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ABSTRACT
Objective: To clarify whether deaths associated with
hot and cold days are among the frail who would have
died anyway in the next few weeks or months.
Design: Time series regression analysis of annual
deaths in relation to annual summaries of cold and
heat.
Setting: London, UK.
Participants: 3 530 280 deaths from all natural
causes among London residents between October
1949 and September 2006.
Main outcome measures: Change in annual risk of
death (all natural cause, cardiovascular and respiratory)
associated with each additional 1°C of average cold (or
heat) below (above) the threshold (18°C) across each
year.
Results: Cold years were associated with increased
deaths from all causes. For each additional 1° of cold
across the year, all-cause mortality increased by 2.3%
(95% CI 0.7% to 3.8%), after adjustment for influenza
and secular trends. The estimated association between
hot years and all-cause mortality was very imprecise
and thus inconclusive (effect estimate 1.7%, −2.9% to
6.5%). These estimates were broadly robust to
changes in the way temperature and trend were
modelled. Estimated risk increments using weekly data
but otherwise comparable were cold: 2.0% (2.0% to
2.1%) and heat: 3.9% (3.4% to 3.8%).
Conclusions: In this London annual series, we saw
an association of cold with mortality which was
broadly similar in magnitude to that found in published
daily studies and our own weekly analysis, suggesting
that most deaths due to cold were among individuals
who would not have died in the next 6 months. The
estimated association with heat was imprecise, with the
CI including magnitudes found in daily studies but also
including zero.

INTRODUCTION
There is ample evidence that mortality
increases on and immediately after hot or
cold days.1–3 This is often cited to make the
case for public health action.4 5 However,
there is limited information on the duration
of life lost by these excess deaths. It is possible

that the excess deaths might be wholly or
partly among very frail people who are
approaching the end of their life and cause
very little shortening of life.6 This phenom-
enon is commonly termed harvesting, mortality
displacement or deaths brought forward, and
some evidence exists to support it, particularly
with respect to heat-related deaths.7–9 The
effect of temperature on mortality is greatest
among the elderly,1 10 11 and may also be
more common among those with existing
comorbidities.1 However, the extent to which
harvesting occurs is debated.
Some daily studies have used distributed

lag and related approaches to estimate very
short-term harvesting (roughly 1 month or
less) by looking for mortality decreases in
the weeks after hot spells. Estimates of har-
vesting from such studies range from 70% of
all heat-associated deaths in 15 European
cities,12 to fewer than 10% of deaths during
the 2003 heatwave in France.13 Less evidence
of short-term mortality displacement exists
for cold-associated deaths, possibly because
the longer lag associated with cold effects
makes the distributed lag approach to esti-
mating harvesting problematic.7 Also, it is

Strengths and limitations of this study

▪ This study uses data on mortality and tempera-
ture collected over six decades in London to find
that colder years were associated with increased
mortality, with 2.3% (95% CI 0.7% to 3.8%)
more deaths occurring per degree of cold during
the year.

▪ The study provides estimates of the effect of
temperature on mortality which are resistant to
short-term harvesting (deaths brought forward
by up to 6 months).

▪ Like all epidemiological studies, there is the
potential for residual confounding by uncon-
trolled risk factors.

▪ Estimates of annual deaths in relation to heat
were too imprecise to draw conclusions about
life shortening in excess deaths due to heat.
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very difficult with daily studies to identify harvesting
beyond a month or so.14 This would require identifying
mortality deficits a few months down the line, which is
difficult because of noise and the need to control for
seasonal and other temporal variation not due to
temperature.
Some studies have demonstrated that higher-than-

average overall deaths in winter lead to lower daily tem-
perature effects on mortality the following summer.15 16

A cohort study found that years of high summer tem-
perature variability were associated with high mortality.17

These studies bring indirect evidence that some
temperature-related deaths were displaced by at least
several months, but not directly on the extent of dis-
placement due to heat and cold.
The Excess Winter Deaths Index approach used by

the UK’s Office for National Statistics identifies excess
mortality within geographical regions over the 4 months
of ‘winter’ (defined as December to March), compared
with the preceding 4 and following 4 months. This is
reasonably resistant to short-term displacement but
could be biased by displacement from winter to non-
winter in the same year. Some of these deaths, further-
more, may be attributable to seasonal respiratory infec-
tions such as influenza, rather than temperature per se.
Given the limited evidence on the extent of mortality

displacement due to heat and cold from previous studies,
this study set out to avoid some of the limitations of
current techniques by applying time series methods to
investigate whether annual death counts have been asso-
ciated with annual summaries of temperature extremes. If
so, it would suggest that those deaths would not have
otherwise occurred in that year. Thus, the analysis will
provide evidence on the extent to which temperature-
associated deaths represent only short-term displacement.

METHODS
Mortality data
We examined deaths among London residents from all
natural causes between October 1949 and September
2006, using two sources of mortality data to cover the
whole study period. For 1949–1975, we used digitised
weekly counts of death registrations published in print
by the Registrar General,18 supplementing 1950–1964
data from a previous study.19 For 1976–2006, we used
daily counts of death collated for other studies20 21 and
originally obtained from the Office of National Statistics
(ONS). The data were for London Administrative
County for 1949–1965, and for the larger Greater
London thereafter. For all years, we retrieved deaths due
to all natural causes, cardiovascular causes and respira-
tory causes. The daily counts were collapsed into weeks
to create a complete series of weekly mortality for the
entire 57 years of study, starting from 2 October 1949.
For the primary analyses, we aggregated the weekly

data into years starting in autumn (first week of
October), rather than conventional calendar years.

This was to minimise exposure measurement bias, given
that deaths due to cold can be delayed by as long as
3 weeks8; thus, deaths in January could be the result of
cold weather during the preceding December.
Heat-related mortality effects are predominantly seen
within 1–3 days,1 so it is unlikely that October would
include deaths due to hot weather in September. Weeks
were numbered sequentially from the start date and
organised into years of 52 or 53 weeks, with each year
starting in early October. All weeks numbered as the
53rd week in that year were dropped from the series to
leave summed counts of deaths for fifty-seven 52-week
years, for simplicity in the regression model.

Boundary and ICD changes
The change in the administrative definition of London in
1966 lead to a sharp artificial jump in death counts.
Because the years in our study started in October, this led
to two jumps in annual death counts, which we modelled
using two indicator variables to make ‘steps’ going into
1965–1966 and 1966–1967. Other smaller discontinuities
considered in sensitivity analyses were similarly allowed for
as were those for revisions of the International
Classification of Diseases (ICD; affecting only cause-spe-
cific analyses) for which no bridging code was available.
Details are provided in online supplementary appendix A.

Meteorological data
We downloaded daily temperatures recorded at
Heathrow airport (the only station with data available
for the whole period) from the British Atmospheric
Data Centre (BADC). In order to capture heat or cold
exposures in one annual summary statistic, we first iden-
tified daily measures of ‘heat’ and ‘cold’ by assuming
the V-shaped model often used in daily studies. To
inform choice of the minimum mortality temperature
(apex of the V; common cold and heat threshold), we
reviewed 11 previous studies examining temperature and
mortality in London (see online supplementary appen-
dix B). There was no clear consensus over studies, prob-
ably due to differences in methods (lags, shape of
model). For our primary analysis, we chose a value of
18°C of daily mean temperature as a common threshold
both for cold and heat as it approximated the mean
over the reviewed studies. Because of its uncertainty, the
choice of threshold was prioritised for exploration using
sensitivity analyses.
‘Heat-degrees’ was derived for each day as the number

of degrees above 18°C of the daily mean temperature,
while cold-degrees was defined as the number of
degrees below 18°C of the daily mean temperature.
Annual means of these measures, ‘annual-heat’ and
annual-cold were used in our analyses.

Statistical analysis
We carried out a quasi-Poisson time series regression ana-
lysis, with yearly all-cause natural deaths as the outcome,
and the main exposures of interest being annual-heat

2 Rehill N, et al. BMJ Open 2015;5:e005640. doi:10.1136/bmjopen-2014-005640

Open Access

 on A
pril 10, 2024 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2014-005640 on 15 A

pril 2015. D
ow

nloaded from
 

http://bmjopen.bmj.com/


and annual-cold. We undertook a primary analysis based
on a model informed by a priori judgement but explored
sensitivity to assumptions in that model.
We used indicator variables to account for steps in the

mortality series in 1965–1966 and 1966–1967 due to a
boundary change (discussed above). In the cause-
specific analyses, we also included four further indicator
variables to reflect steps anticipated due to ICD changes.
To control for long-term trend in the model, we
included a natural cubic spline function assuming
1 degree of freedom for every 10 years of data (5 degrees
of freedom in total), equating to a roughly 10-year
moving average. We chose this degree of flexibility by
judgement to allow control for gradual changes in popu-
lation size, age structure and death rates, while leaving
enough variability to use in analyses.
We adjusted for influenza epidemics by including as

an explanatory variable the proportion of deaths each
year that were classified as caused by influenza.
Details of the main model are provided in online sup-

plementary appendix C. Alternative model assumptions,
including different degrees of confounder control, were
considered in sensitivity analyses.
For comparison with the annual time series estimates,

we also undertook a simple time series regression of
weekly counts following conventional methods, using
the same heat-degrees and cold-degrees daily measures
aggregated to weeks (‘week-heat’ and ‘week-cold’). We
controlled confounding by seasonal and other time-
varying risk factors by stratifying by year and month
(344 strata), using a conditional quasi-Poisson model

(equivalent to a time-stratified case-crossover). Because
of the known lag between cold and mortality excess, the
cold variable included in the model was the mean of the
daily cold-degrees over that week and the previous one.
All analyses were performed in Stata V.11.2. The

annual data set and core code are available from the
Dryad Digital Repository: http://dx.doi.org/10.5061/
dryad.02k83.22

RESULTS
Our data set comprised 57 annual counts totalling
3 530 280 deaths from natural causes for years from
1949–1950 to 2005–2006. Over the entire period, apart
from a sharp increase due to the changed administrative
definition of London in January 1966, there is evidence
of a gradual decline from about 1970 (figure 1).
Mean daily temperature exceeded the threshold of 18°C

on 11.1% of days, and was below this threshold on 88.7%
of days. For each year during the study period, the mean
cold-degrees over the year (degrees below 18°C) was
on average 7.4°C and varied between 6.2°C and 9.0°C
(figure 1). Mean heat-degrees (degrees above 18°C) was
much lower (0.2°C), and varied only from 0°C to 0.6°C.
Table 1 presents the estimated increase in mortality

for each degree of cold and heat across the year, as
determined by the regression model. Overall, cold years
were associated with increased deaths from all causes.
For each additional degree of cold across the year, all-
cause mortality increased by 2.3% (95% CI 0.7% to
3.8%), after adjustment for influenza and secular trend.
The effect of cold was greater in those aged 65 and

Figure 1 Annual deaths and mean of daily degrees Celsius below/above 18°C, London 1949–2006 (vertical lines indicate years

affected by boundary changes). Points and lines are graphed at the first year of the October–September years used in analyses,

for example, analysis year October 1965 to September 1966 is ‘1965’.
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above, but CIs were wide. Colder years were also asso-
ciated with proportionally more deaths from cardiovas-
cular disease (2.9% per degree) and respiratory disease
(7.6% per degree), but again CIs were wide.
The estimated increase in mortality with heat (1.7%

per degree) was very imprecise (−2.9% to 6.5%). Age-
specific and cause-specific heat-related mortality were
similarly imprecise, making comparisons unreliable.

A range of sensitivity analyses (table 2) showed that
only where the spline used to allow for mortality trends
over time was very inflexible (3 knots) did the association
of mortality with cold change substantially (losing signifi-
cance). This model, however, fit the data appreciably less
well by Akaike’s information criterion. The association of
heat with mortality was more sensitive to model choices,
but estimates of mortality increment due to heat
remained very imprecise in all models. Residual analysis
of the main model did not suggest problems of poor
model fit (details in online supplementary appendix D).
The comparative conventional month-stratified time

series analyses on weekly data for the same period gave
all-cause estimated cold and heat effects as 2.0% (2.0%
to 2.1%) and 3.9% (3.6% to 4.1%) per degree below
and above, respectively. CIs were much narrower than
for the annual data estimates, and point estimates for
age-specific and cause-specific deaths showed clear
pattern of higher relative risks in the elderly and in
deaths due to cardiovascular and especially respiratory
diseases.

DISCUSSION
In this annual time series, we found that over six
decades in London colder years were associated with
increased mortality, with 2.3% (95% CI 0.7% to 3.8%)
more deaths occurring per degree of cold during the
year. This suggests that cold-related deaths were brought
forward by at least half a year. Cold weather in the UK
typically occurs between December and March; had the
excess of daily deaths associated with preceding weeks of
cold weather been ‘due to occur’ within the same year
as defined in this study—that is, before the following
October—no association between cold and mortality

Table 1 Per cent increase in annual deaths per degree

Celsius of cold (daily average of degrees below 18°C) and

of heat (daily average of degrees above 18°C)

Per cent increase in

mortality per °C (95% CI)

Main

(annual data)

Comparative

(week data)

Cold

All causes

All 2.3 (0.7 to 3.8) 2.0 (2.0 to 2.1)

Age 65+ 2.4 (0.6 to 4.3) 2.2 (2.1 to 2.3)

Under 65 1.9 (−0.0 to 3.9) 1.5 (1.3 to 1.6)

Cardiovascular

All 2.9 (0.9 to 5.0) 2.4 (2.3 to 2.5)

Respiratory

All 7.6 (2.7 to 12.8) 3.6 (3.4 to 3.8)

Heat

All causes

All 1.7 (−2.9 to 6.5) 3.9 (3.6 to 4.1)

Age 65+ 1.0 (−4.4 to 6.8) 4.5 (4.2 to 4.8)

Under 65 3.0 (−3.2 to 9.7) 2.0 (1.5 to 2.5)

Cardiovascular

All −0.1 (−5.9 to 6.1) 3.9 (3.5 to 4.3)

Respiratory

All 3.3 (−10.3 to 19.0) 7.9 (7.2 to 8.6)

Table 2 Sensitivity analyses

Mortality increment (%) per degree below/above

18°C (95% CI)

Cold Heat AIC

Main model 2.3 (0.7 to 3.8) 1.7 (−2.9 to 6.5) 1943.7

Alternative distributional assumptions (main=overdispersed Poisson)

Simple regression 2.1 (0.5 to 3.7) 1.8 (−2.5 to 6.4) NA

Negative binomial 2.5 (1.1 to 3.8) 1.5 (−2.9 to 6.2) NA

Alternative time spline (main=6)

3-knot spline 1.1 (−0.9 to 3.1) −0.2 (−6.2 to 6.2) 3043.8

9-knot spline 2.3 (0.8 to 3.9) 2.8 (−1.9 to 7.6) 1824.0

Additional step for smaller discontinuities (see web appendix A)

Years starting 57 and 58 2.6 (1.0 to 4.2) 2.4 (−2.4 to 7.4) 1903.8

Year starting 64 2.4 (0.8 to 3.9) 1.6 (−3.0 to 6.4) 1909.5

Years starting 75 and 76 2.4 (0.9 to 3.9) 2.2 (−2.9 to 7.4) 1812.6

Alternative heat/cold threshold (main=18)

Threshold 15°C 2.2 (0.5 to 4.0) −0.2 (−2.8 to 2.4) 1966.5

Threshold 21°C 2.1 (0.8 to 3.5) 8.4 (−4.8 to 23.4) 1938.0

Influenza control

No adjustment for influenza 3.0 (0.9 to 5.2) 6.3 (−0.2 to 13.2) 3152.1

AIC, Akaike’s information criterion: (−2×ln(likelihood)+2(terms)); NA, not available.
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would have been detected. Our findings were generally
robust to variations in the modelling assumptions and
regression techniques used.
There have, to our knowledge, been no other studies

looking at long-term mortality in relation to long-term
temperature. The observation, in a cohort study, that
years of high summer temperature variability were asso-
ciated with high mortality also adds evidence that
temperature-related deaths were displaced beyond the
year end.17 It is relevant, however, to compare our esti-
mate with those from published daily studies, which
show acute impacts of cold without excluding those dis-
placed only by a few months. Two London studies used
the same cold threshold as we did (18°C).9 23 If all the
excess deaths identified in the two daily studies have
been displaced beyond the next October and there were
no longer lag effects, the same increments in risk
should appear in the daily as well as annual studies,
setting aside the slightly different time periods of the
studies (1988–1992 and 1993–1996). The daily studies
both found increments of daily mortality of 1.4% per
degree below 18°C.
We found similar estimates of increment in risk per

degree of cold in our subsidiary weekly analysis (2.0%).
That our estimate from annual data was positive and
similar to our own weekly and other’s daily estimates
strongly suggests that the excesses in the daily and
weekly studies were indeed displaced beyond October.
Beyond that, that the annually based estimate is some-
what larger gives some suggestion that there may be
adverse mortality effects operating at much longer lags
than were detectable in the daily studies (lags 3 days and
2 weeks). The difference could however be due to
chance, as 1.4% and 2% falls within the wide CI for this
study (0.7% to 3.8%).
Estimates for the impact of heat from this study were

very imprecise. In particular, the CI for increase in mor-
tality per degree above 18°C, −2.9% to 6.5%, includes
all the estimates made in daily studies, including the
1.3% found in the one daily study using the same 18°C
threshold,9 and also the estimate presented in the
current paper from weekly data (3.9%). This limit in
precision precludes making any conclusion as to the
presence or absence of short-term harvesting for
heat-related deaths from this analysis. The precision limi-
tation is due to the limited number and variation of hot
days annually in London. Annual studies in cities with
more days above their heat thresholds would likely have
more power.

Limitations
Like all epidemiological studies, this one was subject to
residual confounding by uncontrolled risk factors. Many
factors, including the size and demographic structure of
the London population as well as declining age-specific
death rates due to changes in healthcare and risk factors
(eg, smoking), would have contributed to changes in
counts of annual deaths. In common with other time

series regression studies,24 we relied mainly on a smooth
(spline) function of time to control for these, under the
assumption that they would cause smooth changes.
Although this cannot rule out residual confounding, it is
reassuring that increasing the flexibility of the spline or
adding further ‘step’ functions changed the estimated
cold effect very little. The much lower estimate for cold
when using a less flexible spline (table 2) has little cred-
ibility, given the much poorer fit of this model (Akaike’s
information criterion).
How and whether to control for influenza is problem-

atic, as it is possible that it might be on the causal
pathway between cold and death. Our approach, using
the proportion of total deaths due to influenza as covari-
ate in the regression, is thus we believe conservative.
Air pollution is an established risk factor and also

changes over time. We were unable to control for this
due to not having data for the complete period.
However, data on black smoke for the period 1976–2003
were available,25 and analysis revealed a weak negative
correlation between mean annual cold and black smoke
during this time, after accounting for year (r=−0.25).
This suggests that confounding from air pollution is
unlikely to have been substantial, and control for it
would be more likely to increase estimates of cold
effects.
Despite the large population of London and the long

duration of our series, power and precision was limited
for some analyses. Heat effects we discussed above, and
also the age-specific and cause-specific analyses of cold
were too imprecise to allow much interpretation, even if
point estimates followed broadly the expected pattern of
higher risk in the elderly and for cardiovascular and
especially respiratory deaths.1 26 27 The more precisely
estimated patterns we found in the weekly analysis
match those found by others.
Finally, our approach to summarising cold and heat in

each year is not the only possible one. We chose it so as
to maximise the link between this study and daily
studies. However, in fact the annual measure of cold
adopted (degrees below 18) was very highly negatively
correlated, in temperate London, to annual mean tem-
perature (r=−0.97). The heat measure was also corre-
lated but less strongly so (r=0.81). Thus, analyses using
mean annual temperature would have resulted in very
similar estimates of cold effects and broadly similar heat
effects.

Public health implications
Given the imprecision of our estimate of 2.3% increased
mortality per degree of cold (CI 0.7% to 3.8%), we do
not translate it to a quantitative burden. We would in
any case not expect the numerical estimate to be gener-
alisable to other places. The importance of our finding
is the evidence it provides that, of the excess deaths
revealed in daily studies as due to cold, most, possibly
all, have been displaced by at least 6 months. This in
turn strengthens evidence that policies aimed at
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reducing vulnerability to cold (eg, home insulation) are
importantly beneficial to health and specifically life
expectancy.
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Appendices 
 

Note: the annual datset and core code is available from the Dryad Digital Repository: 

http://dx.doi.org/[TBC]22   

 

A: Data Discontinuities 

Start date Type of 

change 

Details Mortality 

affected  

Analysis Oct-Sept  
year steps* 

 

1958 

ICD & 

population 

Counts included  non-civilians 

ICD-6 

ALL 1957 
1958 

1965 

 

London 

Boundary 

Inner London (similar to London Area 

County but includes small part of 

Woolwich) 

ALL 1964 
1965 

1966  London 

Boundary 

Greater London – incorporates Outer 

London boroughs 

ALL 1965 
1966 

1968  ICD ICD-8 introduced, cardiovascular 

category widened 

CVD 1967(CVD-RESP) 
1968(CVD-RESP) 

1976 Data 

collection 

From weekly death registrations to daily 

death counts 

ALL 1974 
1975 

1984 

 

ICD 

interpretation 

Change in interpretation of rule 3 – 

fewer deaths attributed to respiratory 

causes 

RESP 1983(CVD-RESP) 
1984(CVD-RESP) 

1993 ICD 

interpretation 

Reverse of rule 3 interpretation  more 

respiratory deaths 

 

RESP Bridging 
adjustment 

2001  ICD ICD-10 introduced: 22% fewer 

respiratory deaths, especially 

pneumonia; some respiratory 

diseases (~5%), assigned to 

circulatory diseases 

RESP 

CVD 

Bridging 
adjustment 

* two analysis years were affected for each Jan 1 change; bolded entries indicate used in main model, 

otherwise in sensitivity analyses only. ICD bridging correction factors were from Brock 2006
1
. 

CVD=cardiovascular; Inflpneu=Influenza & Pneumonia; RESP=Respiratory  

http://dx.doi.org/%5bTBC%5d
http://dx.doi.org/%5bTBC%5d


B: Previously identified cold and heat thresholds for London. 

Paper & setting Focus:  
 cold or heat? 

Threshold 
(measure of daily 

temperature used) 

Notes regarding methodology used. 

Keatinge et al
2
  

Multicity incl. London  
1988 – 1992 

Combined 
heat and cold 

19.3 to 22.3 °C 
(mean) 

Used the 3°C band of minimum mortality. 
Incorporates 3 day lag for cold. 

Carson et al 
3
 

London  
1900-1996 

Combined 
heat and cold 

15 °C 
(mean) 

Cold & heat threshold common throughout 
century of 15.0°C, although 1986-1996 cold 
threshold was 19.5°C.  Incorporates 14 day 
lag for cold. 
 

Pattenden et al 
4
 

London & Sofia  
1993-1996 
 

Combined 
heat and cold 

18 °C 
(mean) 

Threshold common to London & Sofia. 
Incorporates 2 day lag for heat;  2 week lag 
for cold. 10

th
  & 90

th
 percentiles: 5.2°C to 

21°C  

Hajat et al 
5
 

London, Delhi & Sao Paulo  
1991-1994 
 

Heat (but 
threshold for 
both) 

20 °C 
(mean) 

Threshold common to London, Delhi & Sao 
Paulo. Incorporates 2 week lag for cold. 

Armstrong et al 
6
 

London  
1993-2006 
 

Both – 
individual 
thresholds 

Cold: 12.1 °C (mean) 
Heat: 22.3 °C (mean) 

Incorporates zero lags.  

Eurowinter 1997 
7
  

Multicity incl. London  
1988-1992 
 

Cold Cold: 18 °C (mean) Common threshold. Incorporated 3 day lag. 

Kovats et al 
8
 

London  
1994-2000 
 

Heat Heat: 12 °C (mean) All-cause admissions 

Hajat et al 
9
 

London 
1976-1996 
 

Heat Heat: 21.5 °C (mean) Threshold determined by 97
th

 percentile. 
Increased mortality visible above 19°C 

Hajat et al 
10

 
Multicity incl. London  
1976-2003 
 

Heat Heat: 20.5 °C (mean)  

Baccini et al 
11

 
Multicity incl. London  
1992-2000 
 

Heat Heat: 23.9 °C (max) Apparent temperature 

Ishigami et al 
12

 
London  
1993-2003 
 

Heat Heat: 20.4 °C (mean)  

Armstrong et al 
13

 
England & Wales  
1993-2006 

Heat Heat: 24.7 °C (max) Common threshold at 93
rd

 percentile across 
England & Wales. 

  



C : Model details 

Main model 

 

E(Yi)=exp (  βcold (annual-cold)  + βheat(annual-heat) +  steps(years 1965,6) +  NCS(year,6 knots) 

           + λ(influenza%)  )   

Where, for 52-week years starting i=1949...2005, days j: 

 Yi = annual death count 

             
∑                

   
 

             
∑                

   
 

 steps(years 1965,6): indicator variable for year>=1965 and year>=1966 (boundary change) 

                                                                    

 influenza% : proportion of deaths coded as due to influenza; ICD7-8 equivalent 

- for 1949-1974 these were from the London weekly data 

- for 1975-2006 counts of influenza deaths among London residents were obtained 

directly from the Office of National Statistics. 

The year starting Oct 1965 had one 6-day week due to reporting changes. For this year all counts 

were adjusted by a multiple 364/363.  

Deaths counts were assumed to follow a Poisson distribution with scale overdispersion 

 

In analyses of deaths due to respiratory and cardiovascular causes, additional steps were 

included in the model to allow for changes in ICD and coding known to affect one or the other of 

these categories.  



D: Residual analysis  

These were carried out with x variables as for the main model but using the simple regression model 

for simplicity and in view of the similar result in this and the Poisson model. In the plots below stress 

standard for standardised residual. 

Di:  Distribution of residuals by calendar year 

 

Dii: n of residuals by fitted log count

 
 

  



Diii:  Partial autocorrelation coefficients  
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