Does case management for patients with heart failure reduce unplanned hospital admissions? A systematic review and meta-analysis

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>bmjopen-2015-010933</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Research</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>22-Dec-2015</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Huntley, Alyson; University of Bristol, Centre of Academic Primary care
Johnson, Rachel; Academic unit of primary health care, School of social and community medicine
King, Anna; University of Bristol, Centre of academic Primary care
Morris, Richard; University of Bristol, School of Social & Community Medicine
Purdy, Sarah; University of Bristol, Centre for Academic Primary Care |
| Primary Subject Heading: | Cardiovascular medicine |
| Secondary Subject Heading: | General practice / Family practice |
| Keywords: | systematic review, meta-analysis, Heart failure < CARDIOLOGY, case management, hospital admission |
Does case management for patients with heart failure reduce unplanned hospital admissions? A systematic review and meta-analysis

Huntley AL1*
Johnson R1
King A1
Morris RW1
Purdy S1

1 Centre of Academic Primary Care, School of Social and Community Medicine, University of Bristol, Canynge Hall, Bristol, BS8 2PS, UK.

*Dr Alyson Louise Huntley Research Fellow alyson.huntley@bristol.ac.uk Tel no: 0117 3314545

Key words: systematic review, meta-analysis, heart failure, case management, hospital admission

Word count: 3,823
ABSTRACT

Objectives

This systematic review aims to extend our knowledge of the effectiveness and cost-effectiveness of case management (CM) for patients with heart failure (HF) in reducing unplanned admissions.

Setting

CM interventions initiated either whilst as an inpatient or on discharge from acute care hospitals including the emergency department, or in the community and then continuing on in the community.

Participants

Adults with a diagnosis of HF and resident in Organisation for Economic Co-operation and Development countries.

Intervention

CM based on nurse co-ordinated multi-component care of individual patients which is applicable to the primary care based health systems.

Primary and secondary outcomes

The primary outcomes of interest were unscheduled secondary care and cost effectiveness. Secondary outcomes were primary health care resources.

Results

Twenty-two studies were included: 17 RCTs and five controlled trials. Seventeen of these studies described hospital-initiated CM and five described community-initiated CM of HF. Hospital-initiated CM showed a reduced risk of readmission (rate ratio 0.77 [0.63, 0.94] p=0.01) and length of hospital stay (mean difference -1.28 days [-2.03,-0.53] p=0.0008) in favour of CM compared to usual care.

Nine trials described cost data of which six reported no difference between CM and usual care. Data from three of five trials of community-initiated CM showed no differences in risk of admission compared to the usual care group (rate ratio 1.08 [0.62, 1.87] p=0.8). Data from some individual studies suggests that family involvement and education/self-management are likely to be important in CM but this was not demonstrated in sub-group analysis.
Conclusions

Hospital-initiated CM can be successful in reducing unplanned hospital readmissions for HF and length of hospital stay for people with HF. Limited data suggest no difference in costs between usual care and CM. There were limited data for community-initiated CM which suggested it does not reduce hospital admission.

Protocol registration

No

Strengths of review

- High quality systematic review
- Interventions examine nurse-led multicomponent care of heart failure patients
- Focus on use of resources specific to heart failure

Limitations of review

- Community-initiated case management trials were limited in quantity and were mostly of low quality.
- Lack of cost data in most trials
INTRODUCTION

Applying current prevalence figures to population estimates suggests that more than 550,000 individuals (more than 308,000 men and slightly fewer than 250,000 women) in the UK are living with heart failure (HF).\(^1\) Quality and Outcome Framework (QOF) data supports this: in 2012/13 just over 480,000 patients were recorded as having heart failure.\(^2\) The average age of HF patients in general practice in the UK is 77 years.\(^3\)

Prior to 1990, 60–70% of patients died within 5 years of diagnosis, and admission to hospital with worsening symptoms was a regular and recurrent event.\(^4\) Effective treatment has improved care, with a relative reduction in hospitalization in recent years of 30–50%, and smaller but significant decreases in mortality.\(^4\)

More than £6.8 billion was spent on treating all cardiovascular disease within the NHS in England in 2012/13 with 63% of these costs coming from within secondary care and 21% within primary care. Within secondary care, non-elective inpatient admittance for cardiovascular disease, i.e. emergency admissions, had the greatest expenditure with £1,925 million.\(^1\)

Case management (CM) is the process of planning, coordinating and reviewing the care of an individual. We used the definition cited by the King’s Fund in the UK ‘A collaborative process of assessment, planning, facilitation, care coordination, evaluation, and advocacy for options and services to meet an individual’s and family’s comprehensive health needs through communication and available resources to promote quality cost-effective outcomes.’\(^7\) The NHS has used less-intensive approaches than the traditional US model, for example, through the use of nurses to support older people and those with long-term conditions at home.\(^8\) In this review we have focused on CM based on nurse co-ordinated multi-component care of patients which is applicable to the primary care based health systems such as that in the UK.

Previous research suggests that whilst CM is not effective in reducing unplanned hospital admissions for the general older/elderly population, the evidence for patients with HF is promising.\(^9,10\) Therefore this review aimed to a) update the evidence of the effectiveness and cost-effectiveness of interventions by examining both randomised and non-randomised controlled trials and b) to better understand the potential success of CM by examining the components of tested interventions.
METHODS

Search

Databases and registries

A search strategy was developed using keywords for the electronic databases according to their specific subject headings or searching structure. The search strategy was run from 1985 – 2012 in the OVID databases - Medline®, Excerpta Medica Database (Embase), Cumulative Index to Nursing and Allied Health Literature (CINAHL®), PsycINFO® on the 2nd July 2014. (Appendix one) The search strategy was modified to search internet sites such as the Agency for Healthcare Research and Quality (AHRQ) and the King’s Fund. A pragmatic update of these searches was conducted on the 20/11/15 using the same search strategy and run in Medline and Medline in process only.

Other sources

Once the included papers were determined, both backwards (reference list of paper) and forwards citation searching (via google scholar) was performed to identify any other potentially relevant studies. All authors of included studies in the field were contacted with data queries and to identify additional relevant studies.

Eligibility criteria:

Randomised controlled trials, and other controlled studies (controlled trials, controlled before and after studies, analytic cohorts, comparative studies) were included as determined by our eligibility criteria. CM interventions needed to be initiated either whilst as an inpatient or on discharge from acute care hospitals including the emergency department (ED), or in the community, and then continue on in the community. Only studies including adults with HF in Organisation for Economic Co-operation and Development (OECD) countries were included as the outcomes were more likely to be comparable for synthesis, and relevant to the UK situation. Studies were included as long as one of the outcomes of interest was unscheduled secondary care [unplanned hospital admissions/readmissions, ED attendance, length of hospital stay] as well as related cost and cost effectiveness of the interventions. Other outcomes of interest were primary health care resources e.g. GP visits, visits to other primary care health professionals or services and prescriptions. Studies written in any language were considered if there was an English abstract.
Reference management and study selection

EndNote and Excel were used to manage the references. Duplicates were removed from the Endnote file. References underwent a two stage process of screening using the inclusion and exclusion criteria by two reviewers independently (AH, AK, RJ). Firstly, a screen of titles and abstracts (if abstract available) and secondly screening of the full paper was conducted. Where there was continued disagreement between reviewers about including or excluding a paper, a third reviewer made the final decision (SP or RJ).

In addition to the included quantitative intervention papers, we identified relevant reviews from the search. Any potentially relevant conference proceedings were followed up, firstly by searching in Medline to see if the study had been published. If the study was not published, the authors were contacted where possible to check if the studies were likely to be published within the work frame of this review.

Data extraction

Data were extracted into a custom-designed table which included description of trial type, participants, intervention, controls, outcome measures and results. Based on the Kings Fund definition of case management we devised taxonomy of intervention components.\(^8\) (table 1) As part of this data extraction process, the intervention and control treatments were also described by their component parts e.g. monitoring signs and symptoms using the framework of the CM definition.

Quantitative data concerning the outcomes of interest were extracted into the Cochrane Revman software. The Cochrane risk of bias tool was used to record trial bias.\(^{12}\) This process was performed by one author and checked by a second. (AH, AK) Any disagreements were resolved by discussion and if necessary with a third author. (RJ, SP)
Data analysis

Trials were divided as previously described by Huntley et al 2013 into hospital-initiated CM and community-initiated CM.9 Where there were data from three or more studies, effect sizes were calculated and presented in forest plots as rate ratios (admissions) or mean differences (length of stay) using Revman software. If the heterogeneity of the combined data was greater than 50%, a random effects model was used for analysis.

We conducted sensitivity analysis in response to the risk of bias assessment of studies, removing high risk of bias studies as appropriate; the results of both analyses are presented.13 We conducted subgroup-analysis to explore the effects of CM duration (3, 6 and 12 months plus) on hospital admission and LOS. There was insufficient detail in trials to perform sub-analysis by severity of HF or intensity of intervention.

Data were assessed narratively in respect of the components of interventions using the CM definition cited above as guidance.9 (table 1) In addition, where possible subgroup-analysis was conducted in Revman in which interventions with components of interest were compared with those that did not have these components.

RESULTS

The systematic review yielded 22 studies with data published over 32 papers of which 17 were RCTs and five were CTs.14-45 No relevant studies were identified in the pragmatic update search.

Seventeen of these studies described hospital-initiated CM14,15,17,18,20-24,26-28,31,32, and five described community-initiated CM of HF.38,42-45

Profile of patients (table 2)

The range of female participants in the trials was 1-58%, but the majority of trials had relatively even gender divide. Co and multi-morbidity were common. Eight of the 22 trials gave no detail on ethnicity of participants; in four studies the trialists used white/non-white and English speaking/non-English speaking categories. In the remaining 10 studies, a fuller profile was described. Twelve of the 22 trials were conducted in the USA and the ethnicity profile reflected that including Spanish speaking/Hispanic, American Indian, Black, African American, Asian and White participants.
The majority of trials described the severity of HF using New York Heart Association (NYHA) classification. Twelve of the trials gave a breakdown of numbers or percentages in the I-IV classes with some trials only giving numbers of participants for the III and IV class. In these trials the percentage range of III and IV class patients was 6-98%. Four trials gave mean and median values of NYHA status, one trial used the APR-DRG severity of illness scale, and five trials did not describe disease severity.

Profile of interventions (table 1)

The majority of studies (n=15) described the intervention being delivered by a case manager/specialist nurse with no specific mention of other health professionals, and the remaining seven studies described a case manager/speciality nurse working as part of a multi-disciplinary team. All but two studies compared CM with usual care although the control group was not always described. The two remaining studies were comparative: one RCT comparing CM with specialist clinics and one RCT comparing CM with telemedicine plus CM. The duration of the CM interventions in the studies was 1-24 months with the majority having a 3 or 6 month duration. The majority of studies were conducted face to face or a combination of in-person and by phone. Four interventions were conducted purely by phone. Outcomes were measured to match the total duration of intervention in the majority of studies. For many of the studies the intensity of interventions was not stated explicitly. When intensity was described it was always a tapered approach after an initial intensive period.
Risks of bias (Figure 2a&b)

The degree of risk of bias was starkly different between the RCTs and CTs. All five of the CTs were rated at high risk or unknown risk for most domains. The majority of the RCTs were rated at low risk for most domains with the exception of the domain of blinding of the participants and personnel which is not applicable to this type of intervention. Three RCTs were assessed as at high risk for at least one domain: both Hancock and Wade gave no description of the randomisation process or allocation concealment, Riegel 2002 was randomised at physician level and patients were chosen by physician preference. Four of the five community-initiated trials (2RCTs and 2CTs) were assessed to be at high risk of bias, and in some studies did not present usable data.

All the intervention studies reported unplanned hospital admissions and 17 reported number of days in hospital. There were few data on A and E attendance and primary care resource use. However, only some of the data could be used in meta-analysis with the main reasons being that data were presented in different formats where neither confidence intervals, standard errors nor raw data were given. Due to heterogeneity of data all analysis was conducted using a random effects model.

Unplanned HF (re)admissions data (figure 3)

Hospital-initiated CM

Thirteen of hospital-initiated CM trials had data that could be used in the meta-analysis. Overall the data showed the rate ratio of readmissions was 0.77 [95% CI 0.63, 0.94] p=0.01 I² =69% in favour of hospital-initiated CM. A sensitivity analysis was conducted, removing Riegel 2000 (high risk CT) and 2002 (RCT with high risk for randomisation domain) which had a minimal effect on the rate ratio and heterogeneity 0.77 [0.61, 0.96] p=0.02 I² =68%. Sub-analysis looking at 3, 6 and 12-18 month data did not produce a clear time-related effect which is most likely due to heterogeneity within and between studies. There was one hospital-initiated CM trial which compared CM with specialist clinics which reported no differences in hospital readmissions between the two groups.

Community initiated CM

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Of the four community initiated trials comparing admissions between CM with usual care, two reported no significant differences \(^{38,43}\) and two reported statistically significant reductions in favour of CM. \(^{44,45}\) Data were available from three of these trials for meta-analysis and showed no significant differences in admissions between groups, (rate ratio 1.08 [0.62, 1.87] \(p=0.8\) \(I^2=78\%\) (figure 3e). \(^{38,44,45}\) One further trial compared CM, with telehealth and CM and reported no differences in admissions but data were not presented. \(^{42}\)

Length of hospital stay (LOS) (figure 4)

Hospital-initiated CM

Nine of the hospital-initiated CM trials had data that could be used in a meta-analysis. Overall the data showed that LOS was reduced in the CM group compared to usual care mean difference (MD) -1.28 days [-2.03, -0.53] \(p=0.0008\) \(I^2=68\%\). (figure 4a) A sensitivity analysis was conducted removing Riegel 2000 and 2002 which had an important effect on the rate ratio and heterogeneity MD -1.76 [-2.29, -1.23] \(p<0.00001\) \(I^2=14\%\). \(^{21,35}\) Sub-analysis looking at 3, 6 and 12-18 month data suggests this effect is short-term (first 3 months) but a longer time-related effect was difficult to assess due to lack of data. (figure 4b,c,d).

The one study comparing CM with specialist clinic care, reported that CM patients accumulated 592 and clinic patients 547 all-cause hospitalizations \((p = 0.087)\) associated with 3067 versus 4410 days of hospital stay \((p < 0.01\) for rate and duration of hospital stay). \(^{32}\)

Community initiated CM

Of the 4 community initiated trials comparing CM with usual care, two did not report LOS \(^{38,43}\) one reported median values in favour of CM \(^{44}\) and the remaining one reported a mean reduction in LOS. \(^{45}\) (table 2). The one comparative trial between community-initiated CM, and telehealth and CM did not report any useful data. \(^{42}\)

Intervention components (table 2 and appendix 2)

Fourteen intervention components were identified and grouped as per the CM definition in methods and prevalence determined for both hospital and community—initiated CM studies with a usual care control group (table 2). \(^7\)
Hospital-initiated CM (appendix 2)

Data from individual studies which contained components of either family involvement or education/self-management showed an overall reduction in hospital readmissions in comparison with usual care. They also showed a reduction in hospital readmissions observationally in comparison with interventions which did not contain these components. However, analysis comparing the studies in which the component was present with those in which the component was absent did not yield any statistically significant differences. (appendix 2a &b) The same calculations for medication review, referral to other services, and assessment of home environment, CM meetings and patient-directed access did not indicate any specific effect of these components of hospital-initiated CM on rates of admission. (appendix 2c-e)

Community initiated CM

There were insufficient data to conduct any subgroup-analysis on any of the remaining components of hospital-initiated CM, community initiated studies or the length of stay data.

Outpatient health care resources

Only six of the included studies measured outpatient resource use. In some studies, outpatient resource data were all-cause and not HF-specific. In some studies primary and secondary use was combined. Twenty-three of these studies also reported ED attendance. All but one of these studies reported no difference between intervention and control group for these measures with the exception of Lowery which showed a statistically significant greater use of outpatient resources in the usual care group (optional primary care visits 1yr 16.75(13.62), 10.43(9.6) p<0.001, 2yr 14.27(11.98), 9.35(9.97) p<0.001).

Costs

Nine of the seventeen hospital initiated trials described cost comparison data. Of these, six reported no statistically significant difference between CM (3 or 6 month duration) and usual care, and three reported costs in favour of CM although data from Stauffer was brief. One of these was 12-18 months and two were 3 months in duration. It was difficult from the intervention...
descriptions to determine their intensity. There were no cost data reported from the community-initiated trials.

DISCUSSION

This systematic review confirms that hospital-initiated CM can be successful in reducing unplanned hospital readmissions, and reducing length of stay in hospital in the short term for people with HF. There were only five community-initiated CM studies of which four were at high risk of bias. Limited data shows no effect of community-initiated CM on hospital admissions. A minority of trials report cost comparisons with usual care and most of those show no difference. There were limited data on the effect of CM on other health care resources. Observational intervention component data suggests that care providing family involvement and education/self-management are likely to be important in case management but these observations did not stand when subjected to subgroup analysis.

Many factors are likely to modify the effect of CM on use of emergency care seen in these studies. It is generally accepted that CM is more appropriate for people with severe HF and poorer general health. However it was difficult to compare the health status of the study participants in both hospital-initiated and community-initiated trials as in some studies there was little detail, others gave median and mean figures for NYHA status, and the presentation format and detail of co-morbidities varied.

Seventeen studies described hospital-initiated CM and five described community initiated CM of heart failure although often the participants were identified via hospital clinic records. Overall the meta-analysis showed that a positive effect of CM on readmissions and hospital length of stay. This may be explained by the fact that in most of the trials the participants were identified via hospital contact and therefore were likely to have had a recent exacerbation of their HF and to be at increased risk of re-admission in the post-discharge period. In addition, it is likely that interventions are acting at a time of highest risk as reflected by HF mortality in first year of diagnosis. Therefore once they were assessed and given extra support they were stable for a period of time. Previous work by Roland et al 2005 suggests that admission rates in people aged 65 with two or more emergency admissions in 12 months fall in subsequent years without any intervention and account for fewer than 10% of admissions in the following year and thus effectiveness of admission avoidance schemes cannot be judged by tracking admission rates without careful comparison with a control group. The data from
trials of community-initiated CM was lacking both in the number of studies, and the fact there were limited useable data that showed no effect on unplanned hospital admissions. It is likely that these patients were likely to be in more stable health.41

A meta-review of a wide range of HF disease management programs by Savard 2011 reports that nine previous systematic reviews (2001-2009) identified significant reductions in HF admissions with reductions in risk ranging from 30-56\%.47 However the authors caution that these reviews are limited by inadequate reporting in the population, setting, intervention and comparator components. They report that reviewers have not taken into account statistical, clinical and methodological heterogeneity in interventions.47 Our review focussed specifically on CM avoiding some of these limitations and indicates a reduction in HF admissions with hospital-initiated CM in the range of 10-30%.

Wakefield et al in 2013 looked at common components of a range of HF care programs focusing mainly on disease management and education investigated in RCTs, and 10/35 of the discussed studies were included in our review.48 They described patient education, symptom management by health professionals and by patients, and medication adherence strategies as the most commonly occurring elements of care. A literature review by Jaarsma 2012 looked at 70 ‘home care’ controlled studies (mostly RCTs) which encompassed 9 of our included CM studies covering a wide range of approaches such as telemedicine, hospital at home and health buddies for patients with HF.49 They identified a multi-disciplinary team, continuity of care, care plans, optimising titration of medication, education/counselling of patients and caregivers and increased access as important.

In order to understand why our meta-analysis reported that the specific approach of CM was successful in reducing admissions and length of stay we also conducted component analysis. Our analysis agreed with the above reviews that patient education/self-management is significant but also flagged up the importance of family involvement. The magnitude of effect was not so convincing for medication review (appendix 2c) but it was difficult from the study description to distinguish between medication management and formal reviewing of medication by either the CM or pharmacist.

Previous systematic reviews have investigated the role of the lay caregiver in HF patient management.50-52 These suggest that better relationship quality and communication were related to reduced mortality, increased health status and less distress and improved patient self-care outcomes.
Our review adds to this evidence base by suggesting that more family involvement in CM may also reduce unscheduled secondary care.

Education about HF and about its pharmacological and non-pharmaceutical treatment has been well-reviewed both as an individual approach and as part of complex interventions, and is considered to be essential for improving many patient outcomes.\(^{49, 53, 54}\) A recent mixed method study, suggests asking patients with HF to write down their learning needs before the education increases their chances of receiving education based on their individual needs.\(^{55}\) Qualitative interviews with health professionals caring for HF patients suggest that communication with, and education by specialist nurses facilitated by continuity of care is essential to good care of HF patients. The authors also highlight the role of the specialist nurse in multi-disciplinary team communication and functioning; essentially describing the role of the specialist nurse as a case manager.\(^{56}\)

Our review of CM suggests that the evidence for its cost-effectiveness is lacking with most studies that have performed cost comparisons with usual care show no advantage. Previous work by de Bruin et al 2001 looked at cost effectiveness of disease management for a range of chronic conditions and concluded that the data is most positive for HF with 5 out of the 8 included studies showing cost-effectiveness.\(^{57}\)

Strengths and limitations

The contribution of our high quality systematic review to the above is that we have focused on CM which is based on nurse co-ordinated multi-component care of patients which is applicable to the primary care based health systems such as that in the UK. We have focused on HF admissions and length of stay as opposed to all-cause data which many of the previous reviews have used.

By examining the components of CM we have a profile of the components most likely to lead to the success of CM of patients with heart failure in terms of reducing admissions and hospital length of stay. Our review has high-lighted the potential importance of family involvement and education/self-management.

The limitations of this review are that majority of the community-initiated CM studies were of low quality with the exception of one low risk RCT, and provided limited data for meta-analysis. This was counteracted by the fact that the hospital-initiated studies comprised of predominantly community-
based case management. There is a lack of cost data and analysis in the included papers. This point needs to be emphasised for future trials. It is possible that cost effectiveness will be more likely with intervention for patients with more severe HF.

CONCLUSIONS

Hospital-initiated CM reduces unplanned hospital admissions, and length of stay for people with HF in the short term. Cost data is limited. There were limited data for community-initiated CM which suggested it does not reduce hospital admission. Further research is needed to determine the individual components of CM that contribute to reduced admissions.

Contributorship statement

Alyson Huntley. Main systematic reviewer, worked across all stages of the review from inception to completed draft.

Rachel Johnson. Cardiology and primary care expertise. Worked on screening, selection of studies, commenting on analysis, and development and checking of final document content.

Anna King. Second reviewer, involved in screening, selection, data checking and commenting on developing and final document content.

Richard Morris. Statistical expertise, advising on data analysis and commenting on the developing and final document content.

Sarah Purdy. Primary care and admission avoidance expertise. Advised throughout project, third reviewer for screening process and commenting on the developing and final document content.

Competing interests

None declared

Funding

This project was funded by the National School of Primary Health Care project no.238.

Data sharing statement

Full data extraction tables and data analysis files are available on request
REFERENCES

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

39. Peters-Klimm F, Muller-Tasch T, Schellberg D et al. Rationale, design and conduct of a randomised controlled trial evaluating a primary care-based complex intervention to improve
the quality of life of heart failure patients: HICMan (Heidelberg Integrated Case Management).

BMC Cardiovascular Disorders 2007: 7, (25). PROTOCOL

Table 1: Components of CM interventions

<table>
<thead>
<tr>
<th>Definition & total prevalence of Components of CM interventions</th>
<th>Number of hospital-initiated CM vs. usual care with component present (total studies=16)</th>
<th>Number of community-initiated CM vs. usual care with component present (total studies=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment / Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring signs & symptoms (n=18)</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Monitoring signs & symptoms which is likely to include establishing a relationship with patient over visits, physical and cardiac status checking, lifestyle assessment, general medication check and screening tests e.g. depression, dementia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medication review (n=8)</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Review and adjustment of medication by experienced case manager (nurse), pharmacist, GP or consultant often using a combination of these health professionals.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment of home environment (n=4)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Assessment carried out by case manager to identify any issues or potential issues with home environment e.g. stairs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM meetings/feedback to other HPs (n=6)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Group meetings of health professionals involved in CHF patients care with the aim of reporting on and planning for patients care.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appointment organisation (n=2)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Case manager checking medical appointments, ensuring ability to go etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advance care planning (n=1)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Facilitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education/self-management (n=18)</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Educating CHF patients about their condition, treatment and what to expect. The aim of this is to assist self-management (care with assistance of health professionals) and self-care (patient engaging in activities to promote their health and well-being).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient-directed access (n=6)</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>The ability of CHF patients to initiate care from the case manager or case management service.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Care co-ordination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Referral to ... (n=14)</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>When the case manager refers the patient to other health or social care professionals, this can be GP hospital consultant, social care or tests.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advocacy for options & services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Provision of items to assist patient’s health care such as pill counters, weighing scales and measured water bottles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical therapy (n=1)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CHF patient receiving physical therapy/rehabilitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support group (n=1)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CHF attending or being offered the opportunity of a support group.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family involvement (n=8)</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>When the case manager involves the patient’s family in terms of information, education or involvement e.g. goal setting in patients’ care or active monitoring.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotional support (n=1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Case manager providing emotional support to CHF patient.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: study characteristics of intervention studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Recruitment/setting</th>
<th>Baseline characteristics of participants: CM vs. usual care</th>
<th>Intervention</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rich 1993 USA</td>
<td>n=98 randomised</td>
<td>Patients ≥70 yrs admitted to medical wards of Jewish Hospital at Washington University Medical Centre were screened for congestive HF.</td>
<td>Non-pharmacological comprehensive multidisciplinary treatment strategy (n=63)</td>
<td>Usual care (n=35) Components of intervention: Visits by home nurse</td>
</tr>
<tr>
<td>Stewart 1998 Australia</td>
<td>n=97 randomised</td>
<td>Patients were recruited whilst admitted to a large tertiary hospital</td>
<td>Home-based intervention (n=49)</td>
<td>Usual care (n=48) Components of intervention: Disease management</td>
</tr>
<tr>
<td>Stewart 1999 Australia</td>
<td>n=200 randomised</td>
<td>Patients admitted to a tertiary referral hospital</td>
<td>Multidisciplinary home base intervention (n=100)</td>
<td>Usual care (n=100) Components of intervention: Contact with other health and social professionals. Appointment with GP or cardiac clinic or both</td>
</tr>
<tr>
<td>Blue 2001 UK</td>
<td>n=165 randomised</td>
<td>Patients admitted as an emergency to the acute medical ward of the hospital</td>
<td>Specialist nurse intervention (n=62)</td>
<td>Usual care (n=75) Components of intervention: GP care</td>
</tr>
<tr>
<td>Mogil 2002 USA</td>
<td>n=218 physicians randomised</td>
<td>Patients admitted to 2 Southern California hospitals.</td>
<td>Telephonic case management (n=130)</td>
<td>Usual care (n=223) Components of intervention: Not known</td>
</tr>
<tr>
<td>Laramee 2003 USA</td>
<td>n=287 randomised</td>
<td>Patients admitted to hospital for CHF were screened.</td>
<td>Case management (n=131 data available)</td>
<td>Usual care (n=125 data available) Components of intervention: Not known</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Country</td>
<td>Sample Size</td>
<td>Randomised</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>DeBusk et al.</td>
<td>2004</td>
<td>USA</td>
<td>n=462</td>
<td>randomised</td>
</tr>
<tr>
<td>Naylor et al.</td>
<td>2004</td>
<td>USA</td>
<td>n=239</td>
<td>randomised</td>
</tr>
<tr>
<td>Riegel et al.</td>
<td>2006</td>
<td>USA</td>
<td>n=135</td>
<td>randomised</td>
</tr>
<tr>
<td>Thompson et al.</td>
<td>2005</td>
<td>UK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaasma et al.</td>
<td>2008</td>
<td>The Netherlands</td>
<td>n=1049</td>
<td>randomised</td>
</tr>
<tr>
<td>Brotons et al.</td>
<td>2009</td>
<td>Spain</td>
<td>n=283</td>
<td>randomised</td>
</tr>
<tr>
<td>Stewart et al.</td>
<td>2012</td>
<td>Australia</td>
<td>n=280</td>
<td>randomised</td>
</tr>
<tr>
<td>Hospital Initiated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riegel et al.</td>
<td>2000</td>
<td>USA</td>
<td>n=240</td>
<td>randomised</td>
</tr>
</tbody>
</table>
Stauf/er* 2011

USA

- **n=140**
- **Patients were screened for eligibility within 48 hours of hospital admission**

<table>
<thead>
<tr>
<th>Age (yrs.)</th>
<th>% Female</th>
<th>Ethnicity</th>
<th>Disease Status</th>
<th>Components of intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>78 (68.3)</td>
<td>12.5%</td>
<td>Hispanic 58.1</td>
<td>7.1%</td>
<td>Nurse-led transitional care intervention (n=56)</td>
</tr>
</tbody>
</table>

Stauffer* 2011

USA

- **n=140**
- **Patients were referred from a single large not-for-profit general medical and surgical hospital**

<table>
<thead>
<tr>
<th>Age (yrs.)</th>
<th>% Female</th>
<th>Ethnicity</th>
<th>Disease Status</th>
<th>Components of intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>78 (68.3)</td>
<td>12.5%</td>
<td>Hispanic 58.1</td>
<td>7.1%</td>
<td>Nurse-led transitional care intervention (n=56)</td>
</tr>
</tbody>
</table>

Community-initiated CM-RCTs

Peters-Klimm 2010

Germany

- **n=199 at randomisation**
- **Recruitment was via general practice by mail.**

<table>
<thead>
<tr>
<th>Age (yrs.)</th>
<th>% Female</th>
<th>Ethnicity</th>
<th>Disease Status</th>
<th>Components of intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.4 (10.0)</td>
<td>5.4%</td>
<td>No details</td>
<td>NYHA I (1.0)</td>
<td>Case management (n=87)</td>
</tr>
</tbody>
</table>

Wiede* 2011

USA

- **n=2,200 were randomised**
- **Aetna Medicare Advantage members with medical & pharmacy benefits were identified through analysis of claims**

<table>
<thead>
<tr>
<th>Age (yrs.)</th>
<th>% Female</th>
<th>Ethnicity</th>
<th>Disease Status</th>
<th>Components of intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.0, 77.7</td>
<td>7.7%</td>
<td>Black/African American</td>
<td>24.20.4%</td>
<td>Case management (n=102)</td>
</tr>
</tbody>
</table>

Hancock** 2012

UK

- **n=28 randomised**
- **Residents from 33 of 35 long-term residential & nursing homes**

<table>
<thead>
<tr>
<th>Age (yrs.)</th>
<th>% Female</th>
<th>Ethnicity</th>
<th>Disease Status</th>
<th>Components of intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.1 (6.7)</td>
<td>5.4%</td>
<td>100% white</td>
<td>NYHA III/IV</td>
<td>Case management (n=16)</td>
</tr>
</tbody>
</table>

Community-initiated CM-CCTs

Bonarek-Hessamfar* 2008

France

- **n=362**
- **Compared patients included prospectively from Jan 1st 2004- Dec 31st 2005 from GP list**

<table>
<thead>
<tr>
<th>Age (yrs.)</th>
<th>% Female</th>
<th>Ethnicity</th>
<th>Disease Status</th>
<th>Components of intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median 78, 80 yrs.</td>
<td>5.4%</td>
<td>No details</td>
<td>NYHA II/III/IV</td>
<td>Co-ordinated care via multidisciplinary network (n=129)</td>
</tr>
</tbody>
</table>

Lowery** 2012

USA

- **n=1043**
- **Intervention implemented in 4 Midwest VA medical centres from the same region & one affiliated outpatient clinic and 2 VA medical centres served as control.**

<table>
<thead>
<tr>
<th>Age (yrs.)</th>
<th>% Female</th>
<th>Ethnicity</th>
<th>Disease Status</th>
<th>Components of intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.4 (0.51), 67.4 (0.45) yrs.</td>
<td>1.1%</td>
<td>White 71.2,70.9%</td>
<td>24.16.1%</td>
<td>Nurse-practitioner-led disease management model (n=457)</td>
</tr>
</tbody>
</table>

Key

- AF: atrial fibrillation
- CHF: chronic heart failure
- COPD: chronic obstructive pulmonary disease
- CM: case management
- HCM/RCM: Hypertrophic Obstructive/Restrictive Cardiomyopathy
- GP: general practitioner
- UC: usual care
- NYHA: New York Heart Association
- SNF: skilled nursing facility
- PAD: peripheral arterial disease
- **36.8%, 38.5%**

Version 25 of 38

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Figure 1: PRISMA Flow Diagram

7547
Records identified through database searching

7552
Screened for duplicates

6747
Records after duplicates removed that were & screened by title & abstract (n = 183)

177
Full-text papers assessed for eligibility

32 papers (22 studies)
Included in quantitative synthesis

805
Duplicates removed

6584
Records excluded

145
Full-text articles excluded, with reasons
Not CM (90)
Not RCT/CCT (34)
In-patient CM (7)
Qualitative (6)
Not Quant (5)
Mixed pop (5)
Not CHF (2)
No rel. outcomes (1)
COL (1)
Abstract only (1)

122x146mm (96 x 96 DPI)
Figure 2a: Risk of bias for included Cochrane reviews.

177x132mm (96 x 96 DPI)
Appendix 1:
Database: Medline In-process - Current week, Medline 1950 to present
Search Strategy:

1 randomized controlled trial.pt. (376608)
2 random$.tw. (717987)
3 control$.tw. (2630023)
4 intervention$.tw. (556397)
5 evaluat$.tw. (2214967)
6 or/1-5 (5041451)
7 Qualitative Research/ (20094)
8 semi-structured questionnaire.mp. (1162)
9 observation methods.mp. (152)
10 Observation/mt [Methods] (635)
11 Nvivo.mp. (639)
12 interview/ (25018)
13 Personal Narratives/ (877)
14 Focus Groups/ (16824)
15 patient experience*.mp. (8525)
16 or/7-15 (70071)
17 exp Heart Failure/ (87270)
18 exp Heart Failure, Diastolic/ (496)
19 exp heart failure, systolic/ (789)
20 exp Ventricular Dysfunction/ (26332)
21 chronic heart failure.mp. (11341)
22 congestive heart failure.mp. (33082)
23 cardiac failure.mp. (10151)
24 LV dysfunction.mp. (2827)
25 left ventricular dysfunction.mp. (9373)
26 left ventricular impairment.mp. (188)
27 diastolic impairment.mp. (121)
28 systolic impairment.mp. (93)
29 or/17-28 (135885)
30 exp Case Management/ (8326)
31 exp Patient Care Planning/ (52319)
32 organisation of care.mp. (367)
33 community matron.mp. (44)
34 "Continuity of Patient Care"/ (14497)
35 Community Health Nursing/ (18371)
36 transit* care.mp. (580)
37 Interdisciplinary Communication/ (10602)
38 Patient Discharge/ (18977)
39 discharge plan.mp. (176)
40 exp Patient Care Management/ (535496)
41 Comprehensive Health Care/ (6078)
42 exp Managed Care Programs/ (38918)
43 Primary Health Care/ (54234)
44 Community Health Services/ (26923)
45 General Practitioners/ (1943)
46 Family Practice/ (60223)
47 Physicians, Family/ (14745)
48 multidisciplinary.mp. (44988)
49 or/30-48 (674050)
50 6 or 16 (5094326)
51 29 and 50 (47009)
52 49 and 51 (2590)
53 52 not (case report/ or case study/ or letter/ or editorial/ or expert opinion.mp.) (2489)
54 53 not (Algeria$ or Egypt$ or Liby$ or Morocc$ or Tunisia$ or Western Sahara$ or Angola$ or Benin or Botswana$ or Burkina Faso or Burundi or Cameroon or Cape Verde or Central African Republic or Chad or Comoros or Congo or Djibouti or Eritrea or Ethiopia$ or Gabon or Gambia$ or Ghana or Guinea or Keny$ or Lesotho or Liberia or Madagasca$ or Malawi or Mali or Mauritania or Mauritius or Mayotte or Mozambiq$ or Namibia$ or Niger or Nigeria$ or Reunion or Rwand$ or Saint Helena or Senegal or Seychelles or Sierra Leone or Somalia or South Africa$ or Sudan or Swaziland or Tanzania or Togo or Ugand$ or Zambia$ or Zimbabwe$ or China or Chinese or Hong Kong or Macao or Mongolia$ or Taiwan$ or Belarus or Moldov$ or Russia$ or Ukraine or Afghanistan or Armenia$ or Azerbaijan or Bahrain or Cyprus or Cypriot or Georgia$ or Iran$ or Iraq$ or Israel$ or Jordan$ or Kazakhstan or Kuwait or Kyrgyzstan or Lebanon$ or Oman or Pakistan$ or Palestin$ or Qatar or Saudi Arabia or Syria$ or Tajikistan or Turkmenistan or United Arab Emirates or Uzbekistan or Yemen or Bangladesh$ or Bhutan or British Indian Ocean Territory or Brunei Darussalam or Cambodia$ or India$ or Indonesia$ or Lao or People's Democratic Republic or Malaysia$ or Maldives or Myanmar or Nepal or Philippin$ or Singapore or Sri Lanka or Thai$ or Timor Leste or Vietnam or Albania$ or Andorra or Bosnia$ or Herzegovina$ or Bulgaria$ or Croatia$ or Estonia or Faroe Islands or Greenland or Liechtenstein or Lithuani$ or Macedonia or Malta or maltese or Romania or Serbia$ or Montenegro or Slovenia or Svalbard or
Argentina$ or Belize or Bolivia$ or Brazil$ or chile or Chilean or Colombia$ or Costa Rica$ or Cuba or Ecuador or El Salvador or French Guiana or Guatemala$ or Guyana or Haiti or Honduras or Jamaica$ or Nicaragua$ or Panama or Paraguay or Peru or Puerto Rico or Suriname or Uruguay or Venezuela or developing countr$ or south America$).ti,sh. (2413)

55 54 not animal/ (2393)

56 remove duplicates from 55 (2335)
Appendix 2: Subgroup-analysis by intervention component- hospital initiated studies

a) Family involvement

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log(Rate Ratio)</th>
<th>SE</th>
<th>Case management Total Weight</th>
<th>Rate Ratio IV, Random, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riegel 2002</td>
<td>-0.675</td>
<td>0.210</td>
<td>130</td>
<td>220 (25.9%) 0.61 [0.33, 0.79] 2002</td>
</tr>
<tr>
<td>Nater et al. 2004</td>
<td>-0.563</td>
<td>0.197</td>
<td>118</td>
<td>121 (26.9%) 0.57 [0.39, 0.84] 2004</td>
</tr>
<tr>
<td>Thompson 2005</td>
<td>-1.268</td>
<td>0.298</td>
<td>58</td>
<td>48 (23.3%) 0.28 [0.15, 0.49] 2005</td>
</tr>
<tr>
<td>Riegel 2008</td>
<td>0.112</td>
<td>0.24</td>
<td>60</td>
<td>65 (24.9%) 1.12 [0.70, 1.78] 2008</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td>376</td>
<td></td>
<td>463 (100.0%) 0.68 [0.34, 0.93]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.20, Ch² = 14.07, df = 3 (P = 0.003); P² = 78%
Test for overall effect Z = 2.30 (P = 0.02)

b) education & self-management

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log(Rate Ratio)</th>
<th>SE</th>
<th>Case management Total Weight</th>
<th>Rate Ratio IV, Random, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rich 1993</td>
<td>-0.136</td>
<td>0.332</td>
<td>63</td>
<td>35 (6.5%) 0.87 [0.46, 1.67] 1993</td>
</tr>
<tr>
<td>Rich 1995</td>
<td>-0.025</td>
<td>0.245</td>
<td>142</td>
<td>140 (10.2%) 0.44 [0.27, 0.71] 1995</td>
</tr>
<tr>
<td>Riegel 2000</td>
<td>0.054</td>
<td>0.164</td>
<td>140</td>
<td>140 (16.6%) 1.08 [0.77, 1.49] 2000</td>
</tr>
<tr>
<td>trial 2003</td>
<td>-0.120</td>
<td>0.241</td>
<td>62</td>
<td>70 (10.1%) 0.89 [0.54, 1.41] 2001</td>
</tr>
<tr>
<td>Laramee 2003</td>
<td>-0.200</td>
<td>0.321</td>
<td>131</td>
<td>125 (8.8%) 0.82 [0.44, 1.53] 2003</td>
</tr>
<tr>
<td>DeBusk 2004</td>
<td>-0.098</td>
<td>0.157</td>
<td>228</td>
<td>234 (17.4%) 0.91 [0.67, 1.23] 2004</td>
</tr>
<tr>
<td>Jaarsma 2008</td>
<td>0.076</td>
<td>0.151</td>
<td>344</td>
<td>329 (18.0%) 1.08 [0.80, 1.45] 2009</td>
</tr>
<tr>
<td>Eronson 2003</td>
<td>-0.211</td>
<td>0.180</td>
<td>144</td>
<td>139 (14.4%) 0.81 [0.56, 1.17] 2009</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td>1274</td>
<td></td>
<td>1227 (100.0%) 0.87 [0.72, 1.04]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.03, Ch² = 11.41, df = 7 (P = 0.12); P² = 39%
Test for overall effect Z = 1.54 (P = 0.12)

Test for subgroup differences: Ch² = 2.64, df = 1 (P = 0.10), P² = 62.2%
c) medication review

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Case management</th>
<th>Usual care</th>
<th>Rate Ratio</th>
<th>IV, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log(Rate Ratio)</td>
<td>SE</td>
<td>Total</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>Rich 1993</td>
<td>-0.136</td>
<td>0.332</td>
<td>83</td>
<td>95</td>
<td>1993</td>
</tr>
<tr>
<td>Rich 1995</td>
<td>-0.826</td>
<td>0.245</td>
<td>142</td>
<td>140</td>
<td>1995</td>
</tr>
<tr>
<td>Stewart 1999</td>
<td>-0.279</td>
<td>0.122</td>
<td>100</td>
<td>100</td>
<td>1999</td>
</tr>
<tr>
<td>Blue 2001</td>
<td>-0.129</td>
<td>0.248</td>
<td>84</td>
<td>91</td>
<td>2001</td>
</tr>
<tr>
<td>Brotons 2009</td>
<td>-0.211</td>
<td>0.189</td>
<td>144</td>
<td>139</td>
<td>2009</td>
</tr>
<tr>
<td>Stewart 2012</td>
<td>0.018</td>
<td>0.071</td>
<td>143</td>
<td>137</td>
<td>2012</td>
</tr>
</tbody>
</table>

Subtotal (95% CI) 533 495 100.0% 0.73 [0.59, 0.91]

Heterogeneity: Tau² = 0.02; Chi² = 5.56, df = 4 (P = 0.23); I² = 28%

Test for overall effect: Z = 2.87 (P = 0.004)

d) Referral to other services

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Case management</th>
<th>Usual care</th>
<th>Rate Ratio</th>
<th>IV, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log(Rate Ratio)</td>
<td>SE</td>
<td>Total</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>Riegel 2000</td>
<td>0.054</td>
<td>0.164</td>
<td>140</td>
<td>140</td>
<td>2000</td>
</tr>
<tr>
<td>Riegel 2002</td>
<td>-0.675</td>
<td>0.219</td>
<td>130</td>
<td>228</td>
<td>2002</td>
</tr>
<tr>
<td>Lamarese 2003</td>
<td>-0.201</td>
<td>0.321</td>
<td>131</td>
<td>135</td>
<td>2003</td>
</tr>
<tr>
<td>DeBusk 2004</td>
<td>-0.981</td>
<td>0.157</td>
<td>228</td>
<td>234</td>
<td>2004</td>
</tr>
<tr>
<td>Nafzger 2004</td>
<td>-0.563</td>
<td>0.197</td>
<td>118</td>
<td>121</td>
<td>2004</td>
</tr>
<tr>
<td>Thompson 2005</td>
<td>-1.289</td>
<td>0.298</td>
<td>58</td>
<td>109</td>
<td>2005</td>
</tr>
<tr>
<td>Riegel 2006</td>
<td>0.112</td>
<td>0.04</td>
<td>60</td>
<td>65</td>
<td>2006</td>
</tr>
<tr>
<td>Jaisenka 2008</td>
<td>0.076</td>
<td>0.151</td>
<td>344</td>
<td>339</td>
<td>2008</td>
</tr>
</tbody>
</table>

Subtotal (95% CI) 1218 1300 100.0% 0.66 [0.45, 0.95]

Heterogeneity: Tau² = 0.23; Chi² = 47.20, df = 7 (P < 0.00001); I² = 85%

Test for overall effect: Z = 3.36 (P = 0.001)

Test for subgroup differences: Chi² = 0.26, df = 1 (P = 0.61), I² = 0%
e) Assessment of home environment

f) Case management/health professional meetings
g) Patient-directed access

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log(Rate Ratio)</th>
<th>SE</th>
<th>Case management Total</th>
<th>Usual care Total</th>
<th>Weight</th>
<th>Rate Ratio IV, Random, 95% CI</th>
<th>Rate Ratio IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaarsma 2006</td>
<td>0.076</td>
<td>0.161</td>
<td>344</td>
<td>330</td>
<td>26.4</td>
<td>1.09 [0.80, 1.46]</td>
<td></td>
</tr>
<tr>
<td>Laramse 2003</td>
<td>-0.201</td>
<td>0.321</td>
<td>131</td>
<td>125</td>
<td>18.1</td>
<td>1.82 [0.44, 7.53]</td>
<td></td>
</tr>
<tr>
<td>Naylor 2004</td>
<td>-0.563</td>
<td>0.197</td>
<td>118</td>
<td>121</td>
<td>22.8</td>
<td>0.57 [0.39, 0.84]</td>
<td></td>
</tr>
<tr>
<td>Rich 1993</td>
<td>-0.136</td>
<td>0.332</td>
<td>63</td>
<td>35</td>
<td>15.6</td>
<td>0.87 [0.46, 1.67]</td>
<td></td>
</tr>
<tr>
<td>Rich 1995</td>
<td>-0.025</td>
<td>0.249</td>
<td>100</td>
<td>100</td>
<td>20.1</td>
<td>0.94 [0.27, 3.1]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td>756</td>
<td>720</td>
<td>100.0</td>
<td>0.72 [0.50, 1.04]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.12; Chi² = 12.90, df = 4 (P = 0.01); I² = 69%
Test for overall effect: Z = 1.75 (P = 0.08)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log(Rate Ratio)</th>
<th>SE</th>
<th>Case management Total</th>
<th>Usual care Total</th>
<th>Weight</th>
<th>Rate Ratio IV, Random, 95% CI</th>
<th>Rate Ratio IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue 2001</td>
<td>-0.129</td>
<td>0.249</td>
<td>94</td>
<td>91</td>
<td>9.2</td>
<td>0.89 [0.54, 1.43]</td>
<td></td>
</tr>
<tr>
<td>Brotons 2009</td>
<td>-0.211</td>
<td>0.188</td>
<td>144</td>
<td>139</td>
<td>11.4</td>
<td>0.91 [0.56, 1.47]</td>
<td></td>
</tr>
<tr>
<td>DeBusk 2004</td>
<td>-0.099</td>
<td>0.157</td>
<td>228</td>
<td>234</td>
<td>12.6</td>
<td>0.91 [0.67, 1.23]</td>
<td></td>
</tr>
<tr>
<td>Jaarsma 2008</td>
<td>0.076</td>
<td>0.151</td>
<td>344</td>
<td>339</td>
<td>12.3</td>
<td>1.08 [0.80, 1.45]</td>
<td></td>
</tr>
<tr>
<td>Riegel 2000</td>
<td>0.054</td>
<td>0.164</td>
<td>140</td>
<td>140</td>
<td>12.4</td>
<td>1.08 [0.77, 1.46]</td>
<td></td>
</tr>
<tr>
<td>Riegel 2002</td>
<td>-0.676</td>
<td>0.219</td>
<td>120</td>
<td>229</td>
<td>10.2</td>
<td>0.61 [0.22, 1.79]</td>
<td></td>
</tr>
<tr>
<td>Riegel 2005</td>
<td>0.112</td>
<td>0.24</td>
<td>69</td>
<td>65</td>
<td>9.5</td>
<td>1.12 [0.70, 1.78]</td>
<td></td>
</tr>
<tr>
<td>Stewart 1999</td>
<td>-0.278</td>
<td>0.122</td>
<td>100</td>
<td>100</td>
<td>14.0</td>
<td>0.78 [0.50, 0.96]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.08, Chi² = 26.32, df = 8 (P = 0.0008); I² = 70%
Test for overall effect: Z = 2.03 (P = 0.04)

Test for subgroup differences: Chi² = 2.81, df = 1 (P = 0.65), I² = 0%
PRISMA 2009 Checklist

Title

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>Identify the report as a systematic review, meta-analysis, or both.</td>
<td>1</td>
</tr>
</tbody>
</table>

Abstract

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.</td>
<td>2</td>
</tr>
</tbody>
</table>

Introduction

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td>Describe the rationale for the review in the context of what is already known.</td>
<td>4-5</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>METHODS</td>
<td></td>
<td>Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol and registration</td>
<td>5</td>
<td>Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.</td>
<td>N/A</td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td>6</td>
<td>Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.</td>
<td>5</td>
</tr>
<tr>
<td>Information sources</td>
<td>7</td>
<td>Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.</td>
<td>5</td>
</tr>
<tr>
<td>Search</td>
<td>8</td>
<td>Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.</td>
<td>Appendix one</td>
</tr>
<tr>
<td>Study selection</td>
<td>9</td>
<td>State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).</td>
<td>6</td>
</tr>
<tr>
<td>Data collection process</td>
<td>10</td>
<td>Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.</td>
<td>6</td>
</tr>
<tr>
<td>Data items</td>
<td>11</td>
<td>List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.</td>
<td>6</td>
</tr>
<tr>
<td>Risk of bias in individual studies</td>
<td>12</td>
<td>Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.</td>
<td>6-7</td>
</tr>
<tr>
<td>Summary measures</td>
<td>13</td>
<td>State the principal summary measures (e.g., risk ratio, difference in means).</td>
<td>6-7</td>
</tr>
<tr>
<td>Synthesis of results</td>
<td>14</td>
<td>Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I² for each meta-analysis).</td>
<td>6-7</td>
</tr>
</tbody>
</table>
PRISMA 2009 Checklist

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of bias across studies</td>
<td>15</td>
<td>Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).</td>
<td>6-7</td>
</tr>
<tr>
<td>Additional analyses</td>
<td>16</td>
<td>Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.</td>
<td>7</td>
</tr>
</tbody>
</table>

RESULTS

Study selection
- Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.

Study characteristics
- For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.

Risk of bias within studies
- Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).

Results of individual studies
- For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.

Synthesis of results
- Present results of each meta-analysis done, including confidence intervals and measures of consistency.

Risk of bias across studies
- Present results of any assessment of risk of bias across studies (see Item 15).

Additional analysis
- Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).

DISCUSSION

Summary of evidence
- Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).

Limitations
- Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).

Conclusions
- Provide a general interpretation of the results in the context of other evidence, and implications for future research.
PRISMA 2009 Checklist

FUNDING

| Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. | 21 |

For more information, visit: www.prisma-statement.org.*
Does case management for patients with heart failure based in the community reduce unplanned hospital admissions? A systematic review and meta-analysis

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>bmjopen-2015-010933.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Research</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>24-Mar-2016</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Huntley, Alyson; University of Bristol, Centre of Academic Primary care Johnson, Rachel; Academic unit of primary health care, School of social and community medicine King, Anna; University of Bristol, Centre of academic Primary care Morris, Richard; University of Bristol, School of Social & Community Medicine Purdy, Sarah; University of Bristol, Centre for Academic Primary Care</td>
</tr>
<tr>
<td>Primary Subject Heading:</td>
<td>Cardiovascular medicine</td>
</tr>
<tr>
<td>Secondary Subject Heading:</td>
<td>General practice / Family practice, Emergency medicine</td>
</tr>
<tr>
<td>Keywords:</td>
<td>systematic review, meta-analysis, Heart failure < CARDIOLOGY, case management, hospital admission</td>
</tr>
</tbody>
</table>

Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.

Figure_2a.tiff
Does case management for patients with heart failure based in the community reduce unplanned hospital admissions? A systematic review and meta-analysis

Huntley AL1*

Johnson R1

King A1

Morris RW1

Purdy S1

1 Centre of Academic Primary Care, School of Social and Community Medicine, University of Bristol, Canynge Hall, Bristol, BS8 2PS, UK.

*Dr Alyson Louise Huntley Research Fellow alyson.huntley@bristol.ac.uk Tel no: 0117 3314545

Key words: systematic review, meta-analysis, heart failure, case management, hospital admission

Word count: 3887
ABSTRACT

Objectives

The aim of this systematic review of randomised controlled trials (RCTs) and controlled trials (NRCTs) is to investigate the effectiveness and related costs of case management (CM) for patients with heart failure (HF) predominantly based in the community in reducing unplanned readmissions and length of stay (LOS).

Setting

CM initiated either whilst as an inpatient, or on discharge from acute care hospitals, or in the community and then continuing on in the community.

Participants

Adults with a diagnosis of HF and resident in Organisation for Economic Co-operation and Development countries.

Intervention

CM based on nurse co-ordinated multi-component care which is applicable to the primary care based health systems.

Primary and secondary outcomes

Primary outcomes of interest were unplanned (re)admissions, LOS and any related cost data.

Secondary outcomes were primary health care resources.

Results

Twenty-two studies were included: 17 RCTs and five NRCTs. Seventeen studies described hospital-initiated CM (n=4794) and five described community-initiated CM of HF (n=3832). Hospital-initiated CM reduced readmissions (rate ratio 0.74 [95%CI 0.60, 0.92] p=0.008) and LOS (mean difference 1.28 days [95%CI -2.04, -0.52] p=0.001) in favour of CM compared to usual care. Nine trials described cost data of which six reported no difference between CM and usual care. There were four studies of community-initiated CM versus usual care (2RCTs and 2NRCTs) with only the 2 NRCTs showing a reduction in admissions.
Conclusions

Hospital-initiated CM can be successful in reducing unplanned hospital readmissions for HF and length of hospital stay for people with HF. Nine trials described cost data; no clear difference emerged between CM and usual care. There was limited evidence for community-initiated CM which suggested it does not reduce admission.

Protocol registration

No

Strengths of review

- High quality systematic review
- Interventions examine nurse-led multicomponent care of heart failure patients
- Focus on use of resources specific to heart failure

Limitations of review

- Community-initiated case management trials were limited in quantity and were mostly of low quality.
- Lack of cost data in most trials
INTRODUCTION

Applying current prevalence figures to population estimates suggests that more than 550,000 individuals (more than 308,000 men and slightly fewer than 250,000 women) in the UK are living with heart failure (HF). Quality and Outcome Framework (QOF) data supports this: in 2012/13 just over 480,000 patients were recorded as having heart failure. The average age of HF patients in general practice in the UK is 77 years.

Prior to 1990, 60–70% of patients died within 5 years of diagnosis, and admission to hospital with worsening symptoms was a regular and recurrent event. Effective treatment has improved care, with a relative reduction in hospitalization in recent years of 30–50%, and smaller but significant decreases in mortality.

More than £6.8 billion was spent on treating all cardiovascular disease within the NHS in England in 2012/13 with 63% of these costs coming from within secondary care and 21% within primary care. Within secondary care, non-elective inpatient admittance for cardiovascular disease, i.e. emergency admissions, had the greatest expenditure with £1,925 million.

Case management (CM) is the process of planning, coordinating and reviewing the care of an individual. We used the definition cited by the King’s Fund in the UK ‘A collaborative process of assessment, planning, facilitation, care coordination, evaluation, and advocacy for options and services to meet an individual’s and family’s comprehensive health needs through communication and available resources to promote quality cost-effective outcomes.” The NHS has used less-intensive approaches than the traditional US model, for example, through the use of nurses to support older people and those with long-term conditions at home. In this review we have focused on CM based on nurse co-ordinated multi-component care of patients which is applicable to the primary care based health systems such as that in the UK.

A previous systematic review and meta-analysis shows that CM is not effective in reducing unplanned hospital admissions for the general older/elderly population. However limited data suggests that CM for patients with HF is promising. This current review aimed to a) identify the evidence of the effectiveness and related costs of CM interventions for HF patients predominantly based in the community and b) to better understand the potential success of CM by examining the components of tested interventions.
METHODS

Search

Databases and registries

A search strategy was developed using keywords for the electronic databases according to their specific subject headings or searching structure. The search strategy was run from 1985 – 2012 in the OVID databases - Medline®, Excerpta Medica Database (Embase), Cumulative Index to Nursing and Allied Health Literature (CINAHL®), PsycINFO® on the 2nd July 2014. (Appendix one) The search strategy was modified to search internet sites such as the Agency for Healthcare Research and Quality (AHRQ) and the King’s Fund. A pragmatic update of these searches was conducted on the 20/11/15 using the full search strategy and run in Medline and Medline in process only.

Other sources

Once the included papers were determined, both backwards (reference list of paper) and forwards citation searching (via google scholar) was performed to identify any other potentially relevant studies. All authors of included studies in the field were contacted with data queries and to identify additional relevant studies.

Eligibility criteria:

Randomised controlled trials (RCTs), and other controlled studies (NRCTs) (controlled trials, controlled before and after studies, analytic cohorts, comparative studies) were included as determined by our eligibility criteria. We were aware from our previous work that not all community-based studies were randomised and felt it was important to be more inclusive in order to understand why CM may work for HF. CM interventions needed to be initiated either whilst as an inpatient or on discharge from acute care hospitals including the emergency department (ED), or in the community, and then continue on in the community. Only studies including adults with HF in Organisation for Economic Co-operation and Development (OECD) countries were included as the outcomes were more likely to be comparable for synthesis, and relevant to the UK situation. Studies were included as long as one of the outcomes of interest was unplanned hospital (re)admissions, ED attendance, length of hospital stay (LOS) as well as related costs of the interventions. Other outcomes of interest were primary health care resources e.g. GP visits, visits to other primary care health professionals or
services and prescriptions. Studies written in any language were considered if there was an English abstract available.

Reference management and study selection

EndNote and Excel were used to manage the references. Duplicates were removed from the Endnote file. References underwent a two stage process of screening using the inclusion and exclusion criteria by two reviewers independently (AH, AK, RJ). Firstly, a screen of titles and abstracts (if abstract available) and secondly screening of the full paper was conducted. Where there was continued disagreement between reviewers about including or excluding a paper, a third reviewer made the final decision (SP or RJ).

In addition to the included quantitative intervention papers, we identified relevant reviews from the search. Any potentially relevant conference proceedings were followed up, firstly by searching in Medline to see if the study had been published. If the study was not published, the authors were contacted where possible to check if the studies were likely to be published within the work frame of this review.

Data extraction and assessment of risk of bias

Data were extracted into a custom-designed table which included description of trial type, participants, intervention, controls, outcome measures and results. Based on the Kings Fund definition of case management we devised taxonomy of intervention components. As part of this data extraction process, the intervention and control treatments were also described by their component parts e.g. monitoring signs and symptoms using the framework of the CM definition.

Quantitative data concerning the outcomes of interest were extracted into the Cochrane Revman software. The Cochrane risk of bias tool was used to record trial bias for RCTs and the EPOC Risk of bias tool was used for non-randomised controlled trials (NRCTs). These processes were performed by one author and checked by a second. (AH, AK) Any disagreements were resolved by discussion and if necessary with a third author. (RJ, SP)
Data analysis

Trials were divided as previously described by Huntley et al 2013 into hospital-initiated CM and community-initiated CM. Where there were data from three or more studies, effect sizes were calculated and presented in forest plots as rate ratios ((re)admissions) or mean differences (LOS) using Revman software. If the heterogeneity of the combined data was greater than 50%, a random effects model was used for analysis.

We conducted pre-specified sensitivity analysis in response to the risk of bias assessment of studies, removing high risk of bias studies as appropriate; the results of both analyses are presented. We conducted pre-specified subgroup-analysis to explore the effects of CM duration (3, 6 and 12 months plus) on hospital admission and LOS. There was insufficient detail in trials to perform sub-analysis by severity of HF or intensity of intervention.

Data were assessed narratively in respect of the components of interventions using the CM definition cited above as guidance. (table 1) In addition, where possible post-hoc subgroup-analysis was conducted in Revman in which interventions with components of interest were compared with those that did not have these components.

RESULTS

The systematic review yielded 22 studies with data published over 32 papers of which 17 were RCTs and five were NRCTs all published in the English language. (Figure one) No relevant studies were identified in a pragmatic update using the full search strategy run in Medline and Medline in process only in November 2015. Seventeen of these studies described hospital-initiated CM (n=4794) and five described community-initiated CM of HF (n=3832). The PRISMA checklist was used to ensure the quality of our systematic review manuscript.

Profile of patients (table 2)

The range of female participants in the trials was 1-58%, but the majority of trials had relatively even gender divide. Co and multi-morbidty were common. Eight of the 22 trials gave no detail on ethnicity of participants; in four studies the trialists used white/non-white and English speaking/non-English speaking categories. In the remaining 10 studies, a fuller profile was described. Twelve of the 22 trials
were conducted in the USA and the ethnicity profile reflected that including Spanish
speaking/Hispanic, American Indian, Black, African American, Asian and White participants.

The majority of trials described the severity of HF using New York Heart Association (NYHA)
classification. Twelve of the trials gave a breakdown of numbers or percentages in the I-IV classes
with some trials only giving numbers of participants for the III and IV class. In these trials the
percentage range of III and IV class patients was 6-98%. Four trials gave mean and median values of
NYHA status, one trial used the APR-DRG severity of illness scale, and five trials did not describe
disease severity.

Profile of interventions (table 2)

The majority of studies (n=15) described the intervention being delivered by a case manager/
specialist nurse with no specific mention of other health professionals, and the remaining seven
studies described a case manager/speciality nurse working as part of a multi-disciplinary team.
All but two studies compared CM with usual care although the control group was not always
described. The two remaining studies were comparative: one RCT comparing CM with specialist
clinics and one RCT comparing CM with telemedicine plus CM. 32,42

The duration of the CM interventions in the studies was 1-24 months with the majority having a 3 or 6
month duration. The majority of studies were conducted face to face or a combination of in-person
and by phone. Four interventions were conducted purely by phone. 21,22,26, 42 Outcomes were
measured to match the total duration of intervention in the majority of studies. For many of the studies
the intensity of interventions was not stated explicitly. When intensity was described it was always a
tapered approach after an initial intensive period.

Risk of bias (Figure 2a&b)

The degree of risk of bias was starkly different between the RCTs and NRCTs. All five of the NRCTs
were rated at high risk or unknown risk for most domains. 35,36,37, 44,45

The majority of the RCTs were rated at low risk for most domains with the exception of the domain of
blinding of the participants and personnel which is not applicable to this type of intervention. Three
RCTs were assessed as at high risk for at least one domain: both Hancock and Wade gave no
description of the randomisation process or allocation concealment, Riegel 2002 was randomised at
physician level and patients were chosen by physician preference. 21,42,43 Four of the five community-
initiated trials (2 RCTs and 2 NRCTs) were assessed to be at high risk of bias, and in some studies did not present usable data. 35-37,42

All the intervention studies reported unplanned hospital (re)admissions 14-45 and 17 reported length of time in hospital. 14, 15, 17, 18, 20-22, 24, 26-28, 35, 38, 42-45 There were few data on A and E attendance and primary care resource use. However, only some of the data could be used in meta-analysis with the main reasons being that data were presented in different formats where neither confidence intervals, standard errors nor raw data were given. Due to heterogeneity of data all analysis was conducted using a random effects model.

Unplanned HF (re)admissions data (figure 3)

Hospital-initiated CM

Thirteen of the hospital-initiated CM trials had data that could be used in a meta-analysis of which 12 were RCTs. The pooled data from the RCTs showed a rate ratio of readmissions was 0.74 [95% CI 0.60, 0.92] p=0.008 I^2 =69% in favour of hospital-initiated CM. (figure 3a) A sensitivity analysis was conducted, removing Riegel 2002 (RCT with high risk of bias for randomisation domain); this had a minimal effect on the rate ratio and heterogeneity 0.77 [0.61, 0.96] p=0.02 I^2 =68%. 21,35 Sub-analysis looking at 3, 6 and 12-18 month data did not produce a clear time-related effect which is most likely due to heterogeneity within and between studies,(figure 3b,c,d). There was one hospital-initiated CM trial which compared CM with specialist clinics which reported no differences in hospital readmissions between the two groups. 32

Community initiated CM

Of the four community initiated trials (2 RCTs and 2 NRCTs) comparing admissions between CM with usual care, two reported no significant differences 38,43 and two reported statistically significant reductions in favour of CM. 44,45 One further trial compared CM, with telehealth and CM and reported no differences in admissions but data were not presented. 42

Length of hospital stay (LOS) (figure 4)

Hospital-initiated CM

Nine of the hospital-initiated CM trials had data that could be used in a meta-analysis of which 8 were RCTs. The pooled data from the RCTs showed that mean LOS was reduced in the CM group...
compared to usual care mean difference (MD) -1.28 days [-2.04,-0.52] p=0.001 I² =63%. (figure 4a) A sensitivity analysis was conducted removing Riegel 2002 which had an important effect on the rate ratio and heterogeneity MD -1.76 [-2.29,-1.23] p<0.00001 I² = 14%. 21,35 Sub-analysis looking at 3, 6 and 12-18 month data suggests this effect is short-term (first 3 months) but a longer time-related effect was difficult to assess due to lack of data.(figure 4b,c,d).

The one study comparing CM with specialist clinic care, reported that CM patients accumulated 592 and clinic patients 547 all-cause hospitalizations (p = 0.087) associated with 3067 versus 4410 days of hospital stay (p < 0.01 for rate and duration of hospital stay).32

Community initiated CM

Of the 4 community initiated trials comparing CM with usual care, two did not report LOS 38, 43 one reported median values in favour of CM 44 and the remaining one reported a mean reduction in LOS 45 (table 2). The one comparative trial between community-initiated CM, and telehealth and CM did not report any useful data.42

Intervention components (table 1 and appendix 2)

Fourteen intervention components were identified and grouped as per the CM definition in methods and prevalence determined for both hospital and community –initiated CM studies with a usual care control group (table 2). 7

Hospital-initiated CM (appendix 2)

Data from individual studies which contained components of family involvement showed an overall reduction in hospital readmissions in comparison with usual care and a reduction in hospital readmissions observationally in comparison with interventions which did not contain these components (rate ratio of 0.56 [0.34, 0.92] p=0.003). However, post-hoc analysis comparing these studies in which the component was present with those studies in which the component was absent did not yield any statistically significant differences (p=0.15). (appendix 2a) The same calculations for medication review, referral to other services, and assessment of home environment, CM meetings and patient-directed access did not indicate any specific effect of these components of hospital-initiated CM on rates of admission. (appendix 2 b-g) The majority of the interventions included
education/self-management and there were insufficient data from studies without this component to allow comparison.

Community initiated CM

There were insufficient data to conduct any subgroup-analysis on any of the remaining components of hospital-initiated CM, community initiated studies or the LOS data.

Outpatient health care resources

Only six of the included studies measured outpatient resource use. In some studies, outpatient resource data were all-cause and not HF-specific. In some studies primary and secondary use was combined.23,24,35,38,42,45 Two of these studies also reported ED attendance.23,42 All but one of these studies reported no difference between intervention and control group for these measures with the exception of Lowery which showed a statistically significant greater use of outpatient resources in the usual care group (optional primary care visits 1yr 16.75(13.62),10.43(9.6) p<0.001, 2yr 14.27(11.98),9.35(9.97) p<0.001).45

Costs (table 3)

Nine of the seventeen hospital initiated trials described cost data. Of these, six reported no statistically significant difference between CM (3 or 6 month duration) and usual care.17,18,22,24,26,35, and three reported costs in favour of CM although data from Stauffer was brief.15,32,37 One of these was 12-18 months32 and two were 3 months in duration. It was difficult from the intervention descriptions to determine their intensity. There were no cost data reported from the community-initiated trials.

DISCUSSION

This systematic review confirms that hospital-initiated CM can be successful in reducing unplanned hospital readmissions, and reducing LOS in hospital in the short term for people with HF. There were only five community-initiated CM studies (3RCTs and 2NRCTs) of which four were at high risk of bias. This limited evidence suggests no effect of community-initiated CM on hospital admissions. A
minority of trials report cost comparisons with usual care and most of those show no difference. There were limited data on the effect of CM on other health care resources.

Many factors are likely to modify the effect of CM on use of emergency care seen in these studies. It is generally accepted that CM is more appropriate for people with severe HF and poorer general health. However it was difficult to compare the health status of the study participants in both hospital-initiated and community-initiated trials as in some studies there was little detail, others gave median and mean figures for NYHA status, and the presentation format and detail of co-morbidities varied. All the included studies have been conducted within the past 12 years so it is important to put these results in the context of overall improved treatment and reduction in hospital admissions since the early 1990’s.

Seventeen studies described hospital-initiated CM and five described community initiated CM of heart failure although often the participants were identified via hospital clinic records. Overall the meta-analysis showed that CM reduced readmissions and hospital LOS. This may be explained by the fact that in most of the trials the participants were identified via hospital contact and therefore were likely to have had a recent exacerbation of their HF and to be at increased risk of re-admission in the post-discharge period. In addition, it is likely that interventions are acting at a time of highest risk as reflected by HF mortality in first year of diagnosis. Therefore once they were assessed and given extra support they were stable for a period of time. Previous work by Roland et al 2005 suggests that admission rates in people aged 65 with two or more emergency admissions in 12 months fall in subsequent years without any intervention and account for fewer than 10% of admissions in the following year and thus effectiveness of admission avoidance schemes cannot be judged by tracking admission rates without careful comparison with a control group. The data from trials of community-initiated CM was lacking both in the number of studies , and the fact there were limited useable data that showed no effect on unplanned hospital admissions. It is likely that these patients were likely to be in more stable health.

A meta-review of a wide range of HF disease management programs by Savard 2011 reports that nine previous systematic reviews (2001-2009) identified significant reductions in HF admissions with reductions in risk ranging from 30-56%. However the authors caution that these reviews are limited by inadequate reporting in the population, setting, intervention and comparator components. They
report that reviewers have not taken into account statistical, clinical and methodological heterogeneity in interventions.47 Our review focussed specifically on CM avoiding some of these limitations and indicates a reduction in HF readmissions with hospital-initiated CM in the range of 10-30%.

Wakefield \textit{et al} in 2013 looked at common components of a range of HF care programs focusing mainly on disease management and education investigated in RCTs, and 10/35 of the discussed studies were included in our review.48 They described patient education, symptom management by health professionals and by patients, and medication adherence strategies as the most commonly occurring elements of care. A literature review by Jaarsma 2012 looked at 70 ‘home care’ controlled studies (mostly RCTs) which encompassed 9 of our included CM studies covering a wide range of approaches such as telemedicine, hospital at home and health buddies for patients with HF.49 They identified a multi-disciplinary team, continuity of care, care plans, optimising titration of medication, education/counselling of patients and caregivers and increased access as important. Unfortunately we had insufficient data to perform sub-analysis on the component of education/self-management.

Previous systematic reviews have investigated the role of the lay caregiver in HF patient management.50-52 These suggest that better relationship quality and communication were related to reduced mortality, increased health status and less distress and improved patient self-care outcomes. Our review adds to this evidence base by suggesting that more family involvement in CM may also reduce unscheduled readmissions.

Education about HF and about its pharmacological and non-pharmaceutical treatment has been well-reviewed both as an individual approach and as part of complex interventions, and is considered to be essential for improving many patient outcomes.49,53,54 A recent mixed method study, suggests asking patients with HF to write down their learning needs before the education increases their chances of receiving education based on their individual needs.55 Qualitative interviews with health professionals caring for HF patients suggest that communication with, and education by specialist nurses facilitated by continuity of care is essential to good care of HF patients. The authors also highlight the role of the specialist nurse in multi-disciplinary team communication and functioning; essentially describing the role of the specialist nurse as a case manager.56

Our review of CM suggests that the evidence for its cost-effectiveness is lacking with most studies that have performed cost comparisons with usual care show no advantage. Previous work by de Bruin
et al 2001 looked at cost effectiveness of disease management for a range of chronic conditions and concluded that the data is most positive for HF with 5 out of the 8 included studies showing cost-effectiveness.57

Strengths and limitations

The contribution of our high quality systematic review to the above is that we have focused on CM which is based on nurse co-ordinated multi-component care of patients which is applicable to the primary care based health systems such as that in the UK. We have focused on HF (re)admissions and LOS as opposed to all-cause data which many of the previous reviews have used.

By examining the components of CM we have a profile of the components most likely to lead to the success of CM of patients with heart failure in terms of reducing (re)admissions and hospital LOS. Our review has high-lighted the potential importance of family involvement albeit in post-hoc analysis.

The limitations of this review are that majority of the community-initiated CM studies were of low quality with the exception of one low risk of bias RCT, and provided limited evidence. Whilst funnel plot analysis was not appropriate with our data we acknowledge that there may be publication bias on this topic.58 This was counteracted by the fact that the hospital-initiated studies comprised of predominantly community-based case management. There is a lack of cost data and analysis in the included papers. This point needs to be emphasised for future trials. It is possible that cost effectiveness will be more likely with intervention for patients with more severe HF.

CONCLUSIONS

Hospital-initiated CM reduces unplanned hospital admissions, and length of stay for people with HF in the short term. Cost data is limited. There was limited evidence for community-initiated CM which suggested it does not reduce hospital admission. Further research is needed to determine the individual components of CM that contribute to reduced admissions.
Version 21st March 2016

Contributorship statement

Alyson Huntley. Main systematic reviewer, worked across all stages of the review from inception to completed draft.

Rachel Johnson. Cardiology and primary care expertise. Worked on screening, selection of studies, commenting on analysis, and development and checking of final document content.

Anna King. Second reviewer, involved in screening, selection, data checking and commenting on developing and final document content.

Richard Morris. Statistical expertise, advising on data analysis and commenting on the developing and final document content.

Sarah Purdy. Primary care and admission avoidance expertise. Advised throughout project, third reviewer for screening process and commenting on the developing and final document content.

Competing interests

None declared

Funding

This project was funded by the National School of Primary Health Care project no.238.

Data sharing statement

Full data extraction tables and data analysis files are available on request
REFERENCES

11. List of OECD Member countries accessed at http://www.oecd.org/about/membersandpartners/list-oecd-member-countries.htm on 07/10/15.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

39. Peters-Klimm F, Muller-Tasch T, Schellberg D et al. Rationale, design and conduct of a randomised controlled trial evaluating a primary care-based complex intervention to improve
the quality of life of heart failure patients: HICMan (Heidelberg Integrated Case Management).

BMC Cardiovascular Disorders 2007; 7, (25). PROTOCOL

58. Chapter 10 Recommendations on testing for funnel plot asymmetry accessed at http://handbook.cochrane.org/chapter_10/10_4_3_1_recommendations_on_testing_for_funnel_plot_asymmetry.htm on 07/10/15.
Table 1: Components of CM interventions

<table>
<thead>
<tr>
<th>Definition & total prevalence of Components of CM interventions</th>
<th>Number of hospital-initiated CM vs. usual care with component present (total studies=16)</th>
<th>Number of community-initiated CM vs. usual care with component present (total studies=14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment /Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring signs & symptoms (n=18)</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Encompasses general care of CHF patients which is likely to include establishing a relationship with patient over visits, physical and cardiac status checking, lifestyle assessment, general medication check and screening tests e.g. depression, dementia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medication review (n=8)</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Review and adjustment of medication by experienced case manager (nurse), pharmacist, GP or consultant often using a combination of these health professionals.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment of home environment (n=4)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Assessment carried out by case manager to identify any issues or potential issues with home environment e.g. stairs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM meetings/feedback to other HPs (n=3)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Group meetings of health professionals involved in CHF patients care with the aim of reporting on and planning for patients care.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appointment organisation (n=2)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Case manager checking medical appointments, ensuring ability to go etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advance care planning (n=1)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Facilitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education/self-management (n=18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educating CHF patients about their condition, treatment and what to expect. The aim of this is to assist self-management (care with assistance of health professionals) and self-care (patient engaging in activities to promote their health and well-being).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient-directed access (n=6)</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>The ability of CHF patients to initiate care from the case manager or case management service.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Care co-ordination (n=14)</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>When the case manager refers the patient to other health or social care professionals, this can be GP hospital consultant, social care or tests.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advocacy for options & services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment (n=4)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Provision of items to assist patient’s health care such as pill counters, weighing scales and measured water bottles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical therapy (n=1)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CHF patient receiving physical therapy/rehabilitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support group (n=1)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CHF attending or being offered the opportunity of a support group.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Family involvement (n=8)</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>When the case manager involves the patient’s family in terms of information, education or involvement e.g. goal setting in patients’ care or active monitoring.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotional support (n=1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Case manager providing emotional support to CHF patient.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: study characteristics of intervention studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Baseline characteristics of participants: CM vs. usual care</th>
<th>Intervention</th>
<th>Control</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital initiated CM - RCTs*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rich 1993 USA</td>
<td>Age: 80(6.3),77(6.1) yrs</td>
<td>Non-pharmacological comprehensive multidisciplinary treatment strategy NPCM (n=63)</td>
<td>Usual care UK (n=35)</td>
<td>No. of readmissions (%) 21(CI 21.7, 44.9)[33.3%], 16 (CI 39.2, 62.2) [45.7%]</td>
</tr>
<tr>
<td>98 randomised Patients ≥70 yrs admitted to medical wards of Jewish Hospital at Washington University Medical Centre were screened for congestive HF.</td>
<td>Components of intervention at home: Monitoring signs & symptoms Medication review (nurse) Education /Self-management support Assessment of home environment Patient directed access to study personnel</td>
<td>Usual care (n=140)</td>
<td>No. of hospital days 272, 200</td>
<td></td>
</tr>
<tr>
<td>Rich 1995 USA</td>
<td>Age: 80(6.9),78(6.1) yrs</td>
<td>Nurse-directed multidisciplinary intervention (n=142)</td>
<td>As above for Rich 1993</td>
<td>Mean no of days 4.3(SD:1.1),5.7(SD:2.0)</td>
</tr>
<tr>
<td>285 randomised</td>
<td>as above for rich 1993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stewart 1998 Australia</td>
<td>Age: 76(11),74(10) yrs</td>
<td>Home-based intervention (n=49)</td>
<td>Components of intervention: Disease management</td>
<td>No. of patients experiencing a readmission 24.31 (p<0.12)</td>
</tr>
<tr>
<td>97 randomised Patients were recruited whilst admitted to a large tertiary hospital</td>
<td>Components of intervention at home: Monitoring signs & symptoms Referral to other health & social care Follow-up appointments Home visit Assessment of home environment Family involvement Education/Self-management support Medication review (nurse/GP/cardiologist)</td>
<td>Usual care (n=48)</td>
<td>LOS in days 281,452 (p<0.05)</td>
<td></td>
</tr>
<tr>
<td>Stewart 1999 Australia</td>
<td>Age: 75.2(7.1),76(1.3) yrs</td>
<td>Multidisciplinary home base intervention (n=100)</td>
<td>Components of intervention at home: Monitoring signs & symptoms Referral to other health & social care Appointment organisation Assessment of home environment Family involvement Education/Self-management support Medication review (nurse/GP/cardiologist)</td>
<td>Usual care (n=100)</td>
</tr>
<tr>
<td>200 randomised Patients admitted to a tertiary referral hospital</td>
<td>Components of intervention: Contact with other health and social professionals Appointment with GP or cardiac clinic or both</td>
<td></td>
<td></td>
<td>Rate of readmissions 0.14(0.1,0.18), 0.34 (0.19,0.49) p<0.031</td>
</tr>
<tr>
<td>Blue 2001 UK</td>
<td>Age: (50)74(4.8),75(6.7) yrs</td>
<td>Specialist nurse intervention (n=82)</td>
<td>Components of intervention at home: Monitoring signs & symptoms Referral to other health & social care Appointment organisation Assessment of home environment Family involvement Education/Self-management support Medication review</td>
<td>Usual care (n=75)</td>
</tr>
<tr>
<td>165 randomised Patients admitted as an emergency to the acute medical ward of the hospital</td>
<td>Components of intervention: GP care</td>
<td></td>
<td></td>
<td>LOS in days 460,1174 (p=0.05)</td>
</tr>
<tr>
<td>Riegel 2002 USA</td>
<td>Age: 72.50(13.05), 74.63(12) yrs</td>
<td>Telephonic case management (n=120)</td>
<td>Components of intervention at home: Monitoring signs & symptoms Self-management support Referral to other health & social care Family involvement</td>
<td>Usual care (n=225)</td>
</tr>
<tr>
<td>281 physicians randomised</td>
<td>Components of intervention: Not known</td>
<td></td>
<td></td>
<td>LOS in days 3mths 0.85(2.3), 1.6(3.9) p<0.56 6mths 1.1 (3.1), 2.1(4.6) p=0.05</td>
</tr>
<tr>
<td>Patients admitted at 2 Southern California hospitals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Laramee 2003
- **Country:** USA
- **Patients:** 287 randomised
- **Diagnosis:** CHF
- **Variables:**
 - **Gender:** Female 42.50%
 - **Ethnicity:** African American 34.35%, White 66.62%
 - **Disease Status:** NYHA III 76.86%
- **Main findings:**
 - **Usual care:**
 - Component: Disease management information
 - **Randomisation:** 36th period

De Busk 2004
- **Country:** USA
- **Patients:** 462 randomised
- **Diagnosis:** CHF
- **Variables:**
 - **Gender:** Female 41.90%
 - **Ethnicity:** Hispanic 6.94%
 - **Disease Status:** NYHA III 50.50%
- **Main findings:**
 - **Usual care:**
 - Component: Disease management support
 - **Randomisation:** 36th period

Naylor 2005
- **Country:** UK
- **Patients:** 239 patients
- **Diagnosis:** CHF
- **Variables:**
 - **Gender:** Female 49.00%
 - **Ethnicity:** Asian 4.82%
 - **Disease Status:** NYHA III 76.86%
- **Main findings:**
 - **Usual care:**
 - Component: Disease management support
 - **Randomisation:** 36th period

Riegel 2006
- **Country:** USA
- **Patients:** 135 randomised
- **Diagnosis:** CHF
- **Variables:**
 - **Gender:** Female 58.49%
 - **Ethnicity:** Hispanic patients
 - **Disease Status:** NYHA III 76.73%
- **Main findings:**
 - **Usual care:**
 - Component: Disease management support
 - **Randomisation:** 36th period

Thompson 2005
- **Country:** UK
- **Patients:** Recruited in 2 North of England general hospitals following an admission
- **Diagnosis:** CHF
- **Variables:**
 - **Gender:** Female 38.27%
 - **Ethnicity:** No details
 - **Disease Status:** NYHA III 76.73%
- **Main findings:**
 - **Usual care:**
 - Component: Disease management support
 - **Randomisation:** 36th period

Jaarsma 2008
- **Country:** The Netherlands
- **Patients:** Randomised
- **Diagnosis:** CHF
- **Variables:**
 - **Gender:** Female 34.39%
 - **Ethnicity:** No details
 - **Disease Status:** NYHA II 51.48%
- **Main findings:**
 - **Usual care:**
 - Component: Disease management
 - **Randomisation:** 36th period

Brotons 2009
- **Country:** Spain
- **Patients:** 283 randomised
- **Diagnosis:** CHF
- **Variables:**
 - **Gender:** Female 54.22%
 - **Ethnicity:** Not reported
 - **Disease Status:** NYHA II 52.13%
- **Main findings:**
 - **Usual care:**
 - Component: Disease management
 - **Randomisation:** 36th period

Table: Components of Intervention

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Patients</th>
<th>Diagnosis</th>
<th>Gender</th>
<th>Ethnicity</th>
<th>Disease Status</th>
<th>Usual care</th>
<th>Randomisation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laramee 2003</td>
<td>USA</td>
<td>287</td>
<td>CHF</td>
<td>Female 42.50%</td>
<td>African American 34.35%, White 66.62%</td>
<td>NYHA III 76.86%</td>
<td>Disease management information</td>
<td>36th period</td>
<td>No stats available</td>
</tr>
<tr>
<td>De Busk 2004</td>
<td>USA</td>
<td>462</td>
<td>CHF</td>
<td>Female 41.90%</td>
<td>Hispanic 6.94%</td>
<td>NYHA III 50.50%</td>
<td>Disease management support</td>
<td>36th period</td>
<td>No stats available</td>
</tr>
<tr>
<td>Naylor 2005</td>
<td>UK</td>
<td>239</td>
<td>CHF</td>
<td>Female 49.00%</td>
<td>Asian 4.82%</td>
<td>NYHA III 76.86%</td>
<td>Disease management support</td>
<td>36th period</td>
<td>No stats available</td>
</tr>
<tr>
<td>Riegel 2006</td>
<td>USA</td>
<td>135</td>
<td>CHF</td>
<td>Female 58.49%</td>
<td>Hispanic patients</td>
<td>NYHA III 76.73%</td>
<td>Disease management support</td>
<td>36th period</td>
<td>No stats available</td>
</tr>
<tr>
<td>Thompson 2005</td>
<td>UK</td>
<td>Recruited in 2 North of England general hospitals following an admission</td>
<td>CHF</td>
<td>Female 38.27%</td>
<td></td>
<td>NYHA III 76.73%</td>
<td>Disease management support</td>
<td>36th period</td>
<td>No stats available</td>
</tr>
<tr>
<td>Jaarsma 2008</td>
<td>The Netherlands</td>
<td>Randomised</td>
<td>CHF</td>
<td>Female 34.39%</td>
<td></td>
<td>NYHA II 51.48%</td>
<td>Disease management</td>
<td>36th period</td>
<td>No stats available</td>
</tr>
<tr>
<td>Brotons 2009</td>
<td>Spain</td>
<td>283</td>
<td>CHF</td>
<td>Female 54.22%</td>
<td></td>
<td>NYHA II 52.13%</td>
<td>Disease management</td>
<td>36th period</td>
<td>No stats available</td>
</tr>
</tbody>
</table>
Aetna Medicare Eligibility

Patients admitted to 5 hospitals following Hospital Initiated n=240 were randomised from 5 hospitals following a hospitalisation for HF.

Home vs. Clinic

- **Stewart** 2012
 - Australia
 - n=280 randomised
 - Patients admitted to participating hospitals were screened for study eligibility

Home Based Intervention (n=143)

- Components of intervention at home:
 - Monitoring signs & symptoms
 - Family involvement
 - CM meetings/feedback to other health providers
 - Referral to other health or social care
 - Assessment of home environment
 - Medication review (nurse, pharmacist, cardiologist)

Clinic-Based Intervention (n=137)

- Components of intervention:
 - In clinic
 - Disease management
 - Assessment of home environment
 - Family involvement?
 - Referral to other health or social care
 - CM meetings/feedback to other health providers

Hospital Initiated CM - NRCTs

- **Riegel** 2000
 - USA
 - n=240 were randomised
 - Patients were recruited from 5 hospitals following a hospitalisation for HF.

Multidisciplinary Disease Management (DM) (n=120)

- Components of intervention:
 - Monitoring signs & symptoms
 - Support group
 - Referral to specialist RN visits

Usual Care (n=120)

- Components of intervention:
 - Disease management

Readmission rates: 30 days/patient

- 0.52±0.76, 0.53±1.02 ns

Community-Initiated CM - RCTs

- **Russell** 2011
 - USA
 - n=447
 - Patients were referred from a single large not-for-profit general medical and surgical hospital

Transitional Care Service (n=223)

- Components of intervention:
 - Self-management support
 - Referral to other health & social care
 - Assessment of home environment
 - CM meetings/feedback to other health providers
 - Advance care planning
 - Physical therapy

Usual Home Care Services (n=224)

- Components of intervention:
 - Disease management

Readmissions

- Unadjusted odds ratio 30 days
 - 0.89 (0.38, 0.89) p<0.01

Nurse-Led Transitional Care Intervention (n=56)

- Components of intervention:
 - Monitoring signs & symptoms
 - Education/Self-management support
 - Family involvement
 - Referral (Assessing availability of social care)
 - Patient directed access to study personnel

Control Group (n=84)

- Components of interventions: unknown

Readmission rate at 30 days

- 12.6 (7.4), 17.8 difference -12.6, % change -40%, 16.4(14.18), 17% change -1.6% change 11%

Peters-Klimm 2010

- Germany
- n=199 at randomisation
- Recruitment was via general practice by mail.

Baseline characteristics of participants: CM, UC

- **Age:** 70.4±9 (10.5), 68.9 (9.7)
- **% Female:** 29, 26%
- **Ethnicity:** No details
- **Disease Status:** NYHA I (110), II (5)
- **APR-DRG severity of illness:** 1 (110)
- **Mean yrs. with CHD:** 6.2±6.6 (n=79)

Case Management (n=97)

- Components of intervention at home:
 - Monitoring signs & symptoms
 - Education/Self-management support
 - Medication review (CM/GP)
 - Referral to GP

Usual Care (n=103)

- Components of control intervention:
 - Disease management
 - Education

No. of admissions (baseline 30 vs. 35)

- 18 vs. 9 at 12 mths (ns)
- No. of patients experiencing one or more CHF admissions 11 vs. 7 at 12 mths (ns)

Wade 2011

- USA
- n=2,200 were randomised
- Aetna Medicare Advantage members with medical & pharmacy benefits were identified through analysis of claims

Case Management (n=152)

- Components of intervention at home:
 - Referral to other health & social care
 - Equipment

Telehealth with Case Management (THCM) (n=164)

- Components of intervention:
 - Disease management
 - Education
 - Referral to other health & social care

- No data available for primary outcome but described as:
- The participant population overall had 42% fewer inpatient days during the intervention period compared with the previous year.
- No data

Community-Initiated CM - NRCTs

- **Hancock** 2012
 - UK
 - n=28 randomised
 - Residents from 33 of 35 long-term residential & nursing homes

Case Management (n=16)

- Components of intervention at home:
 - Monitoring signs & symptoms
 - Education
 - CM meetings/feedback to other health providers
 - Medication review (CM/GP/cardiologist)

Routine GP-led Care (n=12)

- Components of intervention:
 - Disease management

No. of admissions at 6 & 12 months

- 0, 0 at 6mths
- 0, 0 at 12 mths

Bonarak-Hessamfar 2008

- France
- n=362
- Compared patients included prospectively from Jan 1st 2004- Dec 31st 2005 from GP list

Co-ordinated care via multidisciplinary network (n=128)

- Components of intervention at home:
 - Monitoring signs & symptoms
 - Education (diet)
 - Physical therapy
 - CM meetings/feedback to other health provider.

Usual Care (n=233)

- Components of intervention: unknown

No. of patients experiencing at least one admission

- 26.58
- Total no. of admissions 35.96
- Median LOS 9.2, 11.7 days
- In the 2yr period
Intervention implemented in 4 Midwest VA medical centres from the same region & one affiliated outpatient clinic and 2 VA medical centres served as control.

Age: 65.4(0.51), 67.4(0.45) yrs.
% female: 1, 1%
Ethnicity: White 71.2, 79.9%
Black 24, 16.1%
Other 4.8, 4.0%
Disease Status: No details

Nurse-practitioner-led disease management model (n=457)

Components of intervention at home: Location was lead tertiary centre, other medical centres (some primary care) or one affiliated outpatient clinic.
Monitoring signs & symptoms
Education /Self-management support
Referral to other health & social care
Family involvement

Usual care (n=510)

Components of intervention: not known

Mean no. of readmissions 1yr
0.7(0.32), 0.23(0.65) p=0.001 (417,428)
2yr
0.15 (0.58), 0.13(0.42) ns (384,382)

Mean no. of days in hospital 1yr
0.15(2.25), 0.97(1.35) p=0.0014
2yr
0.86 (3.98), 0.66(2.74) ns

Key: AF atrial fibrillation, CHF Chronic heart failure, COPD chronic obstructive pulmonary disease, CM case management or case manager, HOCM/RCM Hypertrophic Obstructive/Restrictive Cardiomyopathy, GP general practitioner, UC usual care, NYHA, LV left ventricular, SNF skilled nursing facility, PAD peripheral arterial disease.

Table 3: Available cost data from studies (n=9)

<table>
<thead>
<tr>
<th>Study</th>
<th>Cost data</th>
<th>Intervention vs. control (ns= not statistically significant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rich 1995</td>
<td>3 month data</td>
<td>Study intervention cost US$216 per person Hospital readmissions $2178 vs. $3,236 p=0.03</td>
</tr>
<tr>
<td>Stewart 1998</td>
<td>6 month data</td>
<td>Cost of study intervention Aus$190 per person Mean cost of hospital based care $3200 (1800-4600), 5400 (3200-8800) ns</td>
</tr>
<tr>
<td>Stewart 1999</td>
<td>6 and 18 month data</td>
<td>Total hospital based care Aus$490,350 vs. 922,800 ns 18 month data Total hospital based care $5100 (6800) vs. 10,600 (13000) ns</td>
</tr>
<tr>
<td>Laramee 2003</td>
<td>3 month data</td>
<td>Total care costs Mean(US$) 23,054 vs. 25,536 ns</td>
</tr>
<tr>
<td>Naylor 2004</td>
<td>3 & 6 month data</td>
<td>CHF readmissions US $175,840 vs. 498,110? Physician’s office (outpatients)$4,549, 5,169 ns ER visits $1750, vs. 5650 ns Home visits (all cause) Visiting nurse $1521, 64,531 p=0.001 APN $154.019 vs. 0 Physical therapist $7,120 vs. 10,918 ns Social worker $178, vs. 534 ns Home health aide $9,167 vs. 11,087 ns Total home visits $139,649 vs. 97,883 p<0.001 Total costs $725,903, 1,163,810 ns</td>
</tr>
<tr>
<td>Stewart 2012</td>
<td>12-18 month data</td>
<td>Costs per patient Aus$1813(225) vs. 1829(174) ns Total costs Au $3.93 million vs. 5.53 million p=0.03 for median costs per day</td>
</tr>
<tr>
<td>Riegel 2000</td>
<td>3 & 6 month data</td>
<td>Total costs 3mths US$ 632 (2,378) vs. 317 (1,188) ns 6mths $1,024(3,017) vs. 686(2,226) ns</td>
</tr>
<tr>
<td>Riegel 2006</td>
<td>1, 3 & 6 month data</td>
<td>HF inpatient costs all ns 1mth US$1012(4,023) vs. 2830 (13,896) 3mths $3045(784) vs. 4130 (14,468) 6mths $5667(13,137) vs. 8151 (16,650)</td>
</tr>
<tr>
<td>Stauffer 2011</td>
<td>1 month data</td>
<td>under the current payment system, the intervention reduced the hospital financial contribution on average by US$227 for each Medicare patient with HF</td>
</tr>
</tbody>
</table>
Figure 1: PRISMA Flow Diagram

7547 Records identified through database searching

5 Additional records identified via author contact & reference lists

7552 Screened for duplicates

803 Duplicates removed

6747 Records after duplicates removed that were & screened by title & abstract (n = 183)

6564 Records excluded

183 Full-text papers assessed for eligibility

131 Full-text articles excluded, with reasons
 Not CM (93)
 Not RCT/CT (34)
 In patient CM (7)
 Qualitative (6)
 Not Quant (5)
 Mixed pop (4)
 Not CHF (2)
 No rel. outcomes (1)
 EOL (1)
 Abstract only (1)

32 papers (22 studies) Included in quantitative synthesis

For more information, visit www.prisma-statement.org.
Figure 2b: FROC Risk of bias for Non-randomized controlled trials (NRCTs)

<table>
<thead>
<tr>
<th>Study name</th>
<th>Allocation sequence adequately generated</th>
<th>Allocation adequately concealed</th>
<th>Baseline outcome measurement similar</th>
<th>Baseline characteristics similar</th>
<th>Incomplete outcome data</th>
<th>Knowledge of the allocated intervention</th>
<th>Protected against contaminatio n</th>
<th>Selective outcome reporting</th>
<th>Other risks of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonarse-Heerema et al 2005</td>
<td>High risk</td>
<td>High risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>High risk</td>
<td>High risk</td>
</tr>
<tr>
<td>Lowery 2015</td>
<td>High risk</td>
<td>High risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>High risk</td>
</tr>
<tr>
<td>Biegel 2000</td>
<td>High risk</td>
<td>High risk</td>
<td>Unclear risk</td>
<td>Unclear risk High risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Russett 2011</td>
<td>High risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>High risk</td>
</tr>
<tr>
<td>Stix et al. 2011</td>
<td>High risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Unclear risk Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
</tbody>
</table>

297x209mm (300 x 300 DPI)
Figure 4: CHF length of stay

(a) Overall for hospital – initiated CM

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Case management Mean (SD) Total Mean (SD) Total Weight</th>
<th>Mean Difference (95% CI)</th>
<th>Mean Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>3.62 (2.12) 32.47 40.06 75 25% 4.9 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>4.9 (1.1) 93.9 97.2 29 21% 4.9 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>5.5 (1.1) 100 107 35 27% 5.3 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>5.3 (1.1) 100 107 35 27% 5.3 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>6.4 (1.1) 100 107 35 27% 5.3 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>7.2 (1.1) 100 107 35 27% 5.3 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity analysis (Weigt 2003 removed) F = 54.5, MD = 1.76 (0.29; 2.14, p < 0.0001)

(b) 3 month data for hospital – initiated CM

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Case management Mean (SD) Total Mean (SD) Total Weight</th>
<th>Mean Difference (95% CI)</th>
<th>Mean Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post 2005</td>
<td>3.8 (0.8) 142.2 146.1 20 14% 4.9 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post 2006</td>
<td>3.8 (0.8) 142.2 146.1 20 14% 4.9 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post 2007</td>
<td>3.8 (0.8) 142.2 146.1 20 14% 4.9 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post 2008</td>
<td>3.8 (0.8) 142.2 146.1 20 14% 4.9 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post 2010</td>
<td>3.8 (0.8) 142.2 146.1 20 14% 4.9 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post 2012</td>
<td>3.8 (0.8) 142.2 146.1 20 14% 4.9 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity analysis (Weigt 2003 removed) F = 65.0, MD = 1.50 (0.76; 0.09, p = 0.0001)

(c) 6 month data for hospital – initiated CM

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Case management Mean (SD) Total Mean (SD) Total Weight</th>
<th>Mean Difference (95% CI)</th>
<th>Mean Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>4.1 (1.1) 93.9 97.2 29 21% 4.9 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>5.6 (1.1) 100 107 35 27% 5.3 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>6.4 (1.1) 100 107 35 27% 5.3 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>6.4 (1.1) 100 107 35 27% 5.3 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>7.2 (1.1) 100 107 35 27% 5.3 (3.72) 5.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity analysis (Weigt 2003 removed) F = 56.0, MD = 1.50 (0.76; 0.09, p = 0.0001)

209x297mm (300 x 300 DPI)
Appendix 1:
Database: Medline In-process - Current week, Medline 1950 to present

Search Strategy:
--
1 randomized controlled trial.pt. (376608)
2 random$.tw. (717987)
3 control$.tw. (2630023)
4 intervention$.tw. (556397)
5 evaluat$.tw. (2214967)
6 or/1-5 (5041451)
7 Qualitative Research/ (20094)
8 semi-structured questionnaire.mp. (1162)
9 observation methods.mp. (152)
10 Observation/mt [Methods] (635)
11 Nvivo.mp. (639)
12 interview/ (25018)
13 Personal Narratives/ (877)
14 Focus Groups/ (16824)
15 patient experience*.mp. (8525)
16 or/7-15 (70071)
17 exp Heart Failure/ (87270)
18 exp Heart Failure, Diastolic/ (496)
19 exp heart failure, systolic/ (789)
20 exp Ventricular Dysfunction/ (26332)
21 chronic heart failure.mp. (11341)
22 congestive heart failure.mp. (33082)
23 cardiac failure.mp. (10151)
24 LV dysfunction.mp. (2827)
25 left ventricular dysfunction.mp. (9373)
26 left ventricular impairment.mp. (188)
27 diastolic impairment.mp. (121)
28 systolic impairment.mp. (93)
29 or/17-28 (135885)
30 exp Case Management/ (8326)
31 exp Patient Care Planning/ (52319)
32 organisation of care.mp. (367)
33 community matron.mp. (44)
"Continuity of Patient Care"/ (14497)
Community Health Nursing/ (18371)
transit* care.mp. (580)
Interdisciplinary Communication/ (10602)
Patient Discharge/ (18977)
discharge plan.mp. (176)
exp Patient Care Management/ (535496)
Comprehensive Health Care/ (6078)
exp Managed Care Programs/ (38918)
Primary Health Care/ (54234)
Community Health Services/ (26923)
General Practitioners/ (1943)
Family Practice/ (60223)
Physicians, Family/ (14745)
multidisciplinary.mp. (44988)
or/30-48 (674050)
6 or 16 (5094326)
29 and 50 (47009)
49 and 51 (2590)
52 not (case report/ or case study/ or letter/ or editorial/ or expert opinion.mp.) (2489)
53 not (Algeria$ or Egypt$ or Liby$ or Morocc$ or Tunisia$ or Western Sahara$ or Angola$ or Benin or Botswana$ or Burkina Faso or Burundi or Cameroon or Cape Verde or Central African Republic or Chad or Comoros or Congo or Djibouti or Eritrea or Ethiopia$ or Gabon or Gambia$ or Ghana or Guinea or Keny$ or Lesotho or Liberia or Madagasca$ or Malawi or Mali or Mauritania or Mauritius or Mayotte or Mozambiq or Namibia$ or Niger or Nigeria$ or Reunion or Rwand$ or Saint Helena or Senegal or Seychelles or Sierra Leone or Somalia or South Africa$ or Sudan or Swaziland or Tanzania or Togo or Ugand$ or Zambia$ or Zimbabwe$ or China or Chinese or Hong Kong or Macao or Mongolia$ or Taiwan$ or Belarus or Moldov$ or Russia$ or Ukraine or Afghanistan or Armenia$ or Azerbaijan or Bahrain or Cyprus or Cypriot or Georgia$ or Iran$ or Iraq$ or Israel$ or Jordan$ or Kazakhst$ or Kuwait or Kyrgyzstan or Lebanon$ or Oman or Pakistan$ or Pakistan$ or Palestine$ or Qatar or Saudi Arabia or Syria$ or Tajikistan or Turkmenistan or United Arab Emirates or Uzbekistan or Yemen or Bangladesh$ or Bhutan or British Indian Ocean Territory or Brunei Darussalam or Cambodia$ or India$ or Indonesia$ or Laos or People's Democratic Republic or Malaysia$ or Maldives or Myanmar or Nepal or Philippin$ or Singapore or Sri Lanka or Thai$ or Timor Leste or Vietnm or Vietnam or Albania$ or Andorra or Bosnia$ or Herzegovina$ or Bulgaria$ or Croatia$ or Estonia or Faroe Islands or Greenland or Liechtenstein or Lithuani$ or Macedonia or Malta or maltese or Romania or Serbia$ or Montenegro or Slovenia or Svalbard or
Argentina$ or Belize or Bolivia$ or Brazil$ or chile or Chilean or Colombia$ or Costa Rica$ or Cuba or Ecuador or El Salvador or French Guiana or Guatemala$ or Guyana or Haiti or Honduras or Jamaica$ or Nicaragua$ or Panama or Paraguay or Peru or Puerto Rico or Suriname or Uruguay or Venezuela or developing countr$ or south America$).ti,sh. (2413)

55 54 not animal/ (2393)
56 remove duplicates from 55 (2335)

**
Appendix 2: Subgroup-analysis of unplanned readmission data by intervention component- hospital initiated studies

a) Family involvement

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Log(Rate Ratio)</th>
<th>SE</th>
<th>Total Weight</th>
<th>Rate Ratio IV, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riegel 2002</td>
<td>-0.075</td>
<td>0.216</td>
<td>110</td>
<td>229 25.6%</td>
<td>0.51 [0.35, 0.78]</td>
</tr>
<tr>
<td>Ngair 2004</td>
<td>-0.533</td>
<td>0.197</td>
<td>116</td>
<td>121 26.6%</td>
<td>0.57 [0.39, 0.84]</td>
</tr>
<tr>
<td>Thompson 2005</td>
<td>-1.286</td>
<td>0.288</td>
<td>66</td>
<td>49 22.3%</td>
<td>0.20 [0.15, 0.49]</td>
</tr>
<tr>
<td>Riegel 2005</td>
<td>0.112</td>
<td>0.244</td>
<td>69</td>
<td>95 24.5%</td>
<td>1.12 [0.70, 1.79]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td>375</td>
<td>492 100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.20, CH^2 = 14.97, df = 3 (p = 0.003); I^2 = 79%
Test for overall effect: Z = 2.30 (p = 0.02)

Sensitivity analysis (removing Riegel 2002) Test for subgroup differences CH^2 = 0.98 df = 1 (p = 0.32) I^2 = 0%

b) education & self-management

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Log(Rate Ratio)</th>
<th>SE</th>
<th>Total Weight</th>
<th>Rate Ratio IV, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rich 1993</td>
<td>-0.136</td>
<td>0.332</td>
<td>63</td>
<td>35 8.6%</td>
<td>0.87 [0.46, 1.67]</td>
</tr>
<tr>
<td>Rich 1996</td>
<td>-0.025</td>
<td>0.246</td>
<td>142</td>
<td>140 12.6%</td>
<td>0.94 [0.77, 1.15]</td>
</tr>
<tr>
<td>Riegel 1999</td>
<td>0.054</td>
<td>0.164</td>
<td>146</td>
<td>149 8.6%</td>
<td>1.00 [0.77, 1.34]</td>
</tr>
<tr>
<td>Blue 2001</td>
<td>-0.128</td>
<td>0.248</td>
<td>62</td>
<td>75 12.1%</td>
<td>0.88 [0.64, 1.21]</td>
</tr>
<tr>
<td>Larmane 2003</td>
<td>-0.201</td>
<td>0.221</td>
<td>101</td>
<td>125 6.9%</td>
<td>0.50 [0.32, 0.78]</td>
</tr>
<tr>
<td>DeBuys 2004</td>
<td>-0.069</td>
<td>0.187</td>
<td>238</td>
<td>234 20.5%</td>
<td>0.91 [0.67, 1.23]</td>
</tr>
<tr>
<td>Jaarsma 2008</td>
<td>0.076</td>
<td>0.151</td>
<td>344</td>
<td>336 21.3%</td>
<td>1.01 [0.80, 1.04]</td>
</tr>
<tr>
<td>Elliot 2009</td>
<td>-0.211</td>
<td>0.186</td>
<td>144</td>
<td>130 17.1%</td>
<td>0.91 [0.59, 1.41]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td>1134</td>
<td>1338 100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.03, CH^2 = 16.07, df = 6 (p = 0.012); I^2 = 75%
Test for overall effect: Z = 1.76 (p = 0.08)

Sensitivity analysis (removing Riegel 2002) Test for subgroup differences CH^2 = 0.98 df = 1 (p = 0.32) I^2 = 0%

There were inadequate data in the no education/self-management group to perform a comparison.
c) medication review

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Logit(Rate Ratio)</th>
<th>SE</th>
<th>Case management</th>
<th>Usual care</th>
<th>Rate Ratio</th>
<th>IV, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rich 1993</td>
<td>-0.136</td>
<td>0.332</td>
<td>63</td>
<td>35</td>
<td>0.87 (0.48, 1.67)</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>Rich 1995</td>
<td>-0.025</td>
<td>0.245</td>
<td>142</td>
<td>140</td>
<td>1.00 (0.64, 1.57)</td>
<td>1995</td>
<td></td>
</tr>
<tr>
<td>Stewart 1999</td>
<td>-0.270</td>
<td>0.122</td>
<td>199</td>
<td>100</td>
<td>0.79 (0.52, 1.20)</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Blake 2001</td>
<td>-0.129</td>
<td>0.248</td>
<td>94</td>
<td>91</td>
<td>0.89 (0.54, 1.48)</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Brotto 2009</td>
<td>-0.211</td>
<td>0.189</td>
<td>144</td>
<td>139</td>
<td>0.81 (0.56, 1.17)</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Stewart 2012</td>
<td>0.018</td>
<td>0.071</td>
<td>143</td>
<td>137</td>
<td>Not estimatable</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95%)</td>
<td></td>
<td></td>
<td>533</td>
<td>495</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\chi^2 = 6.24$, $df = 6$, $p = 0.38034$, $I^2 = 0$

Test for overall effect: $\chi^2 = 0.36$ $df = 1$, $p = 0.55$, $I^2 = 0$

d) Referral to other services

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Logit(Rate Ratio)</th>
<th>SE</th>
<th>Case management</th>
<th>Usual care</th>
<th>Rate Ratio</th>
<th>IV, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riegel 2003</td>
<td>0.034</td>
<td>0.154</td>
<td>149</td>
<td>140</td>
<td>1.00 (0.77, 1.31)</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>Riegel 2004</td>
<td>-0.062</td>
<td>0.197</td>
<td>119</td>
<td>121</td>
<td>0.87 (0.59, 1.28)</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>Larancee 2003</td>
<td>-0.201</td>
<td>0.321</td>
<td>131</td>
<td>125</td>
<td>0.84 (0.58, 1.24)</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>Nefto 2004</td>
<td>-0.032</td>
<td>0.159</td>
<td>115</td>
<td>121</td>
<td>0.83 (0.57, 1.20)</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>Dubin 2004</td>
<td>-0.980</td>
<td>0.157</td>
<td>228</td>
<td>234</td>
<td>0.89 (0.70, 1.19)</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>Thompson 2006</td>
<td>0.169</td>
<td>0.298</td>
<td>59</td>
<td>60</td>
<td>0.90 (0.67, 1.18)</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Riegel 2008</td>
<td>0.112</td>
<td>0.24</td>
<td>59</td>
<td>65</td>
<td>1.12 (0.70, 1.77)</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>Jasenova 2008</td>
<td>0.076</td>
<td>0.151</td>
<td>344</td>
<td>339</td>
<td>1.00 (0.70, 1.40)</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95%)</td>
<td></td>
<td></td>
<td>1078</td>
<td>1069</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\chi^2 = 10.1$, $df = 10, p = 0.36034$, $I^2 = 0$

Test for overall effect: $\chi^2 = 0.36$ $df = 1$, $p = 0.55$, $I^2 = 0$

Sensitivity analysis (removing Riegel 2002) Test for subgroup differences Chi$^2 = 1.2$, $df = 0$, $p = 0.27163$, $I^2 = 0$

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
e) Assessment of home environment

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Log(Ratio)</th>
<th>SE</th>
<th>Case management</th>
<th>Total</th>
<th>Total</th>
<th>Weight</th>
<th>IV, Random, 95% CI</th>
<th>Year</th>
<th>Rate Ratio</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rich 1993</td>
<td>0.136</td>
<td>0.332</td>
<td>63</td>
<td>35</td>
<td>35</td>
<td>21.5%</td>
<td>0.67 [0.46, 1.67]</td>
<td>1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rich 1995</td>
<td>-0.626</td>
<td>0.245</td>
<td>142</td>
<td>140</td>
<td>140</td>
<td>30.3%</td>
<td>0.44 [0.27, 0.71]</td>
<td>1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stewart 1999</td>
<td>-0.279</td>
<td>0.122</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>48.2%</td>
<td>0.76 [0.60, 0.98]</td>
<td>1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stewart 2011</td>
<td>0.016</td>
<td>0.671</td>
<td>143</td>
<td>157</td>
<td>157</td>
<td>100.0%</td>
<td>0.68 [0.45, 1.05]</td>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall (95%)</td>
<td></td>
<td></td>
<td>305</td>
<td>275</td>
<td>275</td>
<td>100.0%</td>
<td>0.68 [0.45, 1.05]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.00, Chi^2 = 4.50, df = 2 (p = 0.11), I^2 = 58%
Test for overall effect: Z = 2.15 (P = 0.03)

f) Case management/health professional meetings

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Log(Ratio)</th>
<th>SE</th>
<th>Case management</th>
<th>Total</th>
<th>Total</th>
<th>Weight</th>
<th>IV, Random, 95% CI</th>
<th>Year</th>
<th>Rate Ratio</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rich 2001</td>
<td>0.054</td>
<td>0.164</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>90.0%</td>
<td>1.06 [0.77, 1.48]</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rich 2003</td>
<td>-0.120</td>
<td>0.248</td>
<td>84</td>
<td>81</td>
<td>81</td>
<td>10.3%</td>
<td>0.88 [0.54, 1.48]</td>
<td>2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riegel 2002</td>
<td>-0.675</td>
<td>0.219</td>
<td>130</td>
<td>228</td>
<td>228</td>
<td>11.2%</td>
<td>0.51 [0.33, 0.78]</td>
<td>2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lawrence 2003</td>
<td>-0.211</td>
<td>0.532</td>
<td>137</td>
<td>125</td>
<td>125</td>
<td>9.2%</td>
<td>0.81 [0.42, 1.59]</td>
<td>2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newton 2004</td>
<td>-0.562</td>
<td>0.167</td>
<td>118</td>
<td>121</td>
<td>121</td>
<td>11.9%</td>
<td>0.57 [0.29, 0.94]</td>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dahlquist 2005</td>
<td>-0.098</td>
<td>0.167</td>
<td>228</td>
<td>234</td>
<td>234</td>
<td>13.3%</td>
<td>0.91 [0.67, 1.22]</td>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson 2006</td>
<td>-1.280</td>
<td>0.288</td>
<td>58</td>
<td>60</td>
<td>60</td>
<td>9.8%</td>
<td>0.19 [0.10, 0.39]</td>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riegel 2006</td>
<td>0.112</td>
<td>0.244</td>
<td>69</td>
<td>65</td>
<td>65</td>
<td>10.0%</td>
<td>1.12 [0.86, 1.47]</td>
<td>2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeannett 2009</td>
<td>0.076</td>
<td>0.161</td>
<td>244</td>
<td>239</td>
<td>239</td>
<td>12.0%</td>
<td>1.00 [0.66, 1.42]</td>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shires 2009</td>
<td>-0.211</td>
<td>0.188</td>
<td>144</td>
<td>139</td>
<td>139</td>
<td>12.3%</td>
<td>0.81 [0.56, 1.17]</td>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall (95%)</td>
<td></td>
<td></td>
<td>1306</td>
<td>1380</td>
<td>1380</td>
<td>100.0%</td>
<td>0.74 [0.57, 0.95]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.10, Chi^2 = 26.59, df = 6 (P = 0.0000), I^2 = 70%
Test for overall effect: Z = 2.35 (P = 0.02)

Sensitivity analysis (removing Riegel 2002) Test for subgroup differences Chi^2 0.46 df=1 (p=0.50) I^2=0%

Sensitivity analysis (removing Riegel 2002) Test for subgroup differences Chi^2 0.07 df=1 (p=0.07) I^2=0%
g) Patient-directed access

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Case management</th>
<th>Usual care</th>
<th>Rate Ratio</th>
<th>Weight</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log(RR)</td>
<td>FE</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.2.1 Patient-directed access</td>
<td>0.078 0.151</td>
<td>344</td>
<td>329</td>
<td>25.4%</td>
<td>1.60 [0.90, 2.89]</td>
</tr>
<tr>
<td>Julstrom 2006</td>
<td>-0.261 0.321</td>
<td>137</td>
<td>125</td>
<td>16.1%</td>
<td>0.63 [0.44, 0.89]</td>
</tr>
<tr>
<td>Navr 2004</td>
<td>-0.563 0.197</td>
<td>116</td>
<td>121</td>
<td>22.5%</td>
<td>0.57 [0.35, 0.94]</td>
</tr>
<tr>
<td>Rich 1993</td>
<td>-0.136 0.332</td>
<td>63</td>
<td>35</td>
<td>15.5%</td>
<td>0.87 [0.46, 1.67]</td>
</tr>
<tr>
<td>Sefar 2005</td>
<td>-0.825 0.245</td>
<td>166</td>
<td>100</td>
<td>29.1%</td>
<td>0.44 [0.27, 0.71]</td>
</tr>
<tr>
<td>Seventeen (95% CI)</td>
<td></td>
<td>756</td>
<td>729</td>
<td>190.90%</td>
<td>0.72 [0.36, 1.44]</td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 0.12$, $Ch^2 = 12.90$, $df = 4$ ($P = 0.00$); $I^2 = 0.90$.

Test for overall effect: $Z = 1.75$ ($P = 0.08$)

1.2.2.2 No patient-directed access

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Case management</th>
<th>Usual care</th>
<th>Rate Ratio</th>
<th>Weight</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log(RR)</td>
<td>FE</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue 2004</td>
<td>-0.129 0.240</td>
<td>84</td>
<td>81</td>
<td>19.7%</td>
<td>0.89 [0.54, 1.48]</td>
</tr>
<tr>
<td>Brokens 2009</td>
<td>-0.211 0.109</td>
<td>144</td>
<td>139</td>
<td>13.0%</td>
<td>0.61 [0.42, 0.88]</td>
</tr>
<tr>
<td>Dalhousie 2004</td>
<td>-0.398 0.157</td>
<td>238</td>
<td>234</td>
<td>14.3%</td>
<td>0.61 [0.46, 0.81]</td>
</tr>
<tr>
<td>Julstrom 2006</td>
<td>0.078 0.151</td>
<td>344</td>
<td>329</td>
<td>15.5%</td>
<td>1.60 [0.90, 2.89]</td>
</tr>
<tr>
<td>Riegel 2000</td>
<td>0.264 0.164</td>
<td>146</td>
<td>140</td>
<td>9.0%</td>
<td>1.60 [0.77, 3.26]</td>
</tr>
<tr>
<td>Riegel 2002</td>
<td>0.675 0.219</td>
<td>136</td>
<td>229</td>
<td>11.9%</td>
<td>0.61 [0.22, 0.90]</td>
</tr>
<tr>
<td>Riegel 2006</td>
<td>0.112 0.241</td>
<td>88</td>
<td>65</td>
<td>11.0%</td>
<td>1.12 [0.76, 1.67]</td>
</tr>
<tr>
<td>Stewart 1999</td>
<td>-0.279 0.121</td>
<td>146</td>
<td>100</td>
<td>15.0%</td>
<td>0.70 [0.56, 0.90]</td>
</tr>
<tr>
<td>Stewart 2012</td>
<td>0.016 0.071</td>
<td>143</td>
<td>137</td>
<td>Not estimable</td>
<td></td>
</tr>
<tr>
<td>Thompson 2005</td>
<td>-1.268 0.298</td>
<td>58</td>
<td>46</td>
<td>9.0%</td>
<td>0.20 [0.10, 0.39]</td>
</tr>
<tr>
<td>Seventeen (95% CI)</td>
<td></td>
<td>1167</td>
<td>1234</td>
<td>190.90%</td>
<td>0.76 [0.36, 1.44]</td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 0.68$, $Ch^2 = 22.00$, $df = 7$ ($P = 0.00$); $I^2 = 71$%.

Test for overall effect: $Z = 2.19$ ($P = 0.03$)

Test for subgroup differences: $Ch^2 = 0.07$, $df = 1$ ($P = 0.91$); $I^2 = 0$%

Sensitivity analysis (removing Riegel 2002)

Test for subgroup differences: $Ch^2 = 0.25$ $df=1$ ($p=0.61$) $I^2=0$%
PRISMA 2009 Checklist

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>1</td>
<td>Identify the report as a systematic review, meta-analysis, or both.</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structured summary</td>
<td>2</td>
<td>Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.</td>
<td>2</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rationale</td>
<td>3</td>
<td>Describe the rationale for the review in the context of what is already known.</td>
<td>4-5</td>
</tr>
<tr>
<td>Objectives</td>
<td>4</td>
<td>Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).</td>
<td>5</td>
</tr>
<tr>
<td>METHODS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol and registration</td>
<td>5</td>
<td>Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.</td>
<td>N/A</td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td>6</td>
<td>Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.</td>
<td>5</td>
</tr>
<tr>
<td>Information sources</td>
<td>7</td>
<td>Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.</td>
<td>5</td>
</tr>
<tr>
<td>Search</td>
<td>8</td>
<td>Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.</td>
<td>Appendix one</td>
</tr>
<tr>
<td>Study selection</td>
<td>9</td>
<td>State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).</td>
<td>6</td>
</tr>
<tr>
<td>Data collection process</td>
<td>10</td>
<td>Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.</td>
<td>6</td>
</tr>
<tr>
<td>Data items</td>
<td>11</td>
<td>List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.</td>
<td>6</td>
</tr>
<tr>
<td>Risk of bias in individual studies</td>
<td>12</td>
<td>Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.</td>
<td>6-7</td>
</tr>
<tr>
<td>Summary measures</td>
<td>13</td>
<td>State the principal summary measures (e.g., risk ratio, difference in means).</td>
<td>6-7</td>
</tr>
<tr>
<td>Synthesis of results</td>
<td>14</td>
<td>Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2 for each meta-analysis).</td>
<td>6-7</td>
</tr>
</tbody>
</table>
PRISMA 2009 Checklist

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of bias across studies</td>
<td>15</td>
<td>Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).</td>
<td>6-7</td>
</tr>
<tr>
<td>Additional analyses</td>
<td>16</td>
<td>Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.</td>
<td>7</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study selection</td>
<td>17</td>
<td>Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.</td>
<td>7 & Figure 1</td>
</tr>
<tr>
<td>Study characteristics</td>
<td>18</td>
<td>For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.</td>
<td>7-8</td>
</tr>
<tr>
<td>Risk of bias within studies</td>
<td>19</td>
<td>Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).</td>
<td>9</td>
</tr>
<tr>
<td>Results of individual studies</td>
<td>20</td>
<td>For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.</td>
<td>9-11</td>
</tr>
<tr>
<td>Synthesis of results</td>
<td>21</td>
<td>Present results of each meta-analysis done, including confidence intervals and measures of consistency.</td>
<td>9-11 plus figures 3 & 4 and appendix 2</td>
</tr>
<tr>
<td>Risk of bias across studies</td>
<td>22</td>
<td>Present results of any assessment of risk of bias across studies (see Item 15).</td>
<td>9-11 plus figures 3 & 4</td>
</tr>
<tr>
<td>Additional analysis</td>
<td>23</td>
<td>Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).</td>
<td>9-11 plus figures 3 & 4</td>
</tr>
</tbody>
</table>

DISCUSSION

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of evidence</td>
<td>24</td>
<td>Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).</td>
<td>12</td>
</tr>
<tr>
<td>Limitations</td>
<td>25</td>
<td>Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).</td>
<td>12,14-15</td>
</tr>
<tr>
<td>Conclusions</td>
<td>26</td>
<td>Provide a general interpretation of the results in the context of other evidence, and implications for future research.</td>
<td>15</td>
</tr>
</tbody>
</table>
PRISMA 2009 Checklist

FUNDING

| Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. | 21 |

For more information, visit: www.prisma-statement.org.

Page 2 of 2
Does case management for patients with heart failure based in the community reduce unplanned hospital admissions? A systematic review and meta-analysis

A L Huntley, R Johnson, A King, R W Morris and S Purdy

BMJ Open 2016 6:
doi: 10.1136/bmjopen-2015-010933

Updated information and services can be found at:
http://bmjopen.bmj.com/content/6/5/e010933

These include:

References
This article cites 48 articles, 8 of which you can access for free at:
http://bmjopen.bmj.com/content/6/5/e010933#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Cardiovascular medicine (822)
Emergency medicine (308)
General practice / Family practice (683)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/