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ABSTRACT
Objectives: We evaluate and compare manually
collected paper records against electronic records for
monitoring the weights of children under the age of 5.
Setting: Data were collected by 24 community health
workers (CHWs) in 2 Rwandan communities, 1 urban
and 1 rural.
Participants: The same CHWs collected paper and
electronic records. Paper data contain weight and age
for 320 boys and 380 girls. Electronic data contain
weight and age for 922 girls and 886 boys. Electronic
data were collected over 9 months; most of the data is
cross-sectional, with about 330 children with time-
series data. Both data sets are compared with the
international standard provided by the WHO growth
chart.
Primary and secondary outcome measures: The
plan was to collect 2000 individual records for the
electronic data set—we finally collected 1878 records.
Paper data were collected by the same CHWs, but
most data were fragmented and hard to read. We
transcribed data only from children for whom we were
able to obtain the date of birth, to determine the exact
age at the time of measurement.
Results: Mean absolute error (MAE) and mean
absolute percentage error (MAPE) provide a way to
quantify the magnitude of the error in using a given
model. Comparing a model, log(weight)=a+b log(age),
shows that electronic records provide considerable
improvements over paper records, with 40% reduction
in both performance metrics. Electronic data improve
performance over the WHO model by 10% in MAPE
and 7% in MAE. Results are statistically significant
using the Kolmogorov-Smirnov test at p<0.01.
Conclusions: This study demonstrates that using
modern electronic tools for health data collection is
allowing better tracking of health indicators. We have
demonstrated that electronic records facilitate
development of a country-specific model that is more
accurate than the international standard provided by
the WHO growth chart.

INTRODUCTION
In a fast paced world with an increasing role
for information technology, there is a move-
ment to make a transition in data collection
from traditional paper-based records to an
electronic, technology-enhanced process of

data collection. The health sector is one of
the areas where the potential advantages of
electronic health records (EHRs) are becom-
ing increasingly recognised.1 In particular, if
the goal of the health sector is to have
evidence-based, adaptive and agile decision-
making, real-time data are imperative.2

Data-driven methods for tracking progress
are particularly important for monitoring the
health of newborns.3 Historically, the main
form of health data collection has been
paper records. Storing and updating paper
records has proved challenging and most
developed countries are moving towards an
electronic system.1

However, there is little empirical evidence
that electronic data is superior in quality.4 In
particular, developing countries are strug-
gling with problems such as delays in obtain-
ing relevant data, access to healthcare and
human resistance to automation, all of which
affect data quality.4 In Rwanda, as in many
developing countries, health data are col-
lected by community health workers
(CHWs)5 6 who are volunteers, and focus
mostly on children’s health, vaccination and
malnutrition. To test a hypothesis that elec-
tronic data is better quality than data from a
standard paper-based system, a custom
mobile application was given to 24 CHWs
who collected electronic health data for
monitoring children’s growth and develop-
ment, and stored them as EHR. Then paper
records from the same CHWs were

Strengths and limitations of this study

▪ Two primary data sets that are evaluated are col-
lected under the researcher’s control and satisfy
data quality assurance requirements.

▪ The study was able to quantify data quality using
standard statistical tests.

▪ Two primary data sets (paper and electronic)
cover a relatively short period of time for longitu-
dinal data analysis.

▪ There was no access to the original data used to
derive the international standard, hence we had
to derive it from the published model.
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compared with the electronic recordings. The purpose
of this paper is to visually demonstrate and quantify the
differences in data quality, and test whether or not elec-
tronic has higher usability than paper recording,
defined as better-satisfying intended use of the data. In
addition, both are compared with the golden standard
provided by the WHO growth chart on children’s
development.

Previous work
In the literature on the comparison between electronic
and paper recording systems, the findings are encour-
aging in that electronic recording improves quality, mea-
sured by consistency. For example, comparison between
pen-and-paper interviewing (PAPI), and computer-
assisted personal interviewing (CAPI), lists two main
advantages of computer surveys: the elimination of data
entry and consistency checks during interviews.7 The
authors identify two different consistency checks: impos-
sible and improbable data. The findings are that CAPI
significantly reduces the error of inconsistences.
Two-thirds of the errors aimed at detecting violations of
the questionnaire’s routing scheme occur when answer-
ing questions meant to be skipped, or skipping ques-
tions meant to be answered.
In contrast, the use of Personal Digital Assistant

(PDA) for consistency checks for profit and sale mea-
surements, which are often noisy, finds consistency
checks to be rather limited.4 In the cross-section portion
of the survey, it uses consistency checks to compare
profit with sales, and prompts when the profit is missing,
while in the time-series portion it flags large changes
from one period to the next. The conclusion is that the
vast majority of changes are justified and the volatility
genuine, so it does not recommend PDAs on basis of
improvement in measurement and data consistency.
In the health field, studies are evaluating the potential

of electronic recordings to improve compliance to treat-
ment and data completeness. One study2 tests if elec-
tronic technology could improve adherence to the
Integrated Management of Childhood Illness. The
authors compare it to the current paper-based protocol
in Tanzania by randomly selecting 18 clinics, collecting
information during the first examination using paper-
based protocol, while the next observation is collected
electronically. The sample is data from 1221 children,
681 paper and 550 electronic. The authors find consid-
erably better adherence to the protocol with electronic
data collection, concluding that the electronic system
improves completeness, defined as reduction in missing
data.
Another study8 evaluates patient acceptance of an

electronic questionnaire to collect breast cancer data in
a mammography setting and improve data complete-
ness.8 The authors developed a questionnaire on a
tablet computer incorporating prefilled answers and
skip patterns, and tested it on 160 women, 74 using
paper and 86 using tablet, evaluating data completeness

and patient acceptance. They found it feasible (accom-
plished) and data completeness improved.
Electronic methods for data collection differ, and

Wilcox et al9 describe case studies using multiple
methods for primary data collection, ranging from
paper to next-generation tablet computers. They per-
formed semistructured phone interviews and addressed
issues such as workflow, implementation and security of
each method, assessing the usability of different tools.
All the studies in the health field found a significant

improvement in data completeness, cost reduction, and
better adherence to treatment when data is collected
and stored electronically. However, none of the studies
look at the relative improvement in data quality beyond
missing values.
From an application perspective, the health issue we

address is significant because Rwanda is battling child
malnutrition; research by the World Bank (Bundervoet
T. “Malnutrition chapter” by World Bank, Unpublished
document, based on The 2010 DHS and the 2012
Comprehensive Food Security and Vulnerability Analysis
and Nutrition Survey (CFSVA)) found that 44% of chil-
dren under 5 years of age in Rwanda suffer from stunt-
ing. Stunting is defined as: “height for age below two
standard deviations of the WHO Child Growth
Standards median”,10 and often reflects the cumulative
effects of undernutrition or chronic malnutrition. This
measure puts Rwanda on the 11th highest position in
the global malnutrition league table.10 In Rwanda, the
probability of stunting for children under 5 years of age
increases sharply after 6 months of age, peaks at about
20 months and then becomes relatively stable
(Bundervoet T. “Malnutrition chapter” by World Bank,
Unpublished document, based on The 2010 DHS and
the 2012 Comprehensive Food Security and
Vulnerability Analysis and Nutrition Survey (CFSVA)).
Stunting decreased by a modest 4% over the last decade,
a disappointing drop given the large improvements on
other development indicators (Bundervoet T.
“Malnutrition chapter” by World Bank, Unpublished
document, based on The 2010 DHS and the 2012
Comprehensive Food Security and Vulnerability Analysis
and Nutrition Survey (CFSVA)).
In order to assess children’s growth, the WHO has

been developing standardised growth charts since 1970.
However, these charts did not adequately represent early
childhood growth and, in 2006, the WHO released new
growth curves.11

Soon after the newest WHO growth chart was pub-
lished, Onis et al12 performed a comparison of WHO
and Center for Disease Control and Prevention (CDC)
growth curves using a visual methodology. They find
important differences between them, such as the CDC
charts present lower rates of undernourishment and
higher rates of overweight than the WHO standards.
Another approach was used in a study by Dewey et al,13

looking at the growth of breastfed infants and construct-
ing the growth curve by cubic polynomial interpolation.
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The authors conclude that, in order to follow WHO
recommendations, a new reference data set is needed.
There exists some disagreement about the applicabil-

ity of the WHO standard to all countries. Vignerova
et al14 find that, for Czech children, the WHO growth
standard does not apply. They investigated the preva-
lence of wasting, defined as weight for height below 2
SD of the WHO Child Growth Standards median, using
a sample of 34 000 Czech children under 5 years of age.
The main difference between their study and the WHO
study concerns the sample selection. The Czech study
did not restrict the sample to breastfeeding mothers
who were non-smokers, whereas the WHO study did.
The authors found that many healthy kids would be
labelled as suffering from wasting using WHO but not
local Czech standards and recommended further evalu-
ation of WHO growth curves before adoption.
In paediatric emergency medicine, estimation of

weight in sick children can be performed in a variety of
ways, with considerable predictive power. One very
popular method is using the Advanced Pediatric Life
Support (‘APLS’) formula (weight=(age+4)×2), which is
linear and applies to children from birth to 10 years of
age.15 Luscombe et al16 propose a different formula
(weight(kg)=3(age)+7) for accurately estimating weight
for the 21st century child. Theron’s formula17 is the
closest to the model in this paper because it is log linear
(weight(kg)=e0.17 age (years)+2.197)). The above formulas,
unlike the WHO study, estimate a parametric model that
could be used with different data sets, and were tested in
developing countries.

Data quality dimensions
Defining data quality is the first step in the process of
evaluation. Table 1 shows different dimensions of data
quality that can be improved by electronic methods of
collection. The dimensions are adopted from Baesens’
“Analytics in a Big Data World”.18

The case study provides the basis for considering the fol-
lowing of the above dimensions:
1) Accuracy: The present paper system does not have
consistency checks while the EHR approach incorpo-
rates those features in the custom mobile application.

2) Consistency: By comparing the values that are input
with a model based on previous measurements, it is
possible to immediately detect errors and ensure self-
consistency by prompting the data collector to revise
the measurement.

3) Accessibility: Electronic reporting is timelier than
paper reporting since the present paper system is sub-
mitted only once a month. The web application
designed for the case study displays the data as soon as
the network synchronises the mobile app with the web
app.

4) Feedback: In a mobile collection system it is possible
to get real-time feedback and have a two-way commu-
nication channel.

Case study
Access to healthcare is often limited by a shortage of
healthcare workers.19 In countries with a low doctor per
patient ratio, mobile devices can increase efficiency and
improve access to all healthcare providers. Rwanda has
an extremely low doctor per patient ratio, estimated, in
2010, as six doctors for 100 000 patients. Rwanda ranks
174th of 193 countries using this measure.20 In compari-
son, Belgiumi has 449 doctors—and the world leader is
Cuba with 591—per 100 000 patients.21 Neighbouring
countries are within a closer range, with Uganda having
eight doctors and Kenya 14 per 100 000 patients.22

To ameliorate the shortage of health services, the
Rwandan Ministry of Health (MoH) created a programme
of CHWs in an initiative to improve the population’s
health status by ensuring access to preventative and cura-
tive healthcare services. CHWs are elected by their com-
munity and work as volunteers. Their activities focus
mostly on children’s health, vaccination and malnutrition,
as well as community-based activities around hygiene and
sanitation. They also report disease epidemics in their area
of coverage, and presently there are a total of 40 000
CHWs in Rwanda. The population of Rwanda is 12
million,23 which represents a ratio of 333 CHWs per
100 000 people, getting it closer to the Belgian ratio, albeit
CHWs lack the training and skills of doctors.24 In commu-
nity care, EHR could be a bridge from untrained CHWs to
healthcare providers with timely and relevant data.
The case study was performed in cooperation with the

Rwandan MoH and Kibagabaga Hospital in Gasabo dis-
trict. Several approvals were acquired: ethical approval
from the Rwandan National Ethics Committee; and data
collection approval from the MoH. The liaison with the
hospital was a coordinator of CHWs, and 24 participants
were randomly selected from CHWs in her jurisdiction.

Table 1 Data quality dimensions

Data quality

dimension Subdimension Meaning

Intrinsic Accuracy

Reputation

Data correct

Trusted source

Contextual Completeness Values present

Representational Interoperability

Consistency

Language and

unit correct

Ease of

understanding

Accessibility Accessibility

Security

Easy to retrieve

Access restricted

Additional digital data

timeliness capability

Feedback

Trends

Timeliness

Two-way

communication

Visual

presentation

Instant

availability
iRwanda was a Belgian colony until 1962.
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Participating CHWs had education, age and sex typical
of the sample of approximately 1500 CHWs in Gasabo
district, one of the most populated districts in Rwanda,
with approximately half a million people.ii

To test the above hypothesis that CHWs could use
smart phones for health data collection, a mobile appli-
cation was installed on a Tecno P3 smart phone, and
given to the randomly selected Rwandan CHWs to
monitor children’s growth and development, and the
evaluation was carried out in urban as well as rural loca-
tions, with 12 CHWs in each. The application was
designed to be tolerant to delays in the mobile network
and optimised for low-resource settings. The primary
goals of this study were to assess the quality of health
data collected by electronic tools.
CHWs collected electronic data for 9 months on

weight gain and mid-upper arm circumference (MUAC)
—measures established by UNICEF for detecting malnu-
trition25—using the smart phone application specifically
designed for the study. Rwandan CHWs routinely collect
data on those two indicators from children in their
village, once a month. For the purpose of analysis we
also collected data recorded in paper notebooks from
the participating CHWs. The study was carried out from
March to December of 2014. By the end of the study,
two CHWs, one from each location, dropped out
because of equipment loss. Each group of CHWs was
separately trained regarding smart phone and mobile
application use, and the training was held in community
health locations, one in the city of Kigali, and the other
in a rural location in Gasabo district.
We also developed a web application for viewing data,

and our system provides detailed information and a web
interface that can produce summaries and data analy-
tics. The data from our application can be granular and
give coordinators the ability to see which child is mal-
nourished in each sector. It also produces summary
reports similar to the present paper-based system.
The common issues in an unreliable telecom network

have all the characteristics of a delay-tolerant network
(DTN). Such a network is concerned with interconnecting
highly heterogeneous networks together even if end-to-end
connectivity may not be available.26 One reason DTN is
applicable in low-resource settings is inadequate infrastruc-
ture, which includes intermittent access to the internet.
There are many rural places in Rwanda that are not covered
by cellular phone networks. In the test areas, cellular
network is available but unreliable. The delay tolerant appli-
cation sends the collected data when it senses a connection
to the network, and meanwhile it stores it on the device.

Data description
Along with electronically collected data on children’s
weight in Rwanda, we used paper records of the same

CHWs to assess their quality. Both of these data sets are
evaluated against an international standard provided by
the WHO model. Table 2 provides a detailed description
of the three data sets.
The above data sets were analysed using a log–log rela-

tionship, and table 3 describes the models estimated
based on these data sets. The model parameters pre-
sented are for girls, boys have a different growth pattern
but the results for their models are almost the same as
for the girls.
For the weight measurements in paper and electronic

recording methods, CHWs were using the hanging scales
pictured in figure 1. When using such a scale, a commu-
nity worker places a child in a sack connected to a scale
that hangs in a fixed place. Measurement errors generated
because of an imprecise scale or operator oversight is the
same in paper and electronic recording methods.

Strengths and limitations
We were able to identify the following limitations of the
study:
▸ We had no access to the original WHO data used to

derive the international standard, instead we derived
it from the WHO growth model presented by the
median and SD.

▸ Two primary data sets (paper and electronic) cover a
relatively short period of time (9 months) for longitu-
dinal data analysis; hence we had to limit the study to
the cross-sectional approach. A longitudinal study
would provide a better source for evaluating the pre-
dictive power of the model.

Table 2 Description of paper, electronic and WHO data

sets used for model evaluation

Data name Description

Paper data Data were obtained by recording children’s

weight from the CHWs’ books in an Excel

spread sheet. Data contain information on

weight and age for 320 boys and 380 girls.

Those individual records are kept by the

same CHWs participating in the case study

Electronic

data

In the case study, 24 participating CHWs

collected data using a custom made smart

phone mobile application. By the end of the

study, they collected data for 922 girls and

886 boys who live in their district. The data

were collected over 9 months, and most of

the data are cross-sectional, with about

330 children with time-series data for 3–6

consecutive months

WHO data The WHO study was carried out in six

different countries: Brazil, Ghana, India,

Norway, Oman and the USA, in year 2006.

The WHO standards are based on a

longitudinal study of 882 children aged 0–

24 months and on cross-sectional studies

of 6669 children aged 18–71 months

CHWs, community health workers.
iihttp://statistics.gov.rw/publications/2012-population-and-housing-
census-provisional-results
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We consider the following to be strengths of the study:
▸ Two primary data sets (paper and electronic) were

collected under researcher’s control; these satisfy
data quality assurance requirements.

▸ The study quantifies data quality between different
methodologies for data collection and applies a
variety of statistical tests.

Methodology
The first step is to compare the quality of the electronic
and paper recording approaches. Along with visual
inspection of the data, statistical analyses were also used
to quantify the quality. We compared a number of parsi-
monious parametric models for describing the relation-
ship between weight and age, and found that the most
appropriate model structure was of the form, log
(weight)=a+b log(age). The simplest assessment of the
performance of a quantitative model with respect to a
particular data set is based on evaluation metrics such as
the mean squared error (MSE). In many applications, it
is preferable to provide a normalised metric such as the
coefficient of determination (R2), which is equivalent to
the square of the correlation coefficient.
The second step is to establish the most appropriate

model for describing the data sets collected. An

international standard is provided by the WHO in the
form of its growth chart for children’s development. As
the WHO growth charts are based on data from other
countries, we wish to understand how applicable the
WHO model is for children from Rwanda. In order to
provide an accurate assessment of the performance of
different models and different data sets, we need to
avoid overfitting problems. Unfortunately, if the same
data are used for estimating the parameters of the
model and also for evaluating that model, it is possible
that the procedure will over-fit the data and provide
overly optimistic results as far as new data are
concerned.
To remedy overfitting we used cross-validation, which

is a model evaluation method that ensures that the
evaluation is based on different data to that used to con-
struct the model. Cross-validation techniques tend to
focus on randomly selected subsections of entire data
set.27 A k-fold cross-validation approach was used to cal-
culate the performance in each case.
Another test that we applied is the Kolmogorov-

Smirnov (K-S) statistic, which quantifies a distance
between the empirical distribution functions of two
samples. For the two-sample case the null distribution of
this statistic is calculated under the hypothesis that the
samples are drawn from the same distribution. The dis-
tributions considered under the null hypothesis are con-
tinuous distributions but are otherwise unrestricted, and
the K-S test is non-parametric.
A log–log model was found to be most appropriate

after comparing results with a log-linear model such as
Theron’s formula.17 One explanation might be that
paediatric emergency medicine models are used for an
approximation and are applied to the children up to the
10 years of age, whereas our model is designed for chil-
dren with ages ranging from birth to 5 years.
We also employed a simple non-parametric approach

to estimate the mean absolute error (MAE) for paper
and electronic recordings. For each 3-month period, we
calculated the average and used this to quantify the MAE.
We use these results to evaluate the differences between
electronic and paper MAE along the growth chart.

RESULTS
Visualisation of the plots obtained from the electronic
and paper recording methods gives us an idea of the

Figure 1 Hanging scales used by community health workers

for child weight measurement.

Table 3 Training and testing data sets, model parameter estimates and goodness of fit measured by cross-validation for

Rwandan girls

Evaluation Training data Testing data Model R2

A Paper records Paper records log(weight)=0.70+0.26×log(age) 0.37

B Electronic records Electronic records log(weight)=0.69+0.28×log(age) 0.56

C Simulated data from WHO chart Simulated data from WHO chart log(weight)=0.56+0.37×log(age) 0.92*

D Simulated data from WHO chart Electronic records log(weight)=0.56+0.37×log(age) 0.54

*In the evaluation of the WHO chart, the goodness of fit (R2) is very high because the same model is used to simulate both the training and
testing data.
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overall quality of the recording process, and of the
nature of the growth and its variability with respect to
the age of the child. Figure 2 shows the weight versus
age of girls in Rwanda using electronic (left) and paper
(right). Figure 3 does the same for Rwandan boys, since
boys follow a different growth pattern from girls, and all
growth charts are separated by the sex of the child.
Table 3 compares four different evaluation studies,

based on different data sets for training and testing. In
each case, we use the log–log model for describing the
relationship between weight and age. We provide the
parameter estimates and the cross-validated goodness of
fit measure R2.

On the basis of a model structure of the form, log
(weight)=a+b log(age), the training data was used to
estimate the model parameters a and b. The four evalu-
ation studies listed in table 3 rely on three models, as
can be seen from the parameter values. In the follow-
ing, these three models will be referred to as the
Rwanda paper model (Evaluation A), the Rwanda
Electronic model (Evaluation B) and the WHO model
(evaluations C and D). It was also possible to calculate
the goodness of fit using the coefficient of determin-
ation, R2, with a cross-validation approach. The R2

values provided in table 4 give quantitative support to
the argument that electronic data collection is superior

Figure 2 Electronic and paper data for Rwanda girls.

Figure 3 Electronic and paper data for Rwanda boys.
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to paper-based data collection for girls and for boys
in Rwanda.
A direct comparison of traditional forecast evaluation

criteria, such as MAE and mean absolute percentage
error (MAPE), provides a way to quantify the magnitude
of the error in using a given model to make a predic-
tion. Comparing a model of the form, log(weight)=a+b
log(age) produces the following results for paper and
electronic records, with the errors evaluated in units of
kilograms. Electronic records provide considerable
improvements over paper records, with at least a 40%
reduction in error in both performance metrics, as
shown in table 5.
In order to compare the data collected by the CHWs

in Rwanda with WHO growth chart, we plot the growth
relationships arising from all three models on the same
graph in figure 4. As can be seen, there exists significant
disparity. One possible explanation for the disparity
between the WHO growth chart and the data collected
in Rwanda is that very young children in Rwanda usually
benefit from breast feeding up to their first birthday and
therefore grow larger than the world average suggested
by the WHO charts. When these babies start eating
regular food, approximately around 6 months of age,
they do not receive all the required nutrients and by the
time they are 1½ years old their weight falls below the
WHO growth curve.
Another comparison is made between Rwanda elec-

tronic (Evaluation B) and paper model based on elec-
tronic records but coefficient estimates from the WHO
regression (Evaluation D). Table 6 shows two forecast
performance metrics, MAE and MAPE, for the Rwanda
electronic (Evaluation B) and the WHO model
(Evaluation D), for Rwandan girls.

From table 6 it can be seen that the Rwanda
Electronic model is outperforming the WHO model.
The gain in performance of the Rwanda Electronic
model is 10% for MAPE and 7% for MAE.
We also tested if this improvement in forecast perform-

ance is statistically significant. In order to do this, we
applied a K-S test to the absolute percentage errors,
which confirmed that the superior performance of the
Rwanda Electronic model was statistically significant
(p<0.01).
Finally, a simple non-parametric approach was used to

compare the accuracy of paper and electronic recording
methods using MAE. The MAE for the electronic
recording does not vary significantly, and ranges
between 1 and 2 kg. Alternatively, the MAE for paper
recordings varies significantly over the growth chart with
a major decrease in MAE taking place after 3 years of
age. The MAE for paper recording fluctuates around
7 kg for the first 3 years, only dropping to a comparable
level of error for ages 3–5 years, as shown in figure 5.

Conclusions
In community care, EHR could be a bridge from
untrained CHWs to healthcare providers with timely and

Table 6 Performance of Evaluation B and D for Rwandan

girls

Metric

WHO model

(Evaluation

D)

Rwanda

Electronic

(Evaluation

B)

Reduction in

error of

Electronic

model over

WHO model

(%)

MAE 1.5 kg 1.4 kg 7

MAPE 13.2% 12% 10

MAE, mean absolute error; MAPE, mean absolute percentage
error.

Figure 4 Three growth charts based to three different data

sets for Rwandan girls.

Table 5 MAE and MAPE of regression model evaluated

using paper and electronic data sets for Rwandan girls

Performance

metric

Rwanda

Electronic

(Evaluation

B)

Rwanda

Paper

(Evaluation

A)

Reduction

in error of

electronic

over paper

data (%)

MAE 1.4 kg 2.4 kg 40

MAPE 12% 21% 42

MAE, mean absolute error; MAPE, mean absolute percentage
error.

Table 4 R2 values for the model—log(weight)=a+b log

(age), for boys and girl using electronic and paper

collection

Gender

Rwanda

Electronic

Rwanda

Paper

Gain in R2 due to

electronic

approach (%)

Girls 0.56 0.37 51

Boys 0.58 0.35 66
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relevant data. The case study answers some of the ques-
tions posed about the data quality dimensions presented
in table 1.
1. Accuracy: Table 5 presents performance metrics on

the accuracy of models based on electronic and
paper data. The electronic data improve on the
paper data by more than 40% in the case of both
metrics. Table 6 has same indicators for Electronic
data versus the WHO model for girls. The
Electronic model is 10% more accurate than the
WHO model.

2. Consistency: Real-time consistency checks are avail-
able for electronic data, paper data has no checks
until entered in the spread sheet or analysed at later
times.

3. Accessibility: Electronic data can be accessed on the
web application the same day they were recorded.
Reports can be customised for a particular purpose.

4. Feedback: Not implemented in the pilot study but
participants expressed interest in real time feedback
and two-way communication.

General conclusions from the above case study can be
summarised as follows:
▸ Electronic data records for Rwandan children have a

goodness of fit, measured by R2, which is more than
twice that of the paper data records for both boys
and girls.

▸ Electronic data and paper data collected from
Rwandan children differ from WHO growth curves,
raising doubts about applicability of WHO growth
charts to developing countries with considerable
malnutrition.

▸ Comparisons of the electronic and paper recording
methods with the standard WHO model show that
electronic data are closer to the WHO model.

▸ Electronic data improve performance over the WHO
model by 10% in MAPE and 7% in MAE. Results are
statistically significant using the K-S test at p<0.01.

It is possible that, in this case, the use of new technol-
ogy has a strong novelty effect with initial adoption,
which will wear out as the tools and devices become
more commonplace. This enthusiasm when using novel
technology has been discussed primarily for introduc-
tion of new, technology-enhanced tools in education,
from teachers28 and students.29 However, the 9-month
period for the case study is likely to be sufficient for
such enthusiasm to fade.
This study demonstrates that using modern electronic

tools for health data collection that is automatically fed
into EHRs, allows better tracking of health indicators. In
this paper, we show that electronic records are superior
to paper records. We have also demonstrated that elec-
tronic records facilitate development of a country-
specific model that is more accurate than the inter-
national standard provided by the WHO growth chart.
The electronic collection of data and development of
country-specific growth charts allows real-time monitor-
ing and is likely to become increasingly important as
climate change threatens food security and makes the
world’s staple food crops less nutritious.
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