Minimising post-operative risk using a Post-Anaesthetic Care Tool (PACT): protocol for a prospective observational study and cost-effectiveness analysis

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>bmjopen-2014-007200</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Protocol</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>13-Nov-2014</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Street, Maryann; Deakin University, School of Nursing and Midwifery; Eastern Health, Eastern Health - Deakin University Nursing and Midwifery research Centre Phillips, Nicole; Deakin University, Nursing and Midwifery Kent, Bridie; Plymouth University, Nursing and Midwifery Colgan, Stephen; Deakin University, Deakin Health Economics</td>
</tr>
<tr>
<td>&lt;b&gt;Primary Subject Heading&lt;/b&gt;:</td>
<td>Nursing</td>
</tr>
<tr>
<td>Secondary Subject Heading:</td>
<td>Evidence based practice, Health services research, Nursing</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Adult surgery &lt; SURGERY, Adverse events &lt; THERAPEUTICS, Quality in health care &lt; HEALTH SERVICES ADMINISTRATION &amp; MANAGEMENT</td>
</tr>
</tbody>
</table>
TITLE: Minimising post-operative risk using a Post-Anaesthetic Care Tool (PACT): protocol for a prospective observational study and cost-effectiveness analysis.

AUTHORS

Corresponding Author:

Name: Dr Maryann Street
Postal Address: School of Nursing and Midwifery, Deakin University,
221 Burwood Hwy, Burwood, Victoria, Australia, 3125
Affiliation 1: Deakin University School of Nursing and Midwifery
Affiliation 2: Eastern Health - Deakin University Nursing & Midwifery Research Centre
Email: maryann.street@deakin.edu.au
Tel: +61 3 9895 3496

Co-authors:

Name: Associate Professor Nicole M Phillips
Affiliation: School of Nursing and Midwifery, Deakin University, Burwood, Australia
Email: nikki.phillips@deakin.edu.au

Name: Professor Bridie Kent
Affiliation: School of Nursing and Midwifery, Plymouth University, Plymouth, UK
Email: bridie.kent@plymouth.ac.uk

Name: Mr Stephen Colgan
Affiliation: Deakin Health Economics, Deakin University, Burwood, Australia
Email: colg@deakin.edu.au

Keywords: Clinical Deterioration, Cost Effectiveness, Nursing Assessments, Patient Safety, Postoperative Period

Word count: 2484
ABSTRACT

Introduction

While the risk of adverse events following surgery has been identified, the impact of nursing care for the early detection of these events has not been well established. A systematic review of the evidence and an expert consensus study in post-anaesthetic care identified essential criteria for nursing assessment of patient readiness for discharge from the Post-Anaesthetic Care Unit. These criteria were included in a new nursing assessment tool, the Post-Anaesthetic Care Tool (PACT), and incorporated into the post-anaesthetic documentation at a large health service. The aim of this study is to test the clinical reliability of the PACT, and to examine clinical risk, adverse events and post-operative complications. Cost-effectiveness of the use of the PACT will also be identified.

Methods and analysis: A prospective, non-randomised, pre- and post-implementation design comparing: (i) patients (n= 750) who have surgery prior to the implementation of the PACT and (ii) patients (n=750) who have surgery after PACT. The intervention is a tool to be used by nurses for assessing patient readiness for discharge from the Post-anaesthetic Care Unit. The study will examine the use of the tool through the observation of patient care and nursing handover. Patient outcomes and cost effectiveness will be determined from health service data and medical record audit. Descriptive statistics will be used to describe the sample and compare the two patient groups (pre- and post-intervention). Differences in patient outcomes between the two groups will be compared using the Mann Whitney U-test or the Pearson’s chi-square test.
Conclusion:

This study will test the clinical reliability and cost-effectiveness of the PACT. It is hypothesised that the PACT will enable nurses to recognise and respond to patients at risk of deterioration, improve handover to ward nurses, reduce the rate of complications and adverse events, and lower associated health care costs.

Strengths and limitations of this study

- This study will be the first to examine the impact of nursing care in the immediate post-operative period on clinical risk, adverse events and post-operative complications.
- The prospective design with observation of nursing care within the Post Anaesthetic Care Unit will identify processes and data not captured in the medical record such as consultations with medical staff, nursing handover and gaps in documentation.
- There may be factors external to the implementation of PACT which increase or decrease surgical risk, reducing the ability of this study to determine causality. However, this design is practical and effective and has been used previously to demonstrate the benefit of a surgical safety checklist.
Introduction

Surgical care is an integral part of health care throughout the world, with an estimated 234 million operations performed annually [1]. Studies in industrialised countries have shown a perioperative death rate from inpatient surgery of 0.4 to 0.8% and a rate of major complications of 3 to 17% [2-5]. Approximately 40% of in-hospital complications are associated with surgery and 15% of surgical patients will experience at least one complication [6], with bleeding, cardiac and respiratory problems, and infection being the most commonly occurring events [7]. Hospital costs for surgical patients experiencing a complication are substantially higher than for patients without a complication [8, 9]. For example, patients suffering pneumonia after surgery have a 55% increase in hospital costs and 89% increase in length of hospital stay [9].

The time immediately following an operation or procedure is a critical period for the patient’s recovery. The intensive observation of patients in the post-anaesthetic care unit (PACU) by nurses can result in the early detection of complications and adverse events [10]. These complications and adverse events include clinical deterioration, uncontrolled pain, unplanned admission to intensive care, prolonged hospital stay, disability or death. Technique-related complications, wound infections, and postoperative bleeding produced nearly half of all surgical adverse events [3]. The early recognition of deterioration and the commencement of therapy in PACU can prevent these complications or reduce their severity.

Importantly, during transitions of care, handover is key to providing safe patient care. It has been shown that any errors in communication can compromise patient safety, and may increase frustration for staff due to inefficiency, delays and an increase in workload [11]. Nurses can face a dilemma about the right time to transfer patients from PACU to general wards [12]. There has been a trend towards the use of objective scoring systems to help
nurses assess when a patient is ready to go back to the ward or be discharged to home following day surgery [13, 14]. A systematic review identified there is limited evidence with regard to the criteria that are the essential components of these systems, such as the assessment of conscious state, pain, blood pressure, nausea and vomiting [15, 16].

Following the systematic review, an international expert consensus study, comprising anaesthetists and peri-operative nurses, was conducted [17]. Based on the findings of these two studies, our team identified essential criteria for the nursing assessment of patient readiness for discharge from the PACU, but the relationship of these essential criteria to safe patient discharge has not been evaluated.

**Aims**

The research question for this study is: “Will the PACT, developed from the evidence and expert consensus, result in improved patient outcomes and reduced health care costs?” This protocol aims to test the clinical reliability of the PACT for nursing assessment of patient readiness to be discharged from PACU. The tool aims to 1) enhance the recognition and response to patients at risk of deterioration in PACU; 2) improve documentation for handover from PACU nurse to ward nurse, and 3) reduce the number and severity of complications. Cost-effectiveness of the use of the PACT will also be examined.

**Methods and analysis**

**Study Design**

This pre- and post-implementation study will use a prospective non-randomised design with (i) a group who have surgery prior to the introduction of the PACT and (ii) a group who have surgery at least three months after the introduction of the PACT.
Setting

The study will be conducted in one health service using two convenience samples of consecutive adult patients, admitted for any elective surgical procedure that results in a transfer to PACU. The health service has three large metropolitan acute care hospitals that have approximately 13,000 elective surgical admissions per year.

The health service was chosen as the three hospitals varied in the type and complexity of surgery performed, acuity of patients and process of discharge from PACU. This ensures evaluation of the PACT in a variety of situations. All three hospitals conduct both elective and emergency surgical procedures. Hospital A is an outer metropolitan community hospital with 180 beds, while Hospitals B and C are located closer to the city of Melbourne with approximately 400 and 280 beds respectively. Hospitals B and C both have intensive care units, while Hospital A does not. If a patient needs admission to intensive care following surgery at Hospital A, this requires an inter-hospital transfer with an associated increase in cost to the health service. Hospitals A and B discharge patients from PACU to a ward or day procedure unit with nursing handover occurring in PACU. In contrast, in Hospital C patients are transferred by PACU nurses to the ward or day procedure unit, where nursing handover occurs.

Participants

The study population will comprise nurses working in PACU and surgical patients having a procedure during the study period.

Inclusion criteria (patients):

- Aged 18 years or older,
- Have undergone elective surgery and have been admitted to PACU.
Exclusion criteria (patients)

- Have undergone an emergency procedure;
- Admitted for a minor procedure that only requires sedation;
- Planned ICU admission from theatre or PACU.

Sample size

A sample size of 750 patients per group (250 before and 250 after the intervention at each of the three hospitals) will allow a clinically significant incident difference of 5% in adverse events to be detected, with a power of 0.80 and an alpha of 0.05 (two tailed). The sample size calculation was based on a rate of adverse events of 11% (95% CI=8.8-13.2%). This rate was determined from review of patient medical records at the three hospitals and the results of published studies, which have found that between 7.3% and 16.7% of surgical patients will experience an adverse event [6, 7, 18, 19].

The Intervention

The intervention in the study is a nursing assessment tool, the PACT, developed from the evidence obtained from a systematic review and expert consensus study [15-17]. The PACT will be introduced at all three hospitals to standardise care across the health service. Nursing, medical, pharmacy and health information representatives from the health service were consulted to finalise the instrument prior to implementation in PACU. The PACT involves a track and trigger system for assessment of a patient's conscious state, vital signs (oxygen levels, respiration rate, blood pressure, temperature), symptoms (pain, nausea, vomiting), level of activity and plans for care. It also contains a checklist of criteria that must be met prior to discharge from PACU (eg. last 2 sets of observations are not in Medical Emergency Team (MET) / modified MET criteria, no active vomiting, pain management ordered).
PACT also contains information regarding oxygen therapy, analgesia administered in PACU and related charts specific to the patient and surgical procedure. As an aid to nurses, the PACT includes a clinical handover checklist, adapted from an existing tool for standardising communication [20]. The acronym, ISOBAR summarises the components of the checklist (Identification, Situation, Observation, Background, Assessment and Request or Recommendation).

Data collection

Data will be collected prospectively in PACU on the day of surgery and retrospectively following hospital discharge or for 30 days (whichever comes first), from the following three sources.

1. In PACU data collection

Data will be collected by a Research Nurse, observing nursing care from the time of a patient’s admission to PACU until handover to the ward nurse, using the ‘Tap Forms’ (©2013 Tap Zapp Software Inc) application on iPads, with the collated data from ‘Tap forms’ exported into Microsoft Excel for validation. Data to be collected includes patient demographics, procedural data (surgical procedure, length of stay in PACU), and nursing assessment of patient readiness for discharge from PACU, nursing handover from PACU to ward nurse, patient outcomes (PACU discharge destination, any complications and adverse events in PACU).

2. Medical Record Audit

A subsequent audit of each patient’s medical record after hospital discharge will be conducted to confirm the data collected in PACU and to provide additional data such as:
anaesthetic type, anaesthetic agent used, the American Society of Anesthesiologists (ASA) Score (a global score that assesses the physical status of patients before surgery), assessment of any complications or adverse events that may have occurred during hospital stay, length of hospital admission, discharge destination from hospital and in-hospital mortality.

Fidelity measures to assess the extent to which the PACT is used appropriately in PACU will include adherence to the content of the tool, frequency of use, time taken for completion and coverage across different times of day and days of the week. The compliance rate will also be assessed by monitoring a random sample of PACU discharge documents from before and after the intervention to determine the percentage of items that have been completed. The use of the PACT by nurses caring for patients in PACU will be observed with facilitators and barriers to its use being identified through direct observation.

3. Economic evaluation

The study will include a cost-effectiveness analysis. The evaluation will be conducted from a third party payer perspective to examine the costs and benefits for the use of the PACT. The evaluation will use the rate of complications and adverse events, mortality and length of stay as the outcome measures. The cost of admission to hospital will be determined through the use of Australian Refined Diagnosis Related Groups (AR-DRGs) and the Nationally Efficient Price for commonwealth funded public hospital services [21]. The results of the analysis will be reported as a series of incremental cost-effectiveness ratios. The 95% confidence intervals for the outcome measures will be used in sensitivity and uncertainty analysis.

Outcomes

The primary outcomes under investigation are the rate of complications, adverse events and mortality, the length of stay in PACU and in hospital. Complications and serious adverse
events that will be reported are shown in Box 1 and include clinical deterioration, prolonged stay in PACU, unplanned return to theatre, unplanned admission to intensive care or readmission to hospital. Complications were defined as any deviation from the normal postoperative course [22]. The frequency of complications and adverse events will be reported as the number per 1000 patients, and per category, along with the proportion of patients with one or more complication or adverse event.

The secondary outcomes are the costs incurred by the health service, clinical reliability and fidelity measures of the PACT, observation of nursing handover to ward staff, duration of nursing handover and the identification of any deficits in the PACT. These outcomes will be measured through observation, medical record audit and from health service datasets, as detailed above. Phase 1 data collection was completed in 2013. The PACT was implemented in March 2014 and Phase 2 data collection was commenced in August 2014 and will continue until December 2014.

**Statistical Analysis**

Frequencies and other descriptive statistics will be used to describe the sample and compare the two patient groups (pre- and post-intervention). Differences in patient outcomes between the two groups will be compared using the Mann Whitney U-test (for continuous variables including age, length of time in PACU, length of handover and length of hospital stay) or the Pearson’s chi-square test (for categorical variables such as gender, ASA score, type of surgical procedure and mortality). Data will be analysed using SPSS version 21 or later (IBM SPSS Statistics, Inc. Chicago, IL).
Box 1. Complications and Serious Adverse Events

- Clinical deterioration;
- Code Blue or Medical Emergency Team Call;
- cardiac arrest;
- respiratory failure or failed extubation;
- cerebrovascular accident,
- development of neurological deficit not present on admission;
- excessive blood loss,
- pulmonary embolism,
- uncontrolled pain,
- excessive nausea or vomiting;
- medication error or adverse drug reaction;
- discharge delay from PACU (greater than 2 hours from time of admission to PACU);
- unplanned return to operating theatre during this admission;
- unplanned intensive care or high dependency unit admission;
- unplanned transfer to another hospital;
- readmission to hospital for a complication relating to the surgical admission;
- unexpected death (i.e. not an expected outcome of the disease during hospitalisation);
- prolonged length of hospital admission compared to the expected length for the clinical condition

$Notes: clinical deterioration determined through assessment of respiration (difficulty breathing, respiration rate less than 8 or greater than 30 per minute; oxygen saturation less than 90% despite oxygen therapy), circulation (heart rate less than 50 or more than 130 beats per minute, systolic blood pressure less than 90 mmHg) or change in conscious state.
Ethics and dissemination

This study has been approved by the Human Research and Ethics committee at the health service and by the Deakin University Human Research Ethics Committee. A waiver of consent was granted as the study was assessed as low risk with no patient-related data collected other than that which is required for patient care, and contained within the medical record. During In-PACU data collection, the Research Nurse will be instructed to observe patient care and not to approach patients, or impact on nursing care. Patient identifiers will only be used during data collection and once the data has been validated, these will be removed from the dataset prior to analysis. PACU managers and nursing staff will be informed of the study, and verbal consent to participate will be obtained from all the nurses observed in PACU.

The findings of the study will be disseminated through a report to the funding body, consultation and presentation to the clinicians and executives of the health service, conference presentations, publication in peer reviewed journals and deposited in an institutional repository, Deakin Research Online.

Discussion

Postoperative complications are relatively common, occurring in between 3% and 17% of patients admitted for surgery [5, 9, 23]. Complications are associated with increased costs and prolonged length of stay, even after adjusting for type of surgery and patient comorbid conditions [8, 9, 24]. Patients who experience postoperative complications consume considerably more health care resources than patients whose surgical admission is without any adverse events. Reported post-operative complication rates are that for every 100 patients, eight will develop an infection (such as pneumonia or surgical site sepsis), three will
require intervention to relieve respiratory distress; two will require intervention for cardiovascular reasons and two will experience excessive bleeding [7].

The evidence-based discharge criteria that were used in the PACT were identified from the findings of a systematic review of the literature previously conducted by the researchers and an extensive process of stakeholder consultation with expert nurses, anaesthetists and other post-operative health care professionals. In summary this project will examine whether use of the PACT results in improved patient outcomes and reduced health care costs.

**Potential limitations of the study**

The use of a non-randomised research design, with historical control group, does not allow for causality to be determined. This design was chosen because the health service had already decided to standardize documentation and assessment in PACU, which meant the changes would be implemented in all three hospitals at the same time. The data collection during the study will occur in two different time periods, before and after the introduction of the PACT. There may be external factors which increase or decrease surgical risk between these two periods. However, this design is practical and effective and has been used previously to demonstrate the benefit of a surgical safety checklist [7]. An analysis will be undertaken to determine whether there were any statistically significant differences in the two groups prior to surgery, in terms of their age, gender, surgical risk, the presence of co-morbidities and the number and types of surgical procedures that were performed. Where relevant, these potential confounders will be adjusted for in the final analysis. Further studies using a randomized control trial design would be required to determine if the differences observed in study outcomes could be causally attributed to the use of the PACT.
Conclusion

Nursing assessment of patients in PACU to determine readiness for discharge using the PACT has the potential to benefit all adult patients undergoing surgery. Early recognition and response to patient deterioration can result in a reduction in the rate of complications and adverse events following surgery. The associated improved health outcomes for the patient could also help to reduce the costs to the healthcare network.
References


16 Phillips NM, Haesler E, Street M, Kent B. Post-anaesthetic discharge scoring criteria: A comprehensive systematic review. JBI Library of Systematic Reviews 2011;9(41)1679-1713.


Authors' contributions

All authors have made substantial contributions to the conception and design of this study protocol. MS undertook primary responsibility for the acquisition of funding and establishing a steering committee to oversee the project. MS and NP will be responsible for the general supervision of the research nurses collecting the data, while SC is responsible for obtaining the economic and cost data. NP and BK will advise the research team with interpretation of clinical data, especially with respect to complications and adverse events. MS, NP and SC were responsible for drafting this manuscript. NP and BK have contributed to revising the content. All authors have read and approved the final manuscript.

Acknowledgements

This study has been funded by the Health Contributions Fund (HCF) Health & Medical Research Foundation. The authors gratefully acknowledge the expert advice of Eastern Health clinicians, especially PACU nurse unit managers, with respect to patient assessment and nursing practice in post-anaesthetic care.

Competing interests

There are no competing interests, either financial or non-financial, for any of the authors in respect to the conduct of this study. This study did not receive commercial sponsorship, but was funded by a not-for-profit charitable trust.

Funding

This work was supported by Health Contributions Fund (HCF) Health & Medical Research Foundation, grant number MSDU1008201158-20120118.
Minimising post-operative risk using a Post-Anaesthetic Care Tool (PACT): protocol for a prospective observational study and cost-effectiveness analysis
TITLE: Minimising post-operative risk using a Post-Anaesthetic Care Tool (PACT): protocol for a prospective observational study and cost-effectiveness analysis.

AUTHORS

Corresponding Author:

Name: Dr Maryann Street
Postal Address: School of Nursing and Midwifery, Deakin University, 221 Burwood Hwy, Burwood, Victoria, Australia, 3125
Affiliation 1: Deakin University School of Nursing and Midwifery
Affiliation 2: Eastern Health - Deakin University Nursing & Midwifery Research Centre
Email: maryann.street@deakin.edu.au
Tel: +61 3 9895 3496

Co-authors:

Name: Associate Professor Nicole M Phillips
Affiliation: School of Nursing and Midwifery, Deakin University, Burwood, Australia
Email: nikki.phillips@deakin.edu.au

Name: Professor Bridie Kent
Affiliation: School of Nursing and Midwifery, Plymouth University, Plymouth, UK
Email: bridie.kent@plymouth.ac.uk

Name: Mr Stephen Colgan
Affiliation: Deakin Health Economics, Deakin University, Burwood, Australia
Email: colg@deakin.edu.au

Name: Dr Mohammadreza Mohebbi
Affiliation: Biostatistics Unit, Faculty of Health, Deakin University, Burwood, Australia
Email: m.mohebbi@deakin.edu.au
Keywords: Clinical Deterioration, Cost Effectiveness, Nursing Assessments, Patient Safety, Postoperative Period

Word count: 2957

ABSTRACT

Introduction

While the risk of adverse events following surgery has been identified, the impact of nursing care on early detection of these events is not well established. A systematic review of the evidence and an expert consensus study in post-anaesthetic care identified essential criteria for nursing assessment of patient readiness for discharge from the Post-Anaesthetic Care Unit. These criteria were included in a new nursing assessment tool, the Post-Anaesthetic Care Tool (PACT), and incorporated into the post-anaesthetic documentation at a large health service. The aim of this study is to test the clinical reliability of the PACT and evaluate whether use of PACT will i) enhance the recognition and response to patients at risk of deterioration in PACU; ii) improve documentation for handover from PACU nurse to ward nurse; iii) result in improved patient outcomes; and iv) reduce health care costs. Methods and analysis A prospective, non-randomised, pre- and post-implementation design comparing: (i) patients (n=750) who have surgery prior to the implementation of the PACT and (ii) patients (n=750) who have surgery after PACT. The study will examine the use of the tool through the observation of patient care and nursing handover. Patient outcomes and cost effectiveness will be determined from health service data and medical record audit. Descriptive statistics will be used to describe the sample and compare the two patient groups (pre- and post-intervention). Differences in patient outcomes between the two groups will be
compared using the Cochran-Mantel-Haenszel test and regression analyses and reported as odds ratios with the corresponding 95% confidence intervals.

**Conclusion**

This study will test the clinical reliability and cost-effectiveness of the PACT. It is hypothesised that the PACT will enable nurses to recognise and respond to patients at risk of deterioration, improve handover to ward nurses, improve patient outcomes, and reduce health care costs.

**Strengths and limitations of this study**

- This study will be the first to examine the impact of nursing care in the immediate post-operative period on clinical risk, adverse events and post-operative complications.

- The prospective design and direct observation of nursing care within the Post Anaesthetic Care Unit will identify processes and data not captured in the medical record, such as consultations with medical staff, nursing handover and gaps in documentation.

- There may be factors external to the implementation of PACT that may increase or decrease surgical risk, reducing the ability of this study to determine causality. However, it is a practical and effective design that has previously been used to demonstrate the benefit of a surgical safety checklist.
Introduction

Surgical care is an integral part of health care throughout the world, with an estimated 234 million operations performed annually [1]. Studies in industrialised countries have shown a perioperative death rate from inpatient surgery of 0.4 to 0.8% and a rate of major complications of 3 to 17% [2-5]. Approximately 40% of in-hospital complications are associated with surgery and 15% of surgical patients will experience at least one complication [6], with bleeding, cardiac and respiratory problems, and infection being the most commonly occurring events [7]. Hospital costs for surgical patients experiencing a complication are substantially higher than for patients without a complication [8, 9]. For example, patients suffering pneumonia after surgery have a 55% increase in hospital costs and 89% increase in length of hospital stay [9].

The time immediately following an operation or procedure is a critical period for the patient’s recovery. The intensive observation of patients in the post-anaesthetic care unit (PACU) by nurses can result in the early detection of complications and adverse events [10]. These complications and adverse events include clinical deterioration, uncontrolled pain, unplanned admission to intensive care, prolonged hospital stay, disability or death. Technique-related complications, wound infections, and postoperative bleeding produced nearly half of all surgical adverse events [3]. The early recognition of deterioration and the commencement of therapy in PACU can prevent these complications or reduce their severity.

Importantly, during transitions of care, handover is key to providing safe patient care. It has been shown that any errors in communication can compromise patient safety, and may increase staff frustration due to inefficiency, delays and an increase in workload [11]. Nurses can face a dilemma about the right time to transfer patients from PACU to general wards [12]. There has been a trend towards the use of objective scoring systems to help nurses
assess when a patient is ready to go back to the ward or be discharged to home following day surgery [13, 14]. A systematic review identified there is limited evidence with regard to the criteria that are the essential components of these systems, such as the assessment of conscious state, pain, blood pressure, nausea and vomiting [15, 16].

Following the systematic review, an international expert consensus study, comprising anaesthetists and peri-operative nurses, was conducted [17]. Based on the findings of these two studies, our team identified essential criteria for the nursing assessment of patient readiness for discharge from the PACU, but the relationship of these essential criteria to safe patient discharge was yet to be evaluated.

Aims

The research question for this study is: “Will the PACT, developed from the evidence and expert consensus, result in improved patient outcomes and reduced health care costs?” The aim is to evaluate whether use of PACT, for nursing assessment of patient readiness for discharge following surgery, would i) enhance the recognition and response to patients at risk of deterioration in PACU; ii) improve documentation for handover from PACU nurse to ward nurse, iii) result in improved patient outcomes and iv) reduce health care costs.

Methods and analysis

Study Design
This pre- and post-implementation study will use a prospective non-randomised design with
(i) a group who have surgery prior to the introduction of the PACT and (ii) a group who have
surgery at least three months after the introduction of the PACT. The study is an
observational study to evaluate the possible effect of a change in nursing practice in PACU,
where randomisation of patients to a treatment group or a control group was outside the
control of the researchers. Furthermore, randomisation within the hospitals included in the
study would have been impractical. Identification of similar hospitals as control hospitals
would not have produced reliable data as those control hospitals would have been from a
different health service with different policies and procedures.

Setting

The study will be conducted in one health service using two convenience samples of
consecutive adult patients, admitted for any elective surgical procedure that results in a
transfer to PACU. The health service has three large metropolitan acute care hospitals that
have approximately 13,000 elective surgical admissions per year.

The health service was chosen as the three hospitals varied in the type and complexity of
surgery performed, acuity of patients and process of discharge from PACU. This ensures that
the PACT will be evaluated in a variety of situations. All three hospitals conduct both
elective and emergency surgical procedures. Hospital A is an outer metropolitan community
hospital with 180 beds, while Hospitals B and C are located closer to the city of Melbourne
with approximately 400 and 280 beds respectively. Hospitals B and C both have intensive
care units, while Hospital A does not. If a patient needs admission to intensive care following
surgery at Hospital A, this requires an inter-hospital transfer with an associated increase in
cost to the health service. Hospitals A and B discharge patients from PACU to a ward or day
procedure unit with nursing handover occurring in PACU. In contrast, in Hospital C patients
are transferred by PACU nurses to the ward or day procedure unit, where nursing handover occurs.

Participants

The study population will comprise nurses working in PACU and surgical patients having a procedure during the study period.

Inclusion criteria (patients):

- Aged 18 years or older,
- Have undergone elective surgery and have been admitted to PACU.

Exclusion criteria (patients):

- Have undergone an emergency procedure;
- Admitted for a minor procedure that only requires sedation;
- Planned ICU admission from theatre or PACU.

Sample size

The primary outcome is the rate of adverse events. Given the diverse demographic characteristics of patients across the 3 hospitals, we expect our sample to be similar in demographic characteristics to the Australian population admitted to public hospitals for elective surgical procedures. Sample size calculations were based on an adverse event incidence of 12%. This rate was determined from review of patient medical records at the three hospitals and the results of published studies, which have found that between 7.3% and 16.7 % of surgical patients will experience an adverse event [6, 7, 18, 19]. In order to detect a 7% difference between the (control vs intervention period) groups (i.e., 12% versus 5%), or an odds ratio of at least 2.6, using a two-sided Cochran-Mantel-Haenszel (CMH) test conducted at the 5% significance level with 80% power, 750 patients per group (250 before
and 250 after the intervention at each of the three hospitals) are required in the study. Our sample size has been inflated to allow for a design effect of 2 accounting for within hospital clustering effect.

**The Intervention**

The intervention in the study is a nursing assessment tool, the PACT, developed from the evidence obtained from a systematic review and expert consensus study [15-17]. The PACT will be introduced at all three hospitals to standardise care across the health service. Nursing, medical, pharmacy and health information representatives from the health service were consulted to finalise the instrument prior to implementation in PACU. The PACT involves a track and trigger system for assessment of a patient's conscious state, vital signs (oxygen levels, respiration rate, blood pressure, temperature), symptoms (pain, nausea, vomiting), level of activity and care plan. It also contains a checklist of criteria that must be met prior to discharge from PACU (eg. last 2 sets of observations are not in Medical Emergency Team (MET) / modified MET criteria, no active vomiting, pain management ordered). The PACT also contains information regarding oxygen therapy, analgesia administered in PACU and related charts specific to the patient and surgical procedure. As an aid to nurses, the PACT includes a clinical handover checklist, adapted from an existing tool for standardising communication [20]. The acronym, ISOBAR summarises the components of the checklist (Identification, Situation, Observation, Background, Assessment and Request or Recommendation).

**Data collection**

Data will be collected prospectively in PACU on the day of surgery and retrospectively following hospital discharge, from the following three sources.
1. In PACU data collection

Data will be collected by a Research Nurse, observing nursing care from the time of a patient’s admission to PACU until handover to the ward nurse, using the ‘Tap Forms’ application on iPads, with the collated data from ‘Tap forms’ exported into Microsoft Excel for validation. The data to be collected includes patient demographics, procedural data (surgical procedure, length of stay in PACU), and nursing assessment of patient readiness for discharge from PACU, nursing handover from PACU to ward nurse, patient outcomes (PACU discharge destination, any complications and adverse events in PACU).

2. Medical Record Audit

A subsequent audit of each patient’s medical record after hospital discharge will be conducted to confirm the data collected in PACU and to provide additional data such as: anaesthetic type, anaesthetic agent used, the American Society of Anesthesiologists (ASA) Score (a global score that assesses the physical status of patients before surgery), assessment of any complications or adverse events that may have occurred during hospital stay, length of hospital admission, discharge destination from hospital and in-hospital mortality.

Fidelity measures to assess the extent to which the PACT is used appropriately in PACU will include adherence to the content of the tool, frequency of use, time taken for completion and coverage across different times of day and days of the week. The compliance rate will also be assessed by monitoring a random sample of PACU discharge documents from before and after the intervention to determine the percentage of items that have been completed. The use of the PACT by nurses caring for patients in PACU will be observed and facilitators and barriers to its use will be identified through direct observation.
3. Economic evaluation

The study will include a cost-effectiveness analysis. The evaluation will be conducted from a third party payer perspective to examine the costs and benefits for the use of the PACT. The evaluation will use the rate of complications and adverse events, mortality and length of stay as the outcome measures. The cost of admission to hospital will be determined through the use of Australian Refined Diagnosis Related Groups (AR-DRGs) and the Nationally Efficient Price for commonwealth funded public hospital services [21]. The results of the analysis will be reported as a series of incremental cost-effectiveness ratios. The 95% confidence intervals for the outcome measures will be used in sensitivity and uncertainty analysis.

Outcomes

The primary outcomes under investigation are the rate of complications, adverse events and mortality, the length of stay in PACU and in hospital. Complications and serious adverse events that will be reported are shown in Box 1 and include clinical deterioration, prolonged stay in PACU, unplanned return to theatre, unplanned admission to intensive care or readmission to hospital. Complications were defined as any deviation from the normal postoperative course [22]. The frequency of complications and adverse events will be reported as the number per 100 patients, and per category, along with the proportion of patients with one or more complication or adverse event. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0 [23] will be used to assess the severity of adverse events.
The secondary outcomes are the costs incurred by the health service, clinical reliability and fidelity measures of the PACT, observation of nursing handover to ward staff, duration of nursing handover and the identification of any deficits in the PACT. These outcomes will be measured through observation, medical record audit and from health service datasets, as detailed above. Phase 1 data collection in PACU has been scheduled for June to October in 2012. The PACT was to be implemented in March 2014 and Phase 2 data collection in PACU take place during July to September 2014. Medical record audit is to be completed following the in-PACU data collection for each phase. Economic data will be available from the health service after coding has been completed, in December 2014.

Statistical Analysis

The Cochran-Mantel-Haenszel (CMH) test will be used to compare the proportions of adverse events and mortality between the two groups (pre- and post- intervention groups). The CMH test takes account of the hospital clustering effect and allows for variation between the strata in the underlying rates. The common odds ratio and its 95% confidence interval will also be reported as well as the results of the Breslow-Day test for homogeneity of the odds ratios across the strata. If there is significant heterogeneity in the odds ratios, the groups will also be compared, using Chi-squared tests, in three separate subset analyses – one for each of the hospitals. In supportive analyses, generalized linear mixed models (GLMMs) will be used to compare the rates of adverse events and mortality after adjusting for baseline measurements at patient and/ or hospital level. Analogous linear mixed models will be used to analyse the continuous-scale secondary endpoints. A series of exploratory analyses on subgroups and the impact of covariates, on estimates of the effect of the intervention, will also be examined. Length of time in PACU, length of handover and length of hospital stay will be considered as time to event data. Survival rates will be calculated and illustrated by
the Kaplan–Meier method and further analysed by the log-rank test for univariate analysis (stratified by hospitals). Variables that reveal prognostic or effect modifying potential on the outcome as suggested by univariate analysis will be subsequently evaluated by the proportional Cox regression for multivariate analysis. Hazard ratios with the corresponding 95% confidence intervals will be reported. P-values <0.05 were considered statistically significant. Data will be analysed using Stata version 13 or later (StataCorp. College Station, TX: StataCorp LP.).
Box 1. Complications and Serious Adverse Events

- Clinical deterioration$;
  - Code Blue or Medical Emergency Team Call;
  - cardiac arrest;
  - respiratory failure or failed extubation;
  - cerebrovascular accident,
  - development of neurological deficit not present on admission;
  - excessive blood loss,
  - pulmonary embolism,
  - uncontrolled pain,
  - excessive nausea or vomiting;
  - medication error or adverse drug reaction;
  - discharge delay from PACU (greater than 2 hours from time of admission to PACU);
  - unplanned return to operating theatre during this admission;
  - unplanned intensive care or high dependency unit admission;
  - unplanned transfer to another hospital;
  - readmission to hospital for a complication relating to the surgical admission;
  - unexpected death (i.e. not an expected outcome of the disease during hospitalisation);
  - prolonged length of hospital admission compared to the expected length for the clinical condition

$Notes: clinical deterioration determined through assessment of respiration (difficulty breathing, respiration rate less than 8 or greater than 30 per minute; oxygen saturation less than 90% despite oxygen therapy), circulation (heart rate less than 50 or more than 130 beats per minute, systolic blood pressure less than 90 mmHg) or change in conscious state.
Ethics and dissemination

This study has been approved by the Human Research and Ethics committee at the health service and by the Deakin University Human Research Ethics Committee. A waiver of consent was granted as the study was assessed as low risk with no patient-related data collected other than that which is required for patient care, and contained within the medical record. During In-PACU data collection, the Research Nurse will be instructed to observe patient care and not to approach patients, or impact on nursing care. Patient identifiers will only be used during data collection and once the data has been validated, these will be removed from the dataset prior to analysis. PACU managers and nursing staff will be informed of the study, and verbal consent to participate will be obtained from all the nurses observed in PACU.

The findings of the study will be disseminated through a report to the funding body, consultation and presentation to the clinicians and executives of the health service, conference presentations, publications in peer reviewed journals as well as being deposited in an institutional repository, Deakin Research Online.

Discussion

Postoperative complications are relatively common, occurring in between 3% and 17% of patients admitted for surgery [5, 9, 24]. Complications are associated with increased costs and prolonged length of stay, even after adjusting for type of surgery and patient comorbid conditions [8, 9, 25]. Patients who experience postoperative complications consume considerably more health care resources than patients whose surgical admission is without any adverse events. Reported post-operative complication rates are that for every 100 patients, eight will develop an infection (such as pneumonia or surgical site sepsis), three will
require intervention to relieve respiratory distress; two will require intervention for cardiovascular reasons and two will experience excessive bleeding [7].

The evidence-based discharge criteria that were used in the PACT were identified from the findings of a systematic review of the literature previously conducted by the researchers and an extensive process of stakeholder consultation with expert nurses, anaesthetists and other post-operative health care professionals. In summary this project will examine whether use of the PACT results in improved patient outcomes and reduced health care costs.

**Potential limitations of the study**

The use of a non-randomised research design, with historical control group, does not allow for causality to be determined. This design was chosen because the health service had already decided to standardize documentation and assessment in PACU, with the changes being implemented in all three hospitals at the same time. The data collection during the study will occur in two different time periods, before and after the introduction of the PACT. There may be external factors which increase or decrease surgical risk between these two periods. However, this design is practical and effective and has been used previously to demonstrate the benefit of a surgical safety checklist [7]. An analysis will be undertaken to determine whether there were any statistically significant differences in the two groups prior to surgery, in terms of their age, gender, surgical risk, the presence of co-morbidities and the number and types of surgical procedures. Where relevant, these potential confounders will be adjusted for in the final analysis. Further studies using randomized research designs will be required to determine if the differences observed in study outcomes can be causally attributed to the use of the PACT.
Potential health care policy impact of the study

This evaluation of the use of PACT, for nursing assessment of patient readiness for discharge from PACU following surgery, will have clinical relevance and impact on health care policy. Health service providers constantly review the policies and procedures relating to health care provision within their organisations. The changes made to the Post-anaesthetic Care Record have been substantial and further revision may be required. However, the findings of this study will add to the evidence base for clinicians and decision makers about caring for patients in PACU.

Conclusion

Nursing assessment of patients in PACU to determine their readiness for discharge using the PACT has the potential to benefit all adult patients undergoing surgery. Early recognition and response to patient deterioration may result in improved patient outcomes and fewer serious adverse events following surgery. The associated improved health outcomes for the patient could also help to reduce the costs to the healthcare network.
References


16 Phillips NM, Haesler E, Street M, Kent B. Post-anaesthetic discharge scoring criteria: A comprehensive systematic review. JBI Library of Systematic Reviews 2011;9(41)1679-1713.


Authors' contributions

All authors have made substantial contributions to the conception and design of this study protocol. MS undertook primary responsibility for the acquisition of funding and establishing a steering committee to oversee the project. MS and NP will be responsible for the general supervision of the research nurses collecting the data, while SC is responsible for obtaining the economic and cost data. MM contributed to determining sample size and the plan for statistical analysis. NP and BK will advise the research team with interpretation of clinical data, especially with respect to complications and adverse events. All authors have contributed to revising the content and have read and approved the final manuscript.

Acknowledgements

This study has been funded by the Health Contributions Fund (HCF) Health & Medical Research Foundation. The authors gratefully acknowledge the expert advice of clinicians at the health service, especially PACU nurse unit managers, with respect to patient assessment and nursing practice in post-anaesthetic care.

Competing interests

There are no competing interests, either financial or non-financial, for any of the authors in respect to the conduct of this study. This study did not receive commercial sponsorship, but was funded by a not-for-profit charitable trust.

Funding

This work was supported by Health Contributions Fund (HCF) Health & Medical Research Foundation, grant number MSDU1008201158- 20120118.
Minimising post-operative risk using a Post-Anaesthetic Care Tool (PACT): protocol for a prospective observational study and cost-effectiveness analysis

Maryann Street, Nicole M Phillips, Bridie Kent, Stephen Colgan and Mohammadreza Mohebbi


Updated information and services can be found at:
http://bmjopen.bmj.com/content/5/6/e007200

These include:

References
This article cites 22 articles, 2 of which you can access for free at:
http://bmjopen.bmj.com/content/5/6/e007200#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Evidence based practice (737)
Health services research (1520)
Nursing (134)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/