experts, implementers, and providers.

Patients
Patient candidates received an indication of eligibility for outpatient multidisciplinary rehabilitation from a rehabilitation physician, and completed half of their rehabilitation programme at a participating site. Physician indications of eligibility are followed, which are based on the results of diagnostic surveys, physical and psychological investigations, and clinical interviewing via teleconference. Accordingly, patient participant inclusion criteria are: being between 18 and 67 years of age, reporting the presence of pain for more than 6 months, or fatigue complaints or a musculoskeletal disease for more than 3 months, having no (more) indication for another (cost-)effective medical treatment, and have concomitant psychosocial problems. Patients are excluded from participation if: psychiatric symptoms are not adequately controlled, there is significant risk of psychological decompensation through a rehabilitation treatment, language or communication problems make it impossible to follow rehabilitation, and/or demonstrable inability to change behaviour (due to personality disorders, third party liabilities, or otherwise). An information letter, consent form, and verbal explanation are provided by local care providers. The recruitment process is monitored to ensure that all candidates are invited.

Interventions
Multidisciplinary rehabilitation programme
The outpatient multidisciplinary rehabilitation programme includes common bio-psychosocial approaches, and incorporates a focus on well-being and participation. The standardized 16-week programme consists of on average 95 hours of individual or group sessions that are organized in modules and assigned in accordance with individual care needs. Each patient is treated by a team of two physiotherapists and two registered master’s degree psychologists. Psychotherapeutic techniques include Cognitive Behavioural Therapy and psychodynamic approaches. For all patients, treatment contains rationales, goal setting and feedback, social support, exposure treatment, behavioural...
repetition and substitution, skills training (in relaxation, social skills, and meditation), and identity development techniques. Allocation of cognitive restructuring, eye movement desensitization (EMDR), and an intensive 2-day well-being course depend on screening results for psychopathological symptoms and fear avoidance beliefs, post-traumatic stress, and psychological well-being.

Serious gaming

Theory and change techniques of the serious game LAKA

Developer assumptions for the game LAKA have been documented throughout development and related to conceptual frameworks (see appendix). Serious gaming is proposed to promote practice for well-being improvement, and for identifying and diminishing distortions and biases of self. This may be helpful for patients with CP or FSS in reducing the burden of their symptoms. Based on a review of information about the design rationale, functionality, validity proof (before outcome evaluation), and data protection measures of LAKA, an independent jury awarded 3 out of 5 attainable stars for quality (see appendix).

The serious game LAKA promotes practice through an Avatar model. Before the game starts, participants are invited to identify with an Avatar of their chosen gender and name (table 1). The storyline introduces an Avatar who recently experienced physical and social deterioration, senses an urgency to change, and engages in a trip around the world to learn about ‘the art of living’. Player tasks are: to explore and select virtual action plans for ‘encounters’ with non-playing characters, to evaluate their ‘satisfaction’ about chosen actions, and to perform skills training in focused attention and open monitoring meditation exercises. Encounter scenarios model uncertain events resulting in varying Avatar states depending on action plans chosen by players. Encounters are increasingly influenced by distant cultural meanings to challenge anticipation of the course of events (i.e. depending on the scenario, agreeable responding can result in a pleasant interaction or involvement in a scam). Players receive global feedback on the extent to which chosen actions correspond with a reference model for values (see appendix). Self-reflective elements are interspersed with short casual action and puzzle games, images, and information associated with the location of the Avatar. These features are included to vary game play, and can be skipped.

Table 1: Features, dose, and tasks

<table>
<thead>
<tr>
<th>Features</th>
<th>Dose (in game frequency)</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
<td>- Choose Avatar gender and name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Receive instruction: to identify with the personal Avatar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Introduction to Avatar storyline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Receive task instructions from LAKA (non-playing character with a mentoring role)</td>
</tr>
<tr>
<td>Encounters</td>
<td>16</td>
<td>- Select action plans for the Avatar in encounters with non-playing characters (each instance offers 5 optional action plans, which are modelled after a reference set of values: generosity, moral discipline, patience, enthusiastic perseverance).</td>
</tr>
<tr>
<td>(See screenshot in the appendix)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mood scenarios</td>
<td>8</td>
<td>- Select action plans for the Avatar when subjected to an adverse event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Given the adverse scenario: think of what your own affective state would be in this situation, and bear in mind the depicted emotional state of the Avatar.</td>
</tr>
<tr>
<td>Reflections</td>
<td>4</td>
<td>- Assess satisfaction about selected Avatar actions on a scale of 0-10.</td>
</tr>
<tr>
<td>Activity</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Attention training:</td>
<td>- Guided (focused attention and open monitoring) meditation exercises for mental stability.</td>
<td></td>
</tr>
<tr>
<td>Tours:</td>
<td>- Skip or listen to ‘tour-guide’ voiceovers informing about pictures of the location visited by the Avatar.</td>
<td></td>
</tr>
<tr>
<td>Loading screens:</td>
<td>- See where travel destinations are located on a geographical map.</td>
<td></td>
</tr>
<tr>
<td>Mini-games:</td>
<td>- Action games: Steering a vehicle (by using tilt mechanism of tablet pc, or keyboard arrow controls) to arrive at the next encounter (reference: ‘rocket bird’).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Puzzle: Fix a road by connecting parts of the road to arrive at the next encounter (reference: ‘plumber games’).</td>
<td></td>
</tr>
<tr>
<td>Festive closing:</td>
<td>- Replay of ‘extreme’ responses throughout the game.</td>
<td></td>
</tr>
</tbody>
</table>

Mode of delivery

In accordance with patient suggestions for optimal reach, the rehabilitation clinic delivers professional assistance and the occasion for playing the serious game LAKA on site, besides downloading and playing on a home computer. Suitable rooms with Wi-Fi connection, tablet computers with LAKA installed, and headphones are provided. Four 1-hour sessions of serious gaming are planned for 1 to 6 patients simultaneously during weeks 9-12 of their rehabilitation programme. The sessions are scheduled in connection with other therapy sessions to ease coordination with daily activities. In the first session, patients are briefly introduced to the serious game LAKA and instructed to complete the game independently during the second and third sessions. In the fourth session, patients participate in a debriefing. Experienced therapists (1 physiotherapist, and 3 psychologists) provide the introduction and debriefing sessions.

Programme theory

The framework of context, mechanism, outcome (CMO) configurations is used to structure ongoing development of a programme theory for serious gaming as a complement during multidisciplinary rehabilitation. To illustrate, a patient with an active coping style self-exposed for a short amount of time to unsupported serious gaming during multidisciplinary rehabilitation (context), experienced enjoyment and discrepancy regarding valued self-identities (mechanism), and expected this to contribute to health improvement (outcome). Timely building blocks for CMO configurations for serious gaming are deduced from the literature. Outcomes are interpreted using models of self and well-being (appendix), and relevant outcome domains for patients with CP or FSS. Two comprehensive implementation models are used for the classification of context factors. Finally, mechanisms of serious gaming are discerned as gaming behaviours (frequency, length, and performance of game play), and user experiences of gaming, simulation, and information systems. More specifically, subjective mechanisms may involve sense of presence, technology acceptance, positive and negative affect, game-based learning, and perceived ‘learning transfer’ to daily life.

Measures

Quantitative data

Patient web-survey self-assessments for routine outcome monitoring will be used, which are taken at the indication of eligibility (at baseline), after 8 weeks of treatment (intermediate), and again after 16
weeks of treatment (post). Surveying procedures include the facilitation of patients without convenient computer access and promotion of follow-up completion. Primary outcome measures are selected from those available in patient records based on whether instruments are deemed valid and relevant (see table 2). These endpoints include a numerical rating scale for current pain intensity, the pain coping and cognitions list (PCCL), fatigue as assessed by the Checklist Individual Strength (CIS), and psychopathological symptoms as measured by the Symptom Checklist (SCL-90). Secondary measures focus on other relevant outcomes such as patients’ global impression of improvement after treatment. Another widely used single item Likert-scale rating is used for measuring general health (poor to excellent). Finally, numerical rating scale items are available to assess patients’ satisfaction about treatment and functioning (see table 2).

Table 2: Quantitative outcome measures

<table>
<thead>
<tr>
<th>Variables</th>
<th>Measures</th>
<th>Time of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current pain intensity</td>
<td>1 item Numerical Rating Scale (NRS) 0-10</td>
<td>Baseline, intermediate, post treatment</td>
</tr>
<tr>
<td>Pain coping and cognition</td>
<td>Pain Coping and Cognitions List (PCCL)</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>Checklist Individual Strength (CIS)</td>
<td></td>
</tr>
<tr>
<td>Psychopathological symptoms</td>
<td>Symptom Check List (SCL-90)</td>
<td></td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinically relevant improvement</td>
<td>Patient Global Impression of Change (PGIC)</td>
<td>Intermediate, post treatment</td>
</tr>
<tr>
<td>General subjective health</td>
<td>“What do you think of your current health in general?”</td>
<td></td>
</tr>
<tr>
<td>Perceived functioning</td>
<td>“Please indicate how satisfied you are generally taken with your current level of functioning”</td>
<td></td>
</tr>
<tr>
<td>Treatment satisfaction</td>
<td>Three Likert scale items, i.e. “Would you recommend this treatment centre to other rehabilitation patients?”</td>
<td>Post treatment</td>
</tr>
</tbody>
</table>

Case-mix variables will be retrieved from patient records. Patient variables are based on screening records and involve demographic, health status, and treatment history information (see table 3).

Table 3: Patient characteristics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Years of age</td>
</tr>
<tr>
<td>Gender</td>
<td>% Female</td>
</tr>
<tr>
<td>Socio-economic status</td>
<td>Highest education level, source of income</td>
</tr>
<tr>
<td>Coping style</td>
<td>Utrecht Coping List (UCL)</td>
</tr>
<tr>
<td>Environment</td>
<td>Presence of problems with regard to social life, financial situation, trauma, work situation.</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Duration (months), course, and location of somatic (pain) complaints</td>
</tr>
<tr>
<td>Physical status</td>
<td>Body Mass Index, blood pressure, musculoskeletal conditions</td>
</tr>
<tr>
<td>Other treatment</td>
<td>Presence of and changes in medication usage. Frequency of health care visits. Previous visits to medical specialists, physiotherapists, and/or psychologist.</td>
</tr>
<tr>
<td>Treatment (modules) received</td>
<td>Automatic logs (session presence)</td>
</tr>
</tbody>
</table>

Intervention mechanisms may cover subjective experiences and objective behaviours of serious gaming (see table 4). Automatic registrations in patient files enable objective assessment of serious gaming frequency, duration, progress, and performance. Moreover, a short survey was composed in
collaboration with the rehabilitation centre to measure subjective experiences shortly after serious gaming. This survey contains items on perceptions of using a serious game (regarding usefulness, ease of use, trust, enjoyment, goal clarity, challenge, and learning45860), the 10-item short form of the positive and negative affect scale,66 the involvement and realism scales from the Igroup Presence Questionnaire,57 and (0-10) numerical rating scale item on perceived learning transfer. A reminder was sent to intervention group participants if the survey was not completed within a week after their last gaming session. Finally, a questionnaire on patient values may be used to explore relationships between mechanisms and outcomes of serious gaming.

Table 4: Quantitative indicators for mechanisms

<table>
<thead>
<tr>
<th>Variables</th>
<th>Measures</th>
<th>Respondents</th>
<th>Time of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach, dose, gaming performance</td>
<td>Data logs: frequency, timing, length, progress, and scores of play</td>
<td>Intervention group</td>
<td>During SG (automatic)</td>
</tr>
<tr>
<td>Acceptability and playability</td>
<td>Selection of UTAUT 2 items (perceived usefulness, ease of use, trust, enjoyment)</td>
<td>Intervention group</td>
<td>Post Serious Gaming</td>
</tr>
<tr>
<td>Positive and negative affect</td>
<td>PANAS-SF</td>
<td>Intervention group</td>
<td>Post Serious Gaming</td>
</tr>
<tr>
<td>Presence (general, involvement, and realism)</td>
<td>IGroup Sense of Presence Questionnaire item for general sense of presence, and subscales for involvement and realism.</td>
<td>Intervention group</td>
<td>Post Serious Gaming</td>
</tr>
<tr>
<td>Learning transfer</td>
<td>Numerical rating scale (0-10): “Use the following slider to indicate to what extent you expect that the LAKA sessions contribute to your own treatment”</td>
<td>Intervention group</td>
<td>Post Serious Gaming</td>
</tr>
<tr>
<td>Values (expressed in thoughts and behaviour)</td>
<td>Values questionnaire*: 5-point Likert scales, i.e. “If I find it necessary, I'll intervene to help or to protect others”.</td>
<td>Intervention and control groups</td>
<td>Baseline, intermediate, post treatment</td>
</tr>
</tbody>
</table>

*Psychometric properties are still under investigation. Empirical support for good scale internal consistency, and strong associations with psychological well-being in rehabilitating patients were documented in a report for the Dutch Committee on Test Affairs (COTAN).

Qualitative data

Protocols for focus group and semi-structured patient interviews are informed by the CMO building blocks and principles for interviewing in realist evaluation.67 Accordingly, the role of the interviewer ranges from open and explorative towards more educational and evaluative when CMO configurations become better delineated. Providers are expected to be especially knowledgeable about context and mechanisms of serious gaming, while patients may say the most about context and outcomes. Purposive sampling of participants is used until reaching a point of data saturation. All interviews are tape-recorded and verbatim transcribed. Transcripts and a summary of findings are sent to participants by email to enable them to check if their views are accurately reflected.

Provider (focus group) interviewing

Four focus group interviews are held, two before and two after the naturalistic experiment, to involve stakeholders in the ongoing development of serious gaming and programme theory. Participant selection and topics are based on actual data needs. Heterogeneous groups of care providers, implementers, and experts (in ICT, well-being, and serious gaming) are invited for the first and last
discussion meetings. The first interview focused on the research goals for an open discussion. The last group interview will focus on programme theory for member checking and refinement. Homogenous groups of provider participants may be invited for the second and third focus groups for more in-depth information. Provider participants are asked to share positive and/or negative feedback about serious gaming via a secured web-form. This includes information on the occurrence and management of adverse events and/or unintended effects during serious gaming.

Patient interviewing

Two open interview questions about gaming experience and perceived learning transfer are added to the post-gaming survey for intervention group participants. Patient participants with high and low scores on a 1-item numerical rating scale (0-10) for perceived learning transfer are invited for a semi-structured interview after their rehabilitation treatment. These interviewees are asked to describe their health outcomes during rehabilitation, and to list the three most important reasons why serious gaming did, or did not, contribute positively or negatively to this process. A point of saturation is reached if the three factors (context and/or mechanisms) mentioned are all richly described. Control group interviewees are matched to some of the intervention group interviewees to compare rehabilitation outcome changes for similar cases with versus without serious gaming.

Analysis

Statistical outcome evaluation

Quantitative data will be imported in SPSS 22, described after statistical inferences, and analysed on intention-to-treat basis. All case-mix variables are described for individual study participants, as well as the differences between intervention group and control group participants. Multivariate mixed-linear modelling techniques will be used to evaluate the extent to which serious gaming predicts variance in patient outcome levels between the intermediate and final outcome assessments of the rehabilitation programme. Effective sample size and intra-class coefficients will be calculated to determine dependency on hierarchical patterns in outcome variation by care provider levels. An optimal prediction model will be specified, correcting for potential unbalances between the study groups (at baseline and/or intermediate), and/or important higher-level random effects.

Process analyses

A programme theory will be created after a sequence of analysis steps. In each step, analyses will be performed completely by MV and in part by MJ or AZ (independent coding of interviews, and re-running syntax), and discussions will be held involving a third author (HV) to resolve differences and find agreement about the results. First, concurrently collected qualitative data analyses will be performed to identify plausible CMO configurations from the perspectives stakeholders. All qualitative data will be coded in vivo and higher order coded using CMO building blocks to determine configurations. Secondly, a selection of key CMO configurations will be made based on counts of the number of participants supporting them in their open text responses to the post-gaming survey. Hypotheses will contain specific expectations of (linear) relationships implied by the CMOs. If needed, additional provider or site level data (i.e. debriefing session group sizes) will be retrieved from clinical administration records. Third, quantitative data will be screened by testing internal consistency in SPSS or data triangulation.
with qualitative data if possible. Fourth, hypotheses will be tested with available and valid quantitative data. Fifth, data from the last focus group will be coded. Sixth, quantitative and qualitative findings will be mixed for an overall interpretation and drawing final conclusions.

Power calculation

From practical, theoretical and statistical perspectives, a powerful primary outcome assessment was anticipated by focusing on recruiting a sufficient number of individual patients from the four participating treatment facilities. The rehabilitation centre (n=1), intervention sites (n=2), as well as the number of time-points (3), are practically fixed. Analysis of unpublished pilot data suggested that variation in baseline to post treatment outcome changes between treatment locations might be negligible relative to individual variation within sites (intra-class correlations > .05).

Using G*Power, a required sample size of 212 participants was calculated for determining a small effect by means of a MANOVA test of global effects. A small to medium effect size was expected based on a meta-analysis about the effect of Serious Games for Health on cognition, motivation, and psychological outcomes. Therefore, the following parameters were inserted: for power (1-Beta), 0.8; effect-size (f^2), 0.0625; type-II error probability (alpha) = .05; number of dependent variables, 5; and number of groups, 2. Anticipating some level dependence and/or randomly missing data (pain coping and cognition measures are not filled out by patients reporting 0 pain intensity at baseline), 250 patient participants will be recruited. Assuming 20% treatment and study attrition rates and an average weekly inflow of 9 patients starting with their treatment within each of the four facilities, outcome data are available 6 months after recruiting the first patient.

ETHICS AND DISSEMINATION

Ethical approval for the mixed-methods protocol was obtained from the psychological ethics committee of Tilburg School of Social and Behavioural Sciences (EC-2016.25t). In the absence of a legal obligation for medical ethics review, independent judgement was provided on the protection of patient rights by conformity to the letter and rationale of the applicable laws and research practice. Patient participants are consented before participation, that is before receiving the additional (5-10 minute) survey (intervention group), being invited for a semi-structured interview, or retrieving their codified data. Participants were protected against harm by regular clinical safety measures throughout. Professional participants are also consented before participation in qualitative data collections. Under supervision of MJ, MV is responsible for safe storage and the accessibility of (codified) research data to all authors. Qualitative and quantitative results will be presented and discussed together in one or more research article(s), and at one or more international scientific conferences. A summary of study results will be provided to the study participants.

DISCUSSION

The novelty of the serious gaming intervention and study methods are strengths of the proposed evaluation, but imply limitations as well. LAKA is the first serious game that promotes practice for self-process enhancement under highly prevalent adverse conditions such as CP or FSS. CMO configurations may be identified that are transferable to other populations and settings where similar approaches to behavioural change are beneficial. However, internal and external validity are threatened due to
divergence from the golden standard procedures of a (cluster) randomized controlled (multi-centre) trial. Instead, pragmatic considerations for the deployment of serious gaming during rehabilitation in two sites of a single Dutch centre led treatment allocation and recruitment methods. Different comparisons with serious gaming (i.e. usual care, waiting list, or text based computer-based intervention), more elaborate psychiatric assessment, and/or long-term follow up measurement are precluded. The realist evaluation principles and mixed-methods used in this study are increasingly accepted in scientific communities as means to compensate for practical study limitations and to build programme theories that enhance future predictions of intervention effects across patients and healthcare settings.69 70

Legitimate application of mixed-methods is promoted by the protocol in various ways. First, participant recruitment and selection methods for quantitative and qualitative examinations allow a strong representation of patients receiving bio-psychosocial treatment in a regular outpatient setting. This differs from studies in which the eligibility of applicants for computer-based intervention depends on motivation and/or ability to use a computer or internet facilities.71 72 Secondly, perspectives of insiders (patients, health care providers and developers) and outsiders (independent experts and members of the research team) will be utilized. Third, relevant theoretical constructs are specified before quantitative and qualitative data collections to prevent process analysis results being strongly affected by the sequencing of qualitative and quantitative methods. Fourth, predefined steps structure data convergence and switches in epistemological paradigms when qualitative methods are used to propose quantitative results (in advance) and to explain them (afterwards).

ACKNOWLEDGEMENTS
Acknowledged for their role in the development of serious gaming are: Ciran (owner & developer): Alfonsus van Bergen, Jan Jochijms, and Jeroen van Bergen; software developers: Paladin Studios, Marcel Lips; contributors of intellectual content: Karel Michiels, and Jac Geurts.

AUTHORS’ CONTRIBUTIONS
MV, HV, AM, and MJ conceived the protocol. MV drafted the work, which was critically revisited by HV, AZ, AM and MJ for important intellectual content. All authors have given their final approval of the version to be published and agree to be accountable for all aspects of the work.

FUNDING STATEMENT
The work was supported by Ciran in the development LAKA, allocation of serious gaming, and provision of raw quantitative data. Ciran is a foundation that develops and provides a rehabilitation care programme for complex chronic pain and fatigue symptoms in association with Radboud academic medical centre (The Netherlands). Qualitative data collection, data management, data analyses, interpretation of results, writing of the report, and publication decisions are authorized by university staff members.

COMPETING INTERESTS STATEMENT
All authors have completed the ICMJE uniform disclosure form and declare:
Dr. Vugts reports employment by Ciran, and is provided time and occasion to conduct independent doctoral research by way of agreement at Tranzo, Scientific Centre for Care and Welfare, Tilburg University. The terms of this arrangement have been reviewed and approved by Tranzo in accordance with its policy on objectivity in research.

Dr. Joosen has nothing to disclose.

Dr. Zedlitz has nothing to disclose.

Dr. Vrijhoef reports personal fees from Ciran, outside the submitted work.

Dr. Mert has nothing to disclose.

REFERENCES

SUPPLEMENTARY FILE

Content:
1. Developer assumptions
2. Screenshot example
3. Information about the design rationale, functionality, validity proof (before outcome evaluation), and data protection

1. Developer assumptions

<table>
<thead>
<tr>
<th>Developer assumptions</th>
<th>Related theory</th>
</tr>
</thead>
</table>
| The rehabilitation program is based on a (four dimensional) bio-psycho-social-spiritual treatment model in which Eastern and Western (medical) interventions are integrated. Interventions are aimed at improving 'mobility of mind', which is defined as: flexibility in accommodating 2 dynamic processes: 1) participation in private, social, and work roles, and 2) the ability to participate. Ability to participate depends on four aspects: symptoms (signals due to organ system injury or disturbance in shaping and controlling one's life or 'existence'), autonomy, perspective ('to see one's opportunities for finding meaning in life through inspiration'), and values. A reference for values is given by generosity, moral discipline, patience, enthusiastic perseverance, and mental stability. LAKA was designed to offer covert learning and skills training for enhancing a sense of self characterized by autonomy, values, and perspective. | This learning content may converge with and diverge from related concepts known in published scientific literature, including:
- Categories of the International Classification of Functioning: specific (higher) mental functions, and activities and participation domains 6-9.\(^1\)
- Coping flexibility under conditions of CP or FSS.\(^2\)
- Eudaemonist process of psychological well-being.\(^3\)
- Autonomously motivated pro-social behaviour.\(^4\)
- (Neuro)psychological processes associated with similar practices (focused attention, open monitoring, and ethical enhancement) in general: self-awareness, self-regulation, and self-transcendence.\(^5\) |
| Improvement in mobility of mind is associated with better health outcomes after rehabilitation in patients with complex pain or fatigue (\(^1\)st and \(^2\)nd). | Learning content may converge with and diverge from similar plausible targets in non-pharmacological treatment for patients with CP or FSS: Internal control beliefs (+), avoidance (-), self-acceptance (+), mindfulness (+), values-based action (+), rumination (-), catastrophizing (-), negative (-) and positive (+) mood.\(^6\) |
| (Video) game mechanics can be leveraged to enhance learning by through player’s self-awareness and intrinsic motivation. The game is of a relatively short duration, but aims to promote continued practice by any means outside the game. | Plausible ways in which video game mechanics may affect the self in players.
- Self-efficacy theory: vicarious learning in health behaviour games.\(^7\)
- Self-determination theory: gaming elicits representations of valued self-identities in players (through autonomy, competence, and relatedness).\(^8\)
- Meta-cognitive processing is a likely consequence of, and characterizes interaction in the context of video game-play.\(^9\) |
2. **Screenshot (London Hyde Park)**

![Screenshot of people in a park with a dog.]

Sorry about that. Doesn't do that normally.
3. Information about the design rationale, functionality, validity proof (before outcome evaluation), and data protection

<table>
<thead>
<tr>
<th>Category</th>
<th>Item</th>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game description</td>
<td>Operating system</td>
<td>Operating systems of the game</td>
<td>Android, iOS, Windows, OS X</td>
</tr>
<tr>
<td></td>
<td>Version</td>
<td>Version</td>
<td>Beta+</td>
</tr>
<tr>
<td></td>
<td>Web-link</td>
<td>Web-link</td>
<td>Yes*</td>
</tr>
<tr>
<td></td>
<td>Project type</td>
<td>Commercial, non-commercial, other</td>
<td>Non-commercial</td>
</tr>
<tr>
<td></td>
<td>Access</td>
<td>Public / restricted / other</td>
<td>Restricted</td>
</tr>
<tr>
<td></td>
<td>Adjunct devices</td>
<td>Is an adjunct device needed?</td>
<td>No adjunct device needed</td>
</tr>
<tr>
<td>Development</td>
<td>Funding</td>
<td>How was development funded? E.g., funding agencies, investors</td>
<td>Investors (Ciran)*</td>
</tr>
<tr>
<td>Sponsoring / Advertising</td>
<td>Advertisement policy</td>
<td>Is the game free of commercial pop-ups?</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Sources of income</td>
<td>Are there sources of income within the game?</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Sources of income outside game</td>
<td>What are the sources of income of the owner/distributor?</td>
<td>The owner and distributor (Ciran) is a foundation providing outpatient rehabilitation care covered by health insurance.</td>
</tr>
<tr>
<td>Potential conflicts of interest</td>
<td>Affiliations</td>
<td>What affiliations do the publishers have that could influence content or user group?</td>
<td>Publishers are affiliated with the owner/distributor</td>
</tr>
<tr>
<td></td>
<td>Conflicts of interest</td>
<td>What interests do the publishers have that could influence the game’s content or user group?</td>
<td>Content and user groups are based on the objective of Ciran to improve outpatient rehabilitation for patients with complex chronic pain and/or fatigue. The primary (tentative) purpose of game design is the improvement of (independent) engagement with learning content during a rehabilitation program.</td>
</tr>
<tr>
<td></td>
<td>Disclosure</td>
<td>Are conflicts of interest disclosed?</td>
<td>Yes</td>
</tr>
<tr>
<td>Rationale</td>
<td>Purpose</td>
<td>What is (are) the purpose(s) of the game?</td>
<td>To facilitate learning and promote practice for 'mobility of mind' (see developer assumptions) to support recovery in patients with complex chronic pain and/or fatigue.</td>
</tr>
<tr>
<td></td>
<td>Medical device</td>
<td>Is the serious game a medical device, or not?</td>
<td>Not</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>If yes, which class?</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Approval by legal bodies</td>
<td>If yes, does it comply with the necessary requirements (FDA-approval, CE-mark?).</td>
<td>NA</td>
</tr>
<tr>
<td>User group</td>
<td>Specific user groups</td>
<td>For each user group: disease/condition</td>
<td>Patients with chronic pain and fatigue, and problems in multiple (other) domains of functioning.</td>
</tr>
<tr>
<td>Description</td>
<td>Please specify gender, age (range), and other relevant descriptive items.</td>
<td>See inclusion and exclusion criteria as listed in the main body of the article.</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Limits</td>
<td>Are there age limits, or other limits?</td>
<td>According to PEGI classification, the content of the game was found suitable for people who are at least 12 years of age, because it contains some events of mild swearing.</td>
<td></td>
</tr>
<tr>
<td>Disclosure</td>
<td>Is the intended user group disclosed?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Setting</td>
<td>Patient care Is the game used in patient care?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training courses Is the game used in training courses or curricula?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCORM compliancy If used in training courses or curricula, is the serious game SCORM-compliant?</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Functionality</td>
<td>Purposes / didactic features For every purpose of the game:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Learning or behavioural goals What content will the player learn?</td>
<td>Learning content is based on a reference set of values that manifest in (pro-social) thought and behaviour. These values correspond with the ‘perfections’ of Mahayana Buddhism. Learning this content is, for research purposes, interpreted as a process of psychological well-being through self-awareness, self-regulation, and self-transcendence (see developer assumptions).</td>
<td></td>
</tr>
</tbody>
</table>
| | Relation learning and game play How does the learning content relate to the game play? | Players are supported in imagining how valued states (or ‘selves’) are attainable when going on a trip around the world (as a metaphor for private, social, or work participation). Before the game starts, players are explicitly instructed to identify with an Avatar (of their chosen gender and name). It is stated that Avatar choices reflect you as a player. In an introductory cut-scene, this Avatar meets a non-playing character (NPC), named LAKA. The personal Avatar is introduced as someone who experienced deterioration in physical and social domains of functioning, and is determined to improve his/her life. Then, LAKA challenges the Avatar ‘to cope well with others’ on a trip to 4 destinations (London, Turkey, Asia, and Africa). Meanwhile, most of the mechanics of LAKA enable (virtual) exploration and affirmation of values by selecting action plans for the personal Avatar. At each travel destination, the Avatar faces 4 encounters with NPC's under various circumstances. These encounters are designed as complex interactions between Avatar actions and unpredictable responses of the NPC/environment (rendering variety in cultural settings). For each Avatar action, players select an action plan out of 5 programmed options for physical acting, saying, and/or avoiding. The action plans are modelled by their level of correspondence with values for a given situation. After visiting a destination (after 4 encounters), LAKA appears and asks the Avatar to provide a self-rating of his/her performance, provides feedback on chosen action plans (by giving a certain number of puzzle pieces), and feeds back how well Avatar
Self-ratings and LAKA ratings correspond (by providing additional puzzle pieces). Finally, LAKA delivers focused attention and open monitoring exercises (explaining and illustrating how to practice meditation, prompting practice, providing a means for stress management).

Learning elements are interspersed with short (casual) action and puzzle games, images, and information associated with the location of the Avatar. These features promote enjoyment by varying game play and rewarding curiosity, and can be skipped if preferred.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>What intervention leads to the learning transition (eg, tutorial, instructions (in-game))</th>
<th>Besides prompting identification with the Avatar, and adding feedback by LAKA as a form of in-game debriefing, face-to-face debriefings by care providers are offered to improve the transition from game play to learning for daily life improvements.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment (progress) in game</td>
<td>Through which parameters is progress in the game measured?</td>
<td>Number of encounters completed (progress does not depend on player learning level), but feedback is provided on actions chosen by players.</td>
</tr>
<tr>
<td>Assessment parameters</td>
<td>Which parameters are to designers’ opinion indicative for measuring learning effects?</td>
<td>Primary health outcomes (i.e. pain, fatigue) may be an indirect result of learning. Parameters that may indicate a learning effect more directly may be plausible mediators of outcome improvement after behavioural interventions in CP or FSS patients (see developer assumptions). Parameters of game play may also directly reflect learning effects: 1) LAKA assessments may reflect whether a patient thinks and acts in accordance with values, 2) the level of correspondence between self-assessment and LAKA assessment may contain information about the extent to which the player understands what sort of thinking and behaviour relates to psychological well-being.</td>
</tr>
<tr>
<td>Content Management</td>
<td>Content Management system</td>
<td>Is the Content Management System restricted to specified persons or institutions?</td>
</tr>
<tr>
<td>User uploaded content</td>
<td>If no, are users allowed to upload their own content?</td>
<td>NA</td>
</tr>
<tr>
<td>Content monitoring</td>
<td>How is uploaded content checked?</td>
<td>NA</td>
</tr>
<tr>
<td>Restrictions and limits of the serious game</td>
<td>Please describe restrictions and limits of the serious game. What content on the learning goals is not covered?</td>
<td>The game itself does not contain detailed explicit knowledge on relationships between learning content and health outcomes. Complementary delivery modes of rehabilitation (i.e. handbooks, group therapy sessions) serve this purpose. An argument for withholding highly explicit feedback is that the adequacy of action plans (coping) is context dependent. The game enables safe exploration of options for (non-automatic) responding to contextual clues. Consequently, the game triggers reflection by leaving some ambiguity about what might be the ‘right’ sort of behaviour. This ambiguity might diminish levels of acceptance/playability (perceptions on feedback or challenge) in some players. Professional support may partially compensate this issue when embedding the game within regular treatment. The game was found to be engaging enough to play ones or twice (2-5 hours), which is</td>
</tr>
<tr>
<td>Needs to be enough for moderate or strong average effects on player behaviour and health outcomes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentially undesirable effects</td>
<td>Potentially undesirable effects</td>
<td>What potential undesirable effects could the game have?</td>
</tr>
<tr>
<td>Disclosure</td>
<td>Are such potential undesirable effects disclosed to the user?</td>
<td>NA</td>
</tr>
<tr>
<td>Measures taken</td>
<td>What measures are taken to prevent potential undesirable effects?</td>
<td>Based on the result of feasibility study, we expect no undesirable effects. During the present evaluations, undesirable effects will be investigated again.</td>
</tr>
</tbody>
</table>

Validity

<table>
<thead>
<tr>
<th>Design process</th>
<th>Medical expert complicity</th>
<th>Were medical experts (content experts) involved in the design process from the start?</th>
<th>Lama’s from the Tibetan Institute Yeunten Ling, a psychometric expert; A.H. Akkerman, and Ciran; A.H.M.M. van Bergen, and J.J. Jochijms created the 'mobility of mind' questionnaire that operationalizes the content on which LAKA is based. They were also involved in the formulation of program requirements, or provided feedback on prototypes of LAKA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>User group complicity</td>
<td>Were representatives from the user group involved in the design process from the start?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Educationalist complicity</td>
<td>Were educationalists involved in the design process from the start?</td>
<td>Educationalists have been affiliated with Tilburg University: Prof. Jac L.A. Geurts (gaming expert) had been guiding the process of demand specifications for LAKA. M.A.P. Vugts MSc has been involved as a researcher from the start.</td>
<td></td>
</tr>
<tr>
<td>User testing</td>
<td>User testing</td>
<td>Did user testing take place? What were the results, and how were these incorporated in the design?</td>
<td>User testing was performed in feasibility piloting*³. The game is free of technical issues. Some comments on playability have not been addressed, because their impacts on outcomes are ambiguous. The only change to the version used in the feasibility study is that mini-games can be skipped after one failed attempt (instead of 3) to increase tailoring to user preferences.</td>
</tr>
<tr>
<td>Stability</td>
<td>Platform stability</td>
<td>Does the game produce the same results on different platforms?</td>
<td>Yes</td>
</tr>
<tr>
<td>Validity</td>
<td>Face validity</td>
<td>Do educators and trainees view it as a valid way of instruction?</td>
<td>Yes. Educators agree that learning content is integrated in a valid way (according to the creators of the Mobility of Mind model (see 'content validity'), and agree that its content corresponds with processes of mental well-being as described by the S-ART model (MV, AZ). A group of self-selected patient users recognize that learning content correspond to what is learned by other means (from psychotherapists) during the rehabilitation program*³</td>
</tr>
</tbody>
</table>

*³ Feasibility study:

- Potentially undesirable effects
- Disclosure
- Measures taken
- Validity
- Design process
- User testing
- Stability
- User group complicity
- Educationalist complicity
- Face validity

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
<table>
<thead>
<tr>
<th>Table Title</th>
<th>Question</th>
<th>Validation Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content validity</td>
<td>How is its content validated to be complete, correct, and nothing but the intended medical construct?</td>
<td>A structured self-report questionnaire to assess thought and behaviour in correspondence with values as defined in the teaching model of the 6 perfections was created by Ciran in collaboration with the Yeunten Ling institute (Belgium). A validation report on this test was assessed by an independent Dutch commission for test affairs (COTAN). It was found that questionnaire scores have good reliability, and are strongly correlated with psychological well-being (as expected). Game scenarios were constructed by a professional writer who was familiar with the model and made explicit references to questionnaire items within screen plays for content validity checks. The quality of scenario’s and operationalization was monitored under supervision of a creator of the test.</td>
</tr>
<tr>
<td>Construct validity</td>
<td>Is the game able to measure differences in skills it intends to measure?</td>
<td>Research in progress</td>
</tr>
<tr>
<td>Concurrent validity</td>
<td>How does learning outcome compare to other methods assessing the same medical construct?</td>
<td>Concurrent validity was studied using unreported data that were collected in the pilot phase (n=67 patients). A preliminary measure of game score was calculated as the average of all chosen action plans (the quality of each action plan is scaled ordinal; 0, 1, 2, 3, or 4). Performance was assessed by summing the scores for 5 scales corresponding with the behavioural domains of the values questionnaire (generosity, moral discipline, patience, enthusiastic perseverance, and mental stability). Pearson correlations between game scores and the behavioural domain of the values questionnaire were found to be significant, and of a small to moderate size. Self-assessed values measured at baseline (measured within a month before playing the game) correlated .29 with game scores. Values measured post-intervention (1-2 months after playing the game) correlated .39 with game scores. This agreement is encouraging given the differences in how to construct indicators were measured.</td>
</tr>
<tr>
<td>Predictive validity</td>
<td>Does playing the game predict skills improvement in real life?</td>
<td>Research in progress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data protection</th>
<th>Data processing</th>
<th>How is data collected in the serious game?</th>
<th>The game can only be accessed by clients of Ciran by logging in with their treatment ID number and self-chosen password. Log-data are encrypted, send over the internet, and stored by Ciran to save proceedings and enable feedback of game scores. No patient-specific data are stored on devices.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient privacy</td>
<td>Are patient-specific data stored in the game?</td>
<td>Data are recorded by Ciran includes IP addresses, name given to the Avatar (no name, or alias is possible), which could be used to identify users.</td>
<td></td>
</tr>
</tbody>
</table>
Yes. All clients at Ciran are informed before the start of their treatment about the use of a digital tracking system for creating and maintaining a patient record, and about their rights for managing their personal records. Therefore, game data concern progress of the treatment and can only be used for scientific research under strict conditions. Therefore, a research protocol describing the codified processing of log-data (thus not including potentially patient specific IP addresses and Avatar names) for the evaluation of LAKA was approved by the ethical committee of Tilburg School of Social and Behavioural Sciences. Medical ethics review is not required for the research.

For peer review only

Data ownership
Who owns and stores the data resulting from play?
Ciran

Data storage period
During what period are data stored?
In accordance with the legal storage of medical records (15 years)

Data removal
Can the user delete data temporarily and/or permanently?
Yes

Data storage security
Is the data storage secured in conformity with laws of the countries stated above?
Yes

Data transmission security
Is the data transmission secured in conformity with laws of the countries stated above?
Yes

Disclosure
Are all items on “data protection” disclosed to the user?
Yes. All items are disclosed to patients before starting their treatment. Specific information on the storage of game data for progress tracking and feedback have not been highlighted in the consent procedure.

Serious gaming during multidisciplinary rehabilitation for patients with complex chronic pain or fatigue complaints: study protocol for a controlled trial and process evaluation

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>bmjopen-2017-016394.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Protocol</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>07-Apr-2017</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Vugts, Miel; Tilburg University, Tranzo Joosen, Margot; Tilburg University, Tilburg School of Social and Behavioral Sciences, Tranzo Scientific Center for Care and Welfare Mert, Agali; Centra voor Integrale Revalidatie en Arbeidsactivering Nederland Zedlitz, Aglaia; Universiteit Leiden, Health, medical and neuropsychology Vrijhooft, Hubertus; Tilburg University, Tranzo</td>
</tr>
<tr>
<td>Primary Subject Heading:</td>
<td>Rehabilitation medicine</td>
</tr>
<tr>
<td>Secondary Subject Heading:</td>
<td>Rheumatology, Research methods, Mental health</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Rehabilitation medicine < INTERNAL MEDICINE, MENTAL HEALTH, PAIN MANAGEMENT, QUALITATIVE RESEARCH, Information technology < BIOTECHNOLOGY & BIOINFORMATICS</td>
</tr>
</tbody>
</table>
Study Protocol

Serious gaming during multidisciplinary rehabilitation for patients with complex chronic pain or fatigue complaints: study protocol for a controlled trial and process evaluation

Miel A P Vugts MSc*
Tilburg University, Tilburg School of Social and Behavioural Sciences, Tranzo Scientific Centre for Care and Welfare;
Ciran Rehabilitation Centres, Venlo, the Netherlands

Margot C W Joosen PhD
Tilburg University, Tilburg School of Social and Behavioural Sciences, Tranzo Scientific Centre for Care and Welfare

Agali Mert PhD
Ciran Rehabilitation Centres, Venlo, the Netherlands

Aglia M E Zedlitz PhD
Leiden University, Department of Health Medical and Neuropsychology, Leiden Institute for Brain and Cognition

Hubertus J M Vrijhoef PhD
Tilburg University, Tilburg School of Social and Behavioural Sciences, Tranzo Scientific Centre for Care and Welfare, the Netherlands;
Maastricht University Medical Centre, Department of Patient & Care, the Netherlands;
Vrije Universiteit Brussels, Department of Family Medicine, Belgium

*Corresponding author: Miel A P Vugts MSc. PhD Candidate, Tilburg University, Tilburg School of Behavioural Sciences, Tranzo, P.O. Box 90153, Tilburg 5000 LE, The Netherlands. Tel: +31 13 466 8271; e-mail: m.a.p.vugts@tilburguniversity.edu

KEYWORDS: Chronic pain, functional somatic syndrome, serious gaming, multidisciplinary rehabilitation

Version 2.0 (05/04/2017)
Number of words: 4253
ABSTRACT

Introduction:
Many individuals suffer from chronic pain or functional somatic syndromes and face boundaries for diminishing functional limitations by means of bio-psychosocial interventions. Serious gaming could complement multidisciplinary interventions through enjoyment and independent accessibility. A study protocol is presented for studying whether, how, for which patients, and under what circumstances, serious gaming improves patient health outcomes during regular multidisciplinary rehabilitation.

Methods and analysis:
A mixed-methods design is described that prioritizes a 2-armed naturalistic quasi-experiment. An experimental group is composed of patients who follow serious gaming during an outpatient multidisciplinary programme at two sites of a Dutch rehabilitation centre. Control group patients follow the same programme without serious gaming in two similar sites. Multivariate mixed modelling analysis is planned for assessing how much variance in 250 patient records of routinely monitored pain intensity, pain coping and cognition, fatigue, and psychopathology outcomes is attributable to serious gaming. Embedded qualitative methods include unobtrusive collection and analyses of stakeholder focus group interviews, participant feedback, and semi-structured patient interviews. Process analyses are carried out by a systematic approach of mixing qualitative and quantitative methods at various stages of the research.

Ethics and dissemination:
The Ethics Committee of the Tilburg School of Social and Behavioural Sciences approved the research after reviewing the protocol for the protection of patients’ interests in conformity to the letter and rationale of the applicable laws and research practice (EC 2016.25t). Findings will be presented in research articles and international scientific conferences.

Trial registration:
A protocol for the naturalistic quasi-experimental outcome evaluation was entered in the Dutch trial register (NTR6020).

ARTICLE SUMMARY

Strengths and limitations of this study
- The novelty of the intervention and study methods is a strength.
- Using a pragmatic approach to study serious gaming when deployed in a regular health care setting enables to understand under what conditions serious gaming will (not) work.
- Study limitations come with the naturalistic design, due to pragmatic reasons, that prevents random treatment assignment and stringent diagnostic methods.
INTRODUCTION

Background and rationale

Video games are vividly debated to their behavioural and clinical outcomes, which may be negative or positive depending on game content and player attributes. Serious (health) games primarily target promotion of health benefits. A new serious game, called LAKA, aims to facilitate patient learning about living with complex chronic somatic complaints. Based on the results of a feasibility study, LAKA is deployed in a regular health care setting, as an additional component of outpatient multidisciplinary rehabilitation. The current protocol presents an innovative mixed-methods study for gaining insight into the effectiveness of serious gaming as a complementary modality during regular multidisciplinary rehabilitation.

Using a variety of definitions and measures of pain and disability, the worldwide prevalence estimates for chronic pain range between 7% and 64%. Individuals are in chronic pain (CP) when complaints persist beyond the usual 3 to 6 months of organic recovery. Functional somatic syndromes (FSS) are diagnosed in individuals that seek medical help for functional disturbance and chronic somatic symptoms without a satisfactory explanation by organ pathology or disease. CP and FSS may have a biological explanation in central nervous system sensitization. Predisposition to these disorders is probably determined by a combination of genetic factors and personality characteristics. Symptom patterns are often precipitated by trauma or social factors. Maladaptive thoughts, feelings, and behaviour are assumed to maintain the symptoms. Regarding treatment, support has been found for a stepped care approach with active bio-psychosocial treatment when mono-disciplinary treatments are insufficient. Randomized controlled trials that compared symptoms and functioning after multidisciplinary rehabilitation versus alternative treatments in patients with CP or chronic fatigue syndrome generally reported up to medium-sized differences. Nonetheless, recent research addresses improvement of bio-psychosocial intervention models, ‘matching’ and ‘blending’ therapeutic strategies and delivery modes, and promotion of patient engagement. As such, access, reach, adherence and effectiveness of bio-psychosocial interventions may be enhanced.

Serious gaming could be of aid here. Previously investigated strategies are ‘exergaming’ to improve motivation for physical activity, ‘brain training games’ against dullness in the remediation of cognitive functions, ‘virtual reality’ for safety in graded activity or exposure, and ‘health behaviour gaming’ for fun while addressing behavioural antecedents. In the fields of rehabilitation and pain management, virtual environments have shown promise in reducing acute pain by distraction, or in activity management to restore physical functioning. Despite of promising results for various mono-disciplinary applications of gaming and simulation, no evident application seems to exist for supporting biopsychosocial adjustment processes in patients with CP or FSS. Outcome improvement after treatment in CP or FSS patients may be mediated by changes in aspects of self (beliefs about illness and fear avoidance, catastrophizing, and psychological flexibility), coping behaviour, and affect. Features that distinguish serious games from traditional modes include covert learning techniques, interactivity, storytelling, sound effects, visuals, and ‘debriefings’. They could offer relative benefits for behavioural change processes through distinctive attentional (presence), affective (enjoyment), and meta-cognitive processes. Further research into gaming mechanisms is needed, and may also inform about how biopsychosocial intervention mechanisms could be strengthened.
However, within the outcome evaluation of multidisciplinary interventions several complicating factors arise. These consist of outcome multidimensionality and dependency on implementation in actual health care settings. In other words, characteristics at the levels of organization, care providers, patients and interventions all affect outcome levels. Therefore, ideally, multiple sources of information are used to evaluate to what extent, for whom, when and under what circumstances an innovation of multidisciplinary treatment improves outcomes in patients with CP or FSS. For example, some intervention studies show different outcomes of a computer delivered therapy when applied in different countries. This is also an important issue for the outcomes of serious gaming, which are clearly sensitive to context factors. Therefore, ‘debriefings’ are suggested as a method for discussing and exploiting game-play experiences and strengthening learning outcomes. Previous studies leave uncertainties about how to effectively organize instructional support, i.e. via software or delivered by (trained) health care staff, via internet or face-to-face, in groups or individually. There is strong consensus that adequately powered clinical trials are needed to determine the effectiveness of serious gaming. Moreover, pragmatic trials and realist evaluation principles are needed to determine how serious gaming relates to patient outcomes depending on how it is deployed in actual health care settings.

Study aims

Here we describe the protocol for outcome and process evaluations of complementary serious gaming during regular multidisciplinary rehabilitation for patients with CP or FSS, which holds three study aims. The first aim is to investigate the effectiveness of serious gaming as a treatment complement. We question to what extent multidisciplinary rehabilitation with an additional serious gaming component is more effective than multidisciplinary rehabilitation without serious gaming for symptom reduction and clinically relevant improvement. Primarily, interdependent outcome domains of pain, fatigue, and emotional functioning (pain intensity, pain coping and cognition, fatigue complaints, and psychological distress) are studied, because they are considered to be relevant and plausible for the intervention and population. Secondary outcomes are patients’ impression of overall improvement, general subjective health, and satisfaction with functioning and treatment.

Secondly, we aim to understand which innovation, patient, provider, and organization level factors influence the outcomes of serious gaming for patients. Innovation level factors could be design quality and compatibility with user routines. Patient level facilitators or barriers could be demographic, health status and intervention history factors. Serious gaming outcomes could also depend on complex provider behaviour by attitude, skill, and/or time constraints. Finally, outcomes of serious gaming could be influenced by its organization in a clinical setting. Therefore, we pose the question: what are the barriers and facilitators of outcome improvement through serious gaming according to patients, providers, and other stakeholders? Furthermore, we question how variation in serious gaming outcomes can be decomposed with plausible patient level differences and/or delivery conditions within the treatment setting (i.e. size of a debriefing group).

The third aim concerns how serious gaming contributes to patient outcomes. For this, we explore various serious gaming mechanisms, being the subjective experiences and objective performances in context that may affect health outcomes. In addition, plausible linear effects between

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
mechanisms and patient outcome variables are investigated. Achievement of all three research aims will inform the further development of a valid and practical programme theory of serious gaming outcomes in regular health care for patients with CP or FSS.

METHODS AND ANALYSIS

Study design and procedure

An embedded experimental mixed-methods design is created by an integrated multidisciplinary research team (MV, HV, MJ, AZ, AM) to address all three research aims in a single study (see figure 1). For studying the first research aim, which is to estimate patient level outcome improvement due to serious gaming during regular outpatient rehabilitation, a two-armed naturalistic quasi-experiment is prioritized (displayed at the centre of figure 1). A serious gaming intervention is deployed, for usage by all patients, at two sites of a Dutch outpatient rehabilitation clinic. Therefore, an intervention group is constituted of patients who receive the multidisciplinary rehabilitation programme with an additional serious gaming intervention. The control group consists of patients who simultaneously follow the same programme in two similar sites of the same clinic without serious gaming. Codified quantitative data from patient records will be retrieved and analysed to examine between group outcome differences. The protocol for the naturalistic quasi-experiment was entered in the Dutch trial register (NTR6020).

Figure 1: Overview of the Mixed-Methods design

Embedding qualitative methods before, concurrently to, and after the quasi-experiment suits our second and third study aims. This mixed-method design is ideal for examining intervention processes, understanding mechanisms related to variables, and supporting programme theory development. Herein, no intermediate qualitative results are communicated with providers and implementers during the experiment. Data collection started in April 2016 and is planned to end in March 2017, quantitative outcome data will be retrieved when concurrently collected qualitative data are analysed (February 2017).

Recruitment

Sites and professionals

Two intervention sites where serious gaming is deployed participate in the study. For the recruitment of control subjects, two other sites (out of 18 sites as part of the same treatment centre) are selected based on similarity with regard to patient characteristics, facilities, protocols, history, personnel, location in or near a city in the southern Netherlands, and no other research projects planned during the intervention period. The treatment centre provides rehabilitation care covered by health insurance in association with a university medical centre. Professional study participants are local stakeholders of serious gaming, including experts, implementers, and providers.
Patients

Patient candidates received an indication of eligibility for outpatient multidisciplinary rehabilitation from a rehabilitation physician, and completed half of their rehabilitation programme at a participating site. Physician indications of eligibility are followed, which are based on the results of diagnostic surveys, physical and psychological investigations, and clinical interviewing via teleconference. Accordingly, patient participant inclusion criteria are: being between 18 and 67 years of age, reporting the presence of pain for more than 6 months, or fatigue complaints or a musculoskeletal disease for more than 3 months, having no (more) indication for another (cost-) effective medical treatment, and have concomitant psychosocial problems. Patients are excluded from participation if: psychiatric symptoms are not adequately controlled, there is significant risk of psychological decompensation through a rehabilitation treatment, language or communication problems make it impossible to follow rehabilitation, and/or demonstrable inability to change behaviour (due to personality disorders, third party liabilities, or otherwise). An information letter, consent form, and verbal explanation are provided by local care providers. The recruitment process is monitored to ensure that all candidates are invited.

Interventions

Multidisciplinary rehabilitation programme

The outpatient multidisciplinary rehabilitation programme includes common bio-psychosocial approaches, and incorporates a focus on well-being and participation. The standardized 16-week programme consists of on average 95 hours of individual or group sessions that are organized in modules and centrally assigned to individual patients based on diagnostic findings. Each patient is treated by a team of two physiotherapists and two registered master’s degree psychologists. Psychotherapeutic techniques include Cognitive Behavioural Therapy and psychodynamic approaches. For all patients, treatment contains rationales, goal setting and feedback, social support, exposure treatment, behavioural repetition and substitution, skills training (in relaxation, social skills, and meditation), and identity development techniques. Allocation of physical therapy, cognitive restructuring, eye movement desensitization, and an intensive 2-day well-being course depend on diagnostic findings for physical status, psychopathological symptoms and fear avoidance beliefs, post-traumatic stress, and psychological well-being.

Serious gaming

Theory and change techniques of the serious game LAKA

Developer assumptions for the game LAKA have been documented throughout development and related to conceptual frameworks (see appendix). Serious gaming is proposed to promote practice for well-being improvement, and for identifying and diminishing distortions and biases of self. This may be helpful for patients with CP or FSS in reducing the burden of their symptoms. Based on a review of information about the design rationale, functionality, validity proof (before outcome evaluation), and data protection measures of LAKA, an independent jury awarded 3 out of 5 attainable stars for quality (see appendix). The serious game LAKA promotes practice through an Avatar model. Before the game starts, participants are invited to identify with an Avatar of their chosen gender and name (table 1). The
storyline introduces an Avatar who recently experienced physical and social deterioration, senses an urgency to change, and engages in a trip around the world to learn about ‘the art of living’. Player tasks are: to explore and select virtual action plans for ‘encounters’ with non-playing characters, to evaluate their ‘satisfaction’ about chosen actions, and to perform skills training in focused attention and open monitoring meditation exercises. Encounter scenarios model uncertain events resulting in varying Avatar states depending on action plans chosen by players. Encounters are increasingly influenced by distant cultural meanings to challenge anticipation of the course of events (i.e. depending on the scenario, agreeable responding can result in a pleasant interaction or involvement in a scam). Players receive global feedback on the extent to which chosen actions correspond with a reference model for values (see appendix). Self-reflective elements are interspersed with short casual action and puzzle games, images, and information associated with the location of the Avatar. These features are included to vary game play, and can be skipped.

<table>
<thead>
<tr>
<th>Features</th>
<th>Dose (in game frequency)</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
<td>- Choose Avatar gender and name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Receive instruction: to identify with the personal Avatar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Introduction to Avatar storyline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Receive task instructions from LAKA (non-playing character with a mentoring role)</td>
</tr>
<tr>
<td>Encounters</td>
<td>16</td>
<td>- Select action plans for the Avatar in encounters with non-playing characters (each instance offers 5 optional action plans, which are modelled after a reference set of values: generosity, moral discipline, patience, enthusiastic perseverance).</td>
</tr>
<tr>
<td>Mood scenarios</td>
<td>8</td>
<td>- Select action plans for the Avatar when subjected to an adverse event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Given the adverse scenario: think of what your own affective state would be in this situation, and bear in mind the depicted emotional state of the Avatar.</td>
</tr>
<tr>
<td>Reflections</td>
<td>4</td>
<td>- Assess satisfaction about selected Avatar actions on a scale of 0-10.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Receive feedback from LAKA on chosen action plans.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Receive feedback about the correspondence between satisfaction rating and LAKA assessment.</td>
</tr>
<tr>
<td>Attention training:</td>
<td>3</td>
<td>- Guided (focused attention and open monitoring) meditation exercises for mental stability.</td>
</tr>
<tr>
<td>Tours:</td>
<td>16</td>
<td>- Skip or listen to ‘tour-guide’ voiceovers informing about pictures of the location visited by the Avatar.</td>
</tr>
<tr>
<td>Loading screens</td>
<td>-</td>
<td>- See where travel destinations are located on a geographical map.</td>
</tr>
<tr>
<td>Mini-games:</td>
<td>8</td>
<td>- Action games: Steering a vehicle (by using tilt mechanism of tablet pc, or keyboard arrow controls) to arrive at the next encounter (reference: ‘rocket bird’).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Puzzle: Fix a road by connecting parts of the road to arrive at the next encounter (reference: ‘plumber games’).</td>
</tr>
<tr>
<td>Festive closing</td>
<td>1</td>
<td>- Replay of ‘extreme’ responses throughout the game.</td>
</tr>
</tbody>
</table>

Mode of delivery

In accordance with patient suggestions for optimal reach, the rehabilitation clinic delivers professional assistance and the occasion for playing the serious game LAKA on site, besides downloading and playing on a home computer. Suitable rooms with Wi-Fi connection, tablet computers with LAKA installed, and
headphones are provided. Four 1-hour sessions of serious gaming are planned for 1 to 6 patients simultaneously during weeks 9-12 of their rehabilitation programme. The sessions are scheduled in connection with other therapy sessions to ease coordination with daily activities. Staff members are available for consultation on accessing serious gaming (i.e. for technical issues and adaptation to special needs). Experienced therapists (1 physiotherapist, and 3 psychologists) facilitate the first session (introduce LAKA and instruct to complete the game independently during session 2 and 3) and the fourth session (debriefing). The goal of the debriefings was to discuss experiences of game play, technology acceptance and learning, and facilitate learning transfer to daily life. For external validity, no specific roles were assigned to other local stakeholders for the delivery of serious gaming (i.e. to observe ‘natural’ problem solving by implementers).

Programme theory
The framework of context, mechanism, outcome (CMO) configurations is used to structure ongoing development of a programme theory for serious gaming as a complement during multidisciplinary rehabilitation. To illustrate, a patient with an active coping style self-exposed for a short amount of time to unsupported serious gaming during multidisciplinary rehabilitation (context), experienced enjoyment and discrepancy regarding valued self-identities (mechanism), and expected this to contribute to health improvement (outcome). Timely building blocks for CMO configurations for serious gaming are deduced from the literature. Besides by symptom categorization, serious gaming outcomes were interpreted by frameworks of rehabilitation mechanisms as self-improvements (see appendix). Two comprehensive implementation models are used for the classification of context factors, such as planning and compatibility relative to other treatment components. Finally, mechanisms of serious gaming are discerned as gaming behaviours (frequency, length, and performance of game play), and user experiences of gaming, simulation, and information systems. More specifically, subjective mechanisms may involve sense of presence, technology acceptance, positive and negative affect, game-based learning, and perceived ‘learning transfer’ to daily life.

Measures
Quantitative data
Outcome and case-mix variables are retrieved from routinely administered clinical patient records after all participants have completed their rehabilitation programme. All patient variables are collected by the clinic through a standardized and secured web-surveying procedure, including facilitation of patients without convenient computer access and promotion of follow-up completion. Outcomes are monitored at the indication of eligibility (at baseline), after 8 weeks of treatment (intermediate), and again after 16 weeks of treatment (post). Relevant and valid measures were available for assessing the primary outcomes (see table 2). These endpoints include a numerical rating scale for current pain intensity, the pain coping and cognitions list (PCCL), fatigue as assessed by the Checklist Individual Strength (CIS), and psychopathological symptoms as measured by the Symptom Checklist (SCL-90). Secondary measures focus on clinical relevance, such as patients’ global impression of improvement after treatment. Another widely used single item Likert-scale rating is used for measuring general

8
health (poor to excellent).73 Finally, numerical rating scale items are available to assess patients’ satisfaction about treatment and functioning (see table 2).

Table 2: Quantitative outcome measures

<table>
<thead>
<tr>
<th>Variables</th>
<th>Measures</th>
<th>Time of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current pain intensity</td>
<td>1 item Numerical Rating Scale (NRS) 0-10</td>
<td>Baseline, intermediate, post treatment</td>
</tr>
<tr>
<td>Pain coping and cognition</td>
<td>Pain Coping and Cognitions List (PCCL)</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>Checklist Individual Strength (CIS)</td>
<td></td>
</tr>
<tr>
<td>Psychopathological symptoms</td>
<td>Symptom Check List (SCL-90)</td>
<td></td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinically relevant improvement</td>
<td>Patient Global Impression of Change (PGIC)</td>
<td>Intermediate, post treatment</td>
</tr>
<tr>
<td>General subjective health</td>
<td>“What do you think of your current health in general?”</td>
<td></td>
</tr>
<tr>
<td>Perceived functioning</td>
<td>“Please indicate how satisfied you are generally taken with your current level of functioning”</td>
<td></td>
</tr>
<tr>
<td>Treatment satisfaction</td>
<td>Three Likert scale items, i.e. “Would you recommend this treatment centre to other rehabilitation patients?”</td>
<td>Post treatment</td>
</tr>
</tbody>
</table>

Patient variables are demographic, health status, and treatment history information (see table 3).

Table 3: Patient characteristics

<table>
<thead>
<tr>
<th>Variables (measurement)</th>
<th>Variables</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Years of age (calculated from registered date of birth)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>% Female</td>
<td></td>
</tr>
<tr>
<td>Socio-economic status</td>
<td>Highest education level, source of income (categorical rating items)</td>
<td></td>
</tr>
<tr>
<td>Coping style</td>
<td>Utrecht Coping List (UCL)74 (validated questionnaire)</td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>Presence of problems with regard to social life, financial situation, trauma, work situation (categorical rating items)</td>
<td></td>
</tr>
<tr>
<td>Symptoms</td>
<td>Duration (months; calculated from the date of onset), course (categorical rating item), and pain location (standard physical examination report)</td>
<td></td>
</tr>
<tr>
<td>Physical status</td>
<td>Body Mass Index, blood pressure, musculoskeletal conditions (standard physical examination report)</td>
<td></td>
</tr>
<tr>
<td>Other treatment</td>
<td>(Changes of) presence of medication usage, frequency of health care visits, previous visits to health providers (medical specialists, physiotherapists, and/or psychologist) (categorical rating items)</td>
<td></td>
</tr>
<tr>
<td>Treatment (modules) received</td>
<td>Automatic logs of session presence (determined from absence registrations by health care providers)</td>
<td></td>
</tr>
</tbody>
</table>

Intervention mechanisms may cover subjective experiences and objective behaviours of serious gaming (see table 4). Automatic registrations in patient files enable objective assessment of serious gaming frequency, duration, progress, and performance. Moreover, a short survey was composed in collaboration with the rehabilitation centre to measure subjective experiences shortly after serious gaming. This survey contains items on perceptions of using a serious game (regarding usefulness, ease of use, trust, enjoyment, goal clarity, challenge, and learning6769), the 10-item short form of the positive and negative affect scale,75 the involvement and realism scales from the Igroup Presence Questionnaire,66 and (0-10) numerical rating scale item on perceived learning transfer. A reminder was
sent to intervention group participants if the survey was not completed within a week after their last gaming session. Finally, a questionnaire on patient values may be used to explore relationships between mechanisms and outcomes of serious gaming.

Table 4: Quantitative indicators for mechanisms

<table>
<thead>
<tr>
<th>Variables</th>
<th>Measures</th>
<th>Respondents</th>
<th>Time of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach, dose, gaming performance</td>
<td>Data logs: frequency, timing, length, progress, and scores of play</td>
<td>Intervention group</td>
<td>During serious gaming (automatic)</td>
</tr>
<tr>
<td>Acceptability and playability</td>
<td>Selection of UTAUT2*1 items (perceived usefulness, ease of use, trust, enjoyment)</td>
<td>Intervention group</td>
<td>Post serious gaming</td>
</tr>
<tr>
<td>Positive and negative affect</td>
<td>PANAS-SF*2</td>
<td>Intervention group</td>
<td>Post serious gaming</td>
</tr>
<tr>
<td>Presence (general, involvement, and realism)</td>
<td>IGROUP Sense of Presence Questionnaire item for general sense of presence, and subscales for involvement and realism.</td>
<td>Intervention group</td>
<td>Post serious gaming</td>
</tr>
<tr>
<td>Learning transfer</td>
<td>Numerical rating scale [0-10]: “Use the following slider to indicate to what extent you expect that the LAKA sessions contribute to your daily life”</td>
<td>Intervention group</td>
<td>Post serious gaming</td>
</tr>
<tr>
<td>Values (expressed in thoughts and behaviour)</td>
<td>Values questionnaire*3: 5-point Likert scales, i.e. “If I find it necessary, I’ll intervene to help or to protect others”.</td>
<td>Intervention and control groups</td>
<td>Baseline, intermediate, post treatment</td>
</tr>
</tbody>
</table>

*1 Unified theory of acceptance and use of technology
*2 Positive and negative affect scale – short form
*3 Psychometric properties are still under investigation. Empirical support for good scale internal consistency, and strong associations with psychological well-being in rehabilitating patients were documented in a report for the Dutch Committee on Test Affairs (COTAN).

Qualitative data

Protocols for focus group and semi-structured patient interviews are informed by the CMO building blocks and principles for interviewing in realist evaluation. Accordingly, the interviewer starts with an open and explorative style, but may sometimes take an explanatory role to raise discussion about programme theory elements when CMO configurations become better delineated. Providers are expected to be especially knowledgeable about context and mechanisms of serious gaming, while patients may say the most about context and outcomes. Purposive sampling of participants is used until reaching a point of data saturation. All interviews are tape-recorded and verbatim transcribed. Transcripts and a summary of findings are sent to participants by e-mail to enable them to check if their views are accurately reflected.

Stakeholder (focus group) interviewing

Four focus group interviews are held, two before and two after the naturalistic experiment, to involve stakeholders in the ongoing development of serious gaming and programme theory. Participant selection and topics are based on actual data needs. Heterogeneous groups of care providers, implementers, and experts (in ICT, well-being, and serious gaming) are invited for the first and last discussion meetings. The first interview focused on the research goals for an open discussion. The last group interview will focus on programme theory for member checking and refinement. Homogenous
groups of provider participants may be invited for the second and third focus groups for more in-depth information. Provider participants are asked to share positive and/or negative feedback about serious gaming via a secured web-form. This includes information on the occurrence and management of adverse events and/or unintended effects during serious gaming.

Patient interviewing

Two open interview questions about gaming experience and perceived learning transfer are added to the post-gaming survey for intervention group participants. Patient participants with high and low scores on a 1-item numerical rating scale (0-10) for perceived learning transfer are invited for a semi-structured interview after their rehabilitation treatment. These interviewees are asked to describe their health outcomes during rehabilitation, and to list the three most important reasons why serious gaming did, or did not, contribute positively or negatively to this process. A point of saturation is reached if the three factors (context and/or mechanisms) mentioned are all richly described. Control group interviewees are matched to some of the intervention group interviewees to compare rehabilitation outcome changes for similar cases with versus without serious gaming.

Analysis

Statistical outcome evaluation

Quantitative data will be imported in SPSS 22, described after statistical inferences, and analysed on intention-to-treat basis. All case-mix variables are described for individual study participants, as well as the differences between intervention group and control group participants. Multivariate mixed-linear modelling techniques will be used to evaluate the extent to which serious gaming predicts variance in patient outcome levels between the intermediate and final outcome assessments of the rehabilitation programme. Effective sample size and intra-class coefficients will be calculated to determine dependency on hierarchical patterns in outcome variation by care provider levels. An optimal prediction model will be specified, correcting for potential unbalances between the study groups (at baseline and/or intermediate), and/or important higher-level random effects.

Process analyses

A programme theory will be created after a sequence of analysis steps. In each step, analyses will be performed completely by MV and in part by MJ or AZ (independent coding of interviews, and re-running syntax), and discussions will be held involving a third author (HV) to resolve differences and find agreement about the results. First, concurrently collected qualitative data analyses will be performed to identify plausible CMO configurations from the perspectives stakeholders. All qualitative data will be coded in vivo and higher order coded using CMO building blocks to determine configurations. Secondly, a selection of key CMO configurations will be made based on counts of the number of participants supporting them in their open text responses to the post-gaming survey. Hypotheses will contain specific expectations of (linear) relationships implied by the CMOs. If needed, additional provider or site level data (i.e. debriefing session group sizes) will be retrieved from clinical administration records. Third, quantitative data will be screened by testing internal consistency in SPSS or data triangulation with qualitative data if possible. Fourth, hypotheses will be tested with available and valid quantitative
data. Fifth, data from the last focus group will be coded. Sixth, quantitative and qualitative findings will be mixed for an overall interpretation and drawing final conclusions.

Power calculation

From practical, theoretical and statistical perspectives, a powerful primary outcome assessment was anticipated by focusing on recruiting a sufficient number of individual patients from the four participating treatment facilities. The rehabilitation centre (n=1), intervention sites (n=2), as well as the number of time-points (3), are practically fixed. Analysis of unpublished pilot data suggested that variation in baseline to post treatment outcome changes between treatment locations might be negligible relative to individual variation within sites (intra-class correlations < .05).

G*Power was used for sample-size calculations. A required sample size of 212 participants was calculated for determining a small to medium effect by means of a MANOVA test of global effects. Effect size estimation was based on meta-analysis results for the effects of serious games on cognition, motivation, and psychological outcomes. The following parameters were inserted: for power (1-Beta) = 0.8; effect-size $f^2 (V) = .0625$; type-II error probability (alpha) = .05; number of dependent variables = 5; and number of groups = 2. By the same standards, it was checked if the determined sample size would also be sufficient for independent univariate tests of variance on each of the primary outcomes.

Anticipating some level dependence and/or randomly missing data (pain coping and cognition measures are not filled out by patients reporting 0 pain intensity at baseline), 250 patient participants will be recruited. Assuming 20% treatment and study attrition rates and an average weekly inflow of 9 patients starting with their treatment within each of the four facilities, outcome data are available 6 months after recruiting the first patient.

ETHICS AND DISSEMINATION

Ethical approval for the mixed-methods protocol was obtained from the psychological ethics committee of Tilburg School of Social and Behavioural Sciences (EC-2016.25t). In the absence of a legal obligation for medical ethics review, independent judgement was provided on the protection of patient rights by conformity to the letter and rationale of the applicable laws and research practice. Patient participants are consented before participation, that is before receiving the additional (5-10 minute) survey (intervention group), being invited for a semi-structured interview, or retrieving their codified data. Participants were protected against harm by regular clinical safety measures throughout. Professional participants are also consented before participation in qualitative data collections. Under supervision of MJ, MV is responsible for safe storage and the accessibility of (codified) research data to all authors. Qualitative and quantitative results will be presented and discussed together in one or more research article(s), and at one or more international scientific conferences. A summary of study results will be provided to the study participants.

DISCUSSION

The novelty of the serious gaming intervention and study methods are strengths of the proposed evaluation, but imply limitations as well. LAKA is the first serious game that promotes practice for self-process enhancement under highly prevalent adverse conditions such as CP or FSS. CMO configurations
may be identified that are transferable to other populations and settings where similar approaches to
behavioural change are beneficial. However, internal and external validity are threatened due to
divergence from the golden standard procedures of a (cluster) randomized controlled (multi-centre)
trial. Instead, pragmatic considerations for the deployment of serious gaming during rehabilitation in
two sites of a single Dutch centre led treatment allocation, recruitment, and data collection methods.
Different comparisons with serious gaming (i.e. usual care, waiting list, or text based computer-based
intervention), more elaborate diagnostic assessment, and outcome measurements including role
participation and long-term follow-up are precluded. Still, conditional optimization of quasi-
experimental methods is a legitimate strategy for obtaining evidence on the effectiveness of an
intervention. Apparent confounding factors (i.e. differences in usual treatment received) should be
controlled for by appropriate methods. By the emergence of practical limitations, study strengths shift
towards dealing with questions of process. The realist evaluation principles and mixed-methods used in
this study are increasingly accepted in scientific communities as means to compensate for practical
limitations and to build programme theories that enhance future predictions of intervention effects
across patients and health care settings.

Legitimate application of mixed-methods is promoted by the protocol in various ways. First,
participant recruitment and selection methods for quantitative and qualitative examinations allow a
strong representation of patients receiving bio-psychosocial treatment in a regular outpatient setting.
This differs from studies in which the eligibility of applicants for computer-based intervention depends
on motivation and/or ability to use a computer or internet facilities. Secondly, perspectives of
insiders (patients, health care providers and developers) and outsiders (independent experts and
members of the research team) will be utilized. Third, relevant theoretical constructs are specified
before quantitative and qualitative data collections to prevent process analysis results being strongly
affected by the sequencing of qualitative and quantitative methods. Fourth, predefined steps structure
data convergence and switches in epistemological paradigms when qualitative methods are used to
propose quantitative results (in advance) and to explain them (afterwards).

ACKNOWLEDGEMENTS
Acknowledged for their role in the development of serious gaming are: Ciran (owner & developer):
Alfonsus van Bergen, Jan Jochijms, and Jeroen van Bergen; software developers: Paladin Studios, Marcel
Lips; contributors of intellectual content: Tibetan institute Yeunten Ling, Karel Michiels, and Jac Geurts.

AUTHORS' CONTRIBUTIONS
MV, HV, AM, and MJ conceived the protocol. MV drafted the work, which was critically revisited by HV,
AZ, AM and MJ for important intellectual content. All authors have given their final approval of the
version to be published and agree to be accountable for all aspects of the work.

FUNDING STATEMENT
The work was supported by Ciran in the development of LAKA, allocation of serious gaming, and
provision of raw quantitative data. Ciran is a foundation that develops and provides a rehabilitation care
programme for complex chronic pain and fatigue symptoms in association with Radboud academic
medical centre (The Netherlands). Qualitative data collection, data management, data analyses, interpretation of results, writing of the report, and publication decisions are authorized by university staff members.

COMPETING INTERESTS STATEMENT

All authors have completed the ICMJE uniform disclosure form and declare:

Dr. Vugts reports employment by Ciran, and is provided time and occasion to conduct independent doctoral research by way of agreement at Tranzo, Scientific Centre for Care and Welfare, Tilburg University. The terms of this arrangement have been reviewed and approved by Tranzo in accordance with its policy on objectivity in research.

Dr. Joosen has nothing to disclose.

Dr. Zedlitz has nothing to disclose.

Dr. Vrijhoef reports personal fees from Ciran, outside the submitted work.

Dr. Mert has nothing to disclose.

REFERENCES

Figure 1: Overview of the Mixed-Methods design

173x188mm (96 x 96 DPI)
1. **Developer assumptions**

<table>
<thead>
<tr>
<th>Developer assumptions</th>
<th>Related theory (interpretation)</th>
</tr>
</thead>
</table>
| The rehabilitation program is based on a (four dimensional) bio-psycho-social-spiritual treatment model in which Eastern and Western (medical) interventions are integrated. Interventions are aimed at improving ‘mobility of mind’, which is defined as: flexibility in accommodating 2 dynamic processes: 1) participation in private, social, and work roles, and 2) the ability to participate. Ability to participate depends on four interdependent aspects: symptoms (signals due to organ system injury or disturbance in shaping and controlling one’s life or ‘existence’), autonomy, perspective (‘to see one’s opportunities for finding meaning in life through inspiration’), and values. A reference for values is given by generosity, moral discipline, patience, enthusiastic perseverance, and mental stability. LAKA was designed to offer covert learning and skills training for enhancing a sense of self characterized by autonomy, values, and perspective. | This learning content may converge with and diverge from related concepts known in published scientific literature, including:
- Categories of the International Classification of Functioning: specific (higher) mental functions, and activities and participation domains 6-9.1
- Coping flexibility under conditions of CP or FSS.2
- Eudaemonist process of psychological well-being.3
- Autonomously motivated pro-social behaviour.4,5
- (Neuro) psychological processes associated with similar practices (focused attention, open monitoring, and ethical enhancement) in general: self-awareness, self-regulation, and self-transcendence. |

| Improvement in mobility of mind is associated with better health outcomes after rehabilitation in patients with complex pain or fatigue (1st and 2nd). | Learning content may converge with and diverge from similar plausible targets in non-pharmacological treatment for patients with CP or FSS: Internal control beliefs (+), avoidance (-), self-acceptance (+), mindfulness (+), values-based action (+), rumination (-), catastrophizing (-), negative (-) and positive mood and social interaction (+).6 |

| (Video) game mechanics can be leveraged to enhance learning through player’s self-awareness and intrinsic motivation. The game is of a relatively short duration, but promotes continued practice by any means outside the game. ‘Serious gaming sessions are planned after educational components (stress management and well-being, cognitive restructuring, and meditation) to enable complementary learning engagement and transfer’ | Plausible ways in which video game mechanics may affect the self in players (on different levels):
- Self-efficacy theory: vicarious learning in health behaviour games.7
- Self-determination theory: gaming elicits representations of valued self-identities (through autonomy, competence, and relatedness).8
- Meta-cognitive processing is a likely consequence of, and characterizes interaction in the context of video game-play.9
- Distinctive features of serious gaming strengthen (moderate) effects of behavioural change content on outcomes7 |
2. User interface and screenshot examples

User interface (accessibility): The human-computer interface is designed for being easy to use (i.e. there is no time pressure). It is controllable by individuals with low computer skill. It involves making decisions by taping on the screen (pre-selecting and confirmation). One of the casual mini-games involves usage of the tilting mechanism of the tablet pc, for steering an object. Progress is never dependent on gaming skills.
3. Information about the design rationale, functionality, validity proof (before outcome evaluation), and data protection

<table>
<thead>
<tr>
<th>Category</th>
<th>Item</th>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game description</td>
<td>Operating system</td>
<td>Operating systems of the game</td>
<td>Android, iOS, Windows, OS X</td>
</tr>
<tr>
<td></td>
<td>Version</td>
<td>Version</td>
<td>Beta+</td>
</tr>
<tr>
<td></td>
<td>Web-link</td>
<td>Web-link</td>
<td>Yes*1</td>
</tr>
<tr>
<td>Project type</td>
<td></td>
<td>Commercial, non-commercial, other</td>
<td>Non-commercial</td>
</tr>
<tr>
<td>Access</td>
<td></td>
<td>Public / restricted / other</td>
<td>Restricted</td>
</tr>
<tr>
<td>Adjunct devices</td>
<td></td>
<td>Is an adjunct device needed?</td>
<td>No adjunct device needed</td>
</tr>
<tr>
<td>Development</td>
<td>Funding</td>
<td>How was development funded? Eg, funding agencies, investors</td>
<td>Investors (Ciran)*2</td>
</tr>
<tr>
<td>Sponsoring / Advertising</td>
<td>Advertisement policy</td>
<td>Is the game free of commercial pop-ups?</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not, what is advertised?</td>
<td>NA</td>
</tr>
<tr>
<td>Sources of income</td>
<td></td>
<td>Are there sources of income within the game?</td>
<td>No</td>
</tr>
<tr>
<td>Sources of income outside game</td>
<td></td>
<td>What are the sources of income of the owner/distributor?</td>
<td>The owner and distributor (Ciran) is a foundation providing outpatient rehabilitation care covered by health insurance.</td>
</tr>
<tr>
<td>Potential conflicts of interest</td>
<td>Affiliations</td>
<td>What affiliations do the publishers have that could influence content or user group?</td>
<td>Publishers are affiliated with the owner/distributor</td>
</tr>
<tr>
<td>Conflicts of interest</td>
<td></td>
<td>What interests do the publishers have that could influence the game’s content or user group?</td>
<td>Content and user groups are based on the objective of Ciran to improve outpatient rehabilitation for patients with complex chronic pain and/or fatigue. The primary (tentative) purpose of game design is the improvement of (independent) engagement with learning content during a rehabilitation program.</td>
</tr>
<tr>
<td>Disclosure</td>
<td></td>
<td>Are conflicts of interest disclosed?</td>
<td>Yes</td>
</tr>
<tr>
<td>Rationale</td>
<td>Purpose</td>
<td>What is (are) the purpose(s) of the game?</td>
<td>To facilitate learning and promote practice for 'mobility of mind' (see developer assumptions) to support recovery in patients with complex chronic pain and/or fatigue.</td>
</tr>
<tr>
<td></td>
<td>Disclosure</td>
<td>Is (are) the purpose(s) disclosed to users?</td>
<td>Yes</td>
</tr>
<tr>
<td>Medical device</td>
<td>Medical device</td>
<td>Is the serious game a medical device, or not?</td>
<td>Not</td>
</tr>
<tr>
<td>Class</td>
<td></td>
<td>If yes, which class?</td>
<td>NA</td>
</tr>
<tr>
<td>Approval by legal bodies</td>
<td></td>
<td>If yes, does it comply with the necessary requirements (FDA-approval, CE-mark?)</td>
<td>NA</td>
</tr>
<tr>
<td>User group</td>
<td>Specific user groups</td>
<td>For each user group: disease/condition</td>
<td>Patients with chronic pain and fatigue, and problems in multiple (other) domains of functioning.</td>
</tr>
<tr>
<td>Description</td>
<td>Please specify gender, age (range), and other relevant descriptive items.</td>
<td>See inclusion and exclusion criteria as listed in the main body of the article.</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Limits</td>
<td>Are there age limits, or other limits?</td>
<td>According to PEGI classification, the content of the game was found suitable for people who are at least 12 years of age, because it contains some events of mild swearing.</td>
<td></td>
</tr>
<tr>
<td>Disclosure</td>
<td>Is the intended user group disclosed?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Setting</td>
<td>Is the game used in patient care?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Training courses</td>
<td>Is the game used in training courses or curricula?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>SCORM compliancy</td>
<td>If used in training courses or curricula, is the serious game SCORM-compliant?</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Functionality

<table>
<thead>
<tr>
<th>Purposes / didactic features</th>
<th>For every purpose of the game:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning or behavioural goals</td>
<td>What content will the player learn? Learning content is based on a reference set of values that manifest in (pro-social) thought and behaviour. These values correspond with the 'perfections' of Mahayana Buddhism. Learning this content is, for research purposes, interpreted as a process of psychological well-being through self-awareness, self-regulation, and self-transcendence (see developer assumptions).</td>
</tr>
</tbody>
</table>
| Relation learning and game play | **How does the learning content relate to the game play?** Players are supported in imagining how valued states (or 'selves') are attainable when going on a trip around the world (as a metaphor for private, social, or work participation). Before the game starts, players are explicitly instructed to identify with an Avatar (of their chosen gender and name). It is stated that Avatar choices reflect you as a player. In an introductory cut-scene, this Avatar meets a non-playing character (NPC), named LAKA. The personal Avatar is introduced as someone who experienced deterioration in physical and social domains of functioning, and is determined to improve his/her life. Then, LAKA challenges the Avatar 'to cope well with others' on a trip to 4 destinations (London, Turkey, Asia, and Africa). Meanwhile, most of the mechanics of LAKA enable (virtual) exploration and affirmation of values by selecting action plans for the personal Avatar. At each travel destination, the Avatar faces 4 encounters with NPC's under various circumstances. These encounters are designed as complex interactions between Avatar actions and unpredictable responses of the NPC/environment (rendering variety in cultural settings). For each Avatar action, players select an action plan out of 5 programmed options for physical acting, saying, and/or avoiding. The action plans are modelled by their level of correspondence with values for a given situation. After visiting a destination (after 4 encounters), LAKA appears and asks the Avatar to provide a self-rating of his/her performance, provides feedback on chosen action plans (by giving a certain number of puzzle pieces), and feeds back how well Avatar
Self-ratings and LAKA ratings correspond (by providing additional puzzle pieces). Finally, LAKA delivers focused attention and open monitoring exercises (explaining and illustrating how to practice meditation, prompting practice, providing a means for stress management).

Learning elements are interspersed with short (casual) action and puzzle games, images, and information associated with the location of the Avatar. These features promote enjoyment by varying game play and rewarding curiosity, and can be skipped if preferred.

Instruction	What intervention leads to the learning transition (e.g., tutorial, instructions in-game)?	Besides prompting identification with the Avatar, and adding feedback by LAKA as a form of in-game debriefing, face-to-face debriefing by care providers are offered to improve the transition from game play to learning for daily life improvements.
Assessment (progress) in game	Through which parameters is progress in the game measured?	Number of encounters completed (progress does not depend on player learning level), but feedback is provided on actions chosen by players.
Assessment parameters	Which parameters are to designers’ opinion indicative for measuring learning effects?	Primary health outcomes (i.e. pain, fatigue) may be an indirect result of learning. Parameters that may indicate a learning effect more directly may be plausible mediators of outcome improvement after behavioural interventions in CP or FSS patients (see developer assumptions). Parameters of game play may also directly reflect learning effects: 1) LAKA assessments may reflect whether a patient thinks and acts in accordance with values, 2) the level of correspondence between self-assessment and LAKA assessment may contain information about the extent to which the player understands what sort of thinking and behaviour relates to psychological well-being.
Content Management	Is the Content Management System restricted to specified persons or institutions?	Yes
User uploaded content	If no, are users allowed to upload their own content?	NA
Content monitoring	How is uploaded content checked?	NA
Restrictions and limits of the serious game	Please describe restrictions and limits of the serious game. What content on the learning goals is not covered?	The game itself does not contain detailed explicit knowledge on relationships between learning content and health outcomes. Complementary delivery modes of rehabilitation (i.e. handbooks, group therapy sessions) serve this purpose. An argument for withholding highly explicit feedback is that the adequacy of action plans (coping) is context dependent. The game enables safe exploration of options for (non-automatic) responding to contextual clues. Consequently, the game triggers reflection by leaving some ambiguity about what might be the ‘right’ sort of behaviour. This ambiguity might diminish levels of acceptance/playability (perceptions on feedback or challenge) in some players. Professional support may partially compensate this issue when embedding the game within regular treatment. The game was found to be engaging enough to play once or twice (2-5 hours), which is...
Potential undesirable effects	Potentially undesirable effects	What potential undesirable effects could the game have?

Disclosure | Are such potential undesirable effects disclosed to the user? | NA

Measures taken | What measures are taken to prevent potential undesirable effects? | Based on the result of feasibility study, we expect no undesirable effects. During the present evaluations, undesirable effects will be investigated again.

Validity
Design process | Medical expert complicity | Were medical experts (content experts) involved in the design process from the start? | Lama’s from the Tibetan Institute Yeunten Ling, a psychometric expert; A.H. Akkerman, and Ciran; A.H.M.M. van Bergen, and J.J. Jochijms created the 'mobility of mind' questionnaire that operationalizes the content on which LAKA is based. They were also involved in the formulation of program requirements, or provided feedback on prototypes of LAKA.

User group complicity | Were representatives from the user group involved in the design process from the start? | No

Educationalist complicity | Were educationalists involved in the design process from the start? | Educationalists have been affiliated with Tilburg University: Prof. Jac L.A. Geurts (gaming expert) had been guiding the process of demand specifications for LAKA. M.A.P. Vugts MSc has been involved as a researcher from the start.

User testing | User testing | Did user testing take place? What were the results, and how were these incorporated in the design? | User testing was performed in feasibility piloting**. The game is free of technical issues. Some comments on playability have not been addressed, because their impacts on outcomes are ambiguous. The only change to the version used in the feasibility study is that mini-games can be skipped after one failed attempt (instead of 3) to increase tailoring to user preferences.

Stability | Platform stability | Does the game produce the same results on different platforms? | Yes

Validity (effectiveness) | Face validity | Do educators and trainees view it as a valid way of instruction? | Yes. Educators agree that learning content is integrated in a valid way (according to the creators of the Mobility of Mind model (see ‘content validity’), and agree that its content corresponds with processes of mental well-being as described by the S-ART model (MV, AZ). A group of self-selected patient users recognize that learning content correspond to what is learned by other means (from psychotherapists) during the rehabilitation program**.
<table>
<thead>
<tr>
<th>Validity Type</th>
<th>Question</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content validity</td>
<td>How is its content validated to be complete, correct, and nothing but the intended medical construct?</td>
<td>A structured self-report questionnaire to assess thought and behaviour in correspondence with values as defined in the teaching model of the 6 perfections was created by Ciran in collaboration with the Yeunten Ling institute (Belgium). A validation report on this test was assessed by an independent Dutch commission for test affairs (COTAN). It was found that questionnaire scores have good reliability, and are strongly correlated with psychological well-being (as expected). Game scenarios were constructed by a professional writer who was familiar with the model and made explicit references to questionnaire items within screen plays for content validity checks. The quality of scenario’s and operationalization was monitored under supervision of a creator of the test.</td>
</tr>
<tr>
<td>Construct validity</td>
<td>Is the game able to measure differences in skills it intends to measure?</td>
<td>Research in progress</td>
</tr>
<tr>
<td>Concurrent validity</td>
<td>How does learning outcome compare to other methods assessing the same medical construct?</td>
<td>Concurrent validity was studied using unreported data that were collected in the pilot phase (n=67 patients). A preliminary measure of game score was calculated as the average of all chosen action plans (the quality of each action plan is scaled ordinal; 0, 1, 2, 3, or 4). Performance was assessed by summing the scores for 5 scales corresponding with the behavioural domains of the values questionnaire (generosity, moral discipline, patience, enthusiastic perseverance, and mental stability). Pearson correlations between game scores and the behavioural domain of the values questionnaire were found to be significant, and of a small to moderate size. Self-assessed values measured at baseline (measured within a month before playing the game) correlated .29 with game scores. Values measured post-intervention (1-2 months after playing the game) correlated .39 with game scores. This agreement is encouraging given the differences in how to construct indicators were measured.</td>
</tr>
<tr>
<td>Predictive validity</td>
<td>Does playing the game predict skills improvement in real life?</td>
<td>Research in progress</td>
</tr>
</tbody>
</table>

Data protection

<table>
<thead>
<tr>
<th>Data protection and privacy</th>
<th>Data processing How is data collected in the serious game?</th>
<th>The game can only be accessed by clients of Ciran by logging in with their treatment ID number and self-chosen password. Log-data are encrypted, send over the internet, and stored by Ciran to save proceedings and enable feedback of game scores. No patient-specific data are stored on devices.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient privacy</td>
<td>Are patient-specific data stored in the game?</td>
<td>Data are recorded by Ciran includes IP addresses, name given to the Avatar (no name, or alias is possible), which could be used to identify users.</td>
</tr>
</tbody>
</table>
If yes, are patient informed consent criteria met according to relevant national standards?

Yes. All clients at Ciran are informed before the start of their treatment about the use of a digital tracking system for creating and maintaining a patient record, and about their rights for managing their personal records. Therefore, game data concern progress of the treatment and can only be used for scientific research under strict conditions. Therefore, a research protocol describing the codified processing of log-data (thus not including potentially patient specific IP addresses and Avatar names) for the evaluation of LAKA was approved by the ethical committee of Tilburg School of Social and Behavioural Sciences. Medical ethics review is not required for the research.

<table>
<thead>
<tr>
<th>Data ownership</th>
<th>Who owns and stores the data resulting from play?</th>
<th>Ciran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data storage period</td>
<td>During what period are data stored?</td>
<td>In accordance with the legal storage of medical records (15 years)</td>
</tr>
<tr>
<td>Data removal</td>
<td>Can the user delete data temporarily and/or permanently?</td>
<td>Yes</td>
</tr>
<tr>
<td>Data storage security</td>
<td>Is the data storage secured in conformity with laws of the countries stated above?</td>
<td>Yes</td>
</tr>
<tr>
<td>Data transmission security</td>
<td>Is the data transmission secured in conformity with laws of the countries stated above?</td>
<td>Yes</td>
</tr>
<tr>
<td>Disclosure</td>
<td>Are all items on “data protection” disclosed to the user?</td>
<td>Yes. All items are disclosed to patients before starting their treatment. Specific information on the storage of game data for progress tracking and feedback have not been highlighted in the consent procedure.</td>
</tr>
</tbody>
</table>

*2 https://www.ciran.nl/

Serious gaming during multidisciplinary rehabilitation for patients with complex chronic pain or fatigue complaints: study protocol for a controlled trial and process evaluation

Miel A P Vugts, Margot C W Joosen, Agali Mert, Aglaia Zedlitz and Hubertus J M Vrijhoef

BMJ Open 2017 7:
doi: 10.1136/bmjopen-2017-016394

Updated information and services can be found at:
http://bmjopen.bmj.com/content/7/6/e016394

These include:

References

This article cites 75 articles, 3 of which you can access for free at:
http://bmjopen.bmj.com/content/7/6/e016394#BIBL

Open Access

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

Rehabilitation medicine (292)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/