Impact of anaemia on lung function and exercise capacity in patients with stable severe chronic obstructive pulmonary disease

Jian Guo,1 Cong Zheng,2 Qiang Xiao,1 Sugang Gong,3 Qinhua Zhao,3 Lan Wang,3 Jing He,3 Wenlan Yang,1 Xue Shi,1 Xingguo Sun,4 Jinming Liu1,3

ABSTRACT

Objective: This study intended to search for potential correlations between anaemia in patients with severe chronic obstructive pulmonary disease (COPD; GOLD stage III) and pulmonary function at rest, exercise capacity as well as ventilatory efficiency, using pulmonary function test (PFT) and cardiopulmonary exercise testing (CPET).

Setting: The study was undertaken at Shanghai Pulmonary Hospital, a tertiary-level centre affiliated to Tongji University. It caters to a large population base within Shanghai and referrals from centres in other cities as well.

Participants: 157 Chinese patients with stable severe COPD were divided into 2 groups: the anaemia group (haemoglobin (Hb) <12.0 g/dL for males, and <11 g/dL for females (n=48)) and the non-anaemia group (n=109).

Primary and secondary outcome measures: Arterial blood gas, PFT and CPET were tested in all patients.

Results: (1) Diffusing capacity for carbon monoxide (DLCO) corrected by Hb was significantly lower in the anaemia group ((15.3±1.9) mL/min/mm Hg) than in the non-anaemia group ((17.1±2.1) mL/min/mm Hg) (p<0.05). A significant difference did not exist in the level of forced expiratory volume in 1 s (FEV1), FEV1/FVC, inspiratory capacity (IC), residual volume (RV), total lung capacity (TLC) and RV/TLC (p>0.05). (2) Peak Load, Peak oxygen uptake (VO2), Peak VO2 %pred, Peak VO2/kg, Peak O2 pulse and the ratio of VO2 increase to WR increase (∆VO2/∆WR) were significantly lower in the anaemia group (p<0.05); however, Peak minute ventilation (VE), Lowest VE/carbon dioxide output (VCO2) and Peak dead space/tidal volume ratio (VD/VI) were similar between the 2 groups (p>0.05). (3) A strong positive correlation was found between Hb concentration and Peak VO2 in patients with anaemia (r=0.702, p<0.01).

Conclusions: Anaemia has a negative impact on gas exchange and exercise tolerance during exercise in patients with severe COPD. The decrease in amplitude of Hb levels is related to the quantity of oxygen uptake.

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) affects various functional and structural domains of the lungs and is recognised as a systemic disease that is frequently present in addition to other diseases. Polycythaemia, traditionally thought to be highly prevalent in COPD, is less frequent nowadays with a more rigorous correction of hypoxaemia. Reversely, recent research shows that anaemia is highly prevalent in patients with COPD.

Anaemia, which is a well-recognised comorbidity in many chronic illnesses, occurs in 10–30% of patients with COPD. Anaemia has been related to increased mortality and morbidity including increased healthcare costs and hospitalisation. Although cardiopulmonary exercise testing (CPET) parameters have been widely used to grade the severity of exercise limitation and provide a quantitative assessment on patients’ ventilator response and cardiovascular response during exercise, all of which might be impaired due to anaemia. It has seldom been used for functional assessment.
of patients with COPD with anaemia. The present study is the first to investigate the impact of anaemia in patients with COPD using CPET in a Chinese population. The aims of our study were to (1) investigate the prevalence of anaemia in patients with stable severe COPD and (2) evaluate the impact of anaemia on pulmonary function at rest, ventilatory efficiency and exercise capacity in patients with COPD, using pulmonary function test (PFT) and CPET.

MATERIALS AND METHODS

Study participants

The relevant population consisted of consecutive, clinically stable patients with a diagnosis of severe COPD (GOLD stage III), who visited the Respiratory Unit of Shanghai Pulmonary Hospital as outpatients between December 2011 and November 2013. Patients were diagnosed as clinically stable if they had had no hospital admission, exacerbation, respiratory infection or change in medication 3 months prior to entering the study. Exclusion criteria included: (1) a history of bronchiectasis, asthma or other concomitant respiratory diseases; (2) a diagnosis of malignancy; (3) inability to complete CPET according to the American Thoracic Society/American College of Chest Physicians guidelines, such as unstable angina, acute myocardial infarction, uncontrolled arrhythmias causing symptoms and orthopaedic impairment and (4) any disease that could affect haemoglobin (Hb) levels (thyroid disease, liver disease, chronic renal failure, chronic heart failure, history of gastrointestinal bleeding and chronic inflammatory rheumatic disease). Anaemia was defined as the presence of Hb levels <12 g/dL in males and <11 g/dL in females according to China-specific criteria.

Study procedures

During the initial visit, all the patients with a potential or known diagnosis of COPD underwent physical examination, arterial blood gas (ABG) analysis and lung function testing. All patients with stable severe COPD (if 30% ≤ forced expiratory volume (FEV1) ≤50% predicted) underwent peripheral venous blood sampling to determine full blood count, liver transaminase, total protein (albumin and globulin), thyroid hormone, serum levels of urea and creatinine. Patients who subsequently presented with abnormal thyroid hormone values (either high or low), glomerular filtration rate below 60 mL/min and increased liver enzymes twice the upper limit of normal were excluded. The patients included in the study visited the outpatient clinic within 2 weeks from the initial visit and performed CPET.

ABG analysis and resting pulmonary function measurements

ABG measurements such as pH, partial pressure of oxygen (PaO2), partial pressure of carbon dioxide (PaCO2) and arterial oxygen saturation (SaO2) were taken just after 10 min of rest. Each participant underwent resting PFT of forced vital capacity (FVC), FEV1, inspiratory capacity (IC), diffusing capacity for carbon monoxide (DLCO) corrected by Hb, residual volume (RV) and total lung capacity (TLC) using standard methodology 12 and equipment (Jaeger Corp, Hoechberg, Germany). All resting lung function values were reported in absolute terms and normalised to percentage of predicted (%pred). Predicted spirometry values were calculated using accepted equations for Chinese adults.

CPET measurements

All the patients performed on a cycle ergometer using a breath-by-breath system according to the American Thoracic Society/American College of Chest Physicians Statement on CPET. The equipment was calibrated in accordance with the manufacturer’s specifications using reference and calibration gases before each test. Standard 12 lead ECGs and pulse oximetry were continuously monitored. Arterial blood pressure was measured every 2 min with an automatic cuff. The protocol comprised 3 min of rest and 3 min of unloaded cycling at 55–65 rpm, followed by a progressively increasing work rate of 5–15 W/min for the patients with COPD and 4 min of recovery.

Most CPET values were reported in absolute terms and normalised to %pred. Predicted values were calculated using accepted equations. CPET variables including oxygen uptake (VO2), minute ventilation (VE), carbon dioxide output (VCO2), work rate (WR) and dead space/tidal volume ratio (VD/VT) were calculated at peak exercise. PeakVO2 was defined as the highest 30 s average of oxygen uptake in the last minute of exercise and other peak parameters were calculated at the same time. Lowest VE/VCO2 was determined by averaging the lowest consecutive 90 s data points.

Statistical analysis

Statistical analysis was performed using SPSS (V.16, SPSS, Chicago). Parameters were expressed as mean ±SD. Most PFT and CPET values are expressed in absolute terms and %pred. Unpaired Student t test was used to identify differences between groups, whereas χ2 test was used to assess differences in categorical variables between groups. Correlations between CPET parameters and Hb levels were determined by Pearson’s correlation test. A p value of <0.05 was considered significant.

RESULTS

Baseline clinical and demographic characteristics

One hundred and fifty-seven patients diagnosed with severe COPD (GOLD stage III) in outpatients were included. The vast majority (93%) of patients in the data set were males. The mean age was 61 years. The characteristics of the patients with COPD with anaemia and without anemia are presented in table 1. Forty-eight (31%) patients from this population fulfilled laboratory
criteria for anaemia, and therefore the prevalence of anaemia among outpatients with stable COPD (GOLD stage III) in our study was 31%. The Hb level for patients with anaemia was 10.6±0.8 g/dL. No difference was noted in body mass index, ages, pack-years of smoking and ABG analysis parameters (pH, PaO₂, PaCO₂ or SaO₂) between patients with anemia and without anemia.

Resting pulmonary function measurements
The PFT parameters of the patients with anemia and without anemia are presented in Table 2. There was no statistical significance in FEV₁, FEV₁/FVC, IC, RV, TLC, RV/TLC between the two groups, indicating that resting pulmonary ventilation function was similar in both patient groups. However, DLCO corrected by Hb was significantly lower among patients with anaemia compared with patients without anaemia.

Cardiopulmonary exercise testing
All individuals completed their CPET studies without incident. Nearly all patients stopped exercise because of leg fatigue and/or acute shortness of breath. All participants achieved a respiratory exchange ratio (RER) >1.10, indicating sufficient metabolic stress. Since the anaerobic threshold (AT) may not be determined by the V-slope method or the interpreter may feel that AT is

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Demographic and clinical characteristics of patients included in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Patients with low haemoglobin concentration (%)</td>
</tr>
<tr>
<td>Number of patients (n=157) (%)</td>
<td>48 (31%)</td>
</tr>
<tr>
<td>Sex</td>
<td>Men (M) 45(94%)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>61.32±6.03</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>21.72±2.93</td>
</tr>
<tr>
<td>Haemoglobin concentration (g/dL)</td>
<td>10.6±0.8*</td>
</tr>
<tr>
<td>MCV(fL)</td>
<td>85.9±9.1</td>
</tr>
<tr>
<td>Smoking index (pack-years)</td>
<td>43.58±7.70</td>
</tr>
<tr>
<td>pH</td>
<td>7.39±0.017</td>
</tr>
<tr>
<td>PaCO₂ (mm Hg)</td>
<td>44.67±1.32</td>
</tr>
<tr>
<td>PaO₂ (mm Hg)</td>
<td>68.11±3.01</td>
</tr>
<tr>
<td>SaO₂ (%)</td>
<td>94.44±0.94</td>
</tr>
</tbody>
</table>

Values represent numbers of patients or means±SD, as appropriate.
*p<0.05, patients with COPD with anaemia versus patients without anaemia using unpaired Student t test.

BMI, body mass index; COPD, chronic obstructive pulmonary disease; MCV, mean corpuscular (erythrocyte) volume; PaCO₂, carbon dioxide partial pressure; PaO₂, oxygen partial pressure.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Comparison of pulmonary function indices in patients with COPD with and without anaemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Patients with low haemoglobin concentration (n=48)</td>
</tr>
<tr>
<td>FEV₁ (L)</td>
<td>1.33±0.27</td>
</tr>
<tr>
<td>FEV₁ (%pred)</td>
<td>42.15±7.53</td>
</tr>
<tr>
<td>FEV₁/FVC (%)</td>
<td>41.32±2.19</td>
</tr>
<tr>
<td>RV (L)</td>
<td>3.98±1.55</td>
</tr>
<tr>
<td>TLC (L)</td>
<td>7.82±0.93</td>
</tr>
<tr>
<td>RV/TLC (%)</td>
<td>50.12±7.68</td>
</tr>
<tr>
<td>IC (L)</td>
<td>1.52±0.47</td>
</tr>
<tr>
<td>DLCO (L)</td>
<td>15.31±1.94*</td>
</tr>
</tbody>
</table>

Values represent numbers of patients or means±SD, as appropriate.
*p<0.05, patients with COPD with anaemia versus patients without anaemia using unpaired Student t test.

COPD, chronic obstructive pulmonary disease; DLCO, carbon monoxide diffusion capacity corrected for haemoglobin concentration; FEV₁, forced expiratory volume in 1 s; FVC, forced vital capacity; IC, inspiratory capacity; RV, residual volume; TLC, total lung capacity.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Comparison of cardiopulmonary exercise testing parameters in patients with COPD with and without anaemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Patients with low haemoglobin concentration</td>
</tr>
<tr>
<td>Peak Load (W)</td>
<td>66.36±16.62*</td>
</tr>
<tr>
<td>Peak VO₂ (mL/min)</td>
<td>866.28±274.32**</td>
</tr>
<tr>
<td>Peak VO₂ (%pred)</td>
<td>56.21±14.79**</td>
</tr>
<tr>
<td>Peak VO₂/kg (mL/min/kg)</td>
<td>14.88±3.92*</td>
</tr>
<tr>
<td>Peak VE (L/min)</td>
<td>37.89±6.33</td>
</tr>
<tr>
<td>ΔO₂/ΔWR slope (mL/min/W)</td>
<td>8.02±1.03*</td>
</tr>
<tr>
<td>Peak O₂ pulse (mL/min)</td>
<td>7.88±2.63*</td>
</tr>
<tr>
<td>Lowest VE/VO₂</td>
<td>32.15±1.28</td>
</tr>
<tr>
<td>Peak VD/VT (%)</td>
<td>33.2±7.2</td>
</tr>
</tbody>
</table>

Values represent numbers of patients or means±SD, as appropriate.
*p<0.05, **p<0.01, patients with COPD with anaemia versus patients without anaemia using unpaired Student t test.

DOD=ΔWR slope, the ratio of VO₂ increase to WR increase; %pred, percentage of predicted; COPD, chronic obstructive pulmonary disease; VCO₂, carbon dioxide output; VE, minute ventilation; VO₂, Peak oxygen uptake; VD/VT, dead space/tidal volume ratio.
Correlations

Peak VO2 is frequently used as the most reliable measure of overall exercise capacity, so we choose Peak VO2 as the typical CPET parameters to investigate for potential associations between Hb levels and exercise capacity. The correlations between Hb concentration and Peak VO2 for the patients with COPD with anaemia and without anaemia are shown in figure 1A. A strong positive correlation was found between Hb concentration and Peak VO2 in patients with anaemia (r=0.702, p<0.01) (figure 1A), but no statistical significant correlation was found with patients without anaemia (r=0.055, p>0.05) (figure 1B).

DISCUSSIONS

In this study, anaemia was present in 31% of patients with severe COPD. The prevalence of anaemia was higher than in patients from previous studies, possibly because the study population comprised patients with more severe COPD. The result confirms that anaemia is a common phenomenon in patients with severe COPD. The main aim of this study was to search for potential correlations between patients with anaemia with severe COPD and resting pulmonary function and exercise capacity, as well as ventilatory efficiency based on PFT and CPET.

The usual PFT parameters like FEV1, FEV1/FVC, IC, RV, TLC and RV/TLC of the two groups were similar to each other except for DLCO corrected by Hb. A severe obstructive pattern characterised the population studied. The finding that patients in the anaemia group had significantly lower DLCO values (corrected by Hb) (p<0.05) indicates that the decreased level of Hb may affect the rate of oxygen uptake across the alveolo-capillary bed and reduce the diffusing capacity of the lungs, without having an obvious influence on the pulmonary ventilation function. Studies examining the effect of just anaemia or anaemia combined with disorder of the alveolo-capillary membrane consistently mention that anaemia does affect the diffusion capacity, but the defect of the respiratory membrane on diffusing capacity is greater. In this study, we have patients with COPD and anaemia who commonly also have defect with the respiratory membrane, both contributing to the reduced DLco as noted. We think that the initial poor correlation with blood gases in this study is because the compensatory mechanisms are not yet fully dysfunctional and the anaemia not severe. Also, all patients in the study were clinically stable and under adequate medication.

Although anaemia has been associated with dyspnoea and reduced exercise tolerance in patients with chronic kidney disease, heart failure and cancer, few studies have been published concerning the effect of anaemia on exercise capacity in patients with COPD. Cote et al studied patients with stable COPD, observed that the presence of anaemia affects the general feeling of dyspnoea measured in the Medical Research Council (MRC) scale and concluded that anaemia decreases exercise tolerance measured in 6 min walk test (6MWT). However, this study is the first to investigate the impact of anaemia on the exercise capacity and ventilatory efficiency of patients with severe COPD using CPET in the Chinese population.

On the one hand, this study showed that patients with anaemia with severe COPD had lower Peak Load, Peak VO2 (%pred), Peak VO2/kg, ΔVO2/ΔWR slope and Peak oxygen pulse (O2 pulse) compared with those without anaemia, demonstrating the negative effect of anaemia on exercise capacity. Peak VO2 is frequently used as the most reliable measure of overall exercise capacity. By Fick’s principle, VO2=cardiac output x arteriovenous O2 difference, the arteriovenous O2 difference is dependent on the availability of Hb, blood oxygenation in the lung, and extraction of oxygen in the periphery. For a given increase in cardiac output, the patient with anaemia, who has a decreased level of Hb and arterial O2 concentration, will have a lower Peak VO2. The O2 pulse is the quotient of the VO2 and heart rate. The ΔVO2/ΔWR slope is an important measurement to evaluate exercise capacity in patients with heart disease. The decreased ΔVO2/ΔWR slope is a marker of...
Carrying capacity by 4/100 mL. Moreover, anaemia levels would result in a reduction of the total oxygen-carrying capacity by 4/100 mL. Consequently, the oxygen-carrying capacity may depend on the level of Hb. The results indicate that the degree of anaemia was more severe. On the other hand, there were no differences in CPET parameters as Peak VE, Lowest VE/VCO2 and Peak VO2/VT (%) between the two groups. Both Peak VO2/VT and Lowest VE/VCO2 indicate the ventilatory efficiency of oxygen uptake and carbon dioxide elimination in patients, mainly due to the limitation of blood flow perfusion, that is, perfusion/ventilation (Q/VA) mismatch. Therefore, anaemia may have a negative effect on the exercise capacity of patients with severe COPD, while its influence on ventilatory efficiency is little.

Apart from that, a strong positive correlation was found between Hb concentration and Peak VO2 in patients with anaemia (r=0.702, p<0.01), but no statistically significant correlation was found with patients without anaemia. All these results strongly indicate that the oxygen-carrying capacity may depend on the level of Hb of the patients with anaemia and oxygen delivery is crucial for the maintenance of oxidative metabolism.

A previous study showed that in normal individuals, 15 g/dL of Hb carries approximately 21 mL of oxygen per 100 mL of blood and a 3 g/dL decrease in Hb levels would result in a reduction of the total oxygen-carrying capacity by 4/100 mL. Moreover, anaemia may result in limited oxygen supply with the consequent increase in ventilatory drive. Among patients with COPD whose ventilatory reserves were decreesed, the accompanying increased ventilatory demand may result in dyspnoea.

Our study is not free of limitations. The proportion of female patients was small. The significantly lower prevalence of COPD in females is a possible explanation for this phenomenon. Moreover, the present data were derived from patients with severe COPD (GOLD stage III) and thus cannot be applied to the overall population of patients with COPD. The reason why we chose patients with severe COPD (GOLD stage III) as our object of study is that patients with anaemia had a tendency to have more severe COPD, while patients with very severe COPD may not manage to complete CPET. Efforts should be made to further assess the prevalence of anaemia in other stages of COPD.

Conclusions

Our study demonstrated that COPD can be accompanied by anaemia and implied the potential correlations between anaemia in patients with COPD and respiratory physiology using PFT and CPET. The results indicate that both the function of gas exchange and exercise capacity decreased in the patients with severe COPD with anaemia compared with the patients without anaemia, while the influence of anaemia on pulmonary ventilation function and ventilatory efficiency was little. Future studies are needed in order to evaluate the possible therapeutic approaches in patients with COPD with anaemia.

Author affiliations

1. Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
2. Department of Respiratory Diseases, Shanghai Changning District Central Hospital, Shanghai, China
3. Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
4. State Key Laboratory of Cardiovascular Disease, Heart-Lung Function Testing Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Contributors JL, XSu, JG and CZ conceived and designed the experiments. JG, CZ, QX and WY performed the experiments. JL, JG, CZ, QX, SG and QZ analysed the data. JH contributed to tools, in this case the exercise machine; LW contributed to materials; JG, JL and XSh contributed to the analysis. JL, JG, CZ and QX wrote the manuscript.

Funding This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent Obtained.

Ethics approval The study was approved by the hospital Ethics Committee.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

Impact of anaemia on lung function and exercise capacity in patients with stable severe chronic obstructive pulmonary disease

Jian Guo, Cong Zheng, Qiang Xiao, Sugang Gong, Qinhua Zhao, Lan Wang, Jing He, Wenlan Yang, Xue Shi, Xingguo Sun and Jinming Liu

BMJ Open 2015 5:
doi: 10.1136/bmjopen-2015-008295

Updated information and services can be found at:
http://bmjopen.bmj.com/content/5/10/e008295

These include:

References
This article cites 30 articles, 8 of which you can access for free at:
http://bmjopen.bmj.com/content/5/10/e008295#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Respiratory medicine (330)
- Sports and exercise medicine (209)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/