BMJ Open

Case definitions for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME): a systematic review

Kjetil Gundro Brurberg,1 Marita Sporstøl Fønhus,1 Lillebeth Larun,1 Signe Flottorp,1,2 Kirsti Malterud3,4,5

ABSTRACT

Objective: To identify case definitions for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME), and explore how the validity of case definitions can be evaluated in the absence of a reference standard.

Design: Systematic review.

Setting: International.

Participants: A literature search, updated as of November 2013, led to the identification of 20 case definitions and inclusion of 38 validation studies.

Primary and secondary outcome measure: Validation studies were assessed for risk of bias and categorised according to three validation models: (1) independent application of several case definitions on the same population, (2) sequential application of different case definitions on patients diagnosed with CFS/ME with one set of diagnostic criteria or (3) comparison of prevalence estimates from different case definitions applied on different populations.

Results: A total of 38 studies contributed data of sufficient quality and consistency for evaluation of validity, with CDC-1994/Fukuda as the most frequently applied case definition. No study rigorously assessed the reproducibility or feasibility of case definitions. Validation studies were small with methodological weaknesses and inconsistent results. No empirical data indicated that any case definition specifically identified patients with a neuroimmunological condition.

Conclusions: Classification of patients according to severity and symptom patterns, aiming to predict prognosis or effectiveness of therapy, seems useful. Development of further case definitions of CFS/ME should be given a low priority. Consistency in research and explore how the validity of case definitions can be achieved by applying diagnostic criteria that are therefore considered properties are needed for case definitions (diagnostic criteria) are therefore used to define the CFS diagnosis. When case definitions are developed, the context of application must be considered, since different properties are needed for case definition intended for research purposes compared with case definitions used to diagnose individual patients. It is also necessary to consider whether a broad (ie, sensitive criteria ensuring that we do not miss relevant cases) or narrow (ie, specific criteria ensuring that all positive cases are definite) approach is most appropriate.

INTRODUCTION

Chronic fatigue syndrome (CFS) is a serious disorder characterised by persistent postexertional fatigue and substantial symptoms related to cognitive, immune and autonomous dysfunction.1, 5 Disease mechanisms are complex,3 with no single causal factor identified. Yet there are indications that infections4–8 and immunological dysfunction9 contribute to development and maintenance of symptoms, probably interacting with genetic10 and psychosocial11–13 factors.

Studies have identified pathological patterns and structures of the central nervous system,14, 15 dysregulation of body temperature and blood pressure16, 17 and dysfunctional stress hormonal systems18, 19 in patients with CFS compared with normal controls. None of these appears sufficiently consistent to constitute a diagnostic test, and case definitions (diagnostic criteria) are therefore used to define the CFS diagnosis. When case definitions are developed, the context of application must be considered, since different properties are needed for case definition intended for research purposes compared with case definitions used to diagnose individual patients. It is also necessary to consider whether a broad (ie, sensitive criteria ensuring that we do not miss relevant cases) or narrow (ie, specific criteria ensuring that all positive cases are definite) approach is most appropriate.

Holmes et al20 coined the term ‘chronic fatigue syndrome’ in 1988, as an alternative to ‘The chronic Epstein-Barr virus syndrome’. Since this case definition—the CDC-1988/
Holmes Criteria—was presented in 1988, numerous revisions have been developed, aiming for distinctive and reliable identification of individuals who represent a homogenous and consistent phenotype of the hypothesised disease entity, consistent with pathophysiological and psychosocial findings. Currently, the term ‘myalgic encephalomyelitis’ (ME) is commonly used to conceptualise a specific neuroimmunological condition, assumed to be more severe and less psychologically attributable than CFS. In 2003, Carruthers et al presented the Canadian-2003 Criteria for diagnosis of ME/CFS. A revised version was presented as International Consensus Criteria (the ICC-2011 Criteria) for ME, claiming to be a selective case definition for identification of patients with neuroimmune exhaustion with a pathologically low threshold of fatigability and symptom flare after exertion. The assertion that CFS and ME are different clinical entities is disputed. Below, we will pragmatically apply the term CFS/ME.

Johnston et al conducted a systematic review of the adoption of CFS/ME case definitions to assess the prevalence and identified eight different case definitions. There is no general agreement on a reference standard for diagnosis, and no diagnostic test is available. Bossuyt et al include case definitions in their understanding of the term ‘test’, emphasising that diagnostic tests are highly dynamic and need rigorous evaluation before they are introduced into clinical practice.

The objectives of our study were to explore strategies for evaluation of accuracy and concept validity of different case definitions for CFS/ME in the absence of a reference standard. First, we wanted to conduct a systematic review to identify and describe different case definitions (sets of diagnostic criteria) for CFS/ME. Second, we wanted to explore differences between various case definitions by identifying and reviewing validation studies.

MATERIALS AND METHODS

Protocol and registration

We developed a protocol for our study. However, we did not publish or register it.

Eligibility criteria

We included studies presenting or validating case definitions for CFS/ME for adult populations (>18 years). No language restrictions were employed.

Information sources and search

We searched Ovid MEDLINE from 1946, Ovid EMBASE from 1980, Ovid PsycINFO from 1806, Ovid AMED from 1985, The Cochrane Library from 1898, GINAHL from 1981 and PEDRO from 1929, using subject headings and text words (see online supplementary appendix 1). All searches were up to date as of 25 November 2013. We checked the reference lists of all included articles and searched for unpublished and ongoing studies by correspondence with authors and field experts.

Study selection

To select publications eligible for this review, two authors independently read all titles and abstracts in the records retrieved by the searches. We obtained publications in full text if the abstract was deemed eligible by at least one review author. At least two authors independently read the full text papers and selected studies according to the inclusion criteria. Any disagreement between review authors was resolved by discussion between the two review authors or, if necessary, by involving all authors.

Data collection process

First, we listed all the identified case definitions for CFS/ME. One author gathered information about citation from ISI and Google Scholar to indicate the impact or widespread of use, but we made no attempt to assess or rank the quality of the case definitions at this stage.

To facilitate the validity assessment, we developed a framework consisting of three different models. Model A includes studies with independent application of different case definitions on the same population (figure 1). This model presents the interrelationship between sub-populations identified by different case definitions.

Model B includes studies where patients diagnosed with CFS/ME with one set of diagnostic criteria are diagnosed sequentially with other case definitions assumed to have increasing specificity (figure 2).

Model C includes surveys or cross-sectional studies estimating the prevalence of CFS/ME by applying different case definitions on different populations (figure 3). These studies do not directly compare different case definitions, but may be used for proxy evaluation, similar to the strategy applied by Johnston et al.

Two authors reviewed all potentially relevant validation studies, and categorised them according to model A, B or C. Any disagreement between review authors at this stage was resolved by reaching consensus in the author group.

Risk of bias in individual studies

To differentiate between studies with higher and lower risk of bias, we critically appraised all included validation studies according to checklists: Studies comparing two or more case definitions directly (ie, model A or B) were appraised according to the QUADAS criteria (patient selection, index test, reference standard, flow and timing). For evaluation of prevalence studies (ie, model C), we used an outline for assessment of external and internal validity (11 items) of prevalence studies.

Analysis

Participation in prevalence studies, surveys and questionnaires vary across the included studies. Non-response is known to introduce bias, and methods to adjust for low response rates are available. In studies affected by non-
response, we have reported adjusted estimates whenever applicable. If adjusted estimates were unavailable, we have defined the proportion as the number of cases divided by the number of responders. We estimated 95% CIs for all proportions by using the Clopper-Pearson exact binomial method. We used R software V.3.0.0 and the rmeta package for statistical computations and plotting.31 32

RESULTS

Study selection

Our systematic literature search identified 1660 unique references, of which 56 articles fulfilled our inclusion criteria (figure 4). Twenty articles present different case definitions of CFS/ME for research or clinical practice20 22 23 33 –49 (table 1). Furthermore, 38 studies were classified as validation studies, contributing data of sufficient quality and consistency for evaluation of different case definitions according to our inclusion criteria.

The degree to which the different case definitions had been applied in research and clinical guidelines varied widely, with CDC-1994/Fukuda et al39 as the most frequently cited case definition of CFS/ME. Thirteen of the 20 identified case definitions had been assessed in one or more validation studies.20 22 23 33 34 36 37 39–41 43 44 47 For seven case definitions, no foundation for validation could be identified. We did not identify any study which rigorously assessed the reproducibility or feasibility of the different case definitions.

![Figure 1](image1.png) **Figure 1** Model A: evaluation design with independent application of several case definitions on the same background population (CFS, chronic fatigue syndrome; ME, myalgic encephalomyelitis).

![Figure 2](image2.png) **Figure 2** Model B: evaluation design where different case definitions with assumed increasing specificity are applied sequentially on the same population (CFS, chronic fatigue syndrome; ME, myalgic encephalomyelitis).

![Figure 3](image3.png) **Figure 3** Model C: evaluation design with indirect comparisons of prevalence estimates from several case definitions applied on different populations (CFS, chronic fatigue syndrome; ME, myalgic encephalomyelitis).
Indirect comparisons of prevalence estimates from several case definitions applied on different populations (model C)

We identified 21 studies (table 4) presenting prevalence estimates for CFS/ME (figure 3), in addition to the five studies presenting prevalence estimates following the application of multiple case definitions (table 2). Based on these studies, we extracted 17 independent estimates.
of the prevalence following application of the CDC-1994/Fukuda criteria (figure 5).

Our analysis suggests that the population prevalence of CFS/ME according to the CDC-1994/Fukuda case definition probably is less than 1% (range 0.1–6.4%; median 1%), with higher prevalence among consecutive GP attendants than from population studies. Prevalence estimates seemed higher when patients were diagnosed without a preceding medical examination. Prevalence estimates of CFS/ME according to CDC-1988/Holmes case definition seemed lower, with all the studies reporting prevalence estimates ranging from 0.0% to 0.3% (median 0.05%).

Five studies\(^54\)–\(^56\) reported CFS/ME prevalence estimates according to the Oxford-1991 case definition. These estimates ranged from 0.4% to 3.7% (median 1.5%). Four studies\(^44\)–\(^56\) reported prevalence estimates according to the Australian-1990 case definition ranging from 0.04% to 7.6% (median 1.2%).

DISCUSSION

We identified 20 studies presenting different CFS/ME case definitions, and 38 studies with data providing access to comparison and evaluation of some of these. Only a minority of existing case definitions had been submitted to comparative evaluations. The validation studies were methodologically weak and heterogeneous, making it questionable to compare the case definitions. The most cited case definition (CDC-1994/Fukuda

Table 1 Case definitions for CFS/ME

<table>
<thead>
<tr>
<th>Case definitions (chronologically)</th>
<th>Developed from other criteria or definitions?</th>
<th>Institution and country of first author</th>
<th>CITATIONS* ISI/Google Scholar</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC-1988/Holmes et al(^20)</td>
<td></td>
<td>Centers for Disease Control, Atlanta, USA</td>
<td>1106/1542</td>
</tr>
<tr>
<td>ME-1988/Ramsey*</td>
<td></td>
<td>Royal Free Hospital, London, UK</td>
<td>6/51</td>
</tr>
<tr>
<td>London-1990/Dowsett et al(^7)</td>
<td></td>
<td>Royal Free Hospital, London, UK</td>
<td>55/88</td>
</tr>
<tr>
<td>Australian-1990</td>
<td></td>
<td>The Prince Henry Hospital, Little Bay, Australia</td>
<td>230/343</td>
</tr>
<tr>
<td>Postviral fatigue syndrome-1990(^43)</td>
<td></td>
<td>Raigmore Hospital, Inverness, UK</td>
<td>14/28</td>
</tr>
<tr>
<td>CDC-1994/Fukuda et al(^99)</td>
<td>CDC-1988</td>
<td>Centers for Disease Control, Atlanta, USA</td>
<td>1860/3006</td>
</tr>
<tr>
<td>Working case definition-1996(^38)</td>
<td>CDC-1988</td>
<td>Brigham and Women's Hospital Massachusetts, USA</td>
<td>78/138</td>
</tr>
<tr>
<td>CFS-1998(^49)</td>
<td>CDC-1994</td>
<td>Medical College of Wisconsin, USA</td>
<td>8/23</td>
</tr>
<tr>
<td>Canadian-2003(^22)</td>
<td>CDC-1994</td>
<td>Royal College of Physicians and Surgeons of Canada, Canada</td>
<td>69/233</td>
</tr>
<tr>
<td>Empirical CDC-2005/Reeves et al(^63)</td>
<td>CDC-1994</td>
<td>Centers for Disease Control and Prevention, Atlanta, USA</td>
<td>73/154</td>
</tr>
<tr>
<td>Empirical-2007(^31)</td>
<td>CDC-1994</td>
<td>DePaul University, Chicago, USA</td>
<td>5/14</td>
</tr>
<tr>
<td>Brighton Collaboration-2007(^55)</td>
<td></td>
<td>Centers for Disease Control and Prevention, Atlanta, USA</td>
<td>1/5</td>
</tr>
<tr>
<td>NICE-2007 Guidelines(^46)</td>
<td></td>
<td>National Institute for Health and Clinical Excellence, London, UK</td>
<td>No records/23†</td>
</tr>
<tr>
<td>ECD-2008(^34)</td>
<td></td>
<td>DePaul University, South Hampton, Hampshire, UK</td>
<td>2/4</td>
</tr>
<tr>
<td>Revised Canadian-2010(^47)</td>
<td></td>
<td>DePaul University, Illinois, USA</td>
<td>8/18</td>
</tr>
<tr>
<td>ME-2011(^33)</td>
<td>Canadian-2003</td>
<td>DePaul University, Illinois, USA</td>
<td>1/1</td>
</tr>
</tbody>
</table>

*Searched 23 May 2012.
†Summary of the NICE Guidelines in: diagnosis and management of chronic fatigue syndrome or myalgic encephalomyelitis (or encephalopathy): summary of NICE guidance. *BMJ* 2007;335:446.
CFS, chronic fatigue syndrome; ICC, International Consensus Criteria; ME, myalgic encephalomyelitis; ECD, epidemiological CFS/ME definition.
et al29 is also the most extensively validated one, whereas validation studies are few (Canadian-2003,22 ICC-201123) or missing (National Institute for Health and Care Excellence (NICE)-200726) for recently presented and debated case definitions. We found no empirical evidence supporting the hypothesis that some case definitions more specifically identify patients with a neuroimmunological condition.

Strengths and weaknesses of our study

The main strength of our study is the systematic methods used to identify and appraise articles presenting case definitions of CFS/ME and studies potentially useful to evaluate the case definitions. Furthermore, we have used systematic and transparent approaches to extract data from the validation studies, categorise the studies according to three different models and to analyse and compare the data.

The STARD initiative aims to improve the reporting on studies of diagnostic accuracy, considering any method for obtaining additional information on a patient’s health status as a test.25 Owing to the lack of a reference standard, we found this guideline less suitable for review of articles evaluating case definitions for CFS/ME. Still, issues such as study populations, test methods and rationale, technical specifications for application of the test, statistical methods for comparing measures of accuracy and uncertainty, estimates of diagnostic accuracy, variability and clinical applicability25 are relevant also for our analysis.

The validation studies we identified were small with considerable methodological weaknesses and inconsistent results. Only one study held a level of rigour where independent application of several case definitions was conducted on the same population (model A).36 Such a study should ideally be based on a population sample rather than a GP practice database, and should compare a selection of currently applied and debated case definitions, such as CDC-1994/Fukuda, Oxford-1991, Canadian-2003 and NICE-2007.

The QUADAS criteria28 demonstrate that model B is an evaluation strategy prone to several sources of bias. First, the spectrum of patients subjected to the comparator is selected and not representative of the population receiving the test if it is used alone. Second, as comparators were mostly applied subsequently to the evaluation standard, the clinical evaluations were not independent. The estimates from two of the Jason studies33,52 suggest a comparable correspondence (40–70% of the F+ are also C+) with the results presented by Nacul et al.50 Yet, model B gives no or limited information regarding those who screened negative in the first place. We do not know whether some of those might have had a positive diagnosis if screened with one of the other case definitions.

We are even more prone to bias when exploring the consistency of different case definitions through indirect comparisons of prevalence estimates obtained from different populations (model C), and great caution is needed when such proxy comparisons are undertaken. For example, two of the included studies reported

<table>
<thead>
<tr>
<th>First author, year, country</th>
<th>Data collection</th>
<th>Prevalence (95% CI) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nacul, et al, 2011, UK</td>
<td>609 possible cases electronically identified in databases of 29 GP practices. 70 excluded after clinical revision (explained fatigue). 135 refusals and 126 non-cases</td>
<td>ECD: 0.03 (0.02 to 0.04)</td>
</tr>
<tr>
<td>Bates, et al, 1993, USA</td>
<td>995 consecutive GP visitors invited—94% screened by a questionnaire to detect major fatigue. Selected patients further evaluated by questionnaires, physical examinations and interviews</td>
<td>Fukuda: 0.19 (0.17 to 0.21)</td>
</tr>
<tr>
<td>Kawakami, et al, 1998, Japan</td>
<td>All adults (n=508) in Town A, Kofu-city, were invited to participate in this structured psychiatric diagnostic interview survey. 137 (27%) completed the study</td>
<td>Holmes: 0.0 (0.0 to 2.7)</td>
</tr>
<tr>
<td>Lindal, et al, 2002, Iceland</td>
<td>Survey sent to 4000 randomly selected adult participants —63% responded. Questionnaire included questions on all items in the four case definitions. Diagnoses were set electronically based on received responses. No medical tests or examinations were undertaken</td>
<td>Holmes: 1.5 (0.2 to 5.2)</td>
</tr>
<tr>
<td>Wessely, et al, 1997, UK</td>
<td>2363 patients followed in a cohort study—84% completed. Fatigued participant subjected to detailed questionnaires, interviews and laboratory testing. Separate estimates reported for inclusion/exclusion of psychiatric comorbidity</td>
<td>Holmes: 1.2 (0.5 to 1.8)</td>
</tr>
</tbody>
</table>

*Prevalence estimates were calculated with the number of responders in the denominator. The choice of denominator may have large implications with regard to the subsequent prevalence estimate, particularly in studies with low response rate. Hence, depending on the actual response rate, estimates presented for each study may be biased.

GP, general practitioner.
Table 3 Conformity of prevalence estimates in studies where patients diagnosed with CFS/ME with one set of diagnostic criteria are diagnosed sequentially with other case definitions (model B)

<table>
<thead>
<tr>
<th>Study recruitment</th>
<th>Case definitions</th>
<th>Conformity* (95% CI)</th>
<th>Symptom and burden profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brimacombe et al,69 USA</td>
<td>Fukuda† (n=200)</td>
<td>1.00 (0.80 to 0.90)</td>
<td>(F+/H–) patients do not endorse infectious-type symptoms as often or to the same degree of severity as (F+/H+) patients</td>
</tr>
<tr>
<td>Fukuda-positive from register</td>
<td>Holmes (n=171)</td>
<td>0.85 (0.70 to 0.90)</td>
<td></td>
</tr>
<tr>
<td>Jason et al.70 USA</td>
<td>Fukuda† (n=32)</td>
<td>0.94 (0.67 to 0.99)</td>
<td>(F+/H+) patients with more symptoms and functional impairment than (F+/H–) patients. No difference in psychological comorbidity</td>
</tr>
<tr>
<td>Fukuda-positive from register</td>
<td>Holmes (n=14)</td>
<td>0.44 (0.20 to 0.62)</td>
<td></td>
</tr>
<tr>
<td>Jason et al.52 USA</td>
<td>Fukuda† (n=32)</td>
<td>1.00 (0.67 to 0.99)</td>
<td>C+ patients have less psychiatric comorbidity, more physical function impairment, are more fatigued with more neurological symptoms than (F+/C–) patients</td>
</tr>
<tr>
<td>Fukuda-positive from register</td>
<td>Canada (n=23)†</td>
<td>0.63 (0.44 to 0.79)</td>
<td></td>
</tr>
<tr>
<td>Jason et al.33 USA</td>
<td>Fukuda† (n=113)</td>
<td>1.00 (0.57 to 0.99)</td>
<td>(F+/C+) patients had more functional impairments, and more severe physical and cognitive symptoms than (F+/ME–) patients</td>
</tr>
<tr>
<td>Fukuda-positive recruited from many sources</td>
<td>Canada (n=57)</td>
<td>0.50 (0.41 to 0.60)</td>
<td></td>
</tr>
<tr>
<td>Jason et al.71 USA</td>
<td>Fukuda† (n=24)</td>
<td>1.00 (0.67 to 0.99)</td>
<td></td>
</tr>
<tr>
<td>Register</td>
<td>Reeves empirical</td>
<td>Of 24 F+ and 84 F-patients empirical criteria and Canada identified 79 and 87% correctly</td>
<td></td>
</tr>
<tr>
<td>Jason et al.65 USA</td>
<td>Fukuda† (n=27)</td>
<td>1.00 (0.67 to 0.99)</td>
<td></td>
</tr>
<tr>
<td>Register</td>
<td>Reeves emp.</td>
<td>1.00 (0.67 to 1.00)</td>
<td></td>
</tr>
<tr>
<td>Brown et al.53 USA</td>
<td>Fukuda† (n=113)</td>
<td>1.00 (0.67 to 0.99)</td>
<td></td>
</tr>
<tr>
<td>Fukuda-positive recruited from many sources</td>
<td>ICC (n=39)</td>
<td>0.35 (0.26 to 0.44)</td>
<td></td>
</tr>
<tr>
<td>Jason et al.72 USA</td>
<td>Fukuda† (n=32)</td>
<td>1.00 (0.67 to 0.99)</td>
<td></td>
</tr>
<tr>
<td>Fukuda-positive from register</td>
<td>Dowsett (n=171)†</td>
<td>0.44 (0.20 to 0.62)</td>
<td></td>
</tr>
<tr>
<td>White et al.60 UK</td>
<td>Oxford† (n=641)</td>
<td>1.00 (0.67 to 0.99)</td>
<td></td>
</tr>
<tr>
<td>Oxford-positive patients recruited to trial</td>
<td>Fukuda (n=427)</td>
<td>0.67 (0.63 to 0.70)</td>
<td></td>
</tr>
<tr>
<td>London ME (n=329)</td>
<td>0.51 (0.47 to 0.55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wearden et al.73 UK</td>
<td>Oxford†</td>
<td>Of 24 F+ and 84 F-patients empirical criteria and Canada identified 79 and 87% correctly</td>
<td></td>
</tr>
<tr>
<td>Oxford-positive patients recruited to trial</td>
<td>Oxford† (n=296)</td>
<td>1.00 (0.67 to 0.99)</td>
<td></td>
</tr>
<tr>
<td>London ME (n=92)</td>
<td>0.31 (0.26 to 0.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stubhaug et al.74 Norway</td>
<td>Neurasthenia†</td>
<td>Of 24 F+ and 84 F-patients empirical criteria and Canada identified 79 and 87% correctly</td>
<td></td>
</tr>
<tr>
<td>Neurasthenia-positive patients recruited to trial</td>
<td>Oxford† (n=65)</td>
<td>1.00 (0.67 to 0.99)</td>
<td></td>
</tr>
<tr>
<td>Fukuda (n=29)</td>
<td>0.90 (0.81 to 0.96), 0.40 (0.29 to 0.53)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The proportion of cases relative to the evaluation standard.
†Evaluation standard.
‡Three of the 23 participants who tested positive according to the Canada criteria were negative according to Fukuda.
§14 of the 37 patients who tested positive according to Reeves were negative according to Fukuda (these 14 patients had a depression diagnosis).
¶Three of the 17 participants who tested positive according to Dowsett were negative according to Fukuda.

CBT, cognitive behavioral therapy; CFS, chronic fatigue syndrome; GET, graded exercise therapy; ICC, International Consensus Criteria; ME, myalgic encephalomyelitis.
similar point prevalence according to CDC-1994/ Fukuda (2.1% and 2.6%), but reported very different estimates following the application of the Australian-1990 criteria (7.6% and 1.4%). This inconsistency can be explained by major methodological differences seen across the included studies. Our sample includes studies in which a diagnosis of CFS/ME is made on the basis of either questionnaire responses or clinical interview. Previous studies suggest that patients who receive a standardised questionnaire report considerably more symptoms than when asked to report their symptoms spontaneously. There are several other sources to this between study heterogeneity, such as recruitment strategy, response rate and strategies for non-response adjustment. We were not able to identify the most important one. However, Johnston et al performed an interesting subgroup analysis in their meta-analysis of 14 studies applying the CDC-1994/ Fukuda case definition, and found that the pooled prevalence for self-reporting assessment was 3.28% (95% CI 2.24% to 4.33%) compared with 0.76% (95% CI 0.23% to 1.29%) for clinical assessment. Prevalence was lower in community samples (0.87%; 0.32% to 1.42%) than in primary care samples (1.72%; 1.40% to 2.04%). The prevalence estimates based on self-reports showed high variability, while clinically assessed estimates were more consistent, especially in the community samples.

The utility of case definitions and diagnoses

The utility of a diagnosis is linked to the potential effects of being diagnosed (eg, benefits and harms of the patient’s role, access to treatment and insurance). More importantly, a diagnosis is useful if it is linked to valid information regarding prognosis or outcomes of therapy. Reitsma et al suggest clinical test validation as an alternative paradigm for evaluation of a diagnostic test when an acceptable reference standard is missing. Hence, primary studies and systematic reviews on prognosis and therapy are alternative sources to evaluate the usefulness of different case definitions of CFS/ME. We have identified only one such publication, the PACE trial. Here, participants were diagnosed according to the Oxford-1991 criteria, Empirical criteria-2007/Reeves and London ME-1994/National Task Force criteria, and then randomised to either standard medical treatment, graded exercise therapy, cognitive behaviour therapy or pacing. The results showed that the effectiveness of the treatments was similar across groups, irrespective of the case definition which had been used. Fluge et al applied the CDC-1994/Fukuda and retrospectively added the Canada criteria in their study on the effects of rituximab in CFS with comparable results. In a recent publication, Maes et al measured symptom severity, selected biomarkers and postexertional malaise in 144 patients with CF, of whom 107 fulfilled the CDC-1994/
Fukuda criteria of CFS/ME. They claimed that CF, CFS, and ME are distinct categories, although stating that patients group together in one continuum with no clear boundaries between them. Such studies would be even more useful if outcomes of specific treatment modes had also been tested.

A study comparing the prognosis of different diagnostic labels of fatigue found that patients with ME had the worst prognosis while patients with postviral fatigue syndrome had the best. This could mean that the patients destined to the worst prognosis were labelled with the ME diagnosis, or it might be explained as an adverse effect of being labelled with ME. The authors found no significant difference in recorded fatigue before the diagnosis of CFS and ME, and the data in this retrospective study supported the hypothesis of the labelling effect. Another study found that patients who attributed their fatigue to ME were more fatigued and...
more handicapped in relation to home, work, social and private leisure activities than patients who attributed their fatigue to psychological or social factors.62

Broad or narrow case definitions?
Ideally, correspondence validity between test and target should be 100% for sensitivity (the capacity to identify patients in the target group) and specificity (the capacity to rule out patients who do not belong to the target group). More often, there is a trade-off between these measures, depending on the purpose of diagnosis. Emphasising sensitivity implies a risk of overdiagnosis, which dilutes the actual diagnostic concept, while emphasising specificity implies a risk of underdiagnosis, dismissing patients who might benefit from treatment. Development of more exclusive case definitions for CFS/ME has been proposed, claiming that existing case definitions do not select homogenous sets of patients.23 More specifically, Oxford-1991, Fukuda-1994 and NICE-2007 have been criticised, especially by patient organisations, for undue overlap with psychopathology. Proponents of recent case definitions, such as Canada-2003 and ICC-2011, claim to achieve a narrow selection of patients with ME conforming to a hypothesised specific pathophysiology. Our review demonstrates, however, that these case definitions do not necessarily exclude patients with psychopathology.

A lesson could be learnt from Reeves, who tried to elaborate the CDC1994/Fukuda definition and bring methodological rigour into the diagnostic criteria by scores from standardised and validated instruments.65 The Empirical-2006/Reeves case definition led to a tenfold prevalence estimate as compared with the CDC1994/Fukuda definition,64 probably due to misclassification and inclusion of patients with major depressive disorder.65 The purpose of rigour had not been achieved, and the Empirical-2006/Reeves case definition was never broadly implemented. According to our review, it is uncertain whether a more homogenous subset of patients can be achieved with the Canada-2003 and ICC-2011 case definitions. The authors of the latter paper write: “Collectively, members have approximately 400 years of both clinical and teaching experience, authored hundreds of peer-reviewed publications, diagnosed or treated approximately 50 000 patients with ME and several members coauthored previous criteria.”23 This declaration is no validity criterion and provides no guarantee that the case definition works according to the intentions.

Case definitions for research or clinical practice?
Research requires uniform and reproducible criteria, suitable for unambiguous definitions of the target population. Another concern is to compare studies across time and nations. These are arguments for an inclusive case definition, preferably one which has been in use for a while, and for which validation studies are available. In CFS/ME research, the Oxford-1991 and CDC-1994/Fukuda are the most frequently used case definitions. Our review indicates that the former might be more inclusive, with lower specificity than the latter, although the impact of this is unclear. Proponents for more restrictive case definitions dismiss findings from treatment studies documenting effects of cognitive behavioural treatment or graded exercise therapy for patients diagnosed with the Oxford-1991 or CDC-1994/Fukuda case definitions.66 Their claim is that for a more exclusive selection of patients with ME, defined according to specific hypothesised pathophysiology, the side effects of these treatment modalities are hazardous. So far, however, treatment studies based on the Canada-2003 or ICC-2011 case definitions are not available.

Case definitions for clinical practice should be research based, validated and manageable to provide a tool which can relieve patient’s uncertainty, indicate the most appropriate treatment and prevent adverse effects and waste of healthcare resources of unnecessary treatment and diagnostic procedures.67 They should be founded on available knowledge regarding the mechanisms of the actual condition, validated through credible and transparent processes and presented in a format which can be implemented in everyday practice. An argument for more inclusive case definitions for CFS/ME would be the issue of treatment, since existing evidence indicates that side effects of cognitive behavioural treatment or graded exercise therapy are negligible. For this context, the CDC-1994/Fukuda case definition appears suitable, with the NICE-2007 as a good candidate for validation studies.

IMPLICATIONS FOR RESEARCH AND CLINICAL PRACTICE
On the basis of our review, we argue that development of further case definitions of CFS/ME should be given low priority, as long as causal explanations for the disease are limited. It might still be useful to classify patients according to severity and symptom patterns, aiming to identify characteristics of patients that might predict differences in prognosis or expected effects of therapy.

It is likely that all CFS/ME case definitions capture conditions with different or multifactorial pathogenesis and varying prognosis. The futile dichotomy of ‘organic’ versus ‘psychic’ disorder should be abandoned. Most medical disorders have a complex aetiology. Psychological treatments are often helpful also for clear-cut somatic disorders. Unfortunately, patient groups and researchers with vested interests in the belief that ME is a distinct somatic disease seem unwilling to leave the position that ME is an organic disease only. This position has damaged the research and practice for patients suffering from CFS/ME.

CONCLUSIONS
Our review provided no evidence that any of the case definitions identify patients with specific or ‘organic only’ disease aetiology. Priority should be given to
References

NICE clinical guideline 53. Chronic fatigue syndrome/myalgic encephalomyelitis (ME) (M.E.)

Case definitions for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME): a systematic review

Kjetil Gundro Brurberg, Marita Sporstøl Fønhus, Lilibeath Larun, Signe Flottorp and Kirsti Malterud

Updated information and services can be found at: http://bmjopen.bmj.com/content/4/2/e003973

These include:

Supplementary Material
Supplementary material can be found at: http://bmjopen.bmj.com/content/suppl/2014/02/07/bmjopen-2013-003973.DC1

References
This article cites 85 articles, 11 of which you can access for free at: http://bmjopen.bmj.com/content/4/2/e003973#ref-list-1

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Diagnostics (218)
- Epidemiology (2245)
- Evidence based practice (756)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/